Tag Archives: css

Coding is for girls

Post Syndicated from magda original https://www.raspberrypi.org/blog/coding-is-for-girls/

Less than four years ago, Magda Jadach was convinced that programming wasn’t for girls. On International Women’s Day, she tells us how she discovered that it definitely is, and how she embarked on the new career that has brought her to Raspberry Pi as a software developer.

“Coding is for boys”, “in order to be a developer you have to be some kind of super-human”, and “it’s too late to learn how to code” – none of these three things is true, and I am going to prove that to you in this post. By doing this I hope to help some people to get involved in the tech industry and digital making. Programming is for anyone who loves to create and loves to improve themselves.

In the summer of 2014, I started the journey towards learning how to code. I attended my first coding workshop at the recommendation of my boyfriend, who had constantly told me about the skill and how great it was to learn. I was convinced that, at 28 years old, I was already too old to learn. I didn’t have a technical background, I was under the impression that “coding is for boys”, and I lacked the superpowers I was sure I needed. I decided to go to the workshop only to prove him wrong.

Later on, I realised that coding is a skill like any other. You can compare it to learning any language: there’s grammar, vocabulary, and other rules to acquire.

Log In or Sign Up to View

See posts, photos and more on Facebook.

Alien message in console

To my surprise, the workshop was completely inspiring. Within six hours I was able to create my first web page. It was a really simple page with a few cats, some colours, and ‘Hello world’ text. This was a few years ago, but I still remember when I first clicked “view source” to inspect the page. It looked like some strange alien message, as if I’d somehow broken the computer.

I wanted to learn more, but with so many options, I found myself a little overwhelmed. I’d never taught myself any technical skill before, and there was a lot of confusing jargon and new terms to get used to. What was HTML? CSS and JavaScript? What were databases, and how could I connect together all the dots and choose what I wanted to learn? Luckily I had support and was able to keep going.

At times, I felt very isolated. Was I the only girl learning to code? I wasn’t aware of many female role models until I started going to more workshops. I met a lot of great female developers, and thanks to their support and help, I kept coding.

Another struggle I faced was the language barrier. I am not a native speaker of English, and diving into English technical documentation wasn’t easy. The learning curve is daunting in the beginning, but it’s completely normal to feel uncomfortable and to think that you’re really bad at coding. Don’t let this bring you down. Everyone thinks this from time to time.

Play with Raspberry Pi and quit your job

I kept on improving my skills, and my interest in developing grew. However, I had no idea that I could do this for a living; I simply enjoyed coding. Since I had a day job as a journalist, I was learning in the evenings and during the weekends.

I spent long hours playing with a Raspberry Pi and setting up so many different projects to help me understand how the internet and computers work, and get to grips with the basics of electronics. I built my first ever robot buggy, retro game console, and light switch. For the first time in my life, I had a soldering iron in my hand. Day after day I become more obsessed with digital making.

Magdalena Jadach on Twitter

solderingiron Where have you been all my life? Weekend with #raspberrypi + @pimoroni + @Pololu + #solder = best time! #electricity

One day I realised that I couldn’t wait to finish my job and go home to finish some project that I was working on at the time. It was then that I decided to hand over my resignation letter and dive deep into coding.

For the next few months I completely devoted my time to learning new skills and preparing myself for my new career path.

I went for an interview and got my first ever coding internship. Two years, hundreds of lines of code, and thousands of hours spent in front of my computer later, I have landed my dream job at the Raspberry Pi Foundation as a software developer, which proves that dreams come true.

Animated GIF – Find & Share on GIPHY

Discover & share this Animated GIF with everyone you know. GIPHY is how you search, share, discover, and create GIFs.

Where to start?

I recommend starting with HTML & CSS – the same path that I chose. It is a relatively straightforward introduction to web development. You can follow my advice or choose a different approach. There is no “right” or “best” way to learn.

Below is a collection of free coding resources, both from Raspberry Pi and from elsewhere, that I think are useful for beginners to know about. There are other tools that you are going to want in your developer toolbox aside from HTML.

  • HTML and CSS are languages for describing, structuring, and styling web pages
  • You can learn JavaScript here and here
  • Raspberry Pi (obviously!) and our online learning projects
  • Scratch is a graphical programming language that lets you drag and combine code blocks to make a range of programs. It’s a good starting point
  • Git is version control software that helps you to work on your own projects and collaborate with other developers
  • Once you’ve got started, you will need a code editor. Sublime Text or Atom are great options for starting out

Coding gives you so much new inspiration, you learn new stuff constantly, and you meet so many amazing people who are willing to help you develop your skills. You can volunteer to help at a Code Club or  Coder Dojo to increase your exposure to code, or attend a Raspberry Jam to meet other like-minded makers and start your own journey towards becoming a developer.

The post Coding is for girls appeared first on Raspberry Pi.

Needed: Associate Front End Developer

Post Syndicated from Yev original https://www.backblaze.com/blog/needed-associate-front-end-developer/

Want to work at a company that helps customers in over 150 countries around the world protect the memories they hold dear? Do you want to challenge yourself with a business that serves consumers, SMBs, Enterprise, and developers?

If all that sounds interesting, you might be interested to know that Backblaze is looking for an Associate Front End Developer!

Backblaze is a 10 year old company. Providing great customer experiences is the “secret sauce” that enables us to successfully compete against some of technology’s giants. We’ll finish the year at ~$20MM ARR and are a profitable business. This is an opportunity to have your work shine at scale in one of the fastest growing verticals in tech — Cloud Storage.

You will utilize HTML, ReactJS, CSS and jQuery to develop intuitive, elegant user experiences. As a member of our Front End Dev team, you will work closely with our web development, software design, and marketing teams.

On a day to day basis, you must be able to convert image mockups to HTML or ReactJS – There’s some production work that needs to get done. But you will also be responsible for helping build out new features, rethink old processes, and enabling third party systems to empower our marketing, sales, and support teams.

Our Associate Front End Developer must be proficient in:

  • HTML, CSS, Javascript (ES5)
  • jQuery, Bootstrap (with responsive targets)
  • Understanding of ensuring cross-browser compatibility and browser security for features
  • Basic SEO principles and ensuring that applications will adhere to them
  • Familiarity with ES2015+, ReactJS, unit testing
  • Learning about third party marketing and sales tools through reading documentation. Our systems include Google Tag Manager, Google Analytics, Salesforce, and Hubspot.
  • React Flux, Redux, SASS, Node experience is a plus

We’re looking for someone that is:

  • Passionate about building friendly, easy to use Interfaces and APIs.
  • Likes to work closely with other engineers, support, and marketing to help customers.
  • Is comfortable working independently on a mutually agreed upon prioritization queue (we don’t micromanage, we do make sure tasks are reasonably defined and scoped).
  • Diligent with quality control. Backblaze prides itself on giving our team autonomy to get work done, do the right thing for our customers, and keep a pace that is sustainable over the long run. As such, we expect everyone that checks in code that is stable. We also have a small QA team that operates as a secondary check when needed.

Backblaze Employees Have:

  • Good attitude and willingness to do whatever it takes to get the job done.
  • Strong desire to work for a small fast, paced company.
  • Desire to learn and adapt to rapidly changing technologies and work environment.
  • Comfort with well behaved pets in the office.

This position is located in San Mateo, California. Regular attendance in the office is expected.

Backblaze is an Equal Opportunity Employer and we offer competitive salary and benefits, including our no policy vacation policy.

If this sounds like you…
Send an email to: jobscontact@backblaze.com with:

  1. Associate Front End Dev in the subject line
  2. Your resume attached
  3. An overview of your relevant experience

The post Needed: Associate Front End Developer appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

SUPER game night 3: GAMES MADE QUICK??? 2.0

Post Syndicated from Eevee original https://eev.ee/blog/2018/01/23/super-game-night-3-games-made-quick-2-0/

Game night continues with a smorgasbord of games from my recent game jam, GAMES MADE QUICK??? 2.0!

The idea was to make a game in only a week while watching AGDQ, as an alternative to doing absolutely nothing for a week while watching AGDQ. (I didn’t submit a game myself; I was chugging along on my Anise game, which isn’t finished yet.)

I can’t very well run a game jam and not play any of the games, so here’s some of them in no particular order! Enjoy!

These are impressions, not reviews. I try to avoid major/ending spoilers, but big plot points do tend to leave impressions.

Weather Quest, by timlmul

short · rpg · jan 2017 · (lin)/mac/win · free on itch · jam entry

Weather Quest is its author’s first shipped game, written completely from scratch (the only vendored code is a micro OO base). It’s very short, but as someone who has also written LÖVE games completely from scratch, I can attest that producing something this game-like in a week is a fucking miracle. Bravo!

For reference, a week into my first foray, I think I was probably still writing my own Tiled importer like an idiot.

Only Mac and Windows builds are on itch, but it’s a LÖVE game, so Linux folks can just grab a zip from GitHub and throw that at love.


Pancake Numbers Simulator, by AnorakThePrimordial

short · sim · jan 2017 · lin/mac/win · free on itch · jam entry

Given a stack of N pancakes (of all different sizes and in no particular order), the Nth pancake number is the most flips you could possibly need to sort the pancakes in order with the smallest on top. A “flip” is sticking a spatula under one of the pancakes and flipping the whole sub-stack over. There’s, ah, a video embedded on the game page with some visuals.

Anyway, this game lets you simulate sorting a stack via pancake flipping, which is surprisingly satisfying! I enjoy cleaning up little simulated messes, such as… incorrectly-sorted pancakes, I guess?

This probably doesn’t work too well as a simulator for solving the general problem — you’d have to find an optimal solution for every permutation of N pancakes to be sure you were right. But it’s a nice interactive illustration of the problem, and if you know the pancake number for your stack size of choice (which I wish the game told you — for seven pancakes, it’s 8), then trying to restore a stack in that many moves makes for a nice quick puzzle.

FINAL SCORE: \(\frac{18}{11}\)

Framed Animals, by chridd

short · metroidvania · jan 2017 · web/win · free on itch · jam entry

The concept here was to kill the frames, save the animals, which is a delightfully literal riff on a long-running AGDQ/SGDQ donation incentive — people vote with their dollars to decide whether Super Metroid speedrunners go out of their way to free the critters who show you how to walljump and shinespark. Super Metroid didn’t have a showing at this year’s AGDQ, and so we have this game instead.

It’s rough, but clever, and I got really into it pretty quickly — each animal you save gives you a new ability (in true Metroid style), and you get to test that ability out by playing as the animal, with only that ability and no others, to get yourself back to the most recent save point.

I did, tragically, manage to get myself stuck near what I think was about to be the end of the game, so some of the animals will remain framed forever. What an unsatisfying conclusion.

Gravity feels a little high given the size of the screen, and like most tile-less platformers, there’s not really any way to gauge how high or long your jump is before you leap. But I’m only even nitpicking because I think this is a great idea and I hope the author really does keep working on it.

FINAL SCORE: $136,596.69

Battle 4 Glory, by Storyteller Games

short · fighter · jan 2017 · win · free on itch · jam entry

This is a Smash Bros-style brawler, complete with the four players, the 2D play area in a 3D world, and the random stage obstacles showing up. I do like the Smash style, despite not otherwise being a fan of fighting games, so it’s nice to see another game chase that aesthetic.

Alas, that’s about as far as it got — which is pretty far for a week of work! I don’t know what more to say, though. The environments are neat, but unless I’m missing something, the only actions at your disposal are jumping and very weak melee attacks. I did have a good few minutes of fun fruitlessly mashing myself against the bumbling bots, as you can see.


Icnaluferu Guild, Year Sixteen, by CHz

short · adventure · jan 2017 · web · free on itch · jam entry

Here we have the first of several games made with bitsy, a micro game making tool that basically only supports walking around, talking to people, and picking up items.

I tell you this because I think half of my appreciation for this game is in the ways it wriggled against those limits to emulate a Zelda-like dungeon crawler. Everything in here is totally fake, and you can’t really understand just how fake unless you’ve tried to make something complicated with bitsy.

It’s pretty good. The dialogue is entertaining (the rest of your party develops distinct personalities solely through oneliners, somehow), the riffs on standard dungeon fare are charming, and the Link’s Awakening-esque perspective walls around the edges of each room are fucking glorious.


The Lonely Tapes, by JTHomeslice

short · rpg · jan 2017 · web · free on itch · jam entry

Another bitsy entry, this one sees you play as a Wal— sorry, a JogDawg, which has lost its cassette tapes and needs to go recover them!

(A cassette tape is like a VHS, but for music.)

(A VHS is—)

I have the sneaking suspicion that I missed out on some musical in-jokes, due to being uncultured swine. I still enjoyed the game — it’s always clear when someone is passionate about the thing they’re writing about, and I could tell I was awash in that aura even if some of it went over my head. You know you’ve done good if someone from way outside your sphere shows up and still has a good time.

FINAL SCORE: Nine… Inch Nails? They’re a band, right? God I don’t know write your own damn joke

Pirate Kitty-Quest, by TheKoolestKid

short · adventure · jan 2017 · win · free on itch · jam entry

I completely forgot I’d even given “my birthday” and “my cat” as mostly-joking jam themes until I stumbled upon this incredible gem. I don’t think — let me just check here and — yeah no this person doesn’t even follow me on Twitter. I have no idea who they are?




This game wins the jam, hands down. 🏆

FINAL SCORE: Yarr, eight pieces o’ eight

CHIPS Mario, by NovaSquirrel

short · platformer · jan 2017 · (lin/mac)/win · free on itch · jam entry

You see this? This is fucking witchcraft.

This game is made with MegaZeux. MegaZeux games look like THIS. Text-mode, bound to a grid, with two colors per cell. That’s all you get.

