Tag Archives: Framework

Well-Architected Lens: Focus on Specific Workload Types

Post Syndicated from Philip Fitzsimons original https://aws.amazon.com/blogs/architecture/well-architected-lens-focus-on-specific-workload-types/

Customers have been building their innovations on AWS for over 11 years. During that time, our solutions architects have conducted tens of thousands of architecture reviews for our customers. In 2012 we created the “Well-Architected” initiative to share with you best practices for building in the cloud, and started publishing them in 2015. We recently released an updated Framework whitepaper, and a new Operational Excellence Pillar whitepaper to reflect what we learned from working with customers every day. Today, we are pleased to announce a new concept called a “lens” that allows you to focus on specific workload types from the well-architected perspective.

A well-architected review looks at a workload from a general technology perspective, which means it can’t provide workload-specific advice. For example, there are additional best practices when you are building high-performance computing (HPC) or serverless applications. Therefore, we created the concept of a lens to focus on what is different for those types of workloads.

In each lens, we document common scenarios we see — specific to that workload — providing reference architectures and a walkthrough. The lens also provides design principles to help you understand how to architect these types of workloads for the cloud, and questions for assessing your own architecture.

Today, we are releasing two lenses:

Well-Architected: High-Performance Computing (HPC) Lens <new>
Well-Architected: Serverless Applications Lens <new>

We expect to create more lenses over time, and evolve them based on customer feedback.

Philip Fitzsimons, Leader, AWS Well-Architected Team

On Architecture and the State of the Art

Post Syndicated from Philip Fitzsimons original https://aws.amazon.com/blogs/architecture/on-architecture-and-the-state-of-the-art/

On the AWS Solutions Architecture team we know we’re following in the footsteps of other technical experts who pulled together the best practices of their eras. Around 22 BC the Roman Architect Vitruvius Pollio wrote On architecture (published as The Ten Books on Architecture), which became a seminal work on architectural theory. Vitruvius captured the best practices of his contemporaries and those who went before him (especially the Greek architects).

Closer to our time, in 1910, another technical expert, Henry Harrison Suplee, wrote Gas Turbine: progress in the design and construction of turbines operated by gases of combustion, from which we believe the phrase “state of the art” originates:

It has therefore been thought desirable to gather under one cover the most important papers which have appeared upon the subject of the gas turbine in England, France, Germany, and Switzerland, together with some account of the work in America, and to add to this such information upon actual experimental machines as can be secured.

In the present state of the art this is all that can be done, but it is believed that this will aid materially in the conduct of subsequent work, and place in the hands of the gas-power engineer a collection of material not generally accessible or available in convenient form.  

Source

Both authors wrote books that captured the current knowledge on design principles and best practices (in architecture and engineering) to improve awareness and adoption. Like these authors, we at AWS believe that capturing and sharing best practices leads to better outcomes. This follows a pattern we established internally, in our Principal Engineering community. In 2012 we started an initiative called “Well-Architected” to help share the best practices for architecting in the cloud with our customers.

Every year AWS Solution Architects dedicate hundreds of thousands of hours to helping customers build architectures that are cloud native. Through customer feedback, and real world experience we see what strategies, patterns, and approaches work for you.

“After our well-architected review and subsequent migration to the cloud, we saw the tremendous cost-savings potential of Amazon Web Services. By using the industry-standard service, we can invest the majority of our time and energy into enhancing our solutions. Thanks to (consulting partner) 1Strategy’s deep, technical AWS expertise and flexibility during our migration, we were able to leverage the strengths of AWS quickly.”

Paul Cooley, Chief Technology Officer for Imprev

This year we have again refreshed the AWS Well-Architected Framework, with a particular focus on Operational Excellence. Last year we announced the addition of Operational Excellence as a new pillar to AWS Well-Architected Framework. Having carried out thousands of reviews since then, we reexamined the pillar and are pleased to announce some significant changes. First, the pillar dives more deeply into people and process because this is an area where we see the most opportunities for teams to improve. Second, we’ve pivoted heavily to focusing on whether your team and your workload are ready for runtime operations. Key to this is ensuring that in the early phases of design that you think about how your architecture will be operated. Reflecting on this we realized that Operational Excellence should be the first pillar to support the “Architect for run-time operations” approach.

We’ve also added detail on how Amazon approaches technology architecture, covering topics such as our Principal Engineering Community and two-way doors and mechanisms. We refreshed the other pillars to reflect the evolution of AWS, and the best practices we are seeing in the field. We have also added detail on the review process, in the surprisingly named “The Review Process” section.

As part of refreshing the pillars are have also released a new Operational Excellence Pillar whitepaper, and have updated the whitepapers for all of the other pillars of the Framework. For example we have significantly updated the Reliability Pillar whitepaper to provide guidance on application design for high availability. New sections cover techniques for high availability including and beyond infrastructure implications, and considerations across the application lifecycle. This updated whitepaper also provides examples that show how to achieve availability goals in single and multi-region architectures.

You can find free training and all of the ”state of the art” whitepapers on the AWS Well-Architected homepage:

Philip Fitzsimons, Leader, AWS Well-Architected Team

Resume AWS Step Functions from Any State

Post Syndicated from Andy Katz original https://aws.amazon.com/blogs/compute/resume-aws-step-functions-from-any-state/


Yash Pant, Solutions Architect, AWS


Aaron Friedman, Partner Solutions Architect, AWS

When we discuss how to build applications with customers, we often align to the Well Architected Framework pillars of security, reliability, performance efficiency, cost optimization, and operational excellence. Designing for failure is an essential component to developing well architected applications that are resilient to spurious errors that may occur.

There are many ways you can use AWS services to achieve high availability and resiliency of your applications. For example, you can couple Elastic Load Balancing with Auto Scaling and Amazon EC2 instances to build highly available applications. Or use Amazon API Gateway and AWS Lambda to rapidly scale out a microservices-based architecture. Many AWS services have built in solutions to help with the appropriate error handling, such as Dead Letter Queues (DLQ) for Amazon SQS or retries in AWS Batch.

AWS Step Functions is an AWS service that makes it easy for you to coordinate the components of distributed applications and microservices. Step Functions allows you to easily design for failure, by incorporating features such as error retries and custom error handling from AWS Lambda exceptions. These features allow you to programmatically handle many common error modes and build robust, reliable applications.

In some rare cases, however, your application may fail in an unexpected manner. In these situations, you might not want to duplicate in a repeat execution those portions of your state machine that have already run. This is especially true when orchestrating long-running jobs or executing a complex state machine as part of a microservice. Here, you need to know the last successful state in your state machine from which to resume, so that you don’t duplicate previous work. In this post, we present a solution to enable you to resume from any given state in your state machine in the case of an unexpected failure.

Resuming from a given state

To resume a failed state machine execution from the state at which it failed, you first run a script that dynamically creates a new state machine. When the new state machine is executed, it resumes the failed execution from the point of failure. The script contains the following two primary steps:

  1. Parse the execution history of the failed execution to find the name of the state at which it failed, as well as the JSON input to that state.
  2. Create a new state machine, which adds an additional state to failed state machine, called "GoToState". "GoToState" is a choice state at the beginning of the state machine that branches execution directly to the failed state, allowing you to skip states that had succeeded in the previous execution.

The full script along with a CloudFormation template that creates a demo of this is available in the aws-sfn-resume-from-any-state GitHub repo.

Diving into the script

In this section, we walk you through the script and highlight the core components of its functionality. The script contains a main function, which adds a command line parameter for the failedExecutionArn so that you can easily call the script from the command line:

python gotostate.py --failedExecutionArn '<Failed_Execution_Arn>'

Identifying the failed state in your execution

First, the script extracts the name of the failed state along with the input to that state. It does so by using the failed state machine execution history, which is identified by the Amazon Resource Name (ARN) of the execution. The failed state is marked in the execution history, along with the input to that state (which is also the output of the preceding successful state). The script is able to parse these values from the log.

The script loops through the execution history of the failed state machine, and traces it backwards until it finds the failed state. If the state machine failed in a parallel state, then it must restart from the beginning of the parallel state. The script is able to capture the name of the parallel state that failed, rather than any substate within the parallel state that may have caused the failure. The following code is the Python function that does this.


def parseFailureHistory(failedExecutionArn):

    '''
    Parses the execution history of a failed state machine to get the name of failed state and the input to the failed state:
    Input failedExecutionArn = A string containing the execution ARN of a failed state machine y
    Output = A list with two elements: [name of failed state, input to failed state]
    '''
    failedAtParallelState = False
    try:
        #Get the execution history
        response = client.get\_execution\_history(
            executionArn=failedExecutionArn,
            reverseOrder=True
        )
        failedEvents = response['events']
    except Exception as ex:
        raise ex
    #Confirm that the execution actually failed, raise exception if it didn't fail.
    try:
        failedEvents[0]['executionFailedEventDetails']
    except:
        raise('Execution did not fail')
        
    '''
    If you have a 'States.Runtime' error (for example, if a task state in your state machine attempts to execute a Lambda function in a different region than the state machine), get the ID of the failed state, and use it to determine the failed state name and input.
    '''
    
    if failedEvents[0]['executionFailedEventDetails']['error'] == 'States.Runtime':
        failedId = int(filter(str.isdigit, str(failedEvents[0]['executionFailedEventDetails']['cause'].split()[13])))
        failedState = failedEvents[-1 \* failedId]['stateEnteredEventDetails']['name']
        failedInput = failedEvents[-1 \* failedId]['stateEnteredEventDetails']['input']
        return (failedState, failedInput)
        
    '''
    You need to loop through the execution history, tracing back the executed steps.
    The first state you encounter is the failed state. If you failed on a parallel state, you need the name of the parallel state rather than the name of a state within a parallel state that it failed on. This is because you can only attach goToState to the parallel state, but not a substate within the parallel state.
    This loop starts with the ID of the latest event and uses the previous event IDs to trace back the execution to the beginning (id 0). However, it returns as soon it finds the name of the failed state.
    '''

    currentEventId = failedEvents[0]['id']
    while currentEventId != 0:
        #multiply event ID by -1 for indexing because you're looking at the reversed history
        currentEvent = failedEvents[-1 \* currentEventId]
        
        '''
        You can determine if the failed state was a parallel state because it and an event with 'type'='ParallelStateFailed' appears in the execution history before the name of the failed state
        '''

        if currentEvent['type'] == 'ParallelStateFailed':
            failedAtParallelState = True

        '''
        If the failed state is not a parallel state, then the name of failed state to return is the name of the state in the first 'TaskStateEntered' event type you run into when tracing back the execution history
        '''

        if currentEvent['type'] == 'TaskStateEntered' and failedAtParallelState == False:
            failedState = currentEvent['stateEnteredEventDetails']['name']
            failedInput = currentEvent['stateEnteredEventDetails']['input']
            return (failedState, failedInput)

        '''
        If the failed state was a parallel state, then you need to trace execution back to the first event with 'type'='ParallelStateEntered', and return the name of the state
        '''

        if currentEvent['type'] == 'ParallelStateEntered' and failedAtParallelState:
            failedState = failedState = currentEvent['stateEnteredEventDetails']['name']
            failedInput = currentEvent['stateEnteredEventDetails']['input']
            return (failedState, failedInput)
        #Update the ID for the next execution of the loop
        currentEventId = currentEvent['previousEventId']
        

Create the new state machine

The script uses the name of the failed state to create the new state machine, with "GoToState" branching execution directly to the failed state.

