Tag Archives: courts

Adversarial Machine Learning and the CFAA

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2020/07/adversarial_mac_1.html

I just co-authored a paper on the legal risks of doing machine learning research, given the current state of the Computer Fraud and Abuse Act:

Abstract: Adversarial Machine Learning is booming with ML researchers increasingly targeting commercial ML systems such as those used in Facebook, Tesla, Microsoft, IBM, Google to demonstrate vulnerabilities. In this paper, we ask, “What are the potential legal risks to adversarial ML researchers when they attack ML systems?” Studying or testing the security of any operational system potentially runs afoul the Computer Fraud and Abuse Act (CFAA), the primary United States federal statute that creates liability for hacking. We claim that Adversarial ML research is likely no different. Our analysis show that because there is a split in how CFAA is interpreted, aspects of adversarial ML attacks, such as model inversion, membership inference, model stealing, reprogramming the ML system and poisoning attacks, may be sanctioned in some jurisdictions and not penalized in others. We conclude with an analysis predicting how the US Supreme Court may resolve some present inconsistencies in the CFAA’s application in Van Buren v. United States, an appeal expected to be decided in 2021. We argue that the court is likely to adopt a narrow construction of the CFAA, and that this will actually lead to better adversarial ML security outcomes in the long term.

Medium post on the paper. News article, which uses our graphic without attribution.

How Did Facebook Beat a Federal Wiretap Demand?

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2020/04/how_did_faceboo.html

This is interesting:

Facebook Inc. in 2018 beat back federal prosecutors seeking to wiretap its encrypted Messenger app. Now the American Civil Liberties Union is seeking to find out how.

The entire proceeding was confidential, with only the result leaking to the press. Lawyers for the ACLU and the Washington Post on Tuesday asked a San Francisco-based federal court of appeals to unseal the judge’s decision, arguing the public has a right to know how the law is being applied, particularly in the area of privacy.

[…]

The Facebook case stems from a federal investigation of members of the violent MS-13 criminal gang. Prosecutors tried to hold Facebook in contempt after the company refused to help investigators wiretap its Messenger app, but the judge ruled against them. If the decision is unsealed, other tech companies will likely try to use its reasoning to ward off similar government requests in the future.

Here’s the 2018 story. Slashdot thread.

Securing the Internet of Things through Class-Action Lawsuits

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2020/02/securing_the_in.html

This law journal article discusses the role of class-action litigation to secure the Internet of Things.

Basically, the article postulates that (1) market realities will produce insecure IoT devices, and (2) political failures will leave that industry unregulated. Result: insecure IoT. It proposes proactive class action litigation against manufacturers of unsafe and unsecured IoT devices before those devices cause unnecessary injury or death. It’s a lot to read, but it’s an interesting take on how to secure this otherwise disastrously insecure world.

And it was inspired by my book, Click Here to Kill Everybody.

The Story of Tiversa

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/12/the_story_of_ti.html

The New Yorker has published the long and interesting story of the cybersecurity firm Tiversa.

Watching “60 Minutes,” Boback saw a remarkable new business angle. Here was a multibillion-dollar industry with a near-existential problem and no clear solution. He did not know it then, but, as he turned the opportunity over in his mind, he was setting in motion a sequence of events that would earn him millions of dollars, friendships with business élites, prime-time media attention, and respect in Congress. It would also place him at the center of one of the strangest stories in the brief history of cybersecurity; he would be mired in lawsuits, countersuits, and counter-countersuits, which would gather into a vortex of litigation so ominous that one friend compared it to the Bermuda Triangle. He would be accused of fraud, of extortion, and of manipulating the federal government into harming companies that did not do business with him. Congress would investigate him. So would the F.B.I.

AT&T Employees Took Bribes to Unlock Smartphones

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/08/att_employees_t.html

This wasn’t a small operation:

A Pakistani man bribed AT&T call-center employees to install malware and unauthorized hardware as part of a scheme to fraudulently unlock cell phones, according to the US Department of Justice. Muhammad Fahd, 34, was extradited from Hong Kong to the US on Friday and is being detained pending trial.

