Tag Archives: cyberwar

Gen. Nakasone on US Cyber Command

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/02/gen_nakasone_on.html

Really interesting article by and interview with Paul M. Nakasone (Commander of US Cyber Command, Director of the National Security Agency, and Chief of the Central Security Service) in the current issue of Joint Forces Quarterly. He talks about the evolving role of US Cyber Command, and its new posture of “persistent engagement” using a “cyber-persistant force.”

From the article:

We must “defend forward” in cyberspace, as we do in the physical domains. Our naval forces do not defend by staying in port, and our airpower does not remain at airfields. They patrol the seas and skies to ensure they are positioned to defend our country before our borders are crossed. The same logic applies in cyberspace. Persistent engagement of our adversaries in cyberspace cannot be successful if our actions are limited to DOD networks. To defend critical military and national interests, our forces must operate against our enemies on their virtual territory as well. Shifting from a response outlook to a persistence force that defends forward moves our cyber capabilities out of their virtual garrisons, adopting a posture that matches the cyberspace operational environment.

From the interview:

As we think about cyberspace, we should agree on a few foundational concepts. First, our nation is in constant contact with its adversaries; we’re not waiting for adversaries to come to us. Our adversaries understand this, and they are always working to improve that contact. Second, our security is challenged in cyberspace. We have to actively defend; we have to conduct reconnaissance; we have to understand where our adversary is and his capabilities; and we have to understand their intent. Third, superiority in cyberspace is temporary; we may achieve it for a period of time, but it’s ephemeral. That’s why we must operate continuously to seize and maintain the initiative in the face of persistent threats. Why do the threats persist in cyberspace? They persist because the barriers to entry are low and the capabilities are rapidly available and can be easily repurposed. Fourth, in this domain, the advantage favors those who have initiative. If we want to have an advantage in cyberspace, we have to actively work to either improve our defenses, create new accesses, or upgrade our capabilities. This is a domain that requires constant action because we’re going to get reactions from our adversary.

[…]

Persistent engagement is the concept that states we are in constant contact with our adversaries in cyberspace, and success is determined by how we enable and act. In persistent engagement, we enable other interagency partners. Whether it’s the FBI or DHS, we enable them with information or intelligence to share with elements of the CIKR [critical infrastructure and key resources] or with select private-sector companies. The recent midterm elections is an example of how we enabled our partners. As part of the Russia Small Group, USCYBERCOM and the National Security Agency [NSA] enabled the FBI and DHS to prevent interference and influence operations aimed at our political processes. Enabling our partners is two-thirds of persistent engagement. The other third rests with our ability to act — that is, how we act against our adversaries in cyberspace. Acting includes defending forward. How do we warn, how do we influence our adversaries, how do we position ourselves in case we have to achieve outcomes in the future? Acting is the concept of operating outside our borders, being outside our networks, to ensure that we understand what our adversaries are doing. If we find ourselves defending inside our own networks, we have lost the initiative and the advantage.

[…]

The concept of persistent engagement has to be teamed with “persistent presence” and “persistent innovation.” Persistent presence is what the Intelligence Community is able to provide us to better understand and track our adversaries in cyberspace. The other piece is persistent innovation. In the last couple of years, we have learned that capabilities rapidly change; accesses are tenuous; and tools, techniques, and tradecraft must evolve to keep pace with our adversaries. We rely on operational structures that are enabled with the rapid development of capabilities. Let me offer an example regarding the need for rapid change in technologies. Compare the air and cyberspace domains. Weapons like JDAMs [Joint Direct Attack Munitions] are an important armament for air operations. How long are those JDAMs good for? Perhaps 5, 10, or 15 years, some-times longer given the adversary. When we buy a capability or tool for cyberspace…we rarely get a prolonged use we can measure in years. Our capabilities rarely last 6 months, let alone 6 years. This is a big difference in two important domains of future conflict. Thus, we will need formations that have ready access to developers.

Solely from a military perspective, these are obviously the right things to be doing. From a societal perspective — from the perspective a potential arms race — I’m much less sure. I’m also worried about the singular focus on nation-state actors in an environment where capabilities diffuse so quickly. But Cyber Command’s job is not cybersecurity and resilience.

The whole thing is worth reading, regardless of whether you agree or disagree.

EDITED TO ADD (2/26): As an example US CyberCommand disrupted a Russian troll farm during the 2018 midterm elections.

Estonia’s Volunteer Cyber Militia

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/02/estonias_volunt.html

Interesting — although short and not very detailed — article about Estonia’s volunteer cyber-defense militia.

Padar’s militia of amateur IT workers, economists, lawyers, and other white-hat types are grouped in the city of Tartu, about 65 miles from the Russian border, and in the capital, Tallinn, about twice as far from it. The volunteers, who’ve inspired a handful of similar operations around the world, are readying themselves to defend against the kind of sustained digital attack that could cause mass service outages at hospitals, banks, and military bases, and with other critical operations, including voting systems. Officially, the team is part of Estonia’s 26,000-strong national guard, the Defense League.