To do this, the script requires the Amazon States Language (ASL) definition of the failed state machine. It modifies the definition to append "GoToState", and create a new state machine from it.

The script gets the ARN of the failed state machine from the execution ARN of the failed state machine. This ARN allows it to get the ASL definition of the failed state machine by calling the DesribeStateMachine API action. It creates a new state machine with "GoToState".

When the script creates the new state machine, it also adds an additional input variable called "resuming". When you execute this new state machine, you specify this resuming variable as true in the input JSON. This tells "GoToState" to branch execution to the state that had previously failed. Here’s the function that does this:

def attachGoToState(failedStateName, stateMachineArn):

    '''
    Given a state machine ARN and the name of a state in that state machine, create a new state machine that starts at a new choice state called 'GoToState'. "GoToState" branches to the named state, and sends the input of the state machine to that state, when a variable called "resuming" is set to True.
    Input failedStateName = A string with the name of the failed state
          stateMachineArn = A string with the ARN of the state machine
    Output response from the create_state_machine call, which is the API call that creates a new state machine
    '''

    try:
        response = client.describe\_state\_machine(
            stateMachineArn=stateMachineArn
        )
    except:
        raise('Could not get ASL definition of state machine')
    roleArn = response['roleArn']
    stateMachine = json.loads(response['definition'])
    #Create a name for the new state machine
    newName = response['name'] + '-with-GoToState'
    #Get the StartAt state for the original state machine, because you point the 'GoToState' to this state
    originalStartAt = stateMachine['StartAt']

    '''
    Create the GoToState with the variable $.resuming.
    If new state machine is executed with $.resuming = True, then the state machine skips to the failed state.
    Otherwise, it executes the state machine from the original start state.
    '''

    goToState = {'Type':'Choice', 'Choices':[{'Variable':'$.resuming', 'BooleanEquals':False, 'Next':originalStartAt}], 'Default':failedStateName}
    #Add GoToState to the set of states in the new state machine
    stateMachine['States']['GoToState'] = goToState
    #Add StartAt
    stateMachine['StartAt'] = 'GoToState'
    #Create new state machine
    try:
        response = client.create_state_machine(
            name=newName,
            definition=json.dumps(stateMachine),
            roleArn=roleArn
        )
    except:
        raise('Failed to create new state machine with GoToState')
    return response

Testing the script

Now that you understand how the script works, you can test it out.

The following screenshot shows an example state machine that has failed, called "TestMachine". This state machine successfully completed "FirstState" and "ChoiceState", but when it branched to "FirstMatchState", it failed.

Use the script to create a new state machine that allows you to rerun this state machine, but skip the "FirstState" and the "ChoiceState" steps that already succeeded. You can do this by calling the script as follows:

python gotostate.py --failedExecutionArn 'arn:aws:states:us-west-2:<AWS_ACCOUNT_ID>:execution:TestMachine-with-GoToState:b2578403-f41d-a2c7-e70c-7500045288595

This creates a new state machine called "TestMachine-with-GoToState", and returns its ARN, along with the input that had been sent to "FirstMatchState". You can then inspect the input to determine what caused the error. In this case, you notice that the input to "FirstMachState" was the following:

{
"foo": 1,
"Message": true
}

However, this state machine expects the "Message" field of the JSON to be a string rather than a Boolean. Execute the new "TestMachine-with-GoToState" state machine, change the input to be a string, and add the "resuming" variable that "GoToState" requires:

{
"foo": 1,
"Message": "Hello!",
"resuming":true
}

When you execute the new state machine, it skips "FirstState" and "ChoiceState", and goes directly to "FirstMatchState", which was the state that failed:

Look at what happens when you have a state machine with multiple parallel steps. This example is included in the GitHub repository associated with this post. The repo contains a CloudFormation template that sets up this state machine and provides instructions to replicate this solution.

The following state machine, "ParallelStateMachine", takes an input through two subsequent parallel states before doing some final processing and exiting, along with the JSON with the ASL definition of the state machine.

{
  "Comment": "An example of the Amazon States Language using a parallel state to execute two branches at the same time.",
  "StartAt": "Parallel",
  "States": {
    "Parallel": {
      "Type": "Parallel",
      "ResultPath":"$.output",
      "Next": "Parallel 2",
      "Branches": [
        {
          "StartAt": "Parallel Step 1, Process 1",
          "States": {
            "Parallel Step 1, Process 1": {
              "Type": "Task",
              "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaA",
              "End": true
            }
          }
        },
        {
          "StartAt": "Parallel Step 1, Process 2",
          "States": {
            "Parallel Step 1, Process 2": {
              "Type": "Task",
              "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaA",
              "End": true
            }
          }
        }
      ]
    },
    "Parallel 2": {
      "Type": "Parallel",
      "Next": "Final Processing",
      "Branches": [
        {
          "StartAt": "Parallel Step 2, Process 1",
          "States": {
            "Parallel Step 2, Process 1": {
              "Type": "Task",
              "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXXX:function:LambdaB",
              "End": true
            }
          }
        },
        {
          "StartAt": "Parallel Step 2, Process 2",
          "States": {
            "Parallel Step 2, Process 2": {
              "Type": "Task",
              "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaB",
              "End": true
            }
          }
        }
      ]
    },
    "Final Processing": {
      "Type": "Task",
      "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaC",
      "End": true
    }
  }
}

First, use an input that initially fails:

{
  "Message": "Hello!"
}

This fails because the state machine expects you to have a variable in the input JSON called "foo" in the second parallel state to run "Parallel Step 2, Process 1" and "Parallel Step 2, Process 2". Instead, the original input gets processed by the first parallel state and produces the following output to pass to the second parallel state:

{
"output": [
    {
      "Message": "Hello!"
    },
    {
      "Message": "Hello!"
    }
  ],
}

Run the script on the failed state machine to create a new state machine that allows it to resume directly at the second parallel state instead of having to redo the first parallel state. This creates a new state machine called "ParallelStateMachine-with-GoToState". The following JSON was created by the script to define the new state machine in ASL. It contains the "GoToState" value that was attached by the script.

{
   "Comment":"An example of the Amazon States Language using a parallel state to execute two branches at the same time.",
   "States":{
      "Final Processing":{
         "Resource":"arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaC",
         "End":true,
         "Type":"Task"
      },
      "GoToState":{
         "Default":"Parallel 2",
         "Type":"Choice",
         "Choices":[
            {
               "Variable":"$.resuming",
               "BooleanEquals":false,
               "Next":"Parallel"
            }
         ]
      },
      "Parallel":{
         "Branches":[
            {
               "States":{
                  "Parallel Step 1, Process 1":{
                     "Resource":"arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaA",
                     "End":true,
                     "Type":"Task"
                  }
               },
               "StartAt":"Parallel Step 1, Process 1"
            },
            {
               "States":{
                  "Parallel Step 1, Process 2":{
                     "Resource":"arn:aws:lambda:us-west-2:XXXXXXXXXXXX:LambdaA",
                     "End":true,
                     "Type":"Task"
                  }
               },
               "StartAt":"Parallel Step 1, Process 2"
            }
         ],
         "ResultPath":"$.output",
         "Type":"Parallel",
         "Next":"Parallel 2"
      },
      "Parallel 2":{
         "Branches":[
            {
               "States":{
                  "Parallel Step 2, Process 1":{
                     "Resource":"arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaB",
                     "End":true,
                     "Type":"Task"
                  }
               },
               "StartAt":"Parallel Step 2, Process 1"
            },
            {
               "States":{
                  "Parallel Step 2, Process 2":{
                     "Resource":"arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaB",
                     "End":true,
                     "Type":"Task"
                  }
               },
               "StartAt":"Parallel Step 2, Process 2"
            }
         ],
         "Type":"Parallel",
         "Next":"Final Processing"
      }
   },
   "StartAt":"GoToState"
}

You can then execute this state machine with the correct input by adding the "foo" and "resuming" variables:

{
  "foo": 1,
  "output": [
    {
      "Message": "Hello!"
    },
    {
      "Message": "Hello!"
    }
  ],
  "resuming": true
}

This yields the following result. Notice that this time, the state machine executed successfully to completion, and skipped the steps that had previously failed.


Conclusion

When you’re building out complex workflows, it’s important to be prepared for failure. You can do this by taking advantage of features such as automatic error retries in Step Functions and custom error handling of Lambda exceptions.

Nevertheless, state machines still have the possibility of failing. With the methodology and script presented in this post, you can resume a failed state machine from its point of failure. This allows you to skip the execution of steps in the workflow that had already succeeded, and recover the process from the point of failure.

To see more examples, please visit the Step Functions Getting Started page.