Until now, apparently?? The game is a tech demo of “unbound” sprites, which can be drawn on top of the character grid without being aligned to it. And apparently have looser color restrictions.

The collision is a little glitchy, which isn’t surprising for a MegaZeux platformer; I had some fun interactions with platforms a couple times. But hey, goddamn, it’s free-moving Mario, in MegaZeux, what the hell.

(I’m looking at the most recently added games on DigitalMZX now, and I notice that not only is this game in the first slot, but NovaSquirrel’s MegaZeux entry for Strawberry Jam last February is still in the seventh slot. RIP, MegaZeux. I’m surprised a major feature like this was even added if the community has largely evaporated?)

FINAL SCORE: n/a, disqualified for being probably summoned from the depths of Hell

d!¢< pic, by 573 Games

short · story · jan 2017 · web · free on itch · jam entry

This is a short story about not sending dick pics. It’s very short, so I can’t say much without spoiling it, but: you are generally prompted to either text something reasonable, or send a dick pic. You should not send a dick pic.

It’s a fascinating artifact, not because of the work itself, but because it’s so terse that I genuinely can’t tell what the author was even going for. And this is the kind of subject where the author was, surely, going for something. Right? But was it genuinely intended to be educational, or was it tongue-in-cheek about how some dudes still don’t get it? Or is it side-eying the player who clicks the obviously wrong option just for kicks, which is the same reason people do it for real? Or is it commentary on how “send a dick pic” is a literal option for every response in a real conversation, too, and it’s not that hard to just not do it — unless you are one of the kinds of people who just feels a compulsion to try everything, anything, just because you can? Or is it just a quick Twine and I am way too deep in this? God, just play the thing, it’s shorter than this paragraph.

I’m also left wondering when it is appropriate to send a dick pic. Presumably there is a correct time? Hopefully the author will enter Strawberry Jam 2 to expound upon this.


Marble maze, by Shtille

short · arcade · jan 2017 · win · free on itch · jam entry

Ah, hm. So this is a maze navigated by rolling a marble around. You use WASD to move the marble, and you can also turn the camera with the arrow keys.

The trouble is… the marble’s movement is always relative to the world, not the camera. That means if you turn the camera 30° and then try to move the marble, it’ll move at a 30° angle from your point of view.

That makes navigating a maze, er, difficult.

Camera-relative movement is the kind of thing I take so much for granted that I wouldn’t even think to do otherwise, and I think it’s valuable to look at surprising choices that violate fundamental conventions, so I’m trying to take this as a nudge out of my comfort zone. What could you design in an interesting way that used world-relative movement? Probably not the player, but maybe something else in the world, as long as you had strong landmarks? Hmm.


Refactor: flight, by fluffy

short · arcade · jan 2017 · lin/mac/win · free on itch · jam entry

Refactor is a game album, which is rather a lot what it sounds like, and Flight is one of the tracks. Which makes this a single, I suppose.

It’s one of those games where you move down an oddly-shaped tunnel trying not to hit the walls, but with some cute twists. Coins and gems hop up from the bottom of the screen in time with the music, and collecting them gives you points. Hitting a wall costs you some points and kills your momentum, but I don’t think outright losing is possible, which is great for me!

Also, the monk cycles through several animal faces. I don’t know why, and it’s very good. One of those odd but memorable details that sits squarely on the intersection of abstract, mysterious, and a bit weird, and refuses to budge from that spot.

The music is great too? Really chill all around.


The Adventures of Klyde

short · adventure · jan 2017 · web · free on itch · jam entry

Another bitsy game, this one starring a pig (humorously symbolized by a giant pig nose with ears) who must collect fruit and solve some puzzles.

This is charmingly nostalgic for me — it reminds me of some standard fare in engines like MegaZeux, where the obvious things to do when presented with tiles and pickups were to make mazes. I don’t mean that in a bad way; the maze is the fundamental environmental obstacle.

A couple places in here felt like invisible teleport mazes I had to brute-force, but I might have been missing a hint somewhere. I did make it through with only a little trouble, but alas — I stepped in a bad warp somewhere and got sent to the upper left corner of the starting screen, which is surrounded by walls. So Klyde’s new life is being trapped eternally in a nowhere space.

FINAL SCORE: 19/20 apples

And more

That was only a third of the games, and I don’t think even half of the ones I’ve played. I’ll have to do a second post covering the rest of them? Maybe a third?

Or maybe this is a ludicrous format for commenting on several dozen games and I should try to narrow it down to the ones that resonated the most for Strawberry Jam 2? Maybe??

Physics cheats

Post Syndicated from Eevee original https://eev.ee/blog/2018/01/06/physics-cheats/

Anonymous asks:

something about how we tweak physics to “work” better in games?

Ho ho! Work. Get it? Like in physics…?


Hitbox” is perhaps not the most accurate term, since the shape used for colliding with the environment and the shape used for detecting damage might be totally different. They’re usually the same in simple platformers, though, and that’s what most of my games have been.

The hitbox is the biggest physics fudge by far, and it exists because of a single massive approximation that (most) games make: you’re controlling a single entity in the abstract, not a physical body in great detail.

That is: when you walk with your real-world meat shell, you perform a complex dance of putting one foot in front of the other, a motion you spent years perfecting. When you walk in a video game, you press a single “walk” button. Your avatar may play an animation that moves its legs back and forth, but since you’re not actually controlling the legs independently (and since simulating them is way harder), the game just treats you like a simple shape. Fairly often, this is a box, or something very box-like.

An Eevee sprite standing on faux ground; the size of the underlying image and the hitbox are outlined

Since the player has no direct control over the exact placement of their limbs, it would be slightly frustrating to have them collide with the world. This is especially true in cases like the above, where the tail and left ear protrude significantly out from the main body. If that Eevee wanted to stand against a real-world wall, she would simply tilt her ear or tail out of the way, so there’s no reason for the ear to block her from standing against a game wall. To compensate for this, the ear and tail are left out of the collision box entirely and will simply jut into a wall if necessary — a goofy affordance that’s so common it doesn’t even register as unusual. As a bonus (assuming this same box is used for combat), she won’t take damage from projectiles that merely graze past an ear.

(One extra consideration for sprite games in particular: the hitbox ought to be horizontally symmetric around the sprite’s pivot — i.e. the point where the entity is truly considered to be standing — so that the hitbox doesn’t abruptly move when the entity turns around!)


Treating the player (and indeed most objects) as a box has one annoying side effect: boxes have corners. Corners can catch on other corners, even by a single pixel. Real-world bodies tend to be a bit rounder and squishier and this can tolerate grazing a corner; even real-world boxes will simply rotate a bit.

Ah, but in our faux physics world, we generally don’t want conscious actors (such as the player) to rotate, even with a realistic physics simulator! Real-world bodies are made of parts that will generally try to keep you upright, after all; you don’t tilt back and forth much.

One way to handle corners is to simply remove them from conscious actors. A hitbox doesn’t have to be a literal box, after all. A popular alternative — especially in Unity where it’s a standard asset — is the pill-shaped capsule, which has semicircles/hemispheres on the top and bottom and a cylindrical body in 3D. No corners, no problem.

Of course, that introduces a new problem: now the player can’t balance precariously on edges without their rounded bottom sliding them off. Alas.

If you’re stuck with corners, then, you may want to use a corner bump, a term I just made up. If the player would collide with a corner, but the collision is only by a few pixels, just nudge them to the side a bit and carry on.

An Eevee sprite trying to move sideways into a shallow ledge; the game bumps her upwards slightly, so she steps onto it instead

When the corner is horizontal, this creates stairs! This is, more or less kinda, how steps work in Doom: when the player tries to cross from one sector into another, if the height difference is 24 units or less, the game simply bumps them upwards to the height of the new floor and lets them continue on.

Implementing this in a game without Doom’s notion of sectors is a little trickier. In fact, I still haven’t done it. Collision detection based on rejection gets it for free, kinda, but it’s not very deterministic and it breaks other things. But that’s a whole other post.


Gravity is pretty easy. Everything accelerates downwards all the time. What’s interesting are the exceptions.


Jumping is a giant hack.

Think about how actual jumping works: you tense your legs, which generally involves bending your knees first, and then spring upwards. In a platformer, you can just leap whenever you feel like it, which is nonsense. Also you go like twenty feet into the air?

Worse, most platformers allow variable-height jumping, where your jump is lower if you let go of the jump button while you’re in the air. Normally, one would expect to have to decide how much force to put into the jump beforehand.

But of course this is about convenience of controls: when jumping is your primary action, you want to be able to do it immediately, without any windup for how high you want to jump.

(And then there’s double jumping? Come on.)

Air control is a similar phenomenon: usually you’d jump in a particular direction by controlling how you push off the ground with your feet, but in a video game, you don’t have feet! You only have the box. The compromise is to let you control your horizontal movement to a limit degree in midair, even though that doesn’t make any sense. (It’s way more fun, though, and overall gives you more movement options, which are good to have in an interactive medium.)

Air control also exposes an obvious place that game physics collide with the realistic model of serious physics engines. I’ve mentioned this before, but: if you use Real Physics™ and air control yourself into a wall, you might find that you’ll simply stick to the wall until you let go of the movement buttons. Why? Remember, player movement acts as though an external force were pushing you around (and from the perspective of a Real™ physics engine, this is exactly how you’d implement it) — so air-controlling into a wall is equivalent to pushing a book against a wall with your hand, and the friction with the wall holds you in place. Oops.

Ground sticking

Another place game physics conflict with physics engines is with running to the top of a slope. On a real hill, of course, you land on top of the slope and are probably glad of it; slopes are hard to climb!

An Eevee moves to the top of a slope, and rather than step onto the flat top, she goes flying off into the air

In a video game, you go flying. Because you’re a box. With momentum. So you hit the peak and keep going in the same direction. Which is diagonally upwards.


To make them more predictable, projectiles generally aren’t subject to gravity, at least as far as I’ve seen. The real world does not have such an exemption. The real world imposes gravity even on sniper rifles, which in a video game are often implemented as an instant trace unaffected by anything in the world because the bullet never actually exists in the world.


Ah. Welcome to hell.


Water is an interesting case, and offhand I don’t know the gritty details of how games implement it. In the real world, water applies a resistant drag force to movement — and that force is proportional to the square of velocity, which I’d completely forgotten until right now. I am almost positive that no game handles that correctly. But then, in real-world water, you can push against the water itself for movement, and games don’t simulate that either. What’s the rough equivalent?

The Sonic Physics Guide suggests that Sonic handles it by basically halving everything: acceleration, max speed, friction, etc. When Sonic enters water, his speed is cut; when Sonic exits water, his speed is increased.

That last bit feels validating — I could swear Metroid Prime did the same thing, and built my own solution around it, but couldn’t remember for sure. It makes no sense, of course, for a jump to become faster just because you happened to break the surface of the water, but it feels fantastic.

The thing I did was similar, except that I didn’t want to add a multiplier in a dozen places when you happen to be underwater (and remember which ones need it to be squared, etc.). So instead, I calculate everything completely as normal, so velocity is exactly the same as it would be on dry land — but the distance you would move gets halved. The effect seems to be pretty similar to most platformers with water, at least as far as I can tell. It hasn’t shown up in a published game and I only added this fairly recently, so I might be overlooking some reason this is a bad idea.

(One reason that comes to mind is that velocity is now a little white lie while underwater, so anything relying on velocity for interesting effects might be thrown off. Or maybe that’s correct, because velocity thresholds should be halved underwater too? Hm!)

Notably, air is also a fluid, so it should behave the same way (just with different constants). I definitely don’t think any games apply air drag that’s proportional to the square of velocity.


Friction is, in my experience, a little handwaved. Probably because real-world friction is so darn complicated.

Consider that in the real world, we want very high friction on the surfaces we walk on — shoes and tires are explicitly designed to increase it, even. We move by bracing a back foot against the ground and using that to push ourselves forward, so we want the ground to resist our push as much as possible.

In a game world, we are a box. We move by being pushed by some invisible outside force, so if the friction between ourselves and the ground is too high, we won’t be able to move at all! That’s complete nonsense physically, but it turns out to be handy in some cases — for example, highish friction can simulate walking through deep mud, which should be difficult due to fluid drag and low friction.

But the best-known example of the fakeness of game friction is video game ice. Walking on real-world ice is difficult because the low friction means low grip; your feet are likely to slip out from under you, and you’ll simply fall down and have trouble moving at all. In a video game, you can’t fall down, so you have the opposite experience: you spend most of your time sliding around uncontrollably. Yet ice is so common in video games (and perhaps so uncommon in places I’ve lived) that I, at least, had never really thought about this disparity until an hour or so ago.

Game friction vs real-world friction

Real-world friction is a force. It’s the normal force (which is the force exerted by the object on the surface) times some constant that depends on how the two materials interact.

Force is mass times acceleration, and platformers often ignore mass, so friction ought to be an acceleration — applied against the object’s movement, but never enough to push it backwards.

I haven’t made any games where variable friction plays a significant role, but my gut instinct is that low friction should mean the player accelerates more slowly but has a higher max speed, and high friction should mean the opposite. I see from my own source code that I didn’t even do what I just said, so let’s defer to some better-made and well-documented games: Sonic and Doom.

In Sonic, friction is a fixed value subtracted from the player’s velocity (regardless of direction) each tic. Sonic has a fixed framerate, so the units are really pixels per tic squared (i.e. acceleration), multiplied by an implicit 1 tic per tic. So far, so good.

But Sonic’s friction only applies if the player isn’t pressing or . Hang on, that isn’t friction at all; that’s just deceleration! That’s equivalent to jogging to a stop. If friction were lower, Sonic would take longer to stop, but otherwise this is only tangentially related to friction.