An indictment alleges that “Fahd recruited and paid AT&T insiders to use their computer credentials and access to disable AT&T’s proprietary locking software that prevented ineligible phones from being removed from AT&T’s network,” a DOJ announcement yesterday said. “The scheme resulted in millions of phones being removed from AT&T service and/or payment plans, costing the company millions of dollars. Fahd allegedly paid the insiders hundreds of thousands of dollars­ — paying one co-conspirator $428,500 over the five-year scheme.”

In all, AT&T insiders received more than $1 million in bribes from Fahd and his co-conspirators, who fraudulently unlocked more than 2 million cell phones, the government alleged. Three former AT&T customer service reps from a call center in Bothell, Washington, already pleaded guilty and agreed to pay the money back to AT&T.

How Privacy Laws Hurt Defendants

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/08/how_privacy_law.html

Rebecca Wexler has an interesting op-ed about an inadvertent harm that privacy laws can cause: while law enforcement can often access third-party data to aid in prosecution, the accused don’t have the same level of access to aid in their defense:

The proposed privacy laws would make this situation worse. Lawmakers may not have set out to make the criminal process even more unfair, but the unjust result is not surprising. When lawmakers propose privacy bills to protect sensitive information, law enforcement agencies lobby for exceptions so they can continue to access the information. Few lobby for the accused to have similar rights. Just as the privacy interests of poor, minority and heavily policed communities are often ignored in the lawmaking process, so too are the interests of criminal defendants, many from those same communities.

In criminal cases, both the prosecution and the accused have a right to subpoena evidence so that juries can hear both sides of the case. The new privacy bills need to ensure that law enforcement and defense investigators operate under the same rules when they subpoena digital data. If lawmakers believe otherwise, they should have to explain and justify that view.

For more detail, see her paper.

The Importance of Protecting Cybersecurity Whistleblowers

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/06/the_importance_3.html

Interesting essay arguing that we need better legislation to protect cybersecurity whistleblowers.

Congress should act to protect cybersecurity whistleblowers because information security has never been so important, or so challenging. In the wake of a barrage of shocking revelations about data breaches and companies mishandling of customer data, a bipartisan consensus has emerged in support of legislation to give consumers more control over their personal information, require companies to disclose how they collect and use consumer data, and impose penalties for data breaches and misuse of consumer data. The Federal Trade Commission (“FTC”) has been held out as the best agency to implement this new regulation. But for any such legislation to be effective, it must protect the courageous whistleblowers who risk their careers to expose data breaches and unauthorized use of consumers’ private data.

Whistleblowers strengthen regulatory regimes, and cybersecurity regulation would be no exception. Republican and Democratic leaders from the executive and legislative branches have extolled the virtues of whistleblowers. High-profile cases abound. Recently, Christopher Wylie exposed Cambridge Analytica’s misuse of Facebook user data to manipulate voters, including its apparent theft of data from 50 million Facebook users as part of a psychological profiling campaign. Though additional research is needed, the existing empirical data reinforces the consensus that whistleblowers help prevent, detect, and remedy misconduct. Therefore it is reasonable to conclude that protecting and incentivizing whistleblowers could help the government address the many complex challenges facing our nation’s information systems.

I Was Cited in a Court Decision

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/03/i_was_cited_in_.html

An article I co-wrote — my first law journal article — was cited by the Massachusetts Supreme Judicial Court — the state supreme court — in a case on compelled decryption.

Here’s the first, in footnote 1:

We understand the word “password” to be synonymous with other terms that cell phone users may be familiar with, such as Personal Identification Number or “passcode.” Each term refers to the personalized combination of letters or digits that, when manually entered by the user, “unlocks” a cell phone. For simplicity, we use “password” throughout. See generally, Kerr & Schneier, Encryption Workarounds, 106 Geo. L.J. 989, 990, 994, 998 (2018).

And here’s the second, in footnote 5:

We recognize that ordinary cell phone users are likely unfamiliar with the complexities of encryption technology. For instance, although entering a password “unlocks” a cell phone, the password itself is not the “encryption key” that decrypts the cell phone’s contents. See Kerr & Schneier, supra at 995. Rather, “entering the [password] decrypts the [encryption] key, enabling the key to be processed and unlocking the phone. This two-stage process is invisible to the casual user.” Id. Because the technical details of encryption technology do not play a role in our analysis, they are not worth belaboring. Accordingly, we treat the entry of a password as effectively decrypting the contents of a cell phone. For a more detailed discussion of encryption technology, see generally Kerr & Schneier, supra.