[…]

Formally established in 2011, Padar’s unit mostly runs on about €150,000 ($172,000) in annual state funding, plus salaries for him and four colleagues. (If that sounds paltry, remember that the country’s median annual income is about €12,000.) Some volunteers oversee a website that calls out Russian propaganda posing as news directed at Estonians in Estonian, Russian, English, and German. Other members recently conducted forensic analysis on an attack against a military system, while yet others searched for signs of a broader campaign after discovering vulnerabilities in the country’s electronic ID cards, which citizens use to check bank and medical records and to vote. (The team says it didn’t find anything, and the security flaws were quickly patched.)

Mostly, the volunteers run weekend drills with troops, doctors, customs and tax agents, air traffic controllers, and water and power officials. “Somehow, this model is based on enthusiasm,” says Andrus Ansip, who was prime minister during the 2007 attack and now oversees digital affairs for the European Commission. To gauge officials’ responses to realistic attacks, the unit might send out emails with sketchy links or drop infected USB sticks to see if someone takes the bait.

Cyberinsurance and Acts of War

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/02/cyberinsurance_.html

I had not heard about this case before. Zurich Insurance has refused to pay Mondelez International’s claim of $100 million in damages from NotPetya. It claims it is an act of war and therefor not covered. Mondelez is suing.

Those turning to cyber insurance to manage their exposure presently face significant uncertainties about its promise. First, the scope of cyber risks vastly exceeds available coverage, as cyber perils cut across most areas of commercial insurance in an unprecedented manner: direct losses to policyholders and third-party claims (clients, customers, etc.); financial, physical and IP damages; business interruption, and so on. Yet no cyber insurance policies cover this entire spectrum. Second, the scope of cyber-risk coverage under existing policies, whether traditional general liability or property policies or cyber-specific policies, is rarely comprehensive (to cover all possible cyber perils) and often unclear (i.e., it does not explicitly pertain to all manifestations of cyber perils, or it explicitly excludes some).

But it is in the public interest for Zurich and its peers to expand their role in managing cyber risk. In its ideal state, a mature cyber insurance market could go beyond simply absorbing some of the damage of cyberattacks and play a more fundamental role in engineering and managing cyber risk. It would allow analysis of data across industries to understand risk factors and develop common metrics and scalable solutions. It would allow researchers to pinpoint sources of aggregation risk, such as weak spots in widely relied-upon software and hardware platforms and services. Through its financial levers, the insurance industry can turn these insights into action, shaping private-sector behavior and promoting best practices internationally. Such systematic efforts to improve and incentivize cyber-risk management would redress the conditions that made NotPetya possible in the first place. This, in turn, would diminish the onus on governments to retaliate against attacks.

Future Cyberwar

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/08/future_cyberwar.html

A report for the Center for Strategic and International Studies looks at surprise and war. One of the report’s cyberwar scenarios is particularly compelling. It doesn’t just map cyber onto today’s tactics, but completely reimagines future tactics that include a cyber component (quote starts on page 110).

The U.S. secretary of defense had wondered this past week when the other shoe would drop. Finally, it had, though the U.S. military would be unable to respond effectively for a while.

The scope and detail of the attack, not to mention its sheer audacity, had earned the grudging respect of the secretary. Years of worry about a possible Chinese “Assassin’s Mace” — a silver bullet super-weapon capable of disabling key parts of the American military — turned out to be focused on the wrong thing.

The cyber attacks varied. Sailors stationed at the 7th Fleet’ s homeport in Japan awoke one day to find their financial accounts, and those of their dependents, empty. Checking, savings, retirement funds: simply gone. The Marines based on Okinawa were under virtual siege by the populace, whose simmering resentment at their presence had boiled over after a YouTube video posted under the account of a Marine stationed there had gone viral. The video featured a dozen Marines drunkenly gang-raping two teenaged Okinawan girls. The video was vivid, the girls’ cries heart-wrenching the cheers of Marines sickening And all of it fake. The National Security Agency’s initial analysis of the video had uncovered digital fingerprints showing that it was a computer-assisted lie, and could prove that the Marine’s account under which it had been posted was hacked. But the damage had been done.

There was the commanding officer of Edwards Air Force Base whose Internet browser history had been posted on the squadron’s Facebook page. His command turned on him as a pervert; his weak protestations that he had not visited most of the posted links could not counter his admission that he had, in fact, trafficked some of them. Lies mixed with the truth. Soldiers at Fort Sill were at each other’s throats thanks to a series of text messages that allegedly unearthed an adultery ring on base.

The variations elsewhere were endless. Marines suddenly owed hundreds of thousands of dollars on credit lines they had never opened; sailors received death threats on their Twitter feeds; spouses and female service members had private pictures of themselves plastered across the Internet; older service members received notifications about cancerous conditions discovered in their latest physical.

Leadership was not exempt. Under the hashtag # PACOMMUSTGO a dozen women allegedly described harassment by the commander of Pacific command. Editorial writers demanded that, under the administration’s “zero tolerance” policy, he step aside while Congress held hearings.

There was not an American service member or dependent whose life had not been digitally turned upside down. In response, the secretary had declared “an operational pause,” directing units to stand down until things were sorted out.

Then, China had made its move, flooding the South China Sea with its conventional forces, enforcing a sea and air identification zone there, and blockading Taiwan. But the secretary could only respond weakly with a few air patrols and diversions of ships already at sea. Word was coming in through back channels that the Taiwanese government, suddenly stripped of its most ardent defender, was already considering capitulation.

I found this excerpt here. The author is Mark Cancian.