(In fairness, this approach would decently emulate friction for non-conscious sliding objects, which are never going to be pressing movement buttons. Also, we don’t have the Sonic source code, and the name “friction” is a fan invention; the Sonic Physics Guide already uses “deceleration” to describe the player’s acceleration when turning around.)

Okay, let’s try Doom. In Doom, the default friction is 90.625%.

Hang on, what?

Yes, in Doom, friction is a multiplier applied every tic. Doom runs at 35 tics per second, so this is a multiplier of 0.032 per second. Yikes!

This isn’t anything remotely like real friction, but it’s much easier to implement. With friction as acceleration, the game has to know both the direction of movement (so it can apply friction in the opposite direction) and the magnitude (so it doesn’t overshoot and launch the object in the other direction). That means taking a semi-costly square root and also writing extra code to cap the amount of friction. With a multiplier, neither is necessary; just multiply the whole velocity vector and you’re done.

There are some downsides. One is that objects will never actually stop, since multiplying by 3% repeatedly will never produce a result of zero — though eventually the speed will become small enough to either slip below a “minimum speed” threshold or simply no longer fit in a float representation. Another is that the units are fairly meaningless: with Doom’s default friction of 90.625%, about how long does it take for the player to stop? I have no idea, partly because “stop” is ambiguous here! If friction were an acceleration, I could divide it into the player’s max speed to get a time.

All that aside, what are the actual effects of changing Doom’s friction? What an excellent question that’s surprisingly tricky to answer. (Note that friction can’t be changed in original Doom, only in the Boom port and its derivatives.) Here’s what I’ve pieced together.

Doom’s “friction” is really two values. “Friction” itself is a multiplier applied to moving objects on every tic, but there’s also a move factor which defaults to \(\frac{1}{32} = 0.03125\) and is derived from friction for custom values.

Every tic, the player’s velocity is multiplied by friction, and then increased by their speed times the move factor.

v(n) = v(n – 1) \times friction + speed \times move factor

Eventually, the reduction from friction will balance out the speed boost. That happens when \(v(n) = v(n – 1)\), so we can rearrange it to find the player’s effective max speed:

v = v \times friction + speed \times move factor \\
v – v \times friction = speed \times move factor \\
v = speed \times \frac{move factor}{1 – friction}

For vanilla Doom’s move factor of 0.03125 and friction of 0.90625, that becomes:

v = speed \times \frac{\frac{1}{32}}{1 – \frac{29}{32}} = speed \times \frac{\frac{1}{32}}{\frac{3}{32}} = \frac{1}{3} \times speed

Curiously, “speed” is three times the maximum speed an actor can actually move. Doomguy’s run speed is 50, so in practice he moves a third of that, or 16⅔ units per tic. (Of course, this isn’t counting SR40, a bug that lets Doomguy run ~40% faster than intended diagonally.)

So now, what if you change friction? Even more curiously, the move factor is calculated completely differently depending on whether friction is higher or lower than the default Doom amount:

move factor = \begin{cases}
\frac{133 – 128 \times friction}{544} &≈ 0.244 – 0.235 \times friction & \text{ if } friction \ge \frac{29}{32} \\
\frac{81920 \times friction – 70145}{1048576} &≈ 0.078 \times friction – 0.067 & \text{ otherwise }

That’s pretty weird? Complicating things further is that low friction (which means muddy terrain, remember) has an extra multiplier on its move factor, depending on how fast you’re already going — the idea is apparently that you have a hard time getting going, but it gets easier as you find your footing. The extra multiplier maxes out at 8, which makes the two halves of that function meet at the vanilla Doom value.

A graph of the relationship between friction and move factor

That very top point corresponds to the move factor from the original game. So no matter what you do to friction, the move factor becomes lower. At 0.85 and change, you can no longer move at all; below that, you move backwards.

From the formula above, it’s easy to see what changes to friction and move factor will do to Doomguy’s stable velocity. Move factor is in the numerator, so increasing it will increase stable velocity — but it can’t increase, so stable velocity can only ever decrease. Friction is in the denominator, but it’s subtracted from 1, so increasing friction will make the denominator a smaller value less than 1, i.e. increase stable velocity. Combined, we get this relationship between friction and stable velocity.

A graph showing stable velocity shooting up dramatically as friction increases

As friction approaches 1, stable velocity grows without bound. This makes sense, given the definition of \(v(n)\) — if friction is 1, the velocity from the previous tic isn’t reduced at all, so we just keep accelerating freely.

All of this is why I’m wary of using multipliers.

Anyway, this leaves me with one last question about the effects of Doom’s friction: how long does it take to reach stable velocity? Barring precision errors, we’ll never truly reach stable velocity, but let’s say within 5%. First we need a closed formula for the velocity after some number of tics. This is a simple recurrence relation, and you can write a few terms out yourself if you want to be sure this is right.

v(n) = v_0 \times friction^n + speed \times move factor \times \frac{friction^n – 1}{friction – 1}

Our initial velocity is zero, so the first term disappears. Set this equal to the stable formula and solve for n:

speed \times move factor \times \frac{friction^n – 1}{friction – 1} = (1 – 5\%) \times speed \times \frac{move factor}{1 – friction} \\
friction^n – 1 = -(1 – 5\%) \\
n = \frac{\ln 5\%}{\ln friction}

Speed” and move factor disappear entirely, which makes sense, and this is purely a function of friction (and how close we want to get). For vanilla Doom, that comes out to 30.4, which is a little less than a second. For other values of friction:

A graph of time to stability which leaps upwards dramatically towards the right

As friction increases (which in Doom terms means the surface is more slippery), it takes longer and longer to reach stable speed, which is in turn greater and greater. For lesser friction (i.e. mud), stable speed is lower, but reached fairly quickly. (Of course, the extra “getting going” multiplier while in mud adds some extra time here, but including that in the graph is a bit more complicated.)

I think this matches with my instincts above. How fascinating!

What’s that? This is way too much math and you hate it? Then don’t use multipliers in game physics.


That was a hell of a diversion!

I guess the goofiest stuff in basic game physics is really just about mapping player controls to in-game actions like jumping and deceleration; the rest consists of hacks to compensate for representing everything as a box.

Random with care

Post Syndicated from Eevee original https://eev.ee/blog/2018/01/02/random-with-care/

Hi! Here are a few loose thoughts about picking random numbers.

A word about crypto


This is all aimed at frivolous pursuits like video games. Hell, even video games where money is at stake should be deferring to someone who knows way more than I do. Otherwise you might find out that your deck shuffles in your poker game are woefully inadequate and some smartass is cheating you out of millions. (If your random number generator has fewer than 226 bits of state, it can’t even generate every possible shuffling of a deck of cards!)

Use the right distribution

Most languages have a random number primitive that spits out a number uniformly in the range [0, 1), and you can go pretty far with just that. But beware a few traps!

Random pitches

Say you want to pitch up a sound by a random amount, perhaps up to an octave. Your audio API probably has a way to do this that takes a pitch multiplier, where I say “probably” because that’s how the only audio API I’ve used works.

Easy peasy. If 1 is unchanged and 2 is pitched up by an octave, then all you need is rand() + 1. Right?

No! Pitch is exponential — within the same octave, the “gap” between C and C♯ is about half as big as the gap between B and the following C. If you pick a pitch multiplier uniformly, you’ll have a noticeable bias towards the higher pitches.

One octave corresponds to a doubling of pitch, so if you want to pick a random note, you want 2 ** rand().

Random directions

For two dimensions, you can just pick a random angle with rand() * TAU.

If you want a vector rather than an angle, or if you want a random direction in three dimensions, it’s a little trickier. You might be tempted to just pick a random point where each component is rand() * 2 - 1 (ranging from −1 to 1), but that’s not quite right. A direction is a point on the surface (or, equivalently, within the volume) of a sphere, and picking each component independently produces a point within the volume of a cube; the result will be a bias towards the corners of the cube, where there’s much more extra volume beyond the sphere.

No? Well, just trust me. I don’t know how to make a diagram for this.

Anyway, you could use the Pythagorean theorem a few times and make a huge mess of things, or it turns out there’s a really easy way that even works for two or four or any number of dimensions. You pick each coordinate from a Gaussian (normal) distribution, then normalize the resulting vector. In other words, using Python’s random module:

def random_direction():
    x = random.gauss(0, 1)
    y = random.gauss(0, 1)
    z = random.gauss(0, 1)
    r = math.sqrt(x*x + y*y + z*z)
    return x/r, y/r, z/r

Why does this work? I have no idea!

Note that it is possible to get zero (or close to it) for every component, in which case the result is nonsense. You can re-roll all the components if necessary; just check that the magnitude (or its square) is less than some epsilon, which is equivalent to throwing away a tiny sphere at the center and shouldn’t affect the distribution.

Beware Gauss

Since I brought it up: the Gaussian distribution is a pretty nice one for choosing things in some range, where the middle is the common case and should appear more frequently.

That said, I never use it, because it has one annoying drawback: the Gaussian distribution has no minimum or maximum value, so you can’t really scale it down to the range you want. In theory, you might get any value out of it, with no limit on scale.

In practice, it’s astronomically rare to actually get such a value out. I did a hundred million trials just to see what would happen, and the largest value produced was 5.8.

But, still, I’d rather not knowingly put extremely rare corner cases in my code if I can at all avoid it. I could clamp the ends, but that would cause unnatural bunching at the endpoints. I could reroll if I got a value outside some desired range, but I prefer to avoid rerolling when I can, too; after all, it’s still (astronomically) possible to have to reroll for an indefinite amount of time. (Okay, it’s really not, since you’ll eventually hit the period of your PRNG. Still, though.) I don’t bend over backwards here — I did just say to reroll when picking a random direction, after all — but when there’s a nicer alternative I’ll gladly use it.

And lo, there is a nicer alternative! Enter the beta distribution. It always spits out a number in [0, 1], so you can easily swap it in for the standard normal function, but it takes two “shape” parameters α and β that alter its behavior fairly dramatically.

With α = β = 1, the beta distribution is uniform, i.e. no different from rand(). As α increases, the distribution skews towards the right, and as β increases, the distribution skews towards the left. If α = β, the whole thing is symmetric with a hump in the middle. The higher either one gets, the more extreme the hump (meaning that value is far more common than any other). With a little fiddling, you can get a number of interesting curves.

Screenshots don’t really do it justice, so here’s a little Wolfram widget that lets you play with α and β live:

Note that if α = 1, then 1 is a possible value; if β = 1, then 0 is a possible value. You probably want them both greater than 1, which clamps the endpoints to zero.

Also, it’s possible to have either α or β or both be less than 1, but this creates very different behavior: the corresponding endpoints become poles.

Anyway, something like α = β = 3 is probably close enough to normal for most purposes but already clamped for you. And you could easily replicate something like, say, NetHack’s incredibly bizarre rnz function.

Random frequency

Say you want some event to have an 80% chance to happen every second. You (who am I kidding, I) might be tempted to do something like this:

if random() < 0.8 * dt:

In an ideal world, dt is always the same and is equal to 1 / f, where f is the framerate. Replace that 80% with a variable, say P, and every tic you have a P / f chance to do the… whatever it is.

Each second, f tics pass, so you’ll make this check f times. The chance that any check succeeds is the inverse of the chance that every check fails, which is \(1 – \left(1 – \frac{P}{f}\right)^f\).

For P of 80% and a framerate of 60, that’s a total probability of 55.3%. Wait, what?

Consider what happens if the framerate is 2. On the first tic, you roll 0.4 twice — but probabilities are combined by multiplying, and splitting work up by dt only works for additive quantities. You lose some accuracy along the way. If you’re dealing with something that multiplies, you need an exponent somewhere.

But in this case, maybe you don’t want that at all. Each separate roll you make might independently succeed, so it’s possible (but very unlikely) that the event will happen 60 times within a single second! Or 200 times, if that’s someone’s framerate.

If you explicitly want something to have a chance to happen on a specific interval, you have to check on that interval. If you don’t have a gizmo handy to run code on an interval, it’s easy to do yourself with a time buffer:

timer += dt
# here, 1 is the "every 1 seconds"
while timer > 1:
    timer -= 1
    if random() < 0.8:

Using while means rolls still happen even if you somehow skipped over an entire second.

(For the curious, and the nerds who already noticed: the expression \(1 – \left(1 – \frac{P}{f}\right)^f\) converges to a specific value! As the framerate increases, it becomes a better and better approximation for \(1 – e^{-P}\), which for the example above is 0.551. Hey, 60 fps is pretty accurate — it’s just accurately representing something nowhere near what I wanted. Er, you wanted.)

Rolling your own

Of course, you can fuss with the classic [0, 1] uniform value however you want. If I want a bias towards zero, I’ll often just square it, or multiply two of them together. If I want a bias towards one, I’ll take a square root. If I want something like a Gaussian/normal distribution, but with clearly-defined endpoints, I might add together n rolls and divide by n. (The normal distribution is just what you get if you roll infinite dice and divide by infinity!)

It’d be nice to be able to understand exactly what this will do to the distribution. Unfortunately, that requires some calculus, which this post is too small to contain, and which I didn’t even know much about myself until I went down a deep rabbit hole while writing, and which in many cases is straight up impossible to express directly.

Here’s the non-calculus bit. A source of randomness is often graphed as a PDF — a probability density function. You’ve almost certainly seen a bell curve graphed, and that’s a PDF. They’re pretty nice, since they do exactly what they look like: they show the relative chance that any given value will pop out. On a bog standard bell curve, there’s a peak at zero, and of course zero is the most common result from a normal distribution.

(Okay, actually, since the results are continuous, it’s vanishingly unlikely that you’ll get exactly zero — but you’re much more likely to get a value near zero than near any other number.)

For the uniform distribution, which is what a classic rand() gives you, the PDF is just a straight horizontal line — every result is equally likely.