Reverse Location Search Warrants

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/02/reverse_locatio.html

The police are increasingly getting search warrants for information about all cell phones in a certain location at a certain time:

Police departments across the country have been knocking at Google’s door for at least the last two years with warrants to tap into the company’s extensive stores of cellphone location data. Known as “reverse location search warrants,” these legal mandates allow law enforcement to sweep up the coordinates and movements of every cellphone in a broad area. The police can then check to see if any of the phones came close to the crime scene. In doing so, however, the police can end up not only fishing for a suspect, but also gathering the location data of potentially hundreds (or thousands) of innocent people. There have only been anecdotal reports of reverse location searches, so it’s unclear how widespread the practice is, but privacy advocates worry that Google’s data will eventually allow more and more departments to conduct indiscriminate searches.

Of course, it’s not just Google who can provide this information.

I am also reminded of a Canadian surveillance program disclosed by Snowden.

I spend a lot of time talking about this sort of thing in Data and Goliath. Once you have everyone under surveillance all the time, many things are possible.

El Chapo’s Encryption Defeated by Turning His IT Consultant

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/01/el_chapos_encry.html

Impressive police work:

In a daring move that placed his life in danger, the I.T. consultant eventually gave the F.B.I. his system’s secret encryption keys in 2011 after he had moved the network’s servers from Canada to the Netherlands during what he told the cartel’s leaders was a routine upgrade.

A Dutch article says that it’s a BlackBerry system.

El Chapo had his IT person install “…spyware called FlexiSPY on the ‘special phones’ he had given to his wife, Emma Coronel Aispuro, as well as to two of his lovers, including one who was a former Mexican lawmaker.” That same software was used by the FBI when his IT person turned over the keys. Yet again we learn the lesson that a backdoor can be used against you.

And it doesn’t have to be with the IT person’s permission. A good intelligence agency can use the IT person’s authorizations without his knowledge or consent. This is why the NSA hunts sysadmins.

Slashdot thread. Hacker News thread. Boing Boing post.

SpiderOak’s Warrant Canary Died

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/08/spideroaks_warr.html

BoingBoing has the story.

I have never quite trusted the idea of a warrant canary. But here it seems to have worked. (Presumably, if SpiderOak wanted to replace the warrant canary with a transparency report, they would have written something explaining their decision. To have it simply disappear is what we would expect if SpiderOak were being forced to comply with a US government request for personal data.)

EDITED TO ADD (8/9): SpiderOak has posted an explanation claiming that the warrant canary did not die — it just changed.

That’s obviously false, because it did die. And a change is the functional equivalent — that’s how they work. So either they have received a National Security Letter and now have to pretend they did not, or they completely misunderstood what a warrant canary is and how it works. No one knows.

I have never fully trusted warrant canaries — this EFF post explains why — and this is an illustration.

Suing South Carolina Because Its Election Machines Are Insecure

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/07/suing_south_car.html

A group called Protect Democracy is suing South Carolina because its insecure voting machines are effectively denying people the right to vote.

Note: I am an advisor to Protect Democracy on its work related to election cybersecurity, and submitted a declaration in litigation it filed, challenging President Trump’s now-defunct “election integrity” commission.

E-Mail Leaves an Evidence Trail

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/02/e-mail_leaves_a.html

If you’re going to commit an illegal act, it’s best not to discuss it in e-mail. It’s also best to Google tech instructions rather than asking someone else to do it:

One new detail from the indictment, however, points to just how unsophisticated Manafort seems to have been. Here’s the relevant passage from the indictment. I’ve bolded the most important bits:

Manafort and Gates made numerous false and fraudulent representations to secure the loans. For example, Manafort provided the bank with doctored [profit and loss statements] for [Davis Manafort Inc.] for both 2015 and 2016, overstating its income by millions of dollars. The doctored 2015 DMI P&L submitted to Lender D was the same false statement previously submitted to Lender C, which overstated DMI’s income by more than $4 million. The doctored 2016 DMI P&L was inflated by Manafort by more than $3.5 million. To create the false 2016 P&L, on or about October 21, 2016, Manafort emailed Gates a .pdf version of the real 2016 DMI P&L, which showed a loss of more than $600,000. Gates converted that .pdf into a “Word” document so that it could be edited, which Gates sent back to Manafort. Manafort altered that “Word” document by adding more than $3.5 million in income. He then sent this falsified P&L to Gates and asked that the “Word” document be converted back to a .pdf, which Gates did and returned to Manafort. Manafort then sent the falsified 2016 DMI P&L .pdf to Lender D.

So here’s the essence of what went wrong for Manafort and Gates, according to Mueller’s investigation: Manafort allegedly wanted to falsify his company’s income, but he couldn’t figure out how to edit the PDF. He therefore had Gates turn it into a Microsoft Word document for him, which led the two to bounce the documents back-and-forth over email. As attorney and blogger Susan Simpson notes on Twitter, Manafort’s inability to complete a basic task on his own seems to have effectively “created an incriminating paper trail.”

If there’s a lesson here, it’s that the Internet constantly generates data about what people are doing on it, and that data is all potential evidence. The FBI is 100% wrong that they’re going dark; it’s really the golden age of surveillance, and the FBI’s panic is really just its own lack of technical sophistication.

Blame privacy activists for the Memo??

Post Syndicated from Robert Graham original http://blog.erratasec.com/2018/02/blame-privacy-activists-for-memo.html

Former FBI agent Asha Rangappa @AshaRangappa_ has a smart post debunking the Nunes Memo, then takes it all back again with an op-ed on the NYTimes blaming us privacy activists. She presents an obviously false narrative that the FBI and FISA courts are above suspicion.

I know from first hand experience the FBI is corrupt. In 2007, they threatened me, trying to get me to cancel a talk that revealed security vulnerabilities in a large corporation’s product. Such abuses occur because there is no transparency and oversight. FBI agents write down our conversation in their little notebooks instead of recording it, so that they can control the narrative of what happened, presenting their version of the converstion (leaving out the threats). In this day and age of recording devices, this is indefensible.

She writes “I know firsthand that it’s difficult to get a FISA warrant“. Yes, the process was difficult for her, an underling, to get a FISA warrant. The process is different when a leader tries to do the same thing.

I know this first hand having casually worked as an outsider with intelligence agencies. I saw two processes in place: one for the flunkies, and one for those above the system. The flunkies constantly complained about how there is too many process in place oppressing them, preventing them from getting their jobs done. The leaders understood the system and how to sidestep those processes.

That’s not to say the Nunes Memo has merit, but it does point out that privacy advocates have a point in wanting more oversight and transparency in such surveillance of American citizens.

Blaming us privacy advocates isn’t the way to go. It’s not going to succeed in tarnishing us, but will push us more into Trump’s camp, causing us to reiterate that we believe the FBI and FISA are corrupt.

After Section 702 Reauthorization

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/01/after_section_7.html

For over a decade, civil libertarians have been fighting government mass surveillance of innocent Americans over the Internet. We’ve just lost an important battle. On January 18, President Trump signed the renewal of Section 702, domestic mass surveillance became effectively a permanent part of US law.

Section 702 was initially passed in 2008, as an amendment to the Foreign Intelligence Surveillance Act of 1978. As the title of that law says, it was billed as a way for the NSA to spy on non-Americans located outside the United States. It was supposed to be an efficiency and cost-saving measure: the NSA was already permitted to tap communications cables located outside the country, and it was already permitted to tap communications cables from one foreign country to another that passed through the United States. Section 702 allowed it to tap those cables from inside the United States, where it was easier. It also allowed the NSA to request surveillance data directly from Internet companies under a program called PRISM.

The problem is that this authority also gave the NSA the ability to collect foreign communications and data in a way that inherently and intentionally also swept up Americans’ communications as well, without a warrant. Other law enforcement agencies are allowed to ask the NSA to search those communications, give their contents to the FBI and other agencies and then lie about their origins in court.