An Example of Deterrence in Cyberspace

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/06/an_example_of_d.html

In 2016, the US was successfully deterred from attacking Russia in cyberspace because of fears of Russian capabilities against the US.

I have two citations for this. The first is from the book Russian Roulette: The Inside Story of Putin’s War on America and the Election of Donald Trump, by Michael Isikoff and David Corn. Here’s the quote:

The principals did discuss cyber responses. The prospect of hitting back with cyber caused trepidation within the deputies and principals meetings. The United States was telling Russia this sort of meddling was unacceptable. If Washington engaged in the same type of covert combat, some of the principals believed, Washington’s demand would mean nothing, and there could be an escalation in cyber warfare. There were concerns that the United States would have more to lose in all-out cyberwar.

“If we got into a tit-for-tat on cyber with the Russians, it would not be to our advantage,” a participant later remarked. “They could do more to damage us in a cyber war or have a greater impact.” In one of the meetings, Clapper said he was worried that Russia might respond with cyberattacks against America’s critical infrastructure­ — and possibly shut down the electrical grid.

The second is from the book The World as It Is, by President Obama’s deputy national security advisor Ben Rhodes. Here’s the New York Times writing about the book.

Mr. Rhodes writes he did not learn about the F.B.I. investigation until after leaving office, and then from the news media. Mr. Obama did not impose sanctions on Russia in retaliation for the meddling before the election because he believed it might prompt Moscow into hacking into Election Day vote tabulations. Mr. Obama did impose sanctions after the election but Mr. Rhodes’s suggestion that the targets include President Vladimir V. Putin was rebuffed on the theory that such a move would go too far.

When people try to claim that there’s no such thing as deterrence in cyberspace, this serves as a counterexample.

My Blogging

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/10/my_blogging.html

Blog regulars will notice that I haven’t been posting as much lately as I have in the past. There are two reasons. One, it feels harder to find things to write about. So often it’s the same stories over and over. I don’t like repeating myself. Two, I am busy writing a book. The title is still: Click Here to Kill Everybody: Peril and Promise in a Hyper-Connected World. The book is a year late, and as a very different table of contents than it had in 2016. I have been writing steadily since mid-August. The book is due to the publisher at the end of March 2018, and will be published in the beginning of September.

This is the current table of contents:

  • Introduction: Everything is Becoming a Computer
  • Part 1: The Trends
    • 1. Capitalism Continues to Drive the Internet
    • 2. Customer/User Control is Next
    • 3. Government Surveillance and Control is Also Increasing
    • 4. Cybercrime is More Profitable Than Ever
    • 5. Cyberwar is the New Normal
    • 6. Algorithms, Automation, and Autonomy Bring New Dangers
    • 7. What We Know About Computer Security
    • 8. Agile is Failing as a Security Paradigm
    • 9. Authentication and Identification are Getting Harder
    • 10. Risks are Becoming Catastrophic
  • Part 2: The Solutions
    • 11. We Need to Regulate the Internet of Things
    • 12. We Need to Defend Critical Infrastructure
    • 13. We Need to Prioritize Defense Over Offence
    • 14. We Need to Make Smarter Decisions About Connecting
    • 15. What’s Likely to Happen, and What We Can Do in Response
    • 16. Where Policy Can Go Wrong
  • Conclusion: Technology and Policy, Together

So that’s what’s been happening.

Attack vs. Defense in Nation-State Cyber Operations

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/04/attack_vs_defen.html

I regularly say that, on the Internet, attack is easier than defense. There are a bunch of reasons for this, but primarily it’s 1) the complexity of modern networked computer systems and 2) the attacker’s ability to choose the time and method of the attack versus the defender’s necessity to secure against every type of attack. This is true, but how this translates to military cyber-operations is less straightforward. Contrary to popular belief, government cyberattacks are not bolts out of the blue, and the attack/defense balance is more…well…balanced.

Rebecca Slayton has a good article in International Security that tries to make sense of this: “What is the Cyber Offense-Defense Balance? Conceptions, Causes, and Assessment.” In it, she points out that launching a cyberattack is more than finding and exploiting a vulnerability, and it is those other things that help balance the offensive advantage.

Incident Response as "Hand-to-Hand Combat"

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/04/incident_respon_1.html

NSA Deputy Director Richard Ledgett described a 2014 Russian cyberattack against the US State Department as “hand-to-hand” combat:

“It was hand-to-hand combat,” said NSA Deputy Director Richard Ledgett, who described the incident at a recent cyber forum, but did not name the nation behind it. The culprit was identified by other current and former officials. Ledgett said the attackers’ thrust-and-parry moves inside the network while defenders were trying to kick them out amounted to “a new level of interaction between a cyber attacker and a defender.”

[…]

Fortunately, Ledgett said, the NSA, whose hackers penetrate foreign adversaries’ systems to glean intelligence, was able to spy on the attackers’ tools and tactics. “So we were able to see them teeing up new things to do,” Ledgett said. “That’s a really useful capability to have.”

I think this is the first public admission that we spy on foreign governments’ cyberwarriors for defensive purposes. He’s right: being able to spy on the attackers’ networks and see what they’re doing before they do it is a very useful capability. It’s something that was first exposed by the Snowden documents: that the NSA spies on enemy networks for defensive purposes.