If there were a calculus bit, it would go here! Instead, we can cheat. Sometimes. Mathematica knows how to work with probability distributions in the abstract, and there’s a free web version you can use. For the example of squaring a uniform variable, try this out:

PDF[TransformedDistribution[u^2, u \[Distributed] UniformDistribution[{0, 1}]], u]

(The \[Distributed] is a funny tilde that doesn’t exist in Unicode, but which Mathematica uses as a first-class operator. Also, press shiftEnter to evaluate the line.)

This will tell you that the distribution is… \(\frac{1}{2\sqrt{u}}\). Weird! You can plot it:

Plot[%, {u, 0, 1}]

(The % refers to the result of the last thing you did, so if you want to try several of these, you can just do Plot[PDF[…], u] directly.)

The resulting graph shows that numbers around zero are, in fact, vastly — infinitely — more likely than anything else.

What about multiplying two together? I can’t figure out how to get Mathematica to understand this, but a great amount of digging revealed that the answer is -ln x, and from there you can plot them both on Wolfram Alpha. They’re similar, though squaring has a much better chance of giving you high numbers than multiplying two separate rolls — which makes some sense, since if either of two rolls is a low number, the product will be even lower.

What if you know the graph you want, and you want to figure out how to play with a uniform roll to get it? Good news! That’s a whole thing called inverse transform sampling. All you have to do is take an integral. Good luck!

This is all extremely ridiculous. New tactic: Just Simulate The Damn Thing. You already have the code; run it a million times, make a histogram, and tada, there’s your PDF. That’s one of the great things about computers! Brute-force numerical answers are easy to come by, so there’s no excuse for producing something like rnz. (Though, be sure your histogram has sufficiently narrow buckets — I tried plotting one for rnz once and the weird stuff on the left side didn’t show up at all!)

By the way, I learned something from futzing with Mathematica here! Taking the square root (to bias towards 1) gives a PDF that’s a straight diagonal line, nothing like the hyperbola you get from squaring (to bias towards 0). How do you get a straight line the other way? Surprise: \(1 – \sqrt{1 – u}\).

Okay, okay, here’s the actual math

I don’t claim to have a very firm grasp on this, but I had a hell of a time finding it written out clearly, so I might as well write it down as best I can. This was a great excuse to finally set up MathJax, too.

Say \(u(x)\) is the PDF of the original distribution and \(u\) is a representative number you plucked from that distribution. For the uniform distribution, \(u(x) = 1\). Or, more accurately,

u(x) = \begin{cases}
1 & \text{ if } 0 \le x \lt 1 \\
0 & \text{ otherwise }

Remember that \(x\) here is a possible outcome you want to know about, and the PDF tells you the relative probability that a roll will be near it. This PDF spits out 1 for every \(x\), meaning every number between 0 and 1 is equally likely to appear.

We want to do something to that PDF, which creates a new distribution, whose PDF we want to know. I’ll use my original example of \(f(u) = u^2\), which creates a new PDF \(v(x)\).

The trick is that we need to work in terms of the cumulative distribution function for \(u\). Where the PDF gives the relative chance that a roll will be (“near”) a specific value, the CDF gives the relative chance that a roll will be less than a specific value.

The conventions for this seem to be a bit fuzzy, and nobody bothers to explain which ones they’re using, which makes this all the more confusing to read about… but let’s write the CDF with a capital letter, so we have \(U(x)\). In this case, \(U(x) = x\), a straight 45° line (at least between 0 and 1). With the definition I gave, this should make sense. At some arbitrary point like 0.4, the value of the PDF is 1 (0.4 is just as likely as anything else), and the value of the CDF is 0.4 (you have a 40% chance of getting a number from 0 to 0.4).

Calculus ahoy: the PDF is the derivative of the CDF, which means it measures the slope of the CDF at any point. For \(U(x) = x\), the slope is always 1, and indeed \(u(x) = 1\). See, calculus is easy.

Okay, so, now we’re getting somewhere. What we want is the CDF of our new distribution, \(V(x)\). The CDF is defined as the probability that a roll \(v\) will be less than \(x\), so we can literally write:

$$V(x) = P(v \le x)$$

(This is why we have to work with CDFs, rather than PDFs — a PDF gives the chance that a roll will be “nearby,” whatever that means. A CDF is much more concrete.)

What is \(v\), exactly? We defined it ourselves; it’s the do something applied to a roll from the original distribution, or \(f(u)\).

$$V(x) = P\!\left(f(u) \le x\right)$$

Now the first tricky part: we have to solve that inequality for \(u\), which means we have to do something, backwards to \(x\).

$$V(x) = P\!\left(u \le f^{-1}(x)\right)$$

Almost there! We now have a probability that \(u\) is less than some value, and that’s the definition of a CDF!

$$V(x) = U\!\left(f^{-1}(x)\right)$$

Hooray! Now to turn these CDFs back into PDFs, all we need to do is differentiate both sides and use the chain rule. If you never took calculus, don’t worry too much about what that means!

$$v(x) = u\!\left(f^{-1}(x)\right)\left|\frac{d}{dx}f^{-1}(x)\right|$$

Wait! Where did that absolute value come from? It takes care of whether \(f(x)\) increases or decreases. It’s the least interesting part here by far, so, whatever.

There’s one more magical part here when using the uniform distribution — \(u(\dots)\) is always equal to 1, so that entire term disappears! (Note that this only works for a uniform distribution with a width of 1; PDFs are scaled so the entire area under them sums to 1, so if you had a rand() that could spit out a number between 0 and 2, the PDF would be \(u(x) = \frac{1}{2}\).)

$$v(x) = \left|\frac{d}{dx}f^{-1}(x)\right|$$

So for the specific case of modifying the output of rand(), all we have to do is invert, then differentiate. The inverse of \(f(u) = u^2\) is \(f^{-1}(x) = \sqrt{x}\) (no need for a ± since we’re only dealing with positive numbers), and differentiating that gives \(v(x) = \frac{1}{2\sqrt{x}}\). Done! This is also why square root comes out nicer; inverting it gives \(x^2\), and differentiating that gives \(2x\), a straight line.

Incidentally, that method for turning a uniform distribution into any distribution — inverse transform sampling — is pretty much the same thing in reverse: integrate, then invert. For example, when I saw that taking the square root gave \(v(x) = 2x\), I naturally wondered how to get a straight line going the other way, \(v(x) = 2 – 2x\). Integrating that gives \(2x – x^2\), and then you can use the quadratic formula (or just ask Wolfram Alpha) to solve \(2x – x^2 = u\) for \(x\) and get \(f(u) = 1 – \sqrt{1 – u}\).

Multiply two rolls is a bit more complicated; you have to write out the CDF as an integral and you end up doing a double integral and wow it’s a mess. The only thing I’ve retained is that you do a division somewhere, which then gets integrated, and that’s why it ends up as \(-\ln x\).

And that’s quite enough of that! (Okay but having math in my blog is pretty cool and I will definitely be doing more of this, sorry, not sorry.)

Random vs varied

Sometimes, random isn’t actually what you want. We tend to use the word “random” casually to mean something more like chaotic, i.e., with no discernible pattern. But that’s not really random. In fact, given how good humans can be at finding incidental patterns, they aren’t all that unlikely! Consider that when you roll two dice, they’ll come up either the same or only one apart almost half the time. Coincidence? Well, yes.

If you ask for randomness, you’re saying that any outcome — or series of outcomes — is acceptable, including five heads in a row or five tails in a row. Most of the time, that’s fine. Some of the time, it’s less fine, and what you really want is variety. Here are a couple examples and some fairly easy workarounds.

NPC quips

The nature of games is such that NPCs will eventually run out of things to say, at which point further conversation will give the player a short brush-off quip — a slight nod from the designer to the player that, hey, you hit the end of the script.

Some NPCs have multiple possible quips and will give one at random. The trouble with this is that it’s very possible for an NPC to repeat the same quip several times in a row before abruptly switching to another one. With only a few options to choose from, getting the same option twice or thrice (especially across an entire game, which may have numerous NPCs) isn’t all that unlikely. The notion of an NPC quip isn’t very realistic to start with, but having someone repeat themselves and then abruptly switch to something else is especially jarring.

The easy fix is to show the quips in order! Paradoxically, this is more consistently varied than choosing at random — the original “order” is likely to be meaningless anyway, and it already has the property that the same quip can never appear twice in a row.

If you like, you can shuffle the list of quips every time you reach the end, but take care here — it’s possible that the last quip in the old order will be the same as the first quip in the new order, so you may still get a repeat. (Of course, you can just check for this case and swap the first quip somewhere else if it bothers you.)

That last behavior is, in fact, the canonical way that Tetris chooses pieces — the game simply shuffles a list of all 7 pieces, gives those to you in shuffled order, then shuffles them again to make a new list once it’s exhausted. There’s no avoidance of duplicates, though, so you can still get two S blocks in a row, or even two S and two Z all clumped together, but no more than that. Some Tetris variants take other approaches, such as actively avoiding repeats even several pieces apart or deliberately giving you the worst piece possible.

Random drops

Random drops are often implemented as a flat chance each time. Maybe enemies have a 5% chance to drop health when they die. Legally speaking, over the long term, a player will see health drops for about 5% of enemy kills.

Over the short term, they may be desperate for health and not survive to see the long term. So you may want to put a thumb on the scale sometimes. Games in the Metroid series, for example, have a somewhat infamous bias towards whatever kind of drop they think you need — health if your health is low, missiles if your missiles are low.

I can’t give you an exact approach to use, since it depends on the game and the feeling you’re going for and the variables at your disposal. In extreme cases, you might want to guarantee a health drop from a tough enemy when the player is critically low on health. (Or if you’re feeling particularly evil, you could go the other way and deny the player health when they most need it…)

The problem becomes a little different, and worse, when the event that triggers the drop is relatively rare. The pathological case here would be something like a raid boss in World of Warcraft, which requires hours of effort from a coordinated group of people to defeat, and which has some tiny chance of dropping a good item that will go to only one of those people. This is why I stopped playing World of Warcraft at 60.

Dialing it back a little bit gives us Enter the Gungeon, a roguelike where each room is a set of encounters and each floor only has a dozen or so rooms. Initially, you have a 1% chance of getting a reward after completing a room — but every time you complete a room and don’t get a reward, the chance increases by 9%, up to a cap of 80%. Once you get a reward, the chance resets to 1%.

The natural question is: how frequently, exactly, can a player expect to get a reward? We could do math, or we could Just Simulate The Damn Thing.

from collections import Counter
import random

histogram = Counter()

TRIALS = 1000000
chance = 1
rooms_cleared = 0
rewards_found = 0
while rewards_found < TRIALS:
    rooms_cleared += 1
    if random.random() * 100 < chance:
        # Reward!
        rewards_found += 1
        histogram[rooms_cleared] += 1
        rooms_cleared = 0
        chance = 1
        chance = min(80, chance + 9)

for gaps, count in sorted(histogram.items()):
    print(f"{gaps:3d} | {count / TRIALS * 100:6.2f}%", '#' * (count // (TRIALS // 100)))
  1 |   0.98%
  2 |   9.91% #########
  3 |  17.00% ################
  4 |  20.23% ####################
  5 |  19.21% ###################
  6 |  15.05% ###############
  7 |   9.69% #########
  8 |   5.07% #####
  9 |   2.09% ##
 10 |   0.63%
 11 |   0.12%
 12 |   0.03%
 13 |   0.00%
 14 |   0.00%
 15 |   0.00%

We’ve got kind of a hilly distribution, skewed to the left, which is up in this histogram. Most of the time, a player should see a reward every three to six rooms, which is maybe twice per floor. It’s vanishingly unlikely to go through a dozen rooms without ever seeing a reward, so a player should see at least one per floor.

Of course, this simulated a single continuous playthrough; when starting the game from scratch, your chance at a reward always starts fresh at 1%, the worst it can be. If you want to know about how many rewards a player will get on the first floor, hey, Just Simulate The Damn Thing.

  0 |   0.01%
  1 |  13.01% #############
  2 |  56.28% ########################################################
  3 |  27.49% ###########################
  4 |   3.10% ###
  5 |   0.11%
  6 |   0.00%

Cool. Though, that’s assuming exactly 12 rooms; it might be worth changing that to pick at random in a way that matches the level generator.

(Enter the Gungeon does some other things to skew probability, which is very nice in a roguelike where blind luck can make or break you. For example, if you kill a boss without having gotten a new gun anywhere else on the floor, the boss is guaranteed to drop a gun.)

Critical hits

I suppose this is the same problem as random drops, but backwards.

Say you have a battle sim where every attack has a 6% chance to land a devastating critical hit. Presumably the same rules apply to both the player and the AI opponents.

Consider, then, that the AI opponents have exactly the same 6% chance to ruin the player’s day. Consider also that this gives them an 0.4% chance to critical hit twice in a row. 0.4% doesn’t sound like much, but across an entire playthrough, it’s not unlikely that a player might see it happen and find it incredibly annoying.

Perhaps it would be worthwhile to explicitly forbid AI opponents from getting consecutive critical hits.

In conclusion

An emerging theme here has been to Just Simulate The Damn Thing. So consider Just Simulating The Damn Thing. Even a simple change to a random value can do surprising things to the resulting distribution, so unless you feel like differentiating the inverse function of your code, maybe test out any non-trivial behavior and make sure it’s what you wanted. Probability is hard to reason about.

Instrumenting Web Apps Using AWS X-Ray

Post Syndicated from Bharath Kumar original https://aws.amazon.com/blogs/devops/instrumenting-web-apps-using-aws-x-ray/

This post was written by James Bowman, Software Development Engineer, AWS X-Ray

AWS X-Ray helps developers analyze and debug distributed applications and underlying services in production. You can identify and analyze root-causes of performance issues and errors, understand customer impact, and extract statistical aggregations (such as histograms) for optimization.