If you have questions or suggestions, please comment below.

I Still Prefer Eclipse Over IntelliJ IDEA

Post Syndicated from Bozho original https://techblog.bozho.net/still-prefer-eclipse-intellij-idea/

Over the years I’ve observed an inevitable shift from Eclipse to IntelliJ IDEA. Last year they were almost equal in usage, and I have the feeling things are swaying even more towards IDEA.

IDEA is like the iPhone of IDEs – its users tell you that “you will feel how much better it is once you get used to it”, “are you STILL using Eclipse??”, “IDEA is so much better, I thought everyone has switched”, etc.

I’ve been using mostly Eclipse for the past 12 years, but in some cases I did use IDEA – when I was writing Scala, when I was writing Android, and most recently – when Eclipse failed to be ready for the Java 9 release, so after half a day of trying to get it working, I just switched to IDEA until Eclipse finally gets a working Java 9 version (with Maven and the rest of the stuff).

But I will get back to Eclipse again, soon. And I still prefer it. Not just because of all the key combinations I’ve internalized (you can reuse those in IDEA), but because there are still things I find worse in IDEA. Of course, IDEA has so much more cool features like code improvement suggestions and actually working plugins for everything. But at least some of the problems I see have to do with the more basic development workflow and experience. And you can’t compensate for those with sugarcoating. So here they are:

  • Projects are not automatically built (by default), so you can end up with compilation errors that you don’t see until you open a non-compiling file or run a build. And turning the autobild on makes my machine crawl. I know I need an upgrade, but that’s not the point – not having “build on change” was a huge surprise to me the first time I tried IDEA. I recently complained about that on twitter and it turns out “it’s a feature”. The rationale seems to be that if you use refactoring, that shouldn’t happen. Well, there are dozens of cases when it does happen. Refactoring by adding a method parameter, by changing the type of a parameter, by removing a parameter (where the IDE can’t infer which parameter is removed based on the types), by changing return types. Also, a change in maven/gradle dependencies may introduces compilation issues that you don’t get to see. This is not a reasonable default at all, and I think the performance issues are the only reason it’s still the default. I think this makes the experience much worse.
  • You can have only one project per screen. Maybe there are those small companies with greenfield projects where you only need one. But I’ve never been in a situation, where you don’t at least occasionally need a separate project. Be it an “experiments” one, a “tools” one, or whatever. And no, multi-module maven projects (which IDEA handles well) are not sufficient. So each time you need to step out of your main project, you launch another screen. Apart from the bad usability, it’s double the memory, double the fun.
  • Speaking of memory, It seems to be taking more memory than Eclipse. I don’t have representative benchmarks of that, and I know that my 8 GB RAM home machine is way to small for development nowadays, but still.
  • It feels less responsive and clunky. There is some minor delay that I can’t define well, but “I feel it”. I read somewhere that they were excessively repainting the screen elements, so that might be the explanation. Eclipse feels smoother (I know that’s not a proper argument, but I can’t be more precise)
  • Due to some extra cleverness, I have “unused methods” and “never assigned fields” all around the project. It uses spring, so these methods and fields are controller methods and autowired fields. Maybe some spring plugin would take care of that, but spring is not the only framework that uses reflection. Even getters and setters on POJOs get the unused warnings. What’s the problem with those warnings? That warnings are devalued. They don’t mean anything now. There isn’t a “yellow” indicator on the class either, so you don’t actually see the amount of warnings you have. Eclipse displays warnings better, and the false positives are much less.
  • The call hierarchy is slightly worse. But since that’s the most important IDE feature for me (alongside refactoring), it matters. It doesn’t give you the call hierarchy of default constructors that are not explicitly defined. Also, from what I’ve seen IDEA users don’t often use the call hierarchy feature. “Find usage” I think predates the call hierarchy, and is also much more visible through the UI, so some of the IDEA users don’t even know what a call hierarchy is. And repeatedly do “find usage”. That’s only partly the IDE’s fault.
  • No search in the output console. Come one, why I do I have an IDE, where I have to copy the output and paste it in a text editor in order to search. Now, to clarify, the console does have search. But when I run my (spring-boot) application, it outputs stuff in a panel at the bottom that is not the console and doesn’t have search.
  • CTRL+arrows by default jumps over whole words, and not camel cased words. This is configurable, but is yet another odd default. You almost always want to be able to traverse your variables word by word (in camel case), rather than skipping over the whole variable (method/class) name.
  • A few years ago when I used it for Scala, the project never actually compiled. But I guess that’s more Scala’s fault than of the IDE

Apart from the first two, the rest are not major issues, I agree. But they add up. Ultimately, it’s a matter of personal choice whether you can turn a blind eye to these issues. But I’m getting back to Eclipse again. At some point I will propose improvements in the IntelliJ IDEA backlog and will check it again in a few years, I guess.

The post I Still Prefer Eclipse Over IntelliJ IDEA appeared first on Bozho's tech blog.

New Research in Invisible Inks

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/11/new_research_in.html

It’s a lot more chemistry than I understand:

Invisible inks based on “smart” fluorescent materials have been shining brightly (if only you could see them) in the data-encryption/decryption arena lately…. But some of the materials are costly or difficult to prepare, and many of these inks remain somewhat visible when illuminated with ambient or ultraviolet light. Liang Li and coworkers at Shanghai Jiao Tong University may have come up with a way to get around those problems. The team prepared a colorless solution of an inexpensive lead-based metal-organic framework (MOF) compound and used it in an ink-jet printer to create completely invisible patterns on paper. Then they exposed the paper to a methylammonium bromide decryption solution…revealing the pattern…. They rendered the pattern invisible again by briefly treating the paper with a polar solvent….

Full paper.

[$] Block layer introduction part 2: the request layer

Post Syndicated from corbet original https://lwn.net/Articles/738449/rss

The Linux block layer provides an upstream interface to filesystems and
block-special devices allowing them to access a multitude of storage
backends in a uniform manner. It also provides downstream interfaces to device
drivers and driver-support frameworks that allow those drivers and
frameworks to receive requests in a manner most suitable to each. Some
drivers do not benefit from preliminary handling and just use the thin “bio
layer” that we met previously. Other
drivers benefit
from some preprocessing that might detect batches of consecutive requests,
may reorder requests based on various criteria, and which presents the
requests as one or more well-defined streams. To service these drivers,
there exists a section of the block layer that I refer to as the request
layer.

Subscribers can read on below for guest author Neil Brown’s article that
will appear in next week’s edition.

Say Hello To Our Newest AWS Community Heroes (Fall 2017 Edition)

Post Syndicated from Sara Rodas original https://aws.amazon.com/blogs/aws/say-hello-to-our-newest-aws-community-heroes-fall-2017-edition/

The AWS Community Heroes program helps shine a spotlight on some of the innovative work being done by rockstar AWS developers around the globe. Marrying cloud expertise with a passion for community building and education, these heroes share their time and knowledge across social media and through in-person events. Heroes also actively help drive community-led tracks at conferences. At this year’s re:Invent, many Heroes will be speaking during the Monday Community Day track.

This November, we are thrilled to have four Heroes joining our network of cloud innovators. Without further ado, meet to our newest AWS Community Heroes!

 

Anh Ho Viet

Anh Ho Viet is the founder of AWS Vietnam User Group, Co-founder & CEO of OSAM, an AWS Consulting Partner in Vietnam, an AWS Certified Solutions Architect, and a cloud lover.

At OSAM, Anh and his enthusiastic team have helped many companies, from SMBs to Enterprises, move to the cloud with AWS. They offer a wide range of services, including migration, consultation, architecture, and solution design on AWS. Anh’s vision for OSAM is beyond a cloud service provider; the company will take part in building a complete AWS ecosystem in Vietnam, where other companies are encouraged to become AWS partners through training and collaboration activities.

In 2016, Anh founded the AWS Vietnam User Group as a channel to share knowledge and hands-on experience among cloud practitioners. Since then, the community has reached more than 4,800 members and is still expanding. The group holds monthly meetups, connects many SMEs to AWS experts, and provides real-time, free-of-charge consultancy to startups. In August 2017, Anh joined as lead content creator of a program called “Cloud Computing Lectures for Universities” which includes translating AWS documentation & news into Vietnamese, providing students with fundamental, up-to-date knowledge of AWS cloud computing, and supporting students’ career paths.

 

Thorsten Höger

Thorsten Höger is CEO and Cloud consultant at Taimos, where he is advising customers on how to use AWS. Being a developer, he focuses on improving development processes and automating everything to build efficient deployment pipelines for customers of all sizes.

Before being self-employed, Thorsten worked as a developer and CTO of Germany’s first private bank running on AWS. With his colleagues, he migrated the core banking system to the AWS platform in 2013. Since then he organizes the AWS user group in Stuttgart and is a frequent speaker at Meetups, BarCamps, and other community events.

As a supporter of open source software, Thorsten is maintaining or contributing to several projects on Github, like test frameworks for AWS Lambda, Amazon Alexa, or developer tools for CloudFormation. He is also the maintainer of the Jenkins AWS Pipeline plugin.

In his spare time, he enjoys indoor climbing and cooking.

 

Becky Zhang

Yu Zhang (Becky Zhang) is COO of BootDev, which focuses on Big Data solutions on AWS and high concurrency web architecture. Before she helped run BootDev, she was working at Yubis IT Solutions as an operations manager.

Becky plays a key role in the AWS User Group Shanghai (AWSUGSH), regularly organizing AWS UG events including AWS Tech Meetups and happy hours, gathering AWS talent together to communicate the latest technology and AWS services. As a female in technology industry, Becky is keen on promoting Women in Tech and encourages more woman to get involved in the community.

Becky also connects the China AWS User Group with user groups in other regions, including Korea, Japan, and Thailand. She was invited as a panelist at AWS re:Invent 2016 and spoke at the Seoul AWS Summit this April to introduce AWS User Group Shanghai and communicate with other AWS User Groups around the world.

Besides events, Becky also promotes the Shanghai AWS User Group by posting AWS-related tech articles, event forecasts, and event reports to Weibo, Twitter, Meetup.com, and WeChat (which now has over 2000 official account followers).