Interesting is that another country first found out about the intrusion, and that they also have offensive capabilities inside Russia’s cyberattack units:

The NSA was alerted to the compromises by a Western intelligence agency. The ally had managed to hack not only the Russians’ computers, but also the surveillance cameras inside their workspace, according to the former officials. They monitored the hackers as they maneuvered inside the U.S. systems and as they walked in and out of the workspace, and were able to see faces, the officials said.

There’s a myth that it’s hard for the US to attribute these sorts of cyberattacks. It used to be, but for the US — and other countries with this kind of intelligence gathering capabilities — attribution is not hard. It’s not fast, which is its own problem, and of course it’s not perfect: but it’s not hard.

Some notes on the RAND 0day report

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/03/some-notes-on-rand-0day-report.html

The RAND Corporation has a research report on the 0day market [ * ]. It’s pretty good. They talked to all the right people. It should be considered the seminal work on the issue. They’ve got the pricing about right ($1 million for full chain iPhone exploit, but closer to $100k for others). They’ve got the stats about right (5% chance somebody else will discover an exploit).

Yet, they’ve got some problems, namely phrasing the debate as activists want, rather than a neutral view of the debate.

The report frequently uses the word “stockpile”. This is a biased term used by activists. According to the dictionary, it means:

a large accumulated stock of goods or materials, especially one held in reserve for use at a time of shortage or other emergency.

Activists paint the picture that the government (NSA, CIA, DoD, FBI) buys 0day to hold in reserve in case they later need them. If that’s the case, then it seems reasonable that it’s better to disclose/patch the vuln then let it grow moldy in a cyberwarehouse somewhere.

But that’s not how things work. The government buys vulns it has immediate use for (primarily). Almost all vulns it buys are used within 6 months. Most vulns in its “stockpile” have been used in the previous year. These cyberweapons are not in a warehouse, but in active use on the front lines.

This is top secret, of course, so people assume it’s not happening. They hear about no cyber operations (except Stuxnet), so they assume such operations aren’t occurring. Thus, they build up the stockpiling assumption rather than the active use assumption.

If the RAND wanted to create an even more useful survey, they should figure out how many thousands of times per day our government (NSA, CIA, DoD, FBI) exploits 0days. They should characterize who they target (e.g. terrorists, child pornographers), success rate, and how many people they’ve killed based on 0days. It’s this data, not patching, that is at the root of the policy debate.

That 0days are actively used determines pricing. If the government doesn’t have immediate need for a vuln, it won’t pay much for it, if anything at all. Conversely, if the government has urgent need for a vuln, it’ll pay a lot.

Let’s say you have a remote vuln for Samsung TVs. You go to the NSA and offer it to them. They tell you they aren’t interested, because they see no near term need for it. Then a year later, spies reveal ISIS has stolen a truckload of Samsung TVs, put them in all the meeting rooms, and hooked them to Internet for video conferencing. The NSA then comes back to you and offers $500k for the vuln.

Likewise, the number of sellers affects the price. If you know they desperately need the Samsung TV 0day, but they are only offering $100k, then it likely means that there’s another seller also offering such a vuln.

That’s why iPhone vulns are worth $1 million for a full chain exploit, from browser to persistence. They use it a lot, it’s a major part of ongoing cyber operations. Each time Apple upgrades iOS, the change breaks part of the existing chain, and the government is keen on getting a new exploit to fix it. They’ll pay a lot to the first vuln seller who can give them a new exploit.

Thus, there are three prices the government is willing to pay for an 0day (the value it provides to the government):

  • the price for an 0day they will actively use right now (high)
  • the price for an 0day they’ll stockpile for possible use in the future (low)
  • the price for an 0day they’ll disclose to the vendor to patch (very low)

That these are different prices is important to the policy debate. When activists claim the government should disclose the 0day they acquire, they are ignoring the price the 0day was acquired for. Since the government actively uses the 0day, they are acquired for a high-price, with their “use” value far higher than their “patch” value. It’s an absurd argument to make that they government should then immediately discard that money, to pay “use value” prices for “patch” results.

If the policy becomes that the NSA/CIA should disclose/patch the 0day they buy, it doesn’t mean business as usual acquiring vulns. It instead means they’ll stop buying 0day.

In other words, “patching 0day” is not an outcome on either side of the debate. Either the government buys 0day to use, or it stops buying 0day. In neither case does patching happen.

The real argument is whether the government (NSA, CIA, DoD, FBI) should be acquiring, weaponizing, and using 0day in the first place. It demands that we unilaterally disarm our military, intelligence, and law enforcement, preventing them from using 0days against our adversaries while our adversaries continue to use 0days against us.

That’s the gaping hole in both the RAND paper and most news reporting of this controversy. They characterize the debate the way activists want, as if the only question is the value of patching. They avoid talking about unilateral cyberdisarmament, even though that’s the consequence of the policy they are advocating. They avoid comparing the value of 0days to our country for active use (high) compared to the value to to our country for patching (very low).

Conclusion

It’s nice that the RAND paper studied the value of patching and confirmed it’s low, that only around 5% of our cyber-arsenal is likely to be found by others. But it’d be nice if they also looked at the point of view of those actively using 0days on a daily basis, rather than phrasing the debate the way activists want.

WikiLeaks Releases CIA Hacking Tools

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/03/wikileaks_relea.html

WikiLeaks just released a cache of 8,761 classified CIA documents from 2012 to 2016, including details of its offensive Internet operations.