In this blog post, I will provide a step-by-step walkthrough for enabling X-Ray tracing in the Go programming language. You can use these steps to add X-Ray tracing to any distributed application.

Revel: A web framework for the Go language

This section will assist you with designing a guestbook application. Skip to “Instrumenting with AWS X-Ray” section below if you already have a Go language application.

Revel is a web framework for the Go language. It facilitates the rapid development of web applications by providing a predefined framework for controllers, views, routes, filters, and more.

To get started with Revel, run revel new github.com/jamesdbowman/guestbook. A project base is then copied to $GOPATH/src/github.com/jamesdbowman/guestbook.

$ tree -L 2
├── README.md
├── app
│ ├── controllers
│ ├── init.go
│ ├── routes
│ ├── tmp
│ └── views
├── conf
│ ├── app.conf
│ └── routes
├── messages
│ └── sample.en
├── public
│ ├── css
│ ├── fonts
│ ├── img
│ └── js
└── tests
└── apptest.go

Writing a guestbook application

A basic guestbook application can consist of just two routes: one to sign the guestbook and another to list all entries.
Let’s set up these routes by adding a Book controller, which can be routed to by modifying ./conf/routes.

package controllers

import (


const TABLE_NAME = "guestbook"
const SUCCESS = "Success.\n"
const DAY = 86400


func init() {

// randString returns a random string of len n, used for DynamoDB Hash key.
func randString(n int) string {
    b := make([]rune, n)
    for i := range b {
        b[i] = letters[rand.Intn(len(letters))]
    return string(b)

// Book controls interactions with the guestbook.
type Book struct {
    ddbClient *dynamodb.DynamoDB

// Signature represents a user's signature.
type Signature struct {
    Message string
    Epoch   int64
    ID      string

// ddb returns the controller's DynamoDB client, instatiating a new client if necessary.
func (c Book) ddb() *dynamodb.DynamoDB {
    if c.ddbClient == nil {
        sess := session.Must(session.NewSession(&aws.Config{
            Region: aws.String(endpoints.UsWest2RegionID),
        c.ddbClient = dynamodb.New(sess)
    return c.ddbClient

// Sign allows users to sign the book.
// The message is to be passed as application/json typed content, listed under the "message" top level key.
func (c Book) Sign() revel.Result {
    var s Signature

    err := c.Params.BindJSON(&s)
    if err != nil {
        return c.RenderError(err)
    now := time.Now()
    s.Epoch = now.Unix()
    s.ID = randString(20)

    item, err := dynamodbattribute.MarshalMap(s)
    if err != nil {
        return c.RenderError(err)

    putItemInput := &dynamodb.PutItemInput{
        TableName: aws.String(TABLE_NAME),
        Item:      item,
    _, err = c.ddb().PutItem(putItemInput)
    if err != nil {
        return c.RenderError(err)

    return c.RenderText(SUCCESS)

// List allows users to list all signatures in the book.
func (c Book) List() revel.Result {
    scanInput := &dynamodb.ScanInput{
        TableName: aws.String(TABLE_NAME),
        Limit:     aws.Int64(100),
    res, err := c.ddb().Scan(scanInput)
    if err != nil {
        return c.RenderError(err)

    messages := make([]string, 0)
    for _, v := range res.Items {
        messages = append(messages, *(v["Message"].S))
    return c.RenderJSON(messages)

POST /sign Book.Sign
GET /list Book.List

Creating the resources and testing

For the purposes of this blog post, the application will be run and tested locally. We will store and retrieve messages from an Amazon DynamoDB table. Use the following AWS CLI command to create the guestbook table:

aws dynamodb create-table --region us-west-2 --table-name "guestbook" --attribute-definitions AttributeName=ID,AttributeType=S AttributeName=Epoch,AttributeType=N --key-schema AttributeName=ID,KeyType=HASH AttributeName=Epoch,KeyType=RANGE --provisioned-throughput ReadCapacityUnits=5,WriteCapacityUnits=5

Now, let’s test our sign and list routes. If everything is working correctly, the following result appears:

$ curl -d '{"message":"Hello from cURL!"}' -H "Content-Type: application/json" http://localhost:9000/book/sign
$ curl http://localhost:9000/book/list
  "Hello from cURL!"

Integrating with AWS X-Ray

Download and run the AWS X-Ray daemon

The AWS SDKs emit trace segments over UDP on port 2000. (This port can be configured.) In order for the trace segments to make it to the X-Ray service, the daemon must listen on this port and batch the segments in calls to the PutTraceSegments API.
For information about downloading and running the X-Ray daemon, see the AWS X-Ray Developer Guide.

Installing the AWS X-Ray SDK for Go

To download the SDK from GitHub, run go get -u github.com/aws/aws-xray-sdk-go/... The SDK will appear in the $GOPATH.

Enabling the incoming request filter

The first step to instrumenting an application with AWS X-Ray is to enable the generation of trace segments on incoming requests. The SDK conveniently provides an implementation of http.Handler which does exactly that. To ensure incoming web requests travel through this handler, we can modify app/init.go, adding a custom function to be run on application start.

import (


func init() {

func installXRayHandler() {
    revel.Server.Handler = xray.Handler(xray.NewFixedSegmentNamer("GuestbookApp"), revel.Server.Handler)

The application will now emit a segment for each incoming web request. The service graph appears:

You can customize the name of the segment to make it more descriptive by providing an alternate implementation of SegmentNamer to xray.Handler. For example, you can use xray.NewDynamicSegmentNamer(fallback, pattern) in place of the fixed namer. This namer will use the host name from the incoming web request (if it matches pattern) as the segment name. This is often useful when you are trying to separate different instances of the same application.

In addition, HTTP-centric information such as method and URL is collected in the segment’s http subsection:

"http": {
    "request": {
        "url": "/book/list",
        "method": "GET",
        "user_agent": "curl/7.54.0",
        "client_ip": "::1"
    "response": {
        "status": 200

Instrumenting outbound calls

To provide detailed performance metrics for distributed applications, the AWS X-Ray SDK needs to measure the time it takes to make outbound requests. Trace context is passed to downstream services using the X-Amzn-Trace-Id header. To draw a detailed and accurate representation of a distributed application, outbound call instrumentation is required.

AWS SDK calls

The AWS X-Ray SDK for Go provides a one-line AWS client wrapper that enables the collection of detailed per-call metrics for any AWS client. We can modify the DynamoDB client instantiation to include this line:

// ddb returns the controller's DynamoDB client, instatiating a new client if necessary.
func (c Book) ddb() *dynamodb.DynamoDB {
    if c.ddbClient == nil {
        sess := session.Must(session.NewSession(&aws.Config{
            Region: aws.String(endpoints.UsWest2RegionID),
        c.ddbClient = dynamodb.New(sess)
        xray.AWS(c.ddbClient.Client) // add subsegment-generating X-Ray handlers to this client
    return c.ddbClient

We also need to ensure that the segment generated by our xray.Handler is passed to these AWS calls so that the X-Ray SDK knows to which segment these generated subsegments belong. In Go, the context.Context object is passed throughout the call path to achieve this goal. (In most other languages, some variant of ThreadLocal is used.) AWS clients provide a *WithContext method variant for each AWS operation, which we need to switch to:

_, err = c.ddb().PutItemWithContext(c.Request.Context(), putItemInput)
    res, err := c.ddb().ScanWithContext(c.Request.Context(), scanInput)

We now see much more detail in the Timeline view of the trace for the sign and list operations:

We can use this detail to help diagnose throttling on our DynamoDB table. In the following screenshot, the purple in the DynamoDB service graph node indicates that our table is underprovisioned. The red in the GuestbookApp node indicates that the application is throwing faults due to this throttling.

HTTP calls

Although the guestbook application does not make any non-AWS outbound HTTP calls in its current state, there is a similar one-liner to wrap HTTP clients that make outbound requests. xray.Client(c *http.Client) wraps an existing http.Client (or nil if you want to use a default HTTP client). For example:

resp, err := ctxhttp.Get(ctx, xray.Client(nil), "https://aws.amazon.com/")

Instrumenting local operations

X-Ray can also assist in measuring the performance of local compute operations. To see this in action, let’s create a custom subsegment inside the randString method:

// randString returns a random string of len n, used for DynamoDB Hash key.
func randString(ctx context.Context, n int) string {
    xray.Capture(ctx, "randString", func(innerCtx context.Context) {
        b := make([]rune, n)
        for i := range b {
            b[i] = letters[rand.Intn(len(letters))]
        s := string(b)
    return s

// we'll also need to change the callsite

s.ID = randString(c.Request.Context(), 20)


By now, you are an expert on how to instrument X-Ray for your Go applications. Instrumenting X-Ray with your applications is an easy way to analyze and debug performance issues and understand customer impact. Please feel free to give any feedback or comments below.

For more information about advanced configuration of the AWS X-Ray SDK for Go, see the AWS X-Ray SDK for Go in the AWS X-Ray Developer Guide and the aws/aws-xray-sdk-go GitHub repository.

For more information about some of the advanced X-Ray features such as histograms, annotations, and filter expressions, see the Analyzing Performance for Amazon Rekognition Apps Written on AWS Lambda Using AWS X-Ray blog post.

How to Make Your Web App More Reliable and Performant Using webpack: a Yahoo Mail Case Study

Post Syndicated from mikesefanov original https://yahooeng.tumblr.com/post/168508200981



By Murali Krishna Bachhu, Anurag Damle, and Utkarsh Shrivastava

As engineers on the Yahoo Mail team at Oath, we pride ourselves on the things that matter most to developers: faster development cycles, more reliability, and better performance. Users don’t necessarily see these elements, but they certainly feel the difference they make when significant improvements are made. Recently, we were able to upgrade all three of these areas at scale by adopting webpack® as Yahoo Mail’s underlying module bundler, and you can do the same for your web application.

What is webpack?

webpack is an open source module bundler for modern JavaScript applications. When webpack processes your application, it recursively builds a dependency graph that includes every module your application needs. Then it packages all of those modules into a small number of bundles, often only one, to be loaded by the browser.

webpack became our choice module bundler not only because it supports on-demand loading, multiple bundle generation, and has a relatively low runtime overhead, but also because it is better suited for web platforms and NodeJS apps and has great community support.


Comparison of webpack to other open source bundlers

How did we integrate webpack?

Like any developer does when integrating a new module bundler, we started integrating webpack into Yahoo Mail by looking at its basic config file. We explored available default webpack plugins as well as third-party webpack plugins and then picked the plugins most suitable for our application. If we didn’t find a plugin that suited a specific need, we wrote the webpack plugin ourselves (e.g., We wrote a plugin to execute Atomic CSS scripts in the latest Yahoo Mail experience in order to decrease our overall CSS payload**).

During the development process for Yahoo Mail, we needed a way to make sure webpack would continuously run in the background. To make this happen, we decided to use the task runner Grunt. Not only does Grunt keep the connection to webpack alive, but it also gives us the ability to pass different parameters to the webpack config file based on the given environment. Some examples of these parameters are source map options, enabling HMR, and uglification.

Before deployment to production, we wanted to optimize the javascript bundles for size to make the Yahoo Mail experience faster. webpack provides good default support for this with the UglifyJS plugin. Although the default options are conservative, they give us the ability to configure the options. Once we modified the options to our specifications, we saved approximately 10KB.


Code snippet showing the configuration options for the UglifyJS plugin

Faster development cycles for developers

While developing a new feature, engineers ideally want to see their code changes reflected on their web app instantaneously. This allows them to maintain their train of thought and eventually results in more productivity. Before we implemented webpack, it took us around 30 seconds to 1 minute for changes to reflect on our Yahoo Mail development environment. webpack helped us reduce the wait time to 5 seconds.

More reliability

Consumers love a reliable product, where all the features work seamlessly every time. Before we began using webpack, we were generating javascript bundles on demand or during run-time, which meant the product was more prone to exceptions or failures while fetching the javascript bundles. With webpack, we now generate all the bundles during build time, which means that all the bundles are available whenever consumers access Yahoo Mail. This results in significantly fewer exceptions and failures and a better experience overall.

Better Performance

We were able to attain a significant reduction of payload after adopting webpack.

  1. Reduction of about 75 KB gzipped Javascript payload
  2. 50% reduction on server-side render time
  3. 10% improvement in Yahoo Mail’s launch performance metrics, as measured by render time above the fold (e.g., Time to load contents of an email).

Below are some charts that demonstrate the payload size of Yahoo Mail before and after implementing webpack.


Payload before using webpack (JavaScript Size = 741.41KB)


Payload after switching to webpack (JavaScript size = 669.08KB)



Shifting to webpack has resulted in significant improvements. We saw a common build process go from 30 seconds to 5 seconds, large JavaScript bundle size reductions, and a halving in server-side rendering time. In addition to these benefits, our engineers have found the community support for webpack to have been impressive as well. webpack has made the development of Yahoo Mail more efficient and enhanced the product for users. We believe you can use it to achieve similar results for your web application as well.

**Optimized CSS generation with Atomizer

Before we implemented webpack into the development of Yahoo Mail, we looked into how we could decrease our CSS payload. To achieve this, we developed an in-house solution for writing modular and scoped CSS in React. Our solution is similar to the Atomizer library, and our CSS is written in JavaScript like the example below:


Sample snippet of CSS written with Atomizer

Every React component creates its own styles.js file with required style definitions. React-Atomic-CSS converts these files into unique class definitions. Our total CSS payload after implementing our solution equaled all the unique style definitions in our code, or only 83KB (21KB gzipped).

