Tag Archives: phones

EncroChat Hacked by Police

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2020/07/hacked_by_polic.html

French police hacked EncroChat secure phones, which are widely used by criminals:

Encrochat’s phones are essentially modified Android devices, with some models using the “BQ Aquaris X2,” an Android handset released in 2018 by a Spanish electronics company, according to the leaked documents. Encrochat took the base unit, installed its own encrypted messaging programs which route messages through the firm’s own servers, and even physically removed the GPS, camera, and microphone functionality from the phone. Encrochat’s phones also had a feature that would quickly wipe the device if the user entered a PIN, and ran two operating systems side-by-side. If a user wanted the device to appear innocuous, they booted into normal Android. If they wanted to return to their sensitive chats, they switched over to the Encrochat system. The company sold the phones on a subscription based model, costing thousands of dollars a year per device.

This allowed them and others to investigate and arrest many:

Unbeknownst to Mark, or the tens of thousands of other alleged Encrochat users, their messages weren’t really secure. French authorities had penetrated the Encrochat network, leveraged that access to install a technical tool in what appears to be a mass hacking operation, and had been quietly reading the users’ communications for months. Investigators then shared those messages with agencies around Europe.

Only now is the astonishing scale of the operation coming into focus: It represents one of the largest law enforcement infiltrations of a communications network predominantly used by criminals ever, with Encrochat users spreading beyond Europe to the Middle East and elsewhere. French, Dutch, and other European agencies monitored and investigated “more than a hundred million encrypted messages” sent between Encrochat users in real time, leading to arrests in the UK, Norway, Sweden, France, and the Netherlands, a team of international law enforcement agencies announced Thursday.

EncroChat learned about the hack, but didn’t know who was behind it.

Going into full-on emergency mode, Encrochat sent a message to its users informing them of the ongoing attack. The company also informed its SIM provider, Dutch telecommunications firm KPN, which then blocked connections to the malicious servers, the associate claimed. Encrochat cut its own SIM service; it had an update scheduled to push to the phones, but it couldn’t guarantee whether that update itself wouldn’t be carrying malware too. That, and maybe KPN was working with the authorities, Encrochat’s statement suggested (KPN declined to comment). Shortly after Encrochat restored SIM service, KPN removed the firewall, allowing the hackers’ servers to communicate with the phones once again. Encrochat was trapped.

Encrochat decided to shut itself down entirely.

Lots of details about the hack in the article. Well worth reading in full.

The UK National Crime Agency called it Operation Venetic: “46 arrests, and £54m criminal cash, 77 firearms and over two tonnes of drugs seized so far.”

Many more news articles. EncroChat website. Slashdot thread. Hacker News threads.

Wallpaper that Crashes Android Phones

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2020/06/wallpaper_that_.html

This is interesting:

The image, a seemingly innocuous sunset (or dawn) sky above placid waters, may be viewed without harm. But if loaded as wallpaper, the phone will crash.

The fault does not appear to have been maliciously created. Rather, according to developers following Ice Universe’s Twitter thread, the problem lies in the way color space is handled by the Android OS.

The image was created using the RGB color space to display image hues, while Android 10 uses the sRGB color space protocol, according to 9to5Google contributor Dylan Roussel. When the Android phone cannot properly convert the Adobe RGB image, it crashes.

ToTok Is an Emirati Spying Tool

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/12/totok_is_an_emi.html

The smartphone messaging app ToTok is actually an Emirati spying tool:

But the service, ToTok, is actually a spying tool, according to American officials familiar with a classified intelligence assessment and a New York Times investigation into the app and its developers. It is used by the government of the United Arab Emirates to try to track every conversation, movement, relationship, appointment, sound and image of those who install it on their phones.

ToTok, introduced only months ago, was downloaded millions of times from the Apple and Google app stores by users throughout the Middle East, Europe, Asia, Africa and North America. While the majority of its users are in the Emirates, ToTok surged to become one of the most downloaded social apps in the United States last week, according to app rankings and App Annie, a research firm.

Apple and Google have removed it from their app stores. If you have it on your phone, delete it now.

Spanish Soccer League App Spies on Fans

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/06/spanish_soccer_.html

The Spanish Soccer League’s smartphone app spies on fans in order to find bars that are illegally streaming its games. The app listens with the microphone for the broadcasts, and then uses geolocation to figure out where the phone is.

The Spanish data protection agency has ordered the league to stop doing this. Not because it’s creepy spying, but because the terms of service — which no one reads anyway — weren’t clear.