I have not read through any of them yet. If you see something interesting, tell us in the comments.

EDITED TO ADD: There’s a lot in here. Many of the hacking tools are redacted, with the tar files and zip archives replaced with messages like:

::: THIS ARCHIVE FILE IS STILL BEING EXAMINED BY WIKILEAKS. :::

::: IT MAY BE RELEASED IN THE NEAR FUTURE. WHAT FOLLOWS IS :::
::: AN AUTOMATICALLY GENERATED LIST OF ITS CONTENTS: :::

Hopefully we’ll get them eventually. The documents say that the CIA — and other intelligence services — can bypass Signal, WhatsApp and Telegram. It seems to be by hacking the end-user devices and grabbing the traffic before and after encryption, not by breaking the encryption.

New York Times article.

EDITED TO ADD: Some details from The Guardian:

According to the documents:

  • CIA hackers targeted smartphones and computers.
  • The Center for Cyber Intelligence is based at the CIA headquarters in Virginia but it has a second covert base in the US consulate in Frankfurt which covers Europe, the Middle East and Africa.
  • A programme called Weeping Angel describes how to attack a Samsung F8000 TV set so that it appears to be off but can still be used for monitoring.

I just noticed this from the WikiLeaks page:

Recently, the CIA lost control of the majority of its hacking arsenal including malware, viruses, trojans, weaponized “zero day” exploits, malware remote control systems and associated documentation. This extraordinary collection, which amounts to more than several hundred million lines of code, gives its possessor the entire hacking capacity of the CIA. The archive appears to have been circulated among former U.S. government hackers and contractors in an unauthorized manner, one of whom has provided WikiLeaks with portions of the archive.

So it sounds like this cache of documents wasn’t taken from the CIA and given to WikiLeaks for publication, but has been passed around the community for a while — and incidentally some part of the cache was passed to WikiLeaks. So there are more documents out there, and others may release them in unredacted form.

Wired article. Slashdot thread. Two articles from the Washington Post.

EDITED TO ADD: This document talks about Comodo version 5.X and version 6.X. Version 6 was released in Feb 2013. Version 7 was released in Apr 2014. This gives us a time window of that page, and the cache in general. (WikiLeaks says that the documents cover 2013 to 2016.)

If these tools are a few years out of date, it’s similar to the NSA tools released by the “Shadow Brokers.” Most of us thought the Shadow Brokers were the Russians, specifically releasing older NSA tools that had diminished value as secrets. Could this be the Russians as well?

EDITED TO ADD: Nicholas Weaver comments.

EDITED TO ADD (3/8): These documents are interesting:

The CIA’s hand crafted hacking techniques pose a problem for the agency. Each technique it has created forms a “fingerprint” that can be used by forensic investigators to attribute multiple different attacks to the same entity.

This is analogous to finding the same distinctive knife wound on multiple separate murder victims. The unique wounding style creates suspicion that a single murderer is responsible. As soon one murder in the set is solved then the other murders also find likely attribution.

The CIA’s Remote Devices Branch‘s UMBRAGE group collects and maintains a substantial library of attack techniques ‘stolen’ from malware produced in other states including the Russian Federation.

With UMBRAGE and related projects the CIA cannot only increase its total number of attack types but also misdirect attribution by leaving behind the “fingerprints” of the groups that the attack techniques were stolen from.

UMBRAGE components cover keyloggers, password collection, webcam capture, data destruction, persistence, privilege escalation, stealth, anti-virus (PSP) avoidance and survey techniques.

This is being spun in the press as the CIA is pretending to be Russia. I’m not convinced that the documents support these allegations. Can someone else look at the documents. I don’t like my conclusion that WikiLeaks is using this document dump as a way to push their own bias.

Botnets

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/03/botnets.html

Botnets have existed for at least a decade. As early as 2000, hackers were breaking into computers over the Internet and controlling them en masse from centralized systems. Among other things, the hackers used the combined computing power of these botnets to launch distributed denial-of-service attacks, which flood websites with traffic to take them down.

But now the problem is getting worse, thanks to a flood of cheap webcams, digital video recorders, and other gadgets in the “Internet of things.” Because these devices typically have little or no security, hackers can take them over with little effort. And that makes it easier than ever to build huge botnets that take down much more than one site at a time.

In October, a botnet made up of 100,000 compromised gadgets knocked an Internet infrastructure provider partially offline. Taking down that provider, Dyn, resulted in a cascade of effects that ultimately caused a long list of high-profile websites, including Twitter and Netflix, to temporarily disappear from the Internet. More attacks are sure to follow: the botnet that attacked Dyn was created with publicly available malware called Mirai that largely automates the process of co-opting computers.

The best defense would be for everything online to run only secure software, so botnets couldn’t be created in the first place. This isn’t going to happen anytime soon. Internet of things devices are not designed with security in mind and often have no way of being patched. The things that have become part of Mirai botnets, for example, will be vulnerable until their owners throw them away. Botnets will get larger and more powerful simply because the number of vulnerable devices will go up by orders of magnitude over the next few years.

What do hackers do with them? Many things.