During our migration to webpack, we created a custom plugin and loader to parse these files and extract the unique style definitions from all of our CSS files. Since this process is tied to bundling, only CSS files that are part of the dependency chain are included in the final CSS.

Pip: digital creation in your pocket from Curious Chip

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/pip-curious-chip/

Get your hands on Pip, the handheld Raspberry Pi–based device for aspiring young coders and hackers from Curious Chip.

A GIF of Pip - Curious Chip - Pip handheld device - Raspberry Pi

Pip is a handheld gaming console from Curios Chip which you can now back on Kickstarter. Using the Raspberry Pi Compute Module 3, Pip allows users to code, hack, and play wherever they are.

We created Pip so that anyone can tinker with technology. From beginners to those who know more — Pip makes it easy, simple, and fun!

For gaming

Pip’s smart design may well remind you of a certain handheld gaming console released earlier this year. With its central screen and detachable side controllers, Pip has a size and shape ideal for gaming.

A GIF of Pip - Curious Chip - Pip handheld device - Raspberry Pi

Those who have used a Raspberry Pi with the Raspbian OS might be familiar with Minecraft Pi, a variant of the popular Minecraft game created specifically for Pi users to play and hack for free. Users of Pip will be able to access Minecraft Pi from the portable device and take their block-shaped creations with them wherever they go.

And if that’s not enough, Pip’s Pi brain allows coders to create their own games using Scratch, in addition to giving access a growing library of games in Curious Chip’s online arcade.

Digital making

Pip’s GPIO pins are easily accessible, so that you can expand upon your digital making skills with physical computing projects. Grab your Pip and a handful of jumper leads, and you will be able to connect and control components such as lights, buttons, servomotors, and more!

A smiling girl with Pip and a laptop

You can also attach any of the range of HAT add-on boards available on the market, such as our own Sense HAT, or ones created by Pimoroni, Adafruit, and others. And if you’re looking to learn a new coding language, you’re in luck: Pip supports Python, HTML/CSS, JavaScript, Lua, and PHP.

Maker Pack and add-ons

Backers can also pledge their funds for additional hardware, such as the Maker Pack, an integrated camera, or a Pip Breadboard Kit.

PipHAT and Breadboard add-ons - Curious Chip - Pip handheld device - Raspberry Pi

The breadboard and the optional PipHAT are also compatible with any Raspberry Pi 2 and 3. Nice!

Curiosity from Curious Chip

Users of Pip can program their device via Curiosity, a tool designed specifically for this handheld device.

Pip’s programming tool is called Curiosity, and it’s hosted on Pip itself and accessed via WiFi from any modern web browser, so there’s no software to download and install. Curiosity allows Pip to be programmed using a number of popular programming languages, including JavaScript, Python, Lua, PHP, and HTML5. Scratch-inspired drag-and-drop block programming is also supported with our own Google Blockly–based editor, making it really easy to access all of Pip’s built-in functionality from a simple, visual programming language.

Back the project

If you’d like to back Curious Chip and bag your own Pip, you can check out their Kickstarter page here. And if you watch their promo video closely, you may see a familiar face from the Raspberry Pi community.

Are you planning on starting your own Raspberry Pi-inspired crowd-funded campaign? Then be sure to tag us on social media. We love to see what the community is creating for our little green (or sometimes blue) computer.

The post Pip: digital creation in your pocket from Curious Chip appeared first on Raspberry Pi.

Firefox takes a Quantum leap forward with new developer edition (ars technica)

Post Syndicated from ris original https://lwn.net/Articles/734831/rss

Ars technica takes
a look
at the Firefox 57 developer edition. “More important, but less immediately visible, is that Firefox 57 has received a ton of performance enhancement. Project Quantum has several strands to it: Mozilla has developed a new CSS engine, Stylo, that parses CSS files, applies the styling rules to elements on the page, and calculates object sizes and positions. There is also a new rendering engine, WebRender, that uses the GPU to draw the (styled) elements of the page. Compositor combines the individual rendered elements and builds them into a complete page, while Quantum DOM changes how JavaScript runs, especially in background tabs. As well as this new development, there’s a final part, Quantum Flow, which has focused on fixing bugs and adding optimizations to those parts of the browser that aren’t being redeveloped.

WebRender is due to arrive in Firefox 59, but the rest of Quantum is part of Firefox 57.”

timeShift(GrafanaBuzz, 1w) Issue 10

Post Syndicated from Blogs on Grafana Labs Blog original https://grafana.com/blog/2017/08/25/timeshiftgrafanabuzz-1w-issue-10/

This week, in addition to the articles we collected from around the web and a number of new Plugins and updates, we have a special announcement. GrafanaCon EU has been announced! Join us in Amsterdam March 1-2, 2018. The call for papers is officially open! We’ll keep you up to date as we fill in the details.

Grafana <3 Prometheus

Last week we mentioned that our colleague Carl Bergquist spoke at PromCon 2017 in Munich. His presentation is now available online. We will post the video once it’s available.

From the Blogosphere

Grafana-based GUI for mgstat, a system monitoring tool for InterSystems Caché, Ensemble or HealthShare: This is the second article in a series about Making Prometheus Monitoring for InterSystems Caché. Mikhail goes into great detail about setting this up on Docker, configuring the first dashboard, and adding templating.

Installation and Integration of Grafana in Zabbix 3.x: Daniel put together an installation guide to get Grafana to display metrics from Zabbix, which utilizes the Zabbix Plugin developed by Grafana Labs Developer Alex Zobnin.

Visualize with RRDtool x Grafana: Atfujiwara wanted to update his MRTG graphs from RRDtool. This post talks about the components needed and how he connected RRDtool to Grafana.

Huawei OceanStor metrics in Grafana: Dennis is using Grafana to display metrics for his storage devices. In this post he walks you through the setup and provides a comprehensive dashboard for all the metrics.

Grafana on a Raspberry Pi2: Pete discusses how he uses Grafana with his garden sensors, and walks you through how to get it up and running on a Pi2.

Grafana Plugins

This week was pretty active on the plugin front. Today we’re announcing two brand new plugins and updates to three others. Installing plugins in Grafana is easy – if you have Hosted Grafana, simply use the one-click install, if you’re using an on-prem instance you can use the Grafana-cli.


IBM APM Data Source – This plugin collects metrics from the IBM APM (Application Performance Management) products and allows you to visualize it on Grafana dashboards. The plugin supports:

  • IBM Tivoli Monitoring 6.x
  • IBM SmartCloud Application Performance Management 7.x
  • IBM Performance Management 8.x (only on-premises version)

Install Now


Skydive Data Source – This data source plugin collects metrics from Skydive, an open source real-time network topology and protocols analyzer. Using the Skydive Gremlin query language, you can fetch metrics for flows in your network.

Install now


Datatable Panel – Lots of changes in the latest update to the Datatable Panel Here are some highlights from the changelog:

  • NEW: Export options for Clipboard/CSV/PDF/Excel/Print
  • NEW: Column Aliasing – modify the name of a column as sent by the datasource
  • NEW: Added option for a cell or row to link to another page
  • NEW: Supports Clickable links inside table
  • BUGFIX: CSS files now load when Grafana has a subpath
  • NEW: Added multi-column sorting – sort by any number of columns ascending/descending
  • NEW: Column width hints – suggest a width for a named column
  • BUGFIX: Columns from datasources other than JSON can now be aliased

Update Now


D3 Gauge Panel – The D3 Gauge Panel has a new feature – Tick Mapping. Ticks on the gauge can now be mapped to text.

Update Now


PNP4Nagios Data Source – The most recent update to the PNP Data Source adds support for template variables in queries and as well as support for querying warning and critical thresholds.

Update Now

This week’s MVC (Most Valuable Contributor)

Each week we highlight a contributor to Grafana or the surrounding ecosystem as a thank you for their participation in making open source software great.

Brian Gann
Brian is the maintainer of two Grafana Plugins and this week he submitted substantial updates to both of them (Datatable and D3 Gauge panel plugins); and he says there’s more to come! Thanks for all your hard work, Brian.

Tweet of the Week

We scour Twitter each week to find an interesting/beautiful dashboard and show it off! #monitoringLove

The Dark Knight popping up in graphs seems to be a recurring theme!
This is the graph Jakub deserves, but not the one he needs right now.

What do you think?

That’s it for the 10th issue of timeShift. Let us know how we’re doing! Submit a comment on this article below, or post something at our community forum. Help us make this better!

Follow us on Twitter, like us on Facebook, and join the Grafana Labs community.

Wanted: Front End Developer

Post Syndicated from Yev original https://www.backblaze.com/blog/wanted-front-end-developer/

Want to work at a company that helps customers in over 150 countries around the world protect the memories they hold dear? Do you want to challenge yourself with a business that serves consumers, SMBs, Enterprise, and developers? If all that sounds interesting, you might be interested to know that Backblaze is looking for a Front End Developer​!

Backblaze is a 10 year old company. Providing great customer experiences is the “secret sauce” that enables us to successfully compete against some of technology’s giants. We’ll finish the year at ~$20MM ARR and are a profitable business. This is an opportunity to have your work shine at scale in one of the fastest growing verticals in tech – Cloud Storage.

You will utilize HTML, ReactJS, CSS and jQuery to develop intuitive, elegant user experiences. As a member of our Front End Dev team, you will work closely with our web development, software design, and marketing teams.

On a day to day basis, you must be able to convert image mockups to HTML or ReactJS – There’s some production work that needs to get done. But you will also be responsible for helping build out new features, rethink old processes, and enabling third party systems to empower our marketing/sales/ and support teams.

Our Front End Developer must be proficient in:

  • HTML, ReactJS
  • UTF-8, Java Properties, and Localized HTML (Backblaze runs in 11 languages!)
  • JavaScript, CSS, Ajax
  • jQuery, Bootstrap
  • Understanding of cross-browser compatibility issues and ways to work around them
  • Basic SEO principles and ensuring that applications will adhere to them
  • Learning about third party marketing and sales tools through reading documentation. Our systems include Google Tag Manager, Google Analytics, Salesforce, and Hubspot

Struts, Java, JSP, Servlet and Apache Tomcat are a plus, but not required.

We’re looking for someone that is:

  • Passionate about building friendly, easy to use Interfaces and APIs.
  • Likes to work closely with other engineers, support, and marketing to help customers.
  • Is comfortable working independently on a mutually agreed upon prioritization queue (we don’t micromanage, we do make sure tasks are reasonably defined and scoped).
  • Diligent with quality control. Backblaze prides itself on giving our team autonomy to get work done, do the right thing for our customers, and keep a pace that is sustainable over the long run. As such, we expect everyone that checks in code that is stable. We also have a small QA team that operates as a secondary check when needed.

Backblaze Employees Have:

  • Good attitude and willingness to do whatever it takes to get the job done
  • Strong desire to work for a small fast, paced company
  • Desire to learn and adapt to rapidly changing technologies and work environment
  • Comfort with well behaved pets in the office

This position is located in San Mateo, California. Regular attendance in the office is expected. Backblaze is an Equal Opportunity Employer and we offer competitive salary and benefits, including our no policy vacation policy.

If this sounds like you
Send an email to [email protected] with:

  1. Front End Dev​ in the subject line
  2. Your resume attached
  3. An overview of your relevant experience

The post Wanted: Front End Developer appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Take the Journey: Build Your First Serverless Web Application

Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/build-your-first-serverless-application/

I realized at a young age that I really liked writing those special statements that would control the computer and make it work in the manner in which I desired. This technique of controlling the computer and building things on the machine, I learned from my teachers was called writing code, and it fascinated me. Even now, what seems like centuries later, I still get the thrill of writing code, building cool solutions, and tackling all the associated challenges of this craft. It is no wonder then, that I am a huge fan of serverless computing and serverless architectures.

Serverless Computing allows me to do what I enjoy, which is write code, without having to provision and/or configure servers. Using the AWS Serverless Platform means that all the heavy lifting of server management is handled by AWS, allowing you to focus on building your application.

If you enjoy coding like I do and have yet to dive into building serverless applications, boy do I have some sensational news for you. You can build your own serverless web application with our new Serverless Web Application Guide, which provides step-by-step instructions for you to create and deploy your serverless web application on AWS.


The Serverless Web Application Guide is a hands-on tutorial that will assist you in building a fully scalable, serverless web application using the following AWS Services:

  • AWS Lambda: a managed service for serverless compute that allows you to run code without provisioning or managing servers
  • Amazon S3: a managed service that provides simple, durable, scalable object storage
  • Amazon Cognito: a managed service that allows you to add user sign-up, and data synchronization to your application
  • Amazon API Gateway: a managed service which you can create, publish, and maintain secure APIs
  • Amazon DynamoDB: a fast and flexible NoSQL managed cloud database with support for various document and key-value storage models

The application you will build is a simple web application designed for a fictional transportation service. The application will enable users to register and login into the website to request rides from a very unique transportation fleet. You will accomplish this by using the aforementioned AWS services with the serverless application architecture shown in the diagram below.

The guide breaks up the each step to build your serverless web application into five separate modules.


  1. Static Web Hosting: Amazon S3 hosts static web resources including HTML, CSS, JavaScript, and image files that are loaded in the user’s browser.
  2. User Management: Amazon Cognito provides user management and authentication functions to secure the backend API.
  3. Serverless Backend: Amazon DynamoDB provides a persistence layer where data can be stored by the API’s Lambda function.
  4. RESTful APIs: JavaScript executed in the browser sends and receives data from a public backend API built using AWS Lambda and API Gateway.
  5. Resource Cleanup: All the resources created throughout the tutorial will be terminated.

To be successful in building the application, you must remember to complete each module in sequential order, as the modules are dependent on resources created in the previous one. Some of the guide’s modules provide CloudFormation templates to aid you in generating the necessary resources to build the application if you do not wish to create them manually.