 

Nilesh Vaghela

Nilesh Vaghela is the founder of ElectroMech Corporation, an AWS Cloud and open source focused company (the company started as an open source motto). Nilesh has been very active in the Linux community since 1998. He started working with AWS Cloud technologies in 2013 and in 2014 he trained a dedicated cloud team and started full support of AWS cloud services as an AWS Standard Consulting Partner. He always works to establish and encourage cloud and open source communities.

He started the AWS Meetup community in Ahmedabad in 2014 and as of now 12 Meetups have been conducted, focusing on various AWS technologies. The Meetup has quickly grown to include over 2000 members. Nilesh also created a Facebook group for AWS enthusiasts in Ahmedabad, with over 1500 members.

Apart from the AWS Meetup, Nilesh has delivered a number of seminars, workshops, and talks around AWS introduction and awareness, at various organizations, as well as at colleges and universities. He has also been active in working with startups, presenting AWS services overviews and discussing how startups can benefit the most from using AWS services.

Nilesh is Red Hat Linux Technologies and AWS Cloud Technologies trainer as well.

 

To learn more about the AWS Community Heroes Program and how to get involved with your local AWS community, click here.

[$] USBGuard: authorization for USB

Post Syndicated from jake original https://lwn.net/Articles/738306/rss

USBGuard is a
security framework for the authorization of USB devices that can be plugged
into a Linux system. For users who want to protect a system from malicious
USB devices or unauthorized use of USB ports on a machine, this program
gives a number of fine-grained policy options for specifying
how USB devices can interact with a host system. It is a tool similar to
usbauth,
which also provides an interface to create access-control policies for the
USB ports. Although kernel
authorization for USB devices already exists, programs like USBGuard make
it easy to craft
policies using those mechanisms.

Just in Case You Missed It: Catching Up on Some Recent AWS Launches

Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/just-in-case-you-missed-it-catching-up-on-some-recent-aws-launches/

So many launches and cloud innovations, that you simply may not believe.  In order to catch up on some service launches and features, this post will be a round-up of some cool releases that happened this summer and through the end of September.

The launches and features I want to share with you today are:

  • AWS IAM for Authenticating Database Users for RDS MySQL and Amazon Aurora
  • Amazon SES Reputation Dashboard
  • Amazon SES Open and Click Tracking Metrics
  • Serverless Image Handler by the Solutions Builder Team
  • AWS Ops Automator by the Solutions Builder Team

Let’s dive in, shall we!

AWS IAM for Authenticating Database Users for RDS MySQL and Amazon Aurora

Wished you could manage access to your Amazon RDS database instances and clusters using AWS IAM? Well, wish no longer. Amazon RDS has launched the ability for you to use IAM to manage database access for Amazon RDS for MySQL and Amazon Aurora DB.

What I like most about this new service feature is, it’s very easy to get started.  To enable database user authentication using IAM, you would select a checkbox Enable IAM DB Authentication when creating, modifying, or restoring your DB instance or cluster. You can enable IAM access using the RDS console, the AWS CLI, and/or the Amazon RDS API.

After configuring the database for IAM authentication, client applications authenticate to the database engine by providing temporary security credentials generated by the IAM Security Token Service. These credentials can be used instead of providing a password to the database engine.

You can learn more about using IAM to provide targeted permissions and authentication to MySQL and Aurora by reviewing the Amazon RDS user guide.

Amazon SES Reputation Dashboard

In order to aid Amazon Simple Email Service customers’ in utilizing best practice guidelines for sending email, I am thrilled to announce we launched the Reputation Dashboard to provide comprehensive reporting on email sending health. To aid in proactively managing emails being sent, customers now have visibility into overall account health, sending metrics, and compliance or enforcement status.

The Reputation Dashboard will provide the following information:

  • Account status: A description of your account health status.
    • Healthy – No issues currently impacting your account.
    • Probation – Account is on probation; Issues causing probation must be resolved to prevent suspension
    • Pending end of probation decision – Your account is on probation. Amazon SES team member must review your account prior to action.
    • Shutdown – Your account has been shut down. No email will be able to be sent using Amazon SES.
    • Pending shutdown – Your account is on probation and issues causing probation are unresolved.
  • Bounce Rate: Percentage of emails sent that have bounced and bounce rate status messages.
  • Complaint Rate: Percentage of emails sent that recipients have reported as spam and complaint rate status messages.
  • Notifications: Messages about other account reputation issues.

Amazon SES Open and Click Tracking Metrics

Another exciting feature recently added to Amazon SES is support for Email Open and Click Tracking Metrics. With Email Open and Click Tracking Metrics feature, SES customers can now track when email they’ve sent has been opened and track when links within the email have been clicked.  Using this SES feature will allow you to better track email campaign engagement and effectiveness.

How does this work?

When using the email open tracking feature, SES will add a transparent, miniature image into the emails that you choose to track. When the email is opened, the mail application client will load the aforementioned tracking which triggers an open track event with Amazon SES. For the email click (link) tracking, links in email and/or email templates are replaced with a custom link.  When the custom link is clicked, a click event is recorded in SES and the custom link will redirect the email user to the link destination of the original email.

You can take advantage of the new open tracking and click tracking features by creating a new configuration set or altering an existing configuration set within SES. After choosing either; Amazon SNS, Amazon CloudWatch, or Amazon Kinesis Firehose as the AWS service to receive the open and click metrics, you would only need to select a new configuration set to successfully enable these new features for any emails you want to send.

AWS Solutions: Serverless Image Handler & AWS Ops Automator

The AWS Solution Builder team has been hard at work helping to make it easier for you all to find answers to common architectural questions to aid in building and running applications on AWS. You can find these solutions on the AWS Answers page. Two new solutions released earlier this fall on AWS Answers are  Serverless Image Handler and the AWS Ops Automator.
Serverless Image Handler was developed to provide a solution to help customers dynamically process, manipulate, and optimize the handling of images on the AWS Cloud. The solution combines Amazon CloudFront for caching, AWS Lambda to dynamically retrieve images and make image modifications, and Amazon S3 bucket to store images. Additionally, the Serverless Image Handler leverages the open source image-processing suite, Thumbor, for additional image manipulation, processing, and optimization.

AWS Ops Automator solution helps you to automate manual tasks using time-based or event-based triggers to automatically such as snapshot scheduling by providing a framework for automated tasks and includes task audit trails, logging, resource selection, scaling, concurrency handling, task completion handing, and API request retries. The solution includes the following AWS services:

  • AWS CloudFormation: a templates to launches the core framework of microservices and solution generated task configurations
  • Amazon DynamoDB: a table which stores task configuration data to defines the event triggers, resources, and saves the results of the action and the errors.
  • Amazon CloudWatch Logs: provides logging to track warning and error messages
  • Amazon SNS: topic to send messages to a subscribed email address to which to send the logging information from the solution

Have fun exploring and coding.

Tara

Welcome Carlo!

Post Syndicated from Yev original https://www.backblaze.com/blog/welcome-carlo/

Welcome Carlo!
As Backblaze continues to grow, we need to keep our web experience on point, so we put out a call for creative folks that can help us make the Backblaze experience all that it can be. We found Carlo! He’s a frontend web developer who used to work at Sea World. Lets learn a bit more about Carlo, shall we?

What is your Backblaze Title?
Senior Frontend Developer

Where are you originally from? 
I grew up in San Diego, California.

What attracted you to Backblaze?
I am excited that frontend architecture is approaching parity with the rest of the web services software development ecosystem. Most of my experience has been full stack development, but I have recently started focusing on the front end. Backblaze shares my goal of having a first class user experience using frameworks like React.

What do you expect to learn while being at Backblaze?
I’m interested in building solutions that help customers visualize and work with their data intuitively and efficiently.

Where else have you worked?
GoPro, Sungevity, and Sea World.

What’s your dream job?
Hip Hop dressage choreographer.

Favorite place you’ve traveled? 
The Arctic in Northern Finland, in a train in a boat sailing the gap between Germany and Denmark, and Vieques PR.

Favorite hobby?
Sketching, writing, and dressing up my hairless dogs.

Of what achievement are you most proud?
It’s either helping release a large SOA site, or orchestrating a Morrissey cover band flash mob #squadgoals. OK, maybe one those things didn’t happen…

Star Trek or Star Wars?
Interstellar!

Favorite food?
Mexican food.

Coke or Pepsi?
Ginger beer.

Why do you like certain things? 
Things that I like bring me joy a la Marie Kondo.

Anything else you’d like you’d like to tell us?
¯\_(ツ)_/¯

Wow, hip hop dressage choreographer — that is amazing. Welcome aboard Carlo!

The post Welcome Carlo! appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

New – Amazon EC2 Instances with Up to 8 NVIDIA Tesla V100 GPUs (P3)

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/new-amazon-ec2-instances-with-up-to-8-nvidia-tesla-v100-gpus-p3/

Driven by customer demand and made possible by on-going advances in the state-of-the-art, we’ve come a long way since the original m1.small instance that we launched in 2006, with instances that are emphasize compute power, burstable performance, memory size, local storage, and accelerated computing.

The New P3
Today we are making the next generation of GPU-powered EC2 instances available in four AWS regions. Powered by up to eight NVIDIA Tesla V100 GPUs, the P3 instances are designed to handle compute-intensive machine learning, deep learning, computational fluid dynamics, computational finance, seismic analysis, molecular modeling, and genomics workloads.

P3 instances use customized Intel Xeon E5-2686v4 processors running at up to 2.7 GHz. They are available in three sizes (all VPC-only and EBS-only):

Model NVIDIA Tesla V100 GPUs GPU Memory NVIDIA NVLink vCPUs Main Memory Network Bandwidth EBS Bandwidth
p3.2xlarge 1 16 GiB n/a 8 61 GiB Up to 10 Gbps 1.5 Gbps
p3.8xlarge 4 64 GiB 200 GBps 32 244 GiB 10 Gbps 7 Gbps
p3.16xlarge 8 128 GiB 300 GBps 64 488 GiB 25 Gbps 14 Gbps

Each of the NVIDIA GPUs is packed with 5,120 CUDA cores and another 640 Tensor cores and can deliver up to 125 TFLOPS of mixed-precision floating point, 15.7 TFLOPS of single-precision floating point, and 7.8 TFLOPS of double-precision floating point. On the two larger sizes, the GPUs are connected together via NVIDIA NVLink 2.0 running at a total data rate of up to 300 GBps. This allows the GPUs to exchange intermediate results and other data at high speed, without having to move it through the CPU or the PCI-Express fabric.