In 1978, after Watergate had revealed the Nixon administration’s abuses of power, we erected a wall between intelligence and law enforcement that prevented precisely this kind of sharing of surveillance data under any authority less restrictive than the Fourth Amendment. Weakening that wall is incredibly dangerous, and the NSA should never have been given this authority in the first place.

Arguably, it never was. The NSA had been doing this type of surveillance illegally for years, something that was first made public in 2006. Section 702 was secretly used as a way to paper over that illegal collection, but nothing in the text of the later amendment gives the NSA this authority. We didn’t know that the NSA was using this law as the statutory basis for this surveillance until Edward Snowden showed us in 2013.

Civil libertarians have been battling this law in both Congress and the courts ever since it was proposed, and the NSA’s domestic surveillance activities even longer. What this most recent vote tells me is that we’ve lost that fight.

Section 702 was passed under George W. Bush in 2008, reauthorized under Barack Obama in 2012, and now reauthorized again under Trump. In all three cases, congressional support was bipartisan. It has survived multiple lawsuits by the Electronic Frontier Foundation, the ACLU, and others. It has survived the revelations by Snowden that it was being used far more extensively than Congress or the public believed, and numerous public reports of violations of the law. It has even survived Trump’s belief that he was being personally spied on by the intelligence community, as well as any congressional fears that Trump could abuse the authority in the coming years. And though this extension lasts only six years, it’s inconceivable to me that it will ever be repealed at this point.

So what do we do? If we can’t fight this particular statutory authority, where’s the new front on surveillance? There are, it turns out, reasonable modifications that target surveillance more generally, and not in terms of any particular statutory authority. We need to look at US surveillance law more generally.

First, we need to strengthen the minimization procedures to limit incidental collection. Since the Internet was developed, all the world’s communications travel around in a single global network. It’s impossible to collect only foreign communications, because they’re invariably mixed in with domestic communications. This is called “incidental” collection, but that’s a misleading name. It’s collected knowingly, and searched regularly. The intelligence community needs much stronger restrictions on which American communications channels it can access without a court order, and rules that require they delete the data if they inadvertently collect it. More importantly, “collection” is defined as the point the NSA takes a copy of the communications, and not later when they search their databases.

Second, we need to limit how other law enforcement agencies can use incidentally collected information. Today, those agencies can query a database of incidental collection on Americans. The NSA can legally pass information to those other agencies. This has to stop. Data collected by the NSA under its foreign surveillance authority should not be used as a vehicle for domestic surveillance.

The most recent reauthorization modified this lightly, forcing the FBI to obtain a court order when querying the 702 data for a criminal investigation. There are still exceptions and loopholes, though.

Third, we need to end what’s called “parallel construction.” Today, when a law enforcement agency uses evidence found in this NSA database to arrest someone, it doesn’t have to disclose that fact in court. It can reconstruct the evidence in some other manner once it knows about it, and then pretend it learned of it that way. This right to lie to the judge and the defense is corrosive to liberty, and it must end.

Pressure to reform the NSA will probably first come from Europe. Already, European Union courts have pointed to warrantless NSA surveillance as a reason to keep Europeans’ data out of US hands. Right now, there is a fragile agreement between the EU and the United States ­– called “Privacy Shield” — ­that requires Americans to maintain certain safeguards for international data flows. NSA surveillance goes against that, and it’s only a matter of time before EU courts start ruling this way. That’ll have significant effects on both government and corporate surveillance of Europeans and, by extension, the entire world.

Further pressure will come from the increased surveillance coming from the Internet of Things. When your home, car, and body are awash in sensors, privacy from both governments and corporations will become increasingly important. Sooner or later, society will reach a tipping point where it’s all too much. When that happens, we’re going to see significant pushback against surveillance of all kinds. That’s when we’ll get new laws that revise all government authorities in this area: a clean sweep for a new world, one with new norms and new fears.

It’s possible that a federal court will rule on Section 702. Although there have been many lawsuits challenging the legality of what the NSA is doing and the constitutionality of the 702 program, no court has ever ruled on those questions. The Bush and Obama administrations successfully argued that defendants don’t have legal standing to sue. That is, they have no right to sue because they don’t know they’re being targeted. If any