Backdoor Built into Android Firmware

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/06/backdoor_built_.html

In 2017, some Android phones came with a backdoor pre-installed:

Criminals in 2017 managed to get an advanced backdoor preinstalled on Android devices before they left the factories of manufacturers, Google researchers confirmed on Thursday.

Triada first came to light in 2016 in articles published by Kaspersky here and here, the first of which said the malware was “one of the most advanced mobile Trojans” the security firm’s analysts had ever encountered. Once installed, Triada’s chief purpose was to install apps that could be used to send spam and display ads. It employed an impressive kit of tools, including rooting exploits that bypassed security protections built into Android and the means to modify the Android OS’ all-powerful Zygote process. That meant the malware could directly tamper with every installed app. Triada also connected to no fewer than 17 command and control servers.

In July 2017, security firm Dr. Web reported that its researchers had found Triada built into the firmware of several Android devices, including the Leagoo M5 Plus, Leagoo M8, Nomu S10, and Nomu S20. The attackers used the backdoor to surreptitiously download and install modules. Because the backdoor was embedded into one of the OS libraries and located in the system section, it couldn’t be deleted using standard methods, the report said.

On Thursday, Google confirmed the Dr. Web report, although it stopped short of naming the manufacturers. Thursday’s report also said the supply chain attack was pulled off by one or more partners the manufacturers used in preparing the final firmware image used in the affected devices.

This is a supply chain attack. It seems to be the work of criminals, but it could just as easily have been a nation-state.

Fingerprinting iPhones

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/05/fingerprinting_7.html

This clever attack allows someone to uniquely identify a phone when you visit a website, based on data from the accelerometer, gyroscope, and magnetometer sensors.

We have developed a new type of fingerprinting attack, the calibration fingerprinting attack. Our attack uses data gathered from the accelerometer, gyroscope and magnetometer sensors found in smartphones to construct a globally unique fingerprint. Overall, our attack has the following advantages:

  • The attack can be launched by any website you visit or any app you use on a vulnerable device without requiring any explicit confirmation or consent from you.
  • The attack takes less than one second to generate a fingerprint.
  • The attack can generate a globally unique fingerprint for iOS devices.
  • The calibration fingerprint never changes, even after a factory reset.
  • The attack provides an effective means to track you as you browse across the web and move between apps on your phone.

* Following our disclosure, Apple has patched this vulnerability in iOS 12.2.

Research paper.

Recovering Smartphone Typing from Microphone Sounds

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/04/recovering_smar.html

Yet another side-channel attack on smartphones: “Hearing your touch: A new acoustic side channel on smartphones,” by Ilia Shumailov, Laurent Simon, Jeff Yan, and Ross Anderson.

Abstract: We present the first acoustic side-channel attack that recovers what users type on the virtual keyboard of their touch-screen smartphone or tablet. When a user taps the screen with a finger, the tap generates a sound wave that propagates on the screen surface and in the air. We found the device’s microphone(s) can recover this wave and “hear” the finger’s touch, and the wave’s distortions are characteristic of the tap’s location on the screen. Hence, by recording audio through the built-in microphone(s), a malicious app can infer text as the user enters it on their device. We evaluate the effectiveness of the attack with 45 participants in a real-world environment on an Android tablet and an Android smartphone. For the tablet, we recover 61% of 200 4-digit PIN-codes within 20 attempts, even if the model is not trained with the victim’s data. For the smartphone, we recover 9 words of size 7-13 letters with 50 attempts in a common side-channel attack benchmark. Our results suggest that it not always sufficient to rely on isolation mechanisms such as TrustZone to protect user input. We propose and discuss hardware, operating-system and application-level mechanisms to block this attack more effectively. Mobile devices may need a richer capability model, a more user-friendly notification system for sensor usage and a more thorough evaluation of the information leaked by the underlying hardware.

Blog post.

Clever Smartphone Malware Concealment Technique

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/01/clever_smartpho.html

This is clever:

Malicious apps hosted in the Google Play market are trying a clever trick to avoid detection — they monitor the motion-sensor input of an infected device before installing a powerful banking trojan to make sure it doesn’t load on emulators researchers use to detect attacks.

The thinking behind the monitoring is that sensors in real end-user devices will record motion as people use them. By contrast, emulators used by security researchers­ — and possibly Google employees screening apps submitted to Play­ — are less likely to use sensors. Two Google Play apps recently caught dropping the Anubis banking malware on infected devices would activate the payload only when motion was detected first. Otherwise, the trojan would remain dormant.