What’s a Tensor Core?
I had not heard the term Tensor core before starting to write this post. According to this very helpful post on the NVIDIA Blog, Tensor cores are designed to speed up the training and inference of large, deep neural networks. Each core is able to quickly and efficiently multiply a pair of 4×4 half-precision (also known as FP16) matrices together, add the resulting 4×4 matrix to another half or single-precision (FP32) matrix, and store the resulting 4×4 matrix in either half or single-precision form. Here’s a diagram from NVIDIA’s blog post:

This operation is in the innermost loop of the training process for a deep neural network, and is an excellent example of how today’s NVIDIA GPU hardware is purpose-built to address a very specific market need. By the way, the mixed-precision qualifier on the Tensor core performance means that it is flexible enough to work with with a combination of 16-bit and 32-bit floating point values.

Performance in Perspective
I always like to put raw performance numbers into a real-world perspective so that they are easier to relate to and (hopefully) more meaningful. This turned out to be surprisingly difficult, given that the eight NVIDIA Tesla V100 GPUs on a single p3.16xlarge can do 125 trillion single-precision floating point multiplications per second.

Let’s go back to the dawn of the microprocessor era, and consider the Intel 8080A chip that powered the MITS Altair that I bought in the summer of 1977. With a 2 MHz clock, it was able to do about 832 multiplications per second (I used this data and corrected it for the faster clock speed). The p3.16xlarge is roughly 150 billion times faster. However, just 1.2 billion seconds have gone by since that summer. In other words, I can do 100x more calculations today in one second than my Altair could have done in the last 40 years!

What about the innovative 8087 math coprocessor that was an optional accessory for the IBM PC that was announced in the summer of 1981? With a 5 MHz clock and purpose-built hardware, it was able to do about 52,632 multiplications per second. 1.14 billion seconds have elapsed since then, p3.16xlarge is 2.37 billion times faster, so the poor little PC would be barely halfway through a calculation that would run for 1 second today.

Ok, how about a Cray-1? First delivered in 1976, this supercomputer was able to perform vector operations at 160 MFLOPS, making the p3.x16xlarge 781,000 times faster. It could have iterated on some interesting problem 1500 times over the years since it was introduced.

Comparisons between the P3 and today’s scale-out supercomputers are harder to make, given that you can think of the P3 as a step-and-repeat component of a supercomputer that you can launch on as as-needed basis.

Run One Today
In order to take full advantage of the NVIDIA Tesla V100 GPUs and the Tensor cores, you will need to use CUDA 9 and cuDNN7. These drivers and libraries have already been added to the newest versions of the Windows AMIs and will be included in an updated Amazon Linux AMI that is scheduled for release on November 7th. New packages are already available in our repos if you want to to install them on your existing Amazon Linux AMI.

The newest AWS Deep Learning AMIs come preinstalled with the latest releases of Apache MxNet, Caffe2, and Tensorflow (each with support for the NVIDIA Tesla V100 GPUs), and will be updated to support P3 instances with other machine learning frameworks such as Microsoft Cognitive Toolkit and PyTorch as soon as these frameworks release support for the NVIDIA Tesla V100 GPUs. You can also use the NVIDIA Volta Deep Learning AMI for NGC.

P3 instances are available in the US East (Northern Virginia), US West (Oregon), EU (Ireland), and Asia Pacific (Tokyo) Regions in On-Demand, Spot, Reserved Instance, and Dedicated Host form.

Jeff;

 

Ben’s Raspberry Pi Twilight Zone pinball hack

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/twilight-zone-pinball-display/

When Ben North was faced with the dilemma of his nine-year-old son wanting him to watch his pinball games while, at the same time, Ben should be doing housework, he came up with a brilliant hack. Ben decided to investigate the inner workings of his twenty-year-old Twilight Zone pinball machine to convert its score display data into a video stream he could keep an eye on while working.

Ben North Raspberry Pi Twilight Zone Pinball

Ben ended up with this. Read on to find out how…

Dad? Dad! DAD!!

Kids love sharing their achievements. That’s a given. And so, after Ben introduced his son Zach to his beloved pinball machine, Zach wanted his dad to witness his progress. However, at some point Ben had to get back to the dull reality of adulting.

My son Zach, now 9, has been steadily getting better at [playing pinball], and is keen for me to watch his games. So he and I wanted a way for me to keep an eye on how his game is going, while I do other jobs elsewhere.

The two of them thought that, with the right tools and some fiddling, they could hijack the machine’s score information on its way to the dot matrix display and divert it to a computer. “One way to do this would be to set up a webcam.” Ben explains on his blog, “But where’s the fun in that?”

Twilight Zone pinball wizardry

After researching how the dot matrix receives and displays the score data, Ben and Zach figured out how to fetch its output using a 16-channel USB logic analyser. Then they dove into learning to convert the data the logic analyser outputs back into images.

Ben North Raspberry Pi Twilight Zone Pinball

“Exploring in more detail confirmed that the data looked reasonable. We could see well-distinguished frames and rows, and within each row, the pixel data had a mixture of high (lit pixel) and low (dark pixel).”

After Ben managed to convert the signals of one frame into a human-readable pixel image, it was time to think about the hardware that could do this conversion in real time. Though he and Zach were convinced they would have to build custom hardware to complete their project, they decided to first give the Raspberry Pi a go. And it turned out that the Pi was up to the challenge!

Ben North Raspberry Pi Twilight Zone Pinball - example output

“By an amazing coincidence, the [first] frame I decoded was one showing that I am the current Lost In The Zone champion.”

To decode the first frame, Ben had written a Python script. However, he coded the program to produce a score live stream in C++, since this language is better at handling high-speed input and output. To make sure Zach would learn from the experience, Ben explained the how and why of the program to him.

I talked through with Zach what the program needed to do — detect clock edges, sample pixel data, collect rows, etc. — but then he left me to do ‘all the boring typing’.

Ben used various pieces of open-source software while working on this project, including the sigrok suite for signal analysis and the multimedia framework gstreamer for handling the live video stream to the Raspberry Pi.

Find more information about the Twilight Zone pinball build, including a lot of technical details and the code itself, on Ben’s blog.

Worthy self-promotion from Ben

“I also did an FPGA project to replicate some of the Colossus code-breaking machine used in Bletchley Park during World War II,” explained Ben in our recent emails. “with a Raspberry Pi as the host.”

Colossus computer Twilight Zone Pinball

The original Colossus, not Ben’s.
Image c/o Wikipedia

As a bit of a history nerd myself, I think this is beyond cool. And if, like me, you’d like to learn more, check out the link here.

The post Ben’s Raspberry Pi Twilight Zone pinball hack appeared first on Raspberry Pi.

Spaghetti Download – Web Application Security Scanner

Post Syndicated from Darknet original https://www.darknet.org.uk/2017/10/spaghetti-download-web-application-security-scanner/?utm_source=rss&utm_medium=social&utm_campaign=darknetfeed

Spaghetti Download – Web Application Security Scanner

Spaghetti is an Open-source Web Application Security Scanner, it is designed to find various default and insecure files, configurations, and misconfigurations.

It is built on Python 2.7 and can run on any platform which has a Python environment.

Features of Spaghetti Web Application Security Scanner

  • Fingerprints
    • Server
    • Web Frameworks (CakePHP, CherryPy,…)
    • Web Application Firewall (Waf)
    • Content Management System (CMS)
    • Operating System (Linux, Unix,..)
    • Language (PHP, Ruby,…)
    • Cookie Security
  • Bruteforce
    • Admin Interface
    • Common Backdoors
    • Common Backup Directory
    • Common Backup File
    • Common Directory
    • Common File
    • Log File
  • Disclosure
    • Emails
    • Private IP
    • Credit Cards
  • Attacks
    • HTML Injection
    • SQL Injection
    • LDAP Injection
    • XPath Injection
    • Cross Site Scripting (XSS)
    • Remote File Inclusion (RFI)
    • PHP Code Injection
  • Other
    • HTTP Allow Methods
    • HTML Object
    • Multiple Index
    • Robots Paths
    • Web Dav
    • Cross Site Tracing (XST)
    • PHPINFO
    • .Listing
  • Vulns
    • ShellShock
    • Anonymous Cipher (CVE-2007-1858)
    • Crime (SPDY) (CVE-2012-4929)
    • Struts-Shock

Using Spaghetti Web Application Security Scanner

[email protected]:~/Spaghetti# python spaghetti.py
_____ _ _ _ _
| __|___ ___ ___| |_ ___| |_| |_|_|
|__ | .

Read the rest of Spaghetti Download – Web Application Security Scanner now! Only available at Darknet.

Introducing Gluon: a new library for machine learning from AWS and Microsoft

Post Syndicated from Ana Visneski original https://aws.amazon.com/blogs/aws/introducing-gluon-a-new-library-for-machine-learning-from-aws-and-microsoft/

Post by Dr. Matt Wood

Today, AWS and Microsoft announced Gluon, a new open source deep learning interface which allows developers to more easily and quickly build machine learning models, without compromising performance.

Gluon Logo

Gluon provides a clear, concise API for defining machine learning models using a collection of pre-built, optimized neural network components. Developers who are new to machine learning will find this interface more familiar to traditional code, since machine learning models can be defined and manipulated just like any other data structure. More seasoned data scientists and researchers will value the ability to build prototypes quickly and utilize dynamic neural network graphs for entirely new model architectures, all without sacrificing training speed.

Gluon is available in Apache MXNet today, a forthcoming Microsoft Cognitive Toolkit release, and in more frameworks over time.