Now that you know all about this fantastic new guide for building a serverless web application, you are ready to journey into the world of AWS serverless computing and have some fun writing the code to build the application. The guide is great for beginners and yet still has cool features that even seasoned serverless computing developers will enjoy building. And to top it off, you don’t have to worry about the cost. Each service used is eligible for the AWS Free Tier and is only estimated to cost less than $0.25 if you are outside of Free Tier usage limits.

Take the plunge today and dive into building serverless applications on the AWS serverless platform with this new and exciting Serverless Web Application Guide.



Yahoo Mail’s New Tech Stack, Built for Performance and Reliability

Post Syndicated from mikesefanov original https://yahooeng.tumblr.com/post/162320493306

By Suhas Sadanandan, Director of Engineering 

When it comes to performance and reliability, there is perhaps no application where this matters more than with email. Today, we announced a new Yahoo Mail experience for desktop based on a completely rewritten tech stack that embodies these fundamental considerations and more.

We built the new Yahoo Mail experience using a best-in-class front-end tech stack with open source technologies including React, Redux, Node.js, react-intl (open-sourced by Yahoo), and others. A high-level architectural diagram of our stack is below.


New Yahoo Mail Tech Stack

In building our new tech stack, we made use of the most modern tools available in the industry to come up with the best experience for our users by optimizing the following fundamentals:


A key feature of the new Yahoo Mail architecture is blazing-fast initial loading (aka, launch).

We introduced new network routing which sends users to their nearest geo-located email servers (proximity-based routing). This has resulted in a significant reduction in time to first byte and should be immediately noticeable to our international users in particular.

We now do server-side rendering to allow our users to see their mail sooner. This change will be immediately noticeable to our low-bandwidth users. Our application is isomorphic, meaning that the same code runs on the server (using Node.js) and the client. Prior versions of Yahoo Mail had programming logic duplicated on the server and the client because we used PHP on the server and JavaScript on the client.   

Using efficient bundling strategies (JavaScript code is separated into application, vendor, and lazy loaded bundles) and pushing only the changed bundles during production pushes, we keep the cache hit ratio high. By using react-atomic-css, our homegrown solution for writing modular and scoped CSS in React, we get much better CSS reuse.  

In prior versions of Yahoo Mail, the need to run various experiments in parallel resulted in additional branching and bloating of our JavaScript and CSS code. While rewriting all of our code, we solved this issue using Mendel, our homegrown solution for bucket testing isomorphic web apps, which we have open sourced.  

Rather than using custom libraries, we use native HTML5 APIs and ES6 heavily and use PolyesterJS, our homegrown polyfill solution, to fill the gaps. These factors have further helped us to keep payload size minimal.

With all the above optimizations, we have been able to reduce our JavaScript and CSS footprint by approximately 50% compared to the previous desktop version of Yahoo Mail, helping us achieve a blazing-fast launch.

In addition to initial launch improvements, key features like search and message read (when a user opens an email to read it) have also benefited from the above optimizations and are considerably faster in the latest version of Yahoo Mail.

We also significantly reduced the memory consumed by Yahoo Mail on the browser. This is especially noticeable during a long running session.


With this new version of Yahoo Mail, we have a 99.99% success rate on core flows: launch, message read, compose, search, and actions that affect messages. Accomplishing this over several billion user actions a day is a significant feat. Client-side errors (JavaScript exceptions) are reduced significantly when compared to prior Yahoo Mail versions.

Product agility and launch velocity

We focused on independently deployable components. As part of the re-architecture of Yahoo Mail, we invested in a robust continuous integration and delivery flow. Our new pipeline allows for daily (or more) pushes to all Mail users, and we push only the bundles that are modified, which keeps the cache hit ratio high.

Developer effectiveness and satisfaction

In developing our tech stack for the new Yahoo Mail experience, we heavily leveraged open source technologies, which allowed us to ensure a shorter learning curve for new engineers. We were able to implement a consistent and intuitive onboarding program for 30+ developers and are now using our program for all new hires. During the development process, we emphasise predictable flows and easy debugging.


The accessibility of this new version of Yahoo Mail is state of the art and delivers outstanding usability (efficiency) in addition to accessibility. It features six enhanced visual themes that can provide accommodation for people with low vision and has been optimized for use with Assistive Technology including alternate input devices, magnifiers, and popular screen readers such as NVDA and VoiceOver. These features have been rigorously evaluated and incorporate feedback from users with disabilities. It sets a new standard for the accessibility of web-based mail and is our most-accessible Mail experience yet.

Open source 

We have open sourced some key components of our new Mail stack, like Mendel, our solution for bucket testing isomorphic web applications. We invite the community to use and build upon our code. Going forward, we plan on also open sourcing additional components like react-atomic-css, our solution for writing modular and scoped CSS in React, and lazy-component, our solution for on-demand loading of resources.

Many of our company’s best technical minds came together to write a brand new tech stack and enable a delightful new Yahoo Mail experience for our users.

We encourage our users and engineering peers in the industry to test the limits of our application, and to provide feedback by clicking on the Give Feedback call out in the lower left corner of the new version of Yahoo Mail.

Sense HAT Emulator Upgrade

Post Syndicated from David Honess original https://www.raspberrypi.org/blog/sense-hat-emulator-upgrade/

Last year, we partnered with Trinket to develop a web-based emulator for the Sense HAT, the multipurpose add-on board for the Raspberry Pi. Today, we are proud to announce an exciting new upgrade to the emulator. We hope this will make it even easier for you to design amazing experiments with the Sense HAT!

What’s new?

The original release of the emulator didn’t fully support all of the Sense HAT features. Specifically, the movement sensors were not emulated. Thanks to funding from the UK Space Agency, we are delighted to announce that a new round of development has just been completed. From today, the movement sensors are fully supported. The emulator also comes with a shiny new 3D interface, Astro Pi skin mode, and Pygame event handling. Click the ▶︎ button below to see what’s new!

Upgraded sensors

On a physical Sense HAT, real sensors react to changes in environmental conditions like fluctuations in temperature or humidity. The emulator has sliders which are designed to simulate this. However, emulating the movement sensor is a bit more complicated. The upgrade introduces a 3D slider, which is essentially a model of the Sense HAT that you can move with your mouse. Moving the model affects the readings provided by the accelerometer, gyroscope, and magnetometer sensors.

Code written in this emulator is directly portable to a physical Raspberry Pi and Sense HAT without modification. This means you can now develop and test programs using the movement sensors from any internet-connected computer, anywhere in the world.

Astro Pi mode

Astro Pi is our series of competitions offering students the chance to have their code run in space! The code is run on two space-hardened Raspberry Pi units, with attached Sense HATs, on the International Space Station.

Image of Astro Pi unit Sense HAT emulator upgrade

Astro Pi skin mode

There are a number of practical things that can catch you out when you are porting your Sense HAT code to an Astro Pi unit, though, such as the orientation of the screen and joystick. Just as having a 3D-printed Astro Pi case enables you to discover and overcome these, so does the Astro Pi skin mode in this emulator. In the bottom right-hand panel, there is an Astro Pi button which enables the mode: click it again to go back to the Sense HAT.

The joystick and push buttons are operated by pressing your keyboard keys: use the cursor keys and Enter for the joystick, and U, D, L, R, A, and B for the buttons.

Sense Hat resources for Code Clubs

Image of gallery of Code Club Sense HAT projects Sense HAT emulator upgrade

Click the image to visit the Code Club projects page

We also have a new range of Code Club resources which are based on the emulator. Of these, three use the environmental sensors and two use the movement sensors. The resources are an ideal way for any Code Club to get into physical computing.

The technology

The 3D models in the emulator are represented entirely with HTML and CSS. “This project pushed the Trinket team, and the 3D web, to its limit,” says Elliott Hauser, CEO of Trinket. “Our first step was to test whether pure 3D HTML/CSS was feasible, using Julian Garnier’s Tridiv.”

Sense HAT 3D image mockup Sense HAT emulator upgrade

The Trinket team’s preliminary 3D model of the Sense HAT

“We added JavaScript rotation logic and the proof of concept worked!” Elliot continues. “Countless iterations, SVG textures, and pixel-pushing tweaks later, the finished emulator is far more than the sum of its parts.”

Sense HAT emulator 3d image final version Sense HAT emulator upgrade

The finished Sense HAT model: doesn’t it look amazing?

Check out this blog post from Trinket for more on the technology and mathematics behind the models.

One of the compromises we’ve had to make is browser support. Unfortunately, browsers like Firefox and Microsoft Edge don’t fully support this technology yet. Instead, we recommend that you use Chrome, Safari, or Opera to access the emulator.

Where do I start?

If you’re new to the Sense HAT, you can simply copy and paste many of the code examples from our educational resources, like this one. Alternatively, you can check out our Sense HAT Essentials e-book. For a complete list of all the functions you can use, have a look at the Sense HAT API reference here.

The post Sense HAT Emulator Upgrade appeared first on Raspberry Pi.

Authorizing Access Through a Proxy Resource to Amazon API Gateway and AWS Lambda Using Amazon Cognito User Pools

Post Syndicated from Bryan Liston original https://aws.amazon.com/blogs/compute/authorizing-access-through-a-proxy-resource-to-amazon-api-gateway-and-aws-lambda-using-amazon-cognito-user-pools/

Ed Lima, Solutions Architect

Want to create your own user directory that can scale to hundreds of millions of users? Amazon Cognito user pools are fully managed so that you don’t have to worry about the heavy lifting associated with building, securing, and scaling authentication to your apps.

The AWS Mobile blog post Integrating Amazon Cognito User Pools with API Gateway back in May explained how to integrate user pools with Amazon API Gateway using an AWS Lambda custom authorizer. Since then, we’ve released a new feature where you can directly configure a Cognito user pool authorizer to authenticate your API calls; more recently, we released a new proxy resource feature. In this post, I show how to use these new great features together to secure access to an API backed by a Lambda proxy resource.


In this post, I assume that you have some basic knowledge about the services involved. If not, feel free to review our documentation and tutorials on:

Start by creating a user pool called “myApiUsers”, and enable verifications with optional MFA access for extra security:


Be mindful that if you are using a similar solution for production workloads you will need to request a SMS spending threshold limit increase from Amazon SNS in order to send SMS messages to users for phone number verification or for MFA. For the purposes of this article, since we are only testing our API authentication with a single user the default limit will suffice.

Now, create an app in your user pool, making sure to clear Generate client secret:


Using the client ID of your newly created app, add a user, “jdoe”, with the AWS CLI. The user needs a valid email address and phone number to receive MFA codes:

aws cognito-idp sign-up \
--client-id 12ioh8c17q3stmndpXXXXXXXX \
--username jdoe \
--password [email protected] \
--region us-east-1 \
--user-attributes '[{"Name":"given_name","Value":"John"},{"Name":"family_name","Value":"Doe"},{"Name":"email","Value":"[email protected]"},{"Name":"gender","Value":"Male"},{"Name":"phone_number","Value":"+61XXXXXXXXXX"}]'  

In the Cognito User Pools console, under Users, select the new user and choose Confirm User and Enable MFA:


Your Cognito user is now ready and available to connect.

Next, create a Node.js Lambda function called LambdaForSimpleProxy with a basic execution role. Here’s the code:

'use strict';
console.log('Loading CUP2APIGW2Lambda Function');

exports.handler = function(event, context) {
    var responseCode = 200;
    console.log("request: " + JSON.stringify(event));
    var responseBody = {
        message: "Hello, " + event.requestContext.authorizer.claims.given_name + " " + event.requestContext.authorizer.claims.family_name +"!" + " You are authenticated to your API using Cognito user pools!",
        method: "This is an authorized "+ event.httpMethod + " to Lambda from your API using a proxy resource.",
        body: event.body

    //Response including CORS required header
    var response = {
        statusCode: responseCode,
        headers: {
            "Access-Control-Allow-Origin" : "*"
        body: JSON.stringify(responseBody)

    console.log("response: " + JSON.stringify(response))

For the last piece of the back-end puzzle, create a new API called CUP2Lambda from the Amazon API Gateway console. Under Authorizers, choose Create, Cognito User Pool Authorizer with the following settings:


Create an ANY method under the root of the API as follows:


After that, choose Save, OK to give API Gateway permissions to invoke the Lambda function. It’s time to configure the authorization settings for your ANY method. Under Method Request, enter the Cognito user pool as the authorization for your API:


Finally, choose Actions, Enable CORS. This creates an OPTIONS method in your API:


Now it’s time to deploy the API to a stage (such as prod) and generate a JavaScript SDK from the SDK Generation tab. You can use other methods to connect to your API however in this article I’ll show how to use the API Gateway SDK. Since we are using an ANY method the SDK does not have calls for specific methods other than the OPTIONS method created by Enable CORS, you have to add a couple of extra functions to the apigClient.js file so that your SDK can perform GET and POST operations to your API:

    apigClient.rootGet = function (params, body, additionalParams) {
        if(additionalParams === undefined) { additionalParams = {}; }
        apiGateway.core.utils.assertParametersDefined(params, [], ['body']);       

        var rootGetRequest = {
            verb: 'get'.toUpperCase(),
            path: pathComponent + uritemplate('/').expand(apiGateway.core.utils.parseParametersToObject(params, [])),
            headers: apiGateway.core.utils.parseParametersToObject(params, []),
            queryParams: apiGateway.core.utils.parseParametersToObject(params, []),
            body: body

        return apiGatewayClient.makeRequest(rootGetRequest, authType, additionalParams, config.apiKey);

    apigClient.rootPost = function (params, body, additionalParams) {
        if(additionalParams === undefined) { additionalParams = {}; }
        apiGateway.core.utils.assertParametersDefined(params, ['body'], ['body']);
        var rootPostRequest = {
            verb: 'post'.toUpperCase(),
            path: pathComponent + uritemplate('/').expand(apiGateway.core.utils.parseParametersToObject(params, [])),
            headers: apiGateway.core.utils.parseParametersToObject(params, []),
            queryParams: apiGateway.core.utils.parseParametersToObject(params, []),
            body: body
        return apiGatewayClient.makeRequest(rootPostRequest, authType, additionalParams, config.apiKey);


You can now use a little front end web page to authenticate users and test authorized calls to your API. In order for it to work, you need to add some external libraries and dependencies including the API Gateway SDK you just generated. You can find more details in our Cognito as well as API Gateway SDK documentation guides.