Botnets are used to commit click fraud. Click fraud is a scheme to fool advertisers into thinking that people are clicking on, or viewing, their ads. There are lots of ways to commit click fraud, but the easiest is probably for the attacker to embed a Google ad in a Web page he owns. Google ads pay a site owner according to the number of people who click on them. The attacker instructs all the computers on his botnet to repeatedly visit the Web page and click on the ad. Dot, dot, dot, PROFIT! If the botnet makers figure out more effective ways to siphon revenue from big companies online, we could see the whole advertising model of the Internet crumble.

Similarly, botnets can be used to evade spam filters, which work partly by knowing which computers are sending millions of e-mails. They can speed up password guessing to break into online accounts, mine bitcoins, and do anything else that requires a large network of computers. This is why botnets are big businesses. Criminal organizations rent time on them.

But the botnet activities that most often make headlines are denial-of-service attacks. Dyn seems to have been the victim of some angry hackers, but more financially motivated groups use these attacks as a form of extortion. Political groups use them to silence websites they don’t like. Such attacks will certainly be a tactic in any future cyberwar.

Once you know a botnet exists, you can attack its command-and-control system. When botnets were rare, this tactic was effective. As they get more common, this piecemeal defense will become less so. You can also secure yourself against the effects of botnets. For example, several companies sell defenses against denial-of-service attacks. Their effectiveness varies, depending on the severity of the attack and the type of service.

But overall, the trends favor the attacker. Expect more attacks like the one against Dyn in the coming year.

This essay previously appeared in the MIT Technology Review.

My Priorities for the Next Four Years

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2016/12/my_priorities_f.html

Like many, I was surprised and shocked by the election of Donald Trump as president. I believe his ideas, temperament, and inexperience represent a grave threat to our country and world. Suddenly, all the things I had planned to work on seemed trivial in comparison. Although Internet security and privacy are not the most important policy areas at risk, I believe he — and, more importantly, his cabinet, administration, and Congress — will have devastating effects in that area, both in the US and around the world.

The election was so close that I’ve come to see the result as a bad roll of the dice. A few minor tweaks here and there — a more enthusiastic Sanders endorsement, one fewer of Comey’s announcements, slightly less Russian involvement — and the country would be preparing for a Clinton presidency and discussing a very different social narrative. That alternative narrative would stress business as usual, and continue to obscure the deep social problems in our society. Those problems won’t go away on their own, and in this alternative future they would continue to fester under the surface, getting steadily worse. This election exposed those problems for everyone to see.

I spent the last month both coming to terms with this reality, and thinking about the future. Here is my new agenda for the next four years:

One, fight the fights. There will be more government surveillance and more corporate surveillance. I expect legislative and judicial battles along several lines: a renewed call from the FBI for backdoors into encryption, more leeway for government hacking without a warrant, no controls on corporate surveillance, and more secret government demands for that corporate data. I expect other countries to follow our lead. (The UK is already more extreme than us.) And if there’s a major terrorist attack under Trump’s watch, it’ll be open season on our liberties. We may lose a lot of these battles, but we need to lose as few as possible and as little of our existing liberties as possible.

Two, prepare for those fights. Much of the next four years will be reactive, but we can prepare somewhat. The more we can convince corporate America to delete their saved archives of surveillance data and to store only what they need for as long as they need it, the safer we’ll all be. We need to convince Internet giants like Google and Facebook to change their business models away from surveillance capitalism. It’s a hard sell, but maybe we can nibble around the edges. Similarly, we need to keep pushing the truism that privacy and security are not antagonistic, but rather are essential for each other.

Three, lay the groundwork for a better future. No matter how bad the next four years get, I don’t believe that a Trump administration will permanently end privacy, freedom, and liberty in the US. I don’t believe that it portends a radical change in our democracy. (Or if it does, we have bigger problems than a free and secure Internet.) It’s true that some of Trump’s institutional changes might take decades to undo. Even so, I am confident — optimistic even — that the US will eventually come around; and when that time comes, we need good ideas in place for people to come around to. This means proposals for non-surveillance-based Internet business models, research into effective law enforcement that preserves privacy, intelligent limits on how corporations can collect and exploit our data, and so on.

And four, continue to solve the actual problems. The serious security issues around cybercrime, cyber-espionage, cyberwar, the Internet of Things, algorithmic decision making, foreign interference in our elections, and so on aren’t going to disappear for four years while we’re busy fighting the excesses of Trump. We need to continue to work towards a more secure digital future. And to the extent that cybersecurity for our military networks and critical infrastructure allies with cybersecurity for everyone, we’ll probably have an ally in Trump.

Those are my four areas. Under a Clinton administration, my list would have looked much the same. Trump’s election just means the threats will be much greater, and the battles a lot harder to win. It’s more than I can possibly do on my own, and I am therefore substantially increasing my annual philanthropy to support organizations like EPIC, EFF, ACLU, and Access Now in continuing their work in these areas.

My agenda is necessarily focused entirely on my particular areas of concern. The risks of a Trump presidency are far more pernicious, but this is where I have expertise and influence.

Right now, we have a defeated majority. Many are scared, and many are motivated — and few of those are applying their motivation constructively. We need to harness that fear and energy to start fixing our society now, instead of waiting four or even eight years, at which point the problems would be worse and the solutions more extreme. I am choosing to proceed as if this were cowpox, not smallpox: fighting the more benign disease today will be much easier than subjecting ourselves to its more virulent form in the future. It’s going to be hard keeping the intensity up for the next four years, but we need to get to work. Let’s use Trump’s victory as the wake-up call and opportunity that it is.