Cell Phone Security and Heads of State

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/10/cell_phone_secu_1.html

Earlier this week, the New York Times reported that the Russians and the Chinese were eavesdropping on President Donald Trump’s personal cell phone and using the information gleaned to better influence his behavior. This should surprise no one. Security experts have been talking about the potential security vulnerabilities in Trump’s cell phone use since he became president. And President Barack Obama bristled at — but acquiesced to — the security rules prohibiting him from using a “regular” cell phone throughout his presidency.

Three broader questions obviously emerge from the story. Who else is listening in on Trump’s cell phone calls? What about the cell phones of other world leaders and senior government officials? And — most personal of all — what about my cell phone calls?

There are two basic places to eavesdrop on pretty much any communications system: at the end points and during transmission. This means that a cell phone attacker can either compromise one of the two phones or eavesdrop on the cellular network. Both approaches have their benefits and drawbacks. The NSA seems to prefer bulk eavesdropping on the planet’s major communications links and then picking out individuals of interest. In 2016, WikiLeaks published a series of classified documents listing “target selectors”: phone numbers the NSA searches for and records. These included senior government officials of Germany — among them Chancellor Angela Merkel — France, Japan, and other countries.

Other countries don’t have the same worldwide reach that the NSA has, and must use other methods to intercept cell phone calls. We don’t know details of which countries do what, but we know a lot about the vulnerabilities. Insecurities in the phone network itself are so easily exploited that 60 Minutes eavesdropped on a US congressman’s phone live on camera in 2016. Back in 2005, unknown attackers targeted the cell phones of many Greek politicians by hacking the country’s phone network and turning on an already-installed eavesdropping capability. The NSA even implanted eavesdropping capabilities in networking equipment destined for the Syrian Telephone Company.

Alternatively, an attacker could intercept the radio signals between a cell phone and a tower. Encryption ranges from very weak to possibly strong, depending on which flavor the system uses. Don’t think the attacker has to put his eavesdropping antenna on the White House lawn; the Russian Embassy is close enough.

The other way to eavesdrop on a cell phone is by hacking the phone itself. This is the technique favored by countries with less sophisticated intelligence capabilities. In 2017, the public-interest forensics group Citizen Lab uncovered an extensive eavesdropping campaign against Mexican lawyers, journalists, and opposition politicians — presumably run by the government. Just last month, the same group found eavesdropping capabilities in products from the Israeli cyberweapons manufacturer NSO Group operating in Algeria, Bangladesh, Greece, India, Kazakhstan, Latvia, South Africa — 45 countries in all.

These attacks generally involve downloading malware onto a smartphone that then records calls, text messages, and other user activities, and forwards them to some central controller. Here, it matters which phone is being targeted. iPhones are harder to hack, which is reflected in the prices companies pay for new exploit capabilities. In 2016, the vulnerability broker Zerodium offered $1.5 million for an unknown iOS exploit and only $200 for a similar Android exploit. Earlier this year, a new Dubai start-up announced even higher prices. These vulnerabilities are resold to governments and cyberweapons manufacturers.

Some of the price difference is due to the ways the two operating systems are designed and used. Apple has much more control over the software on an iPhone than Google does on an Android phone. Also, Android phones are generally designed, built, and sold by third parties, which means they are much less likely to get timely security updates. This is changing. Google now has its own phone — Pixel — that gets security updates quickly and regularly, and Google is now trying to pressure Android-phone manufacturers to update their phones more regularly. (President Trump reportedly uses an iPhone.)

Another way to hack a cell phone is to install a backdoor during the design process. This is a real fear; earlier this year, US intelligence officials warned that phones made by the Chinese companies ZTE and Huawei might be compromised by that government, and the Pentagon ordered stores on military bases to stop selling them. This is why China’s recommendation that if Trump wanted security, he should use a Huawei phone, was an amusing bit of trolling.

Given the wealth of insecurities and the array of eavesdropping techniques, it’s safe to say that lots of countries are spying on the phones of both foreign officials and their own citizens. Many of these techniques are within the capabilities of criminal groups, terrorist organizations, and hackers. If I were guessing, I’d say that the major international powers like China and Russia are using the more passive interception techniques to spy on Trump, and that the smaller countries are too scared of getting caught to try to plant malware on his phone.

It’s safe to say that President Trump is not the only one being targeted; so are members of Congress, judges, and other senior officials — especially because no one is trying to tell any of them to stop using their cell phones (although cell phones still are not allowed on either the House or the Senate floor).