With the dependencies in place, you can use the following JavaScript code to authenticate your Cognito user pool user and connect to your API in order to perform authorized calls (replace your own user pool Id and client ID details accordingly):

<script type="text/javascript">
 //Configure the AWS client with the Cognito role and a blank identity pool to get initial credentials

    region: 'us-east-1',
    credentials: new AWS.CognitoIdentityCredentials({
      IdentityPoolId: ''

  AWSCognito.config.region = 'us-east-1';
  AWSCognito.config.update({accessKeyId: 'null', secretAccessKey: 'null'});
  var token = "";
  //Authenticate user with MFA

  document.getElementById("buttonAuth").addEventListener("click", function(){  
    var authenticationData = {
      Username : document.getElementById('username').value,
      Password : document.getElementById('password').value,

    var showGetPut = document.getElementById('afterLogin');
    var hideLogin = document.getElementById('login');

    var authenticationDetails = new AWSCognito.CognitoIdentityServiceProvider.AuthenticationDetails(authenticationData);

   // Replace with your user pool details

    var poolData = { 
        UserPoolId : 'us-east-1_XXXXXXXXX', 
        ClientId : '12ioh8c17q3stmndpXXXXXXXX', 
        Paranoia : 7

    var userPool = new AWSCognito.CognitoIdentityServiceProvider.CognitoUserPool(poolData);

    var userData = {
        Username : document.getElementById('user').value,
        Pool : userPool

    var cognitoUser = new AWSCognito.CognitoIdentityServiceProvider.CognitoUser(userData);
    cognitoUser.authenticateUser(authenticationDetails, {
      onSuccess: function (result) {
        token = result.getIdToken().getJwtToken(); // CUP Authorizer = ID Token
        console.log('ID Token: ' + result.getIdToken().getJwtToken()); // Show ID Token in the console
        var cognitoGetUser = userPool.getCurrentUser();
        if (cognitoGetUser != null) {
          cognitoGetUser.getSession(function(err, result) {
            if (result) {
              console.log ("User Successfuly Authenticated!");  

        //Hide Login form after successful authentication
        showGetPut.style.display = 'block';
        hideLogin.style.display = 'none';
    onFailure: function(err) {
    mfaRequired: function(codeDeliveryDetails) {
            var verificationCode = prompt('Please input a verification code.' ,'');
            cognitoUser.sendMFACode(verificationCode, this);

//Send a GET request to the API

document.getElementById("buttonGet").addEventListener("click", function(){
  var apigClient = apigClientFactory.newClient();
  var additionalParams = {
      headers: {
        Authorization: token

      .then(function(response) {
        document.getElementById("output").innerHTML = ('<pre align="left"><code>Response: '+JSON.stringify(response.data, null, 2)+'</code></pre>');
      }).catch(function (response) {
        document.getElementById('output').innerHTML = ('<pre align="left"><code>Error: '+JSON.stringify(response, null, 2)+'</code></pre>');

//Send a POST request to the API

document.getElementById("buttonPost").addEventListener("click", function(){
  var apigClient = apigClientFactory.newClient();
  var additionalParams = {
      headers: {
        Authorization: token
 var body = {
        "message": "Sample POST payload"

      .then(function(response) {
        document.getElementById("output").innerHTML = ('<pre align="left"><code>Response: '+JSON.stringify(response.data, null, 2)+'</code></pre>');
      }).catch(function (response) {
        document.getElementById('output').innerHTML = ('<pre align="left"><code>Error: '+JSON.stringify(response, null, 2)+'</code></pre>');

As far as the front end is concerned you can use some simple HTML code to test, such as the following snippet:

<div id="container" class="container">
    <img src="http://awsmedia.s3.amazonaws.com/AWS_Logo_PoweredBy_127px.png">
    <h1>Cognito User Pools and API Gateway</h1>
    <form name="myform">
          <li class="fields">
            <div id="login">
            <label>User Name: </label>
            <input id="username" size="60" class="req" type="text"/>
            <label>Password: </label>
            <input id="password" size="60" class="req" type="password"/>
            <button class="btn" type="button" id='buttonAuth' title="Log in with your username and password">Log In</button>
            <br />
            <div id="afterLogin" style="display:none;"> 
            <br />
            <button class="btn" type="button" id='buttonPost'>POST</button>
            <button class="btn" type="button" id='buttonGet' >GET</button>
            <br />
    <div id="output"></div>

After adding some extra CSS styling of your choice (for example adding "list-style: none" to remove list bullet points), the front end is ready. You can test it by using a local web server in your computer or a static website on Amazon S3.

Enter the user name and password details for John Doe and choose Log In:


A MFA code is then sent to the user and can be validated accordingly:


After authentication, you can see the ID token generated by Cognito for further access testing:


If you go back to the API Gateway console and test your Cognito user pool authorizer with the same token, you get the authenticated user claims accordingly:


In your front end, you can now perform authenticated GET calls to your API by choosing GET.


Or you can perform authenticated POST calls to your API by choosing POST.


The calls reach your Lambda proxy and return a valid response accordingly. You can also test from the command line using cURL, by sending the user pool ID token that you retrieved from the developer console earlier, in the “Authorization” header:


It’s possible to improve this solution by integrating an Amazon DynamoDB table, for instance. You could detect the method request on event.httpMethod in the Lambda function and issue a GetItem call to a table for a GET request or a PutItem call to a table for a POST request. There are lots of possibilities for this kind of proxy resource integration.


The Cognito user pools integration with API Gateway provides a new way to secure your API workloads, and the new proxy resource for Lambda allows you to perform any business logic or transformations to your API calls from Lambda itself instead of using body mapping templates. These new features provide very powerful options to secure and handle your API logic.

I hope this post helps with your API workloads. If you have questions or suggestions, please comment below.

Inkscape 0.92 released

Post Syndicated from corbet original http://lwn.net/Articles/710584/rss

of the Inkscape vector drawing editor is available. “New
features include mesh gradients, improved SVG2 and CSS3 support, new path
effects, interactive smoothing for the pencil tool, a new Object dialog for
directly managing all drawing elements, and much more. Infrastructural
changes are also under way, including a switch to CMake from the venerable
Autotools build system.
” See the
release notes
for details.

Introducing Blox from Amazon EC2 Container Service

Post Syndicated from Chris Barclay original https://aws.amazon.com/blogs/compute/introducing-blox-from-amazon-ec2-container-service/

Today we are announcing Blox, a new open source project from the Amazon ECS team that enables users to build custom schedulers and other tooling on top of ECS. Our goal with Blox is to provide tools that simplify the creation of custom schedulers, dashboards and other extensions, so that customers can meet the needs of their specific use cases.

ECS recently announced the availability of an event stream that delivers ECS container instance and task state changes to Amazon CloudWatch Events. Customers that build scheduling workflows often need to consume the events generated in the ECS cluster, persist this state locally and operate on the local cluster state. Blox includes a cluster-state-service that provides this functionality and offers REST APIs on top of the local cluster state. Blox is targeted at developers that want to build custom schedulers or processes that need the current state of resources in the ECS cluster and developers that want to take action based on cluster events.

Blox also ships with a daemon-scheduler that supports launching one and only one copy of a task across all container instances in an ECS cluster. The scheduler monitors for new container instances joining the cluster and will place the task on them. Blox daemon-scheduler enables tasks like log agents and metric collection agents to run on ECS clusters.

We are excited to release Blox as open source software and plan to build an ecosystem of tools around ECS. If you are interested in using or contributing to Blox, come visit the Blox GitHub repository. We are tracking a number of feature proposals that we are evaluating for the roadmap. We invite you to come participate in our GitHub repository and help identify and prioritize improvements.

Deploying Blox

Blox Deployment on a Local Environment

Our recommended way for getting started with Blox is to deploy the framework on your local Docker installation. Blox offers a Docker Compose file that enables deployment in local environments. This allows you to get started with building custom schedulers using the cluster-state-service.

Here is the Blox architecture when run locally:

  • ECS pushes the cluster state changes as CloudWatch events.
  • CloudWatch events is configured to send to the SQS Queue.
  • Blox cluster-state-service consumes these events and recreates and stores the cluster state locally and offers REST APIs.
  • Blox daemon-scheduler uses the cluster-state-service APIs to track container instances in ECS cluster and launch tasks on them.

Step 1: Create SQS Queue and Configure CloudWatch Events to send ECS events to the SQS Queue

Blox depends on an ECS event stream that is delivered via CloudWatch events. In order to use Blox, you need to create an SQS queue and configure CloudWatch to deliver the ECS events to this SQS queue. Blox provides a pre-built AWS CloudFormation template that will deploy and configure the required Amazon AWS components. Once you have pulled the CloudFormation template from the Blox repository, run the following command using the AWS CLI:

$ aws --region  cloudformation create-stack --stack-name BloxLocal --template-body file://cloudformation_template.json

In a few minutes, the CloudFormation template will finish setting up the CloudWatch event and the SQS queue and you will be ready to deploy Blox.

Step 2: Launch Blox

Next, download the Docker Compose file from the Blox repo. Before launching Blox, you will first need to update docker-compose.yml with the following changes:

  • Update the AWS_REGION value with the region of your ECS and SQS resources.
  • Update the AWS_PROFILE value with your profile name in ~/.aws/credentials. You can skip this step if you are using the default profile.

After you have updated docker-compose.yml, you can use the following commands to launch the Blox containers on your local Docker environment.

# From the folder where you downloaded docker-compose.yml
$ docker-compose up –d
$ docker-compose ps

You will see output that shows the Blox cluster-state-service, daemon-scheduler, and etcd storage:

Name             Command                          State   Ports
etcd_1        /usr/local/bin/etcd --data ...   Up      2379/tcp, 2380/tcp
scheduler_1   --bind --css- ...   Up>2000/tcp
css_1         --bind --etcd ...   Up      3000/tcp

You have now completed the local installation of Blox. You can begin consuming the Scheduler API at http://localhost:2000/.

Using the daemon-scheduler

The daemon-scheduler uses the following concepts:

  • An environment represents the configuration for desired state of the tasks to be maintained. For daemon-scheduler, the environment indicates the task definition to launch in a specific cluster.
  • A deployment is the operation that brings the environment into existence. A deployment indicates to the scheduler that the desired configuration state in the environment should be established in the cluster.

Step 1: Create an ECS cluster

If you don’t have an ECS cluster, follow our Create Cluster guide.

Step 2: Register Task Definition

In order to launch tasks in ECS cluster, you need to register a task definition with ECS. Here is a Task definition you can use, if you don’t have one already.

$ cat > /tmp/nginx.json << EOF
    "family": "nginx",
    "containerDefinitions": [{
        "name": "nginx",
        "image": "nginx",
        "cpu": 1024,
        "memory": 128
    } ]

$ aws ecs register-task-definition --cli-input-json file:///tmp/nginx.json

Query the ARN for the nginx task definition. You need this for the next step.

$ aws ecs list-task-definitions
   "taskDefinitionArns": [

Launch Daemon workloads using the daemon-scheduler

For this exercise, we will be using the demo-cli that Blox provides to interact with the scheduler. Please consult the Blox GitHub repository regarding the APIs that the daemon-scheduler exposes.

Step 3: Create an environment
Create an environment by replacing the cluster name and task definition ARN in the following command:

./blox-create-environment.py --environment TestEnvironment --cluster <MyClusterName> --task-definition <task-def-arn>

Sample output:

  "items": [
      "deploymentToken": "17fb6b8b-abf3-4e7b-b9f4-fdb431d53887",
      "health": "healthy",
      "name": "releaseenvironment",
      "instanceGroup": {
        "cluster": "arn:aws:ecs:us-west-2:203719379804:cluster/BloxTestCluster-1123-2"

Upon successful creation of the environment, the daemon-scheduler response will have a deploymentToken that will be used in our next step.

Step 4: Create a Deployment

In order to bring this environment into existence in your ECS cluster, you need to perform a deployment operation:

./blox-create-deployment.py --environment TestEnvironment --deploymentToken <deploymentToken>

Creating a deployment will result in the scheduler launching the task definition attached to the environment across all the container instances in your cluster. You can now go to the ECS console and check out the tasks running on your container instances. You have now successfully used the daemon-scheduler to launch daemon workloads in your ECS cluster.

Blox Deployment on AWS

Blox can also be deployed on AWS. Use the Blox CloudFormation template to create:

  • A new ECS cluster with one container instance on which the Blox components are setup as an ECS service with cluster-state-service, daemon-scheduler and etcd containers making up a single task.
  • An Application Load Balancer is created in front of the daemon-scheduler endpoint.
  • An API Gateway is set up as the public facing frontend to Blox and provides the authentication mechanism. This API Gateway can be used to reach the scheduler and manage tasks on the ECS cluster.
  • A Lambda function that acts as a simple proxy enables the public facing API Gateway endpoint to forward requests onto the ALB listener in the VPC.

This Blox deployment can then be used to manage ECS clusters associated with the account.

See the instructions in our GitHub repo for the steps to configure this option.

Available now

Blox is available now. To learn more, see the Blox documentation in our GitHub repo.