Election Security

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2016/11/election_securi.html

It’s over. The voting went smoothly. As of the time of writing, there are no serious fraud allegations, nor credible evidence that anyone tampered with voting rolls or voting machines. And most important, the results are not in doubt.

While we may breathe a collective sigh of relief about that, we can’t ignore the issue until the next election. The risks remain.

As computer security experts have been saying for years, our newly computerized voting systems are vulnerable to attack by both individual hackers and government-sponsored cyberwarriors. It is only a matter of time before such an attack happens.

Electronic voting machines can be hacked, and those machines that do not include a paper ballot that can verify each voter’s choice can be hacked undetectably. Voting rolls are also vulnerable; they are all computerized databases whose entries can be deleted or changed to sow chaos on Election Day.

The largely ad hoc system in states for collecting and tabulating individual voting results is vulnerable as well. While the difference between theoretical if demonstrable vulnerabilities and an actual attack on Election Day is considerable, we got lucky this year. Not just presidential elections are at risk, but state and local elections, too.

To be very clear, this is not about voter fraud. The risks of ineligible people voting, or people voting twice, have been repeatedly shown to be virtually nonexistent, and “solutions” to this problem are largely voter-suppression measures. Election fraud, however, is both far more feasible and much more worrisome.

Here’s my worry. On the day after an election, someone claims that a result was hacked. Maybe one of the candidates points to a wide discrepancy between the most recent polls and the actual results. Maybe an anonymous person announces that he hacked a particular brand of voting machine, describing in detail how. Or maybe it’s a system failure during Election Day: voting machines recording significantly fewer votes than there were voters, or zero votes for one candidate or another. (These are not theoretical occurrences; they have both happened in the United States before, though because of error, not malice.)

We have no procedures for how to proceed if any of these things happen. There’s no manual, no national panel of experts, no regulatory body to steer us through this crisis. How do we figure out if someone hacked the vote? Can we recover the true votes, or are they lost? What do we do then?

First, we need to do more to secure our elections system. We should declare our voting systems to be critical national infrastructure. This is largely symbolic, but it demonstrates a commitment to secure elections and makes funding and other resources available to states.

We need national security standards for voting machines, and funding for states to procure machines that comply with those standards. Voting-security experts can deal with the technical details, but such machines must include a paper ballot that provides a record verifiable by voters. The simplest and most reliable way to do that is already practiced in 37 states: optical-scan paper ballots, marked by the voters, counted by computer but recountable by hand. And we need a system of pre-election and postelection security audits to increase confidence in the system.

Second, election tampering, either by a foreign power or by a domestic actor, is inevitable, so we need detailed procedures to follow–both technical procedures to figure out what happened, and legal procedures to figure out what to do–that will efficiently get us to a fair and equitable election resolution. There should be a board of independent computer-security experts to unravel what happened, and a board of independent election officials, either at the Federal Election Commission or elsewhere, empowered to determine and put in place an appropriate response.

In the absence of such impartial measures, people rush to defend their candidate and their party. Florida in 2000 was a perfect example. What could have been a purely technical issue of determining the intent of every voter became a battle for who would win the presidency. The debates about hanging chads and spoiled ballots and how broad the recount should be were contested by people angling for a particular outcome. In the same way, after a hacked election, partisan politics will place tremendous pressure on officials to make decisions that override fairness and accuracy.

That is why we need to agree on policies to deal with future election fraud. We need procedures to evaluate claims of voting-machine hacking. We need a fair and robust vote-auditing process. And we need all of this in place before an election is hacked and battle lines are drawn.

In response to Florida, the Help America Vote Act of 2002 required each state to publish its own guidelines on what constitutes a vote. Some states — Indiana, in particular — set up a “war room” of public and private cybersecurity experts ready to help if anything did occur. While the Department of Homeland Security is assisting some states with election security, and the F.B.I. and the Justice Department made some preparations this year, the approach is too piecemeal.

Elections serve two purposes. First, and most obvious, they are how we choose a winner. But second, and equally important, they convince the loser–and all the supporters–that he or she lost. To achieve the first purpose, the voting system must be fair and accurate. To achieve the second one, it must be shown to be fair and accurate.

We need to have these conversations before something happens, when everyone can be calm and rational about the issues. The integrity of our elections is at stake, which means our democracy is at stake.

This essay previously appeared in the New York Times.

Lessons From the Dyn DDoS Attack

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2016/11/lessons_from_th_5.html

A week ago Friday, someone took down numerous popular websites in a massive distributed denial-of-service (DDoS) attack against the domain name provider Dyn. DDoS attacks are neither new nor sophisticated. The attacker sends a massive amount of traffic, causing the victim’s system to slow to a crawl and eventually crash. There are more or less clever variants, but basically, it’s a datapipe-size battle between attacker and victim. If the defender has a larger capacity to receive and process data, he or she will win. If the attacker can throw more data than the victim can process, he or she will win.

The attacker can build a giant data cannon, but that’s expensive. It is much smarter to recruit millions of innocent computers on the internet. This is the “distributed” part of the DDoS attack, and pretty much how it’s worked for decades. Cybercriminals infect innocent computers around the internet and recruit them into a botnet. They then target that botnet against a single victim.