As for the rest of us, it depends on how interesting we are. It’s easy to imagine a criminal group eavesdropping on a CEO’s phone to gain an advantage in the stock market, or a country doing the same thing for an advantage in a trade negotiation. We’ve seen governments use these tools against dissidents, reporters, and other political enemies. The Chinese and Russian governments are already targeting the US power grid; it makes sense for them to target the phones of those in charge of that grid.

Unfortunately, there’s not much you can do to improve the security of your cell phone. Unlike computer networks, for which you can buy antivirus software, network firewalls, and the like, your phone is largely controlled by others. You’re at the mercy of the company that makes your phone, the company that provides your cellular service, and the communications protocols developed when none of this was a problem. If one of those companies doesn’t want to bother with security, you’re vulnerable.

This is why the current debate about phone privacy, with the FBI on one side wanting the ability to eavesdrop on communications and unlock devices, and users on the other side wanting secure devices, is so important. Yes, there are security benefits to the FBI being able to use this information to help solve crimes, but there are far greater benefits to the phones and networks being so secure that all the potential eavesdroppers — including the FBI — can’t access them. We can give law enforcement other forensics tools, but we must keep foreign governments, criminal groups, terrorists, and everyone else out of everyone’s phones. The president may be taking heat for his love of his insecure phone, but each of us is using just as insecure a phone. And for a surprising number of us, making those phones more private is a matter of national security.

This essay previously appeared in the Atlantic.

EDITED TO ADD: Steven Bellovin and Susan Landau have a good essay on the same topic, as does Wired. Slashdot post.

Conspiracy Theories around the "Presidential Alert"

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/10/conspiracy_theo_2.html

Noted conspiracy theorist John McAfee tweeted:

The “Presidential alerts”: they are capable of accessing the E911 chip in your phones — giving them full access to your location, microphone, camera and every function of your phone. This not a rant, this is from me, still one of the leading cybersecurity experts. Wake up people!

This is, of course, ridiculous. I don’t even know what an “E911 chip” is. And — honestly — if the NSA wanted in your phone, they would be a lot more subtle than this.

RT has picked up the story, though.

(If they just called it a “FEMA Alert,” there would be a lot less stress about the whole thing.)

Facebook Is Using Your Two-Factor Authentication Phone Number to Target Advertising

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/10/facebook_is_usi.html

From Kashmir Hill:

Facebook is not content to use the contact information you willingly put into your Facebook profile for advertising. It is also using contact information you handed over for security purposes and contact information you didn’t hand over at all, but that was collected from other people’s contact books, a hidden layer of details Facebook has about you that I’ve come to call “shadow contact information.” I managed to place an ad in front of Alan Mislove by targeting his shadow profile. This means that the junk email address that you hand over for discounts or for shady online shopping is likely associated with your account and being used to target you with ads.

Here’s the research paper. Hill again:

They found that when a user gives Facebook a phone number for two-factor authentication or in order to receive alerts about new log-ins to a user’s account, that phone number became targetable by an advertiser within a couple of weeks. So users who want their accounts to be more secure are forced to make a privacy trade-off and allow advertisers to more easily find them on the social network.

Using a Smartphone’s Microphone and Speakers to Eavesdrop on Passwords

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/09/using_a_smartph.html

It’s amazing that this is even possible: “SonarSnoop: Active Acoustic Side-Channel Attacks“:

Abstract: We report the first active acoustic side-channel attack. Speakers are used to emit human inaudible acoustic signals and the echo is recorded via microphones, turning the acoustic system of a smart phone into a sonar system. The echo signal can be used to profile user interaction with the device. For example, a victim’s finger movements can be inferred to steal Android phone unlock patterns. In our empirical study, the number of candidate unlock patterns that an attacker must try to authenticate herself to a Samsung S4 Android phone can be reduced by up to 70% using this novel acoustic side-channel. Our approach can be easily applied to other application scenarios and device types. Overall, our work highlights a new family of security threats.

News article.

Google Tracks its Users Even if They Opt-Out of Tracking

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/08/google_tracks_i.html

Google is tracking you, even if you turn off tracking:

Google says that will prevent the company from remembering where you’ve been. Google’s support page on the subject states: “You can turn off Location History at any time. With Location History off, the places you go are no longer stored.”

That isn’t true. Even with Location History paused, some Google apps automatically store time-stamped location data without asking.