Neural Networks vs Developers
Machine learning with neural networks (including ‘deep learning’) has three main components: data for training; a neural network model, and an algorithm which trains the neural network. You can think of the neural network in a similar way to a directed graph; it has a series of inputs (which represent the data), which connect to a series of outputs (the prediction), through a series of connected layers and weights. During training, the algorithm adjusts the weights in the network based on the error in the network output. This is the process by which the network learns; it is a memory and compute intensive process which can take days.

Deep learning frameworks such as Caffe2, Cognitive Toolkit, TensorFlow, and Apache MXNet are, in part, an answer to the question ‘how can we speed this process up? Just like query optimizers in databases, the more a training engine knows about the network and the algorithm, the more optimizations it can make to the training process (for example, it can infer what needs to be re-computed on the graph based on what else has changed, and skip the unaffected weights to speed things up). These frameworks also provide parallelization to distribute the computation process, and reduce the overall training time.

However, in order to achieve these optimizations, most frameworks require the developer to do some extra work: specifically, by providing a formal definition of the network graph, up-front, and then ‘freezing’ the graph, and just adjusting the weights.

The network definition, which can be large and complex with millions of connections, usually has to be constructed by hand. Not only are deep learning networks unwieldy, but they can be difficult to debug and it’s hard to re-use the code between projects.

The result of this complexity can be difficult for beginners and is a time-consuming task for more experienced researchers. At AWS, we’ve been experimenting with some ideas in MXNet around new, flexible, more approachable ways to define and train neural networks. Microsoft is also a contributor to the open source MXNet project, and were interested in some of these same ideas. Based on this, we got talking, and found we had a similar vision: to use these techniques to reduce the complexity of machine learning, making it accessible to more developers.

Enter Gluon: dynamic graphs, rapid iteration, scalable training
Gluon introduces four key innovations.

  1. Friendly API: Gluon networks can be defined using a simple, clear, concise code – this is easier for developers to learn, and much easier to understand than some of the more arcane and formal ways of defining networks and their associated weighted scoring functions.
  2. Dynamic networks: the network definition in Gluon is dynamic: it can bend and flex just like any other data structure. This is in contrast to the more common, formal, symbolic definition of a network which the deep learning framework has to effectively carve into stone in order to be able to effectively optimizing computation during training. Dynamic networks are easier to manage, and with Gluon, developers can easily ‘hybridize’ between these fast symbolic representations and the more friendly, dynamic ‘imperative’ definitions of the network and algorithms.
  3. The algorithm can define the network: the model and the training algorithm are brought much closer together. Instead of separate definitions, the algorithm can adjust the network dynamically during definition and training. Not only does this mean that developers can use standard programming loops, and conditionals to create these networks, but researchers can now define even more sophisticated algorithms and models which were not possible before. They are all easier to create, change, and debug.
  4. High performance operators for training: which makes it possible to have a friendly, concise API and dynamic graphs, without sacrificing training speed. This is a huge step forward in machine learning. Some frameworks bring a friendly API or dynamic graphs to deep learning, but these previous methods all incur a cost in terms of training speed. As with other areas of software, abstraction can slow down computation since it needs to be negotiated and interpreted at run time. Gluon can efficiently blend together a concise API with the formal definition under the hood, without the developer having to know about the specific details or to accommodate the compiler optimizations manually.

The team here at AWS, and our collaborators at Microsoft, couldn’t be more excited to bring these improvements to developers through Gluon. We’re already seeing quite a bit of excitement from developers and researchers alike.

Getting started with Gluon
Gluon is available today in Apache MXNet, with support coming for the Microsoft Cognitive Toolkit in a future release. We’re also publishing the front-end interface and the low-level API specifications so it can be included in other frameworks in the fullness of time.

You can get started with Gluon today. Fire up the AWS Deep Learning AMI with a single click and jump into one of 50 fully worked, notebook examples. If you’re a contributor to a machine learning framework, check out the interface specs on GitHub.

-Dr. Matt Wood

How to Automatically Revert and Receive Notifications About Changes to Your Amazon VPC Security Groups

Post Syndicated from Rob Barnes original https://aws.amazon.com/blogs/security/how-to-automatically-revert-and-receive-notifications-about-changes-to-your-amazon-vpc-security-groups/

In a previous AWS Security Blog post, Jeff Levine showed how you can monitor changes to your Amazon EC2 security groups. The methods he describes in that post are examples of detective controls, which can help you determine when changes are made to security controls on your AWS resources.

In this post, I take that approach a step further by introducing an example of a responsive control, which you can use to automatically respond to a detected security event by applying a chosen security mitigation. I demonstrate a solution that continuously monitors changes made to an Amazon VPC security group, and if a new ingress rule (the same as an inbound rule) is added to that security group, the solution removes the rule and then sends you a notification after the changes have been automatically reverted.

The scenario

Let’s say you want to reduce your infrastructure complexity by replacing your Secure Shell (SSH) bastion hosts with Amazon EC2 Systems Manager (SSM). SSM allows you to run commands on your hosts remotely, removing the need to manage bastion hosts or rely on SSH to execute commands. To support this objective, you must prevent your staff members from opening SSH ports to your web server’s Amazon VPC security group. If one of your staff members does modify the VPC security group to allow SSH access, you want the change to be automatically reverted and then receive a notification that the change to the security group was automatically reverted. If you are not yet familiar with security groups, see Security Groups for Your VPC before reading the rest of this post.

Solution overview

This solution begins with a directive control to mandate that no web server should be accessible using SSH. The directive control is enforced using a preventive control, which is implemented using a security group rule that prevents ingress from port 22 (typically used for SSH). The detective control is a “listener” that identifies any changes made to your security group. Finally, the responsive control reverts changes made to the security group and then sends a notification of this security mitigation.

The detective control, in this case, is an Amazon CloudWatch event that detects changes to your security group and triggers the responsive control, which in this case is an AWS Lambda function. I use AWS CloudFormation to simplify the deployment.

The following diagram shows the architecture of this solution.

Solution architecture diagram

Here is how the process works:

  1. Someone on your staff adds a new ingress rule to your security group.
  2. A CloudWatch event that continually monitors changes to your security groups detects the new ingress rule and invokes a designated Lambda function (with Lambda, you can run code without provisioning or managing servers).
  3. The Lambda function evaluates the event to determine whether you are monitoring this security group and reverts the new security group ingress rule.
  4. Finally, the Lambda function sends you an email to let you know what the change was, who made it, and that the change was reverted.

Deploy the solution by using CloudFormation

In this section, you will click the Launch Stack button shown below to launch the CloudFormation stack and deploy the solution.

Prerequisites

  • You must have AWS CloudTrail already enabled in the AWS Region where you will be deploying the solution. CloudTrail lets you log, continuously monitor, and retain events related to API calls across your AWS infrastructure. See Getting Started with CloudTrail for more information.
  • You must have a default VPC in the region in which you will be deploying the solution. AWS accounts have one default VPC per AWS Region. If you’ve deleted your VPC, see Creating a Default VPC to recreate it.

Resources that this solution creates

When you launch the CloudFormation stack, it creates the following resources:

  • A sample VPC security group in your default VPC, which is used as the target for reverting ingress rule changes.
  • A CloudWatch event rule that monitors changes to your AWS infrastructure.
  • A Lambda function that reverts changes to the security group and sends you email notifications.
  • A permission that allows CloudWatch to invoke your Lambda function.
  • An AWS Identity and Access Management (IAM) role with limited privileges that the Lambda function assumes when it is executed.
  • An Amazon SNS topic to which the Lambda function publishes notifications.

Launch the CloudFormation stack

The link in this section uses the us-east-1 Region (the US East [N. Virginia] Region). Change the region if you want to use this solution in a different region. See Selecting a Region for more information about changing the region.

To deploy the solution, click the following Launch Stack button to launch the stack. After you click the button, you must sign in to the AWS Management Console if you have not already done so.

Click this "Launch Stack" button

Then:

  1. Choose Next to proceed to the Specify Details page.
  2. On the Specify Details page, type your email address in the Send notifications to box. This is the email address to which change notifications will be sent. (After the stack is launched, you will receive a confirmation email that you must accept before you can receive notifications.)
  3. Choose Next until you get to the Review page, and then choose the I acknowledge that AWS CloudFormation might create IAM resources check box. This confirms that you are aware that the CloudFormation template includes an IAM resource.
  4. Choose Create. CloudFormation displays the stack status, CREATE_COMPLETE, when the stack has launched completely, which should take less than two minutes.Screenshot showing that the stack has launched completely

Testing the solution

  1. Check your email for the SNS confirmation email. You must confirm this subscription to receive future notification emails. If you don’t confirm the subscription, your security group ingress rules still will be automatically reverted, but you will not receive notification emails.
  2. Navigate to the EC2 console and choose Security Groups in the navigation pane.
  3. Choose the security group created by CloudFormation. Its name is Web Server Security Group.
  4. Choose the Inbound tab in the bottom pane of the page. Note that only one rule allows HTTPS ingress on port 443 from 0.0.0.0/0 (from anywhere).Screenshot showing the "Inbound" tab in the bottom pane of the page
  1. Choose Edit to display the Edit inbound rules dialog box (again, an inbound rule and an ingress rule are the same thing).
  2. Choose Add Rule.
  3. Choose SSH from the Type drop-down list.
  4. Choose My IP from the Source drop-down list. Your IP address is populated for you. By adding this rule, you are simulating one of your staff members violating your organization’s policy (in this blog post’s hypothetical example) against allowing SSH access to your EC2 servers. You are testing the solution created when you launched the CloudFormation stack in the previous section. The solution should remove this newly created SSH rule automatically.
    Screenshot of editing inbound rules
  5. Choose Save.

Adding this rule creates an EC2 AuthorizeSecurityGroupIngress service event, which triggers the Lambda function created in the CloudFormation stack. After a few moments, choose the refresh button ( The "refresh" icon ) to see that the new SSH ingress rule that you just created has been removed by the solution you deployed earlier with the CloudFormation stack. If the rule is still there, wait a few more moments and choose the refresh button again.