You can imagine how it might work in the real world. If I can trick tens of thousands of others to order pizzas to be delivered to your house at the same time, I can clog up your street and prevent any legitimate traffic from getting through. If I can trick many millions, I might be able to crush your house from the weight. That’s a DDoS attack ­ it’s simple brute force.

As you’d expect, DDoSers have various motives. The attacks started out as a way to show off, then quickly transitioned to a method of intimidation ­ or a way of just getting back at someone you didn’t like. More recently, they’ve become vehicles of protest. In 2013, the hacker group Anonymous petitioned the White House to recognize DDoS attacks as a legitimate form of protest. Criminals have used these attacks as a means of extortion, although one group found that just the fear of attack was enough. Military agencies are also thinking about DDoS as a tool in their cyberwar arsenals. A 2007 DDoS attack against Estonia was blamed on Russia and widely called an act of cyberwar.

The DDoS attack against Dyn two weeks ago was nothing new, but it illustrated several important trends in computer security.

These attack techniques are broadly available. Fully capable DDoS attack tools are available for free download. Criminal groups offer DDoS services for hire. The particular attack technique used against Dyn was first used a month earlier. It’s called Mirai, and since the source code was released four weeks ago, over a dozen botnets have incorporated the code.

The Dyn attacks were probably not originated by a government. The perpetrators were most likely hackers mad at Dyn for helping Brian Krebs identify ­ and the FBI arrest ­ two Israeli hackers who were running a DDoS-for-hire ring. Recently I have written about probing DDoS attacks against internet infrastructure companies that appear to be perpetrated by a nation-state. But, honestly, we don’t know for sure.

This is important. Software spreads capabilities. The smartest attacker needs to figure out the attack and write the software. After that, anyone can use it. There’s not even much of a difference between government and criminal attacks. In December 2014, there was a legitimate debate in the security community as to whether the massive attack against Sony had been perpetrated by a nation-state with a $20 billion military budget or a couple of guys in a basement somewhere. The internet is the only place where we can’t tell the difference. Everyone uses the same tools, the same techniques and the same tactics.

These attacks are getting larger. The Dyn DDoS attack set a record at 1.2 Tbps. The previous record holder was the attack against cybersecurity journalist Brian Krebs a month prior at 620 Gbps. This is much larger than required to knock the typical website offline. A year ago, it was unheard of. Now it occurs regularly.

The botnets attacking Dyn and Brian Krebs consisted largely of unsecure Internet of Things (IoT) devices ­ webcams, digital video recorders, routers and so on. This isn’t new, either. We’ve already seen internet-enabled refrigerators and TVs used in DDoS botnets. But again, the scale is bigger now. In 2014, the news was hundreds of thousands of IoT devices ­ the Dyn attack used millions. Analysts expect the IoT to increase the number of things on the internet by a factor of 10 or more. Expect these attacks to similarly increase.

The problem is that these IoT devices are unsecure and likely to remain that way. The economics of internet security don’t trickle down to the IoT. Commenting on the Krebs attack last month, I wrote:

The market can’t fix this because neither the buyer nor the seller cares. Think of all the CCTV cameras and DVRs used in the attack against Brian Krebs. The owners of those devices don’t care. Their devices were cheap to buy, they still work, and they don’t even know Brian. The sellers of those devices don’t care: They’re now selling newer and better models, and the original buyers only cared about price and features. There is no market solution because the insecurity is what economists call an externality: It’s an effect of the purchasing decision that affects other people. Think of it kind of like invisible pollution.

To be fair, one company that made some of the unsecure things used in these attacks recalled its unsecure webcams. But this is more of a publicity stunt than anything else. I would be surprised if the company got many devices back. We already know that the reputational damage from having your unsecure software made public isn’t large and doesn’t last. At this point, the market still largely rewards sacrificing security in favor of price and time-to-market.

DDoS prevention works best deep in the network, where the pipes are the largest and the capability to identify and block the attacks is the most evident. But the backbone providers have no incentive to do this. They don’t feel the pain when the attacks occur and they have no way of billing for the service when they provide it. So they let the attacks through and force the victims to defend themselves. In many ways, this is similar to the spam problem. It, too, is best dealt with in the backbone, but similar economics dump the problem onto the endpoints.

We’re unlikely to get any regulation forcing backbone companies to clean up either DDoS attacks or spam, just as we are unlikely to get any regulations forcing IoT manufacturers to make their systems secure. This is me again:

What this all means is that the IoT will remain insecure unless government steps in and fixes the problem. When we have market failures, government is the only solution. The government could impose security regulations on IoT manufacturers, forcing them to make their devices secure even though their customers don’t care. They could impose liabilities on manufacturers, allowing people like Brian Krebs to sue them. Any of these would raise the cost of insecurity and give companies incentives to spend money making their devices secure.

That leaves the victims to pay. This is where we are in much of computer security. Because the hardware, software and networks we use are so unsecure, we have to pay an entire industry to provide after-the-fact security.

There are solutions you can buy. Many companies offer DDoS protection, although they’re generally calibrated to the older, smaller attacks. We can safely assume that they’ll up their offerings, although the cost might be prohibitive for many users. Understand your risks. Buy mitigation if you need it, but understand its limitations. Know the attacks are possible and will succeed if large enough. And the attacks are getting larger all the time. Prepare for that.

This essay previously appeared on the SecurityIntelligence website.