For example, Google stores a snapshot of where you are when you merely open its Maps app. Automatic daily weather updates on Android phones pinpoint roughly where you are. And some searches that have nothing to do with location, like “chocolate chip cookies,” or “kids science kits,” pinpoint your precise latitude and longitude ­- accurate to the square foot -­ and save it to your Google account.

On the one hand, this isn’t surprising to technologists. Lots of applications use location data. On the other hand, it’s very surprising — and counterintuitive — to everyone else. And that’s why this is a problem.

I don’t think we should pick on Google too much, though. Google is a symptom of the bigger problem: surveillance capitalism in general. As long as surveillance is the business model of the Internet, things like this are inevitable.

BoingBoing story.

Good commentary.

Traffic Analysis of the LTE Mobile Standard

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/07/traffic_analysi.html

Interesting research in using traffic analysis to learn things about encrypted traffic. It’s hard to know how critical these vulnerabilities are. They’re very hard to close without wasting a huge amount of bandwidth.

The active attacks are more interesting.

EDITED TO ADD (7/3): More information.

I have been thinking about this, and now believe the attacks are more serious than I previously wrote.

C is to low level

Post Syndicated from Robert Graham original https://blog.erratasec.com/2018/05/c-is-too-low-level.html

I’m in danger of contradicting myself, after previously pointing out that x86 machine code is a high-level language, but this article claiming C is a not a low level language is bunk. C certainly has some problems, but it’s still the closest language to assembly. This is obvious by the fact it’s still the fastest compiled language. What we see is a typical academic out of touch with the real world.

The author makes the (wrong) observation that we’ve been stuck emulating the PDP-11 for the past 40 years. C was written for the PDP-11, and since then CPUs have been designed to make C run faster. The author imagines a different world, such as where CPU designers instead target something like LISP as their preferred language, or Erlang. This misunderstands the state of the market. CPUs do indeed supports lots of different abstractions, and C has evolved to accommodate this.

The author criticizes things like “out-of-order” execution which has lead to the Spectre sidechannel vulnerabilities. Out-of-order execution is necessary to make C run faster. The author claims instead that those resources should be spent on having more slower CPUs, with more threads. This sacrifices single-threaded performance in exchange for a lot more threads executing in parallel. The author cites Sparc Tx CPUs as his ideal processor.

But here’s the thing, the Sparc Tx was a failure. To be fair, it’s mostly a failure because most of the time, people wanted to run old C code instead of new Erlang code. But it was still a failure at running Erlang.

Time after time, engineers keep finding that “out-of-order”, single-threaded performance is still the winner. A good example is ARM processors for both mobile phones and servers. All the theory points to in-order CPUs as being better, but all the products are out-of-order, because this theory is wrong. The custom ARM cores from Apple and Qualcomm used in most high-end phones are so deeply out-of-order they give Intel CPUs competition. The same is true on the server front with the latest Qualcomm Centriq and Cavium ThunderX2 processors, deeply out of order supporting more than 100 instructions in flight.

The Cavium is especially telling. Its ThunderX CPU had 48 simple cores which was replaced with the ThunderX2 having 32 complex, deeply out-of-order cores. The performance increase was massive, even on multithread-friendly workloads. Every competitor to Intel’s dominance in the server space has learned the lesson from Sparc Tx: many wimpy cores is a failure, you need fewer beefy cores. Yes, they don’t need to be as beefy as Intel’s processors, but they need to be close.

Even Intel’s “Xeon Phi” custom chip learned this lesson. This is their GPU-like chip, running 60 cores with 512-bit wide “vector” (sic) instructions, designed for supercomputer applications. Its first version was purely in-order. Its current version is slightly out-of-order. It supports four threads and focuses on basic number crunching, so in-order cores seems to be the right approach, but Intel found in this case that out-of-order processing still provided a benefit. Practice is different than theory.

As an academic, the author of the above article focuses on abstractions. The criticism of C is that it has the wrong abstractions which are hard to optimize, and that if we instead expressed things in the right abstractions, it would be easier to optimize.

This is an intellectually compelling argument, but so far bunk.

The reason is that while the theoretical base language has issues, everyone programs using extensions to the language, like “intrinsics” (C ‘functions’ that map to assembly instructions). Programmers write libraries using these intrinsics, which then the rest of the normal programmers use. In other words, if your criticism is that C is not itself low level enough, it still provides the best access to low level capabilities.