Screenshot of refreshing the page to see that the SSH ingress rule has been removed

You should also receive an email to notify you that the ingress rule was added and subsequently reverted.

Screenshot of the notification email

Cleaning up

If you want to remove the resources created by this CloudFormation stack, you can delete the CloudFormation stack:

  1. Navigate to the CloudFormation console.
  2. Choose the stack that you created earlier.
  3. Choose the Actions drop-down list.
  4. Choose Delete Stack, and then choose Yes, Delete.
  5. CloudFormation will display a status of DELETE_IN_PROGRESS while it deletes the resources created with the stack. After a few moments, the stack should no longer appear in the list of completed stacks.
    Screenshot of stack "DELETE_IN_PROGRESS"

Other applications of this solution

I have shown one way to use multiple AWS services to help continuously ensure that your security controls haven’t deviated from your security baseline. However, you also could use the CIS Amazon Web Services Foundations Benchmarks, for example, to establish a governance baseline across your AWS accounts and then use the principles in this blog post to automatically mitigate changes to that baseline.

To scale this solution, you can create a framework that uses resource tags to identify particular resources for monitoring. You also can use a consolidated monitoring approach by using cross-account event delivery. See Sending and Receiving Events Between AWS Accounts for more information. You also can extend the principle of automatic mitigation to detect and revert changes to other resources such as IAM policies and Amazon S3 bucket policies.

Summary

In this blog post, I demonstrated how you can automatically revert changes to a VPC security group and have a notification sent about the changes. You can use this solution in your own AWS accounts to enforce your security requirements continuously.

If you have comments about this blog post or other ideas for ways to use this solution, submit a comment in the “Comments” section below. If you have implementation questions, start a new thread in the EC2 forum or contact AWS Support.

– Rob

Things Go Better With Step Functions

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/things-go-better-with-step-functions/

I often give presentations on Amazon’s culture of innovation, and start out with a slide that features a revealing quote from Amazon founder Jeff Bezos:

I love to sit down with our customers and to learn how we have empowered their creativity and to pursue their dreams. Earlier this year I chatted with Patrick from The Coca-Cola Company in order to learn how they used AWS Step Functions and other AWS services to support the Coke.com Vending Pass program. This program includes drink rewards earned by purchasing products at vending machines equipped to support mobile payments using the Coca-Cola Vending Pass. Participants swipe their NFC-enabled phones to complete an Apple Pay or Android Pay purchase, identifying themselves to the vending machine and earning credit towards future free vending purchases in the process

After the swipe, a combination of SNS topics and AWS Lambda functions initiated a pair of calls to some existing backend code to count the vending points and update the participant’s record. Unfortunately, the backend code was slow to react and had some timing dependencies, leading to missing updates that had the potential to confuse Vending Pass participants. The initial solution to this issue was very simple: modify the Lambda code to include a 90 second delay between the two calls. This solved the problem, but ate up process time for no good reason (billing for the use of Lambda functions is based on the duration of the request, in 100 ms intervals).

In order to make their solution more cost-effective, the team turned to AWS Step Functions, building a very simple state machine. As I wrote in an earlier blog post, Step Functions coordinate the components of distributed applications and microservices at scale, using visual workflows that are easy to build.

Coke built a very simple state machine to simplify their business logic and reduce their costs. Yours can be equally simple, or they can make use of other Step Function features such as sequential and parallel execution and the ability to make decisions and choose alternate states. The Coke state machine looks like this:

The FirstState and the SecondState states (Task states) call the appropriate Lambda functions while Step Functions implements the 90 second delay (a Wait state). This modification simplified their logic and reduced their costs. Here’s how it all fits together:

 

What’s Next
This initial success led them to take a closer look at serverless computing and to consider using it for other projects. Patrick told me that they have already seen a boost in productivity and developer happiness. Developers no longer need to wait for servers to be provisioned, and can now (as Jeff says) unleash their creativity and pursue their dreams. They expect to use Step Functions to improve the scalability, functionality, and reliability of their applications, going far beyond the initial use for the Coca-Cola Vending Pass. For example, Coke has built a serverless solution for publishing nutrition information to their food service partners using Lambda, Step Functions, and API Gateway.

Patrick and his team are now experimenting with machine learning and artificial intelligence. They built a prototype application to analyze a stream of photos from Instagram and extract trends in tastes and flavors. The application (built as a quick, one-day prototype) made use of Lambda, Amazon DynamoDB, Amazon API Gateway, and Amazon Rekognition and was, in Patrick’s words, a “big win and an enabler.”

In order to build serverless applications even more quickly, the development team has created an internal CI/CD reference architecture that builds on the Serverless Application Framework. The architecture includes a guided tour of Serverless and some boilerplate code to access internal services and assets. Patrick told me that this model allows them to easily scale promising projects from “a guy with a computer” to an entire development team.

Patrick will be on stage at AWS re:Invent next to my colleague Tim Bray. To meet them in person, be sure to attend SRV306 – State Machines in the Wild! How Customers Use AWS Step Functions.

Jeff;

Porn Copyright Trolls Terrify 60-Year-Old But Age Shouldn’t Matter

Post Syndicated from Andy original https://torrentfreak.com/porn-copyright-trolls-terrify-60-year-old-but-age-shouldnt-matter-171002/

Of all the anti-piracy tactics deployed over the years, the one that has proven most controversial is so-called copyright-trolling.

The idea is that rather than take content down, copyright holders make use of its online availability to watch people who are sharing that material while gathering their IP addresses.

From there it’s possible to file a lawsuit to obtain that person’s identity but these days they’re more likely to short-cut the system, by asking ISPs to forward notices with cash settlement demands attached.

When subscribers receive these demands, many feel compelled to pay. However, copyright trolls are cunning beasts, and while they initially ask for payment for a single download, they very often have several other claims up their sleeves. Once people have paid one, others come out of the woodwork.

That’s what appears to have happened to a 60-year-old Canadian woman called ‘Debra’. In an email sent via her ISP, she was contacted by local anti-piracy outfit Canipre, who accused her of downloading and sharing porn. With threats that she could be ‘fined’ up to CAD$20,000 for her alleged actions, she paid the company $257.40, despite claiming her innocence.

Of course, at this point the company knew her name and address and this week the company contacted her again, accusing her of another five illegal porn downloads alongside demands for more cash.

“I’m not sleeping,” Debra told CBC. “I have depression already and this is sending me over the edge.”

If the public weren’t so fatigued by this kind of story, people in Debra’s position might get more attention and more help, but they don’t. To be absolutely brutal, the only reason why this story is getting press is due to a few factors.

Firstly, we’re talking here about a woman accused of downloading porn. While far from impossible, it’s at least statistically less likely than if it was a man. Two, Debra is 60-years-old. That doesn’t preclude her from being Internet savvy but it does tip the odds in her favor somewhat. Thirdly, Debra suffers from depression and claims she didn’t carry out those downloads.

On the balance of probabilities, on which these cases live or die, she sounds believable. Had she been a 20-year-old man, however, few people would believe ‘him’ and this is exactly the environment companies like Canipre, Rightscorp, and similar companies bank on.

Debra says she won’t pay the additional fines but Canipre is adamant that someone in her house pirated the porn, despite her husband not being savvy enough to download. The important part here is that Debra says she did not commit an offense and with all the technology in the world, Canpire cannot prove that she did.

“How long is this going to terrorize me?” Debra says. “I’m a good Canadian citizen.”

But Debra isn’t on her own and she’s positively spritely compared to Christine McMillan, who last year at the age of 86-years-old was accused of illegally downloading zombie game Metro 2033. Again, those accusations came from Canipre and while the case eventually went quiet, you can safely bet the company backed off.

So who is to blame for situations like Debra’s and Christine’s? It’s a difficult question.

Clearly, copyright holders feel they’re within their rights to try and claw back compensation for their perceived losses but they already have a legal system available to them, if they want to use it. Instead, however, in Canada they’re abusing the so-called notice-and-notice system, which requires ISPs to forward infringement notices from copyright holders to subscribers.

The government knows there is a problem. Law professor Michael Geist previously obtained a government report, which expresses concern over the practice. Its summary is shown below.

Advice summary

While the notice-and-notice regime requires ISPs to forward educational copyright infringement notices, most ISPs complain that companies like Canipre add on cash settlement demands.

“Internet intermediaries complain…that the current legislative framework does not expressly prohibit this practice and that they feel compelled to forward on such notices to their subscribers when they receive them from copyright holders,” recent advice to the Minister of Innovation, Science and Economic Development reads.

That being said, there’s nothing stopping ISPs from passing on the educational notices as required by law but insisting that all demands for cash payments are removed. It’s a position that could even get support from the government, if enough pressure was applied.

“The sending of such notices could lead to abuses, given that consumers may be pressured into making payments even in situations where they have not engaged in any acts that violate copyright laws,” government advice notes.

Given the growing problem, it appears that ISPs have the power here so maybe it’s time they protected their customers. In the meantime, consumers have responsibilities too, not only by refraining from infringing copyright, but by becoming informed of their rights.

“[T]here is no legal obligation to pay any settlement offered by a copyright owner, and the regime does not impose any obligations on a subscriber who receives a notice, including no obligation to contact the copyright owner or the Internet intermediary,” government advice notes.

Hopefully, in future, people won’t have to be old or ill to receive sympathy for being wrongly accused and threatened in their own homes. But until then, people should pressure their ISPs to do more while staying informed.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Creating a Cost-Efficient Amazon ECS Cluster for Scheduled Tasks

Post Syndicated from Nathan Taber original https://aws.amazon.com/blogs/compute/creating-a-cost-efficient-amazon-ecs-cluster-for-scheduled-tasks/

Madhuri Peri
Sr. DevOps Consultant

When you use Amazon Relational Database Service (Amazon RDS), depending on the logging levels on the RDS instances and the volume of transactions, you could generate a lot of log data. To ensure that everything is running smoothly, many customers search for log error patterns using different log aggregation and visualization systems, such as Amazon Elasticsearch Service, Splunk, or other tool of their choice. A module needs to periodically retrieve the RDS logs using the SDK, and then send them to Amazon S3. From there, you can stream them to your log aggregation tool.