Given that C can access new functionality in CPUs, CPU designers add new paradigms, from SIMD to transaction processing. In other words, while in the 1980s CPUs were designed to optimize C (stacks, scaled pointers), these days CPUs are designed to optimize tasks regardless of language.

The author of that article criticizes the memory/cache hierarchy, claiming it has problems. Yes, it has problems, but only compared to how well it normally works. The author praises the many simple cores/threads idea as hiding memory latency with little caching, but misses the point that caches also dramatically increase memory bandwidth. Intel processors are optimized to read a whopping 256 bits every clock cycle from L1 cache. Main memory bandwidth is orders of magnitude slower.

The author goes onto criticize cache coherency as a problem. C uses it, but other languages like Erlang don’t need it. But that’s largely due to the problems each languages solves. Erlang solves the problem where a large number of threads work on largely independent tasks, needing to send only small messages to each other across threads. The problems C solves is when you need many threads working on a huge, common set of data.

For example, consider the “intrusion prevention system”. Any thread can process any incoming packet that corresponds to any region of memory. There’s no practical way of solving this problem without a huge coherent cache. It doesn’t matter which language or abstractions you use, it’s the fundamental constraint of the problem being solved. RDMA is an important concept that’s moved from supercomputer applications to the data center, such as with memcached. Again, we have the problem of huge quantities (terabytes worth) shared among threads rather than small quantities (kilobytes).

The fundamental issue the author of the the paper is ignoring is decreasing marginal returns. Moore’s Law has gifted us more transistors than we can usefully use. We can’t apply those additional registers to just one thing, because the useful returns we get diminish.

For example, Intel CPUs have two hardware threads per core. That’s because there are good returns by adding a single additional thread. However, the usefulness of adding a third or fourth thread decreases. That’s why many CPUs have only two threads, or sometimes four threads, but no CPU has 16 threads per core.

You can apply the same discussion to any aspect of the CPU, from register count, to SIMD width, to cache size, to out-of-order depth, and so on. Rather than focusing on one of these things and increasing it to the extreme, CPU designers make each a bit larger every process tick that adds more transistors to the chip.

The same applies to cores. It’s why the “more simpler cores” strategy fails, because more cores have their own decreasing marginal returns. Instead of adding cores tied to limited memory bandwidth, it’s better to add more cache. Such cache already increases the size of the cores, so at some point it’s more effective to add a few out-of-order features to each core rather than more cores. And so on.

The question isn’t whether we can change this paradigm and radically redesign CPUs to match some academic’s view of the perfect abstraction. Instead, the goal is to find new uses for those additional transistors. For example, “message passing” is a useful abstraction in languages like Go and Erlang that’s often more useful than sharing memory. It’s implemented with shared memory and atomic instructions, but I can’t help but think it couldn’t better be done with direct hardware support.

Of course, as soon as they do that, it’ll become an intrinsic in C, then added to languages like Go and Erlang.


Academics live in an ideal world of abstractions, the rest of us live in practical reality. The reality is that vast majority of programmers work with the C family of languages (JavaScript, Go, etc.), whereas academics love the epiphanies they learned using other languages, especially function languages. CPUs are only superficially designed to run C and “PDP-11 compatibility”. Instead, they keep adding features to support other abstractions, abstractions available to C. They are driven by decreasing marginal returns — they would love to add new abstractions to the hardware because it’s a cheap way to make use of additional transitions. Academics are wrong believing that the entire system needs to be redesigned from scratch. Instead, they just need to come up with new abstractions CPU designers can add.

Sending Inaudible Commands to Voice Assistants

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/05/sending_inaudib.html

Researchers have demonstrated the ability to send inaudible commands to voice assistants like Alexa, Siri, and Google Assistant.

Over the last two years, researchers in China and the United States have begun demonstrating that they can send hidden commands that are undetectable to the human ear to Apple’s Siri, Amazon’s Alexa and Google’s Assistant. Inside university labs, the researchers have been able to secretly activate the artificial intelligence systems on smartphones and smart speakers, making them dial phone numbers or open websites. In the wrong hands, the technology could be used to unlock doors, wire money or buy stuff online ­– simply with music playing over the radio.

A group of students from University of California, Berkeley, and Georgetown University showed in 2016 that they could hide commands in white noise played over loudspeakers and through YouTube videos to get smart devices to turn on airplane mode or open a website.

This month, some of those Berkeley researchers published a research paper that went further, saying they could embed commands directly into recordings of music or spoken text. So while a human listener hears someone talking or an orchestra playing, Amazon’s Echo speaker might hear an instruction to add something to your shopping list.