One option is writing an AWS Lambda function to retrieve the log files. However, because of the time that this function needs to execute, depending on the volume of log files retrieved and transferred, it is possible that Lambda could time out on many instances.  Another approach is launching an Amazon EC2 instance that runs this job periodically. However, this would require you to run an EC2 instance continuously, not an optimal use of time or money.

Using the new Amazon CloudWatch integration with Amazon EC2 Container Service, you can trigger this job to run in a container on an existing Amazon ECS cluster. Additionally, this would allow you to improve costs by running containers on a fleet of Spot Instances.

In this post, I will show you how to use the new scheduled tasks (cron) feature in Amazon ECS and launch tasks using CloudWatch events, while leveraging Spot Fleet to maximize availability and cost optimization for containerized workloads.

Architecture

The following diagram shows how the various components described schedule a task that retrieves log files from Amazon RDS database instances, and deposits the logs into an S3 bucket.

Amazon ECS cluster container instances are using Spot Fleet, which is a perfect match for the workload that needs to run when it can. This improves cluster costs.

The task definition defines which Docker image to retrieve from the Amazon EC2 Container Registry (Amazon ECR) repository and run on the Amazon ECS cluster.

The container image has Python code functions to make AWS API calls using boto3. It iterates over the RDS database instances, retrieves the logs, and deposits them in the S3 bucket. Many customers choose these logs to be delivered to their centralized log-store. CloudWatch Events defines the schedule for when the container task has to be launched.

Walkthrough

To provide the basic framework, we have built an AWS CloudFormation template that creates the following resources:

  • Amazon ECR repository for storing the Docker image to be used in the task definition
  • S3 bucket that holds the transferred logs
  • Task definition, with image name and S3 bucket as environment variables provided via input parameter
  • CloudWatch Events rule
  • Amazon ECS cluster
  • Amazon ECS container instances using Spot Fleet
  • IAM roles required for the container instance profiles

Before you begin

Ensure that Git, Docker, and the AWS CLI are installed on your computer.

In your AWS account, instantiate one Amazon Aurora instance using the console. For more information, see Creating an Amazon Aurora DB Cluster.

Implementation Steps

  1. Clone the code from GitHub that performs RDS API calls to retrieve the log files.
    git clone https://github.com/awslabs/aws-ecs-scheduled-tasks.git
  2. Build and tag the image.
    cd aws-ecs-scheduled-tasks/container-code/src && ls

    Dockerfile		rdslogsshipper.py	requirements.txt

    docker build -t rdslogsshipper .

    Sending build context to Docker daemon 9.728 kB
    Step 1 : FROM python:3
     ---> 41397f4f2887
    Step 2 : WORKDIR /usr/src/app
     ---> Using cache
     ---> 59299c020e7e
    Step 3 : COPY requirements.txt ./
     ---> 8c017e931c3b
    Removing intermediate container df09e1bed9f2
    Step 4 : COPY rdslogsshipper.py /usr/src/app
     ---> 099a49ca4325
    Removing intermediate container 1b1da24a6699
    Step 5 : RUN pip install --no-cache-dir -r requirements.txt
     ---> Running in 3ed98b30901d
    Collecting boto3 (from -r requirements.txt (line 1))
      Downloading boto3-1.4.6-py2.py3-none-any.whl (128kB)
    Collecting botocore (from -r requirements.txt (line 2))
      Downloading botocore-1.6.7-py2.py3-none-any.whl (3.6MB)
    Collecting s3transfer<0.2.0,>=0.1.10 (from boto3->-r requirements.txt (line 1))
      Downloading s3transfer-0.1.10-py2.py3-none-any.whl (54kB)
    Collecting jmespath<1.0.0,>=0.7.1 (from boto3->-r requirements.txt (line 1))
      Downloading jmespath-0.9.3-py2.py3-none-any.whl
    Collecting python-dateutil<3.0.0,>=2.1 (from botocore->-r requirements.txt (line 2))
      Downloading python_dateutil-2.6.1-py2.py3-none-any.whl (194kB)
    Collecting docutils>=0.10 (from botocore->-r requirements.txt (line 2))
      Downloading docutils-0.14-py3-none-any.whl (543kB)
    Collecting six>=1.5 (from python-dateutil<3.0.0,>=2.1->botocore->-r requirements.txt (line 2))
      Downloading six-1.10.0-py2.py3-none-any.whl
    Installing collected packages: six, python-dateutil, docutils, jmespath, botocore, s3transfer, boto3
    Successfully installed boto3-1.4.6 botocore-1.6.7 docutils-0.14 jmespath-0.9.3 python-dateutil-2.6.1 s3transfer-0.1.10 six-1.10.0
     ---> f892d3cb7383
    Removing intermediate container 3ed98b30901d
    Step 6 : COPY . .
     ---> ea7550c04fea
    Removing intermediate container b558b3ebd406
    Successfully built ea7550c04fea
  3. Run the CloudFormation stack and get the names for the Amazon ECR repo and S3 bucket. In the stack, choose Outputs.
  4. Open the ECS console and choose Repositories. The rdslogs repo has been created. Choose View Push Commands and follow the instructions to connect to the repository and push the image for the code that you built in Step 2. The screenshot shows the final result:
  5. Associate the CloudWatch scheduled task with the created Amazon ECS Task Definition, using a new CloudWatch event rule that is scheduled to run at intervals. The following rule is scheduled to run every 15 minutes:
    aws --profile default --region us-west-2 events put-rule --name demo-ecs-task-rule  --schedule-expression "rate(15 minutes)"

    {
        "RuleArn": "arn:aws:events:us-west-2:12345678901:rule/demo-ecs-task-rule"
    }
  6. CloudWatch requires IAM permissions to place a task on the Amazon ECS cluster when the CloudWatch event rule is executed, in addition to an IAM role that can be assumed by CloudWatch Events. This is done in three steps:
    1. Create the IAM role to be assumed by CloudWatch.
      aws --profile default --region us-west-2 iam create-role --role-name Test-Role --assume-role-policy-document file://event-role.json

      {
          "Role": {
              "AssumeRolePolicyDocument": {
                  "Version": "2012-10-17", 
                  "Statement": [
                      {
                          "Action": "sts:AssumeRole", 
                          "Effect": "Allow", 
                          "Principal": {
                              "Service": "events.amazonaws.com"
                          }
                      }
                  ]
              }, 
              "RoleId": "AROAIRYYLDCVZCUACT7FS", 
              "CreateDate": "2017-07-14T22:44:52.627Z", 
              "RoleName": "Test-Role", 
              "Path": "/", 
              "Arn": "arn:aws:iam::12345678901:role/Test-Role"
          }
      }

      The following is an example of the event-role.json file used earlier:

      {
          "Version": "2012-10-17",
          "Statement": [
              {
                  "Effect": "Allow",
                  "Principal": {
                    "Service": "events.amazonaws.com"
                  },
                  "Action": "sts:AssumeRole"
              }
          ]
      }
    2. Create the IAM policy defining the ECS cluster and task definition. You need to get these values from the CloudFormation outputs and resources.
      aws --profile default --region us-west-2 iam create-policy --policy-name test-policy --policy-document file://event-policy.json

      {
          "Policy": {
              "PolicyName": "test-policy", 
              "CreateDate": "2017-07-14T22:51:20.293Z", 
              "AttachmentCount": 0, 
              "IsAttachable": true, 
              "PolicyId": "ANPAI7XDIQOLTBUMDWGJW", 
              "DefaultVersionId": "v1", 
              "Path": "/", 
              "Arn": "arn:aws:iam::123455678901:policy/test-policy", 
              "UpdateDate": "2017-07-14T22:51:20.293Z"
          }
      }

      The following is an example of the event-policy.json file used earlier:

      {
          "Version": "2012-10-17",
          "Statement": [
            {
                "Effect": "Allow",
                "Action": [
                    "ecs:RunTask"
                ],
                "Resource": [
                    "arn:aws:ecs:*::task-definition/"
                ],
                "Condition": {
                    "ArnLike": {
                        "ecs:cluster": "arn:aws:ecs:*::cluster/"
                    }
                }
            }
          ]
      }
    3. Attach the IAM policy to the role.
      aws --profile default --region us-west-2 iam attach-role-policy --role-name Test-Role --policy-arn arn:aws:iam::1234567890:policy/test-policy
  7. Associate the CloudWatch rule created earlier to place the task on the ECS cluster. The following command shows an example. Replace the AWS account ID and region with your settings.
    aws events put-targets --rule demo-ecs-task-rule --targets "Id"="1","Arn"="arn:aws:ecs:us-west-2:12345678901:cluster/test-cwe-blog-ecsCluster-15HJFWCH4SP67","EcsParameters"={"TaskDefinitionArn"="arn:aws:ecs:us-west-2:12345678901:task-definition/test-cwe-blog-taskdef:8"},"RoleArn"="arn:aws:iam::12345678901:role/Test-Role"

    {
        "FailedEntries": [], 
        "FailedEntryCount": 0
    }

That’s it. The logs now run based on the defined schedule.

To test this, open the Amazon ECS console, select the Amazon ECS cluster that you created, and then choose Tasks, Run New Task. Select the task definition created by the CloudFormation template, and the cluster should be selected automatically. As this runs, the S3 bucket should be populated with the RDS logs for the instance.

Conclusion

In this post, you’ve seen that the choices for workloads that need to run at a scheduled time include Lambda with CloudWatch events or EC2 with cron. However, sometimes the job could run outside of Lambda execution time limits or be not cost-effective for an EC2 instance.

In such cases, you can schedule the tasks on an ECS cluster using CloudWatch rules. In addition, you can use a Spot Fleet cluster with Amazon ECS for cost-conscious workloads that do not have hard requirements on execution time or instance availability in the Spot Fleet. For more information, see Powering your Amazon ECS Cluster with Amazon EC2 Spot Instances and Scheduled Events.

If you have questions or suggestions, please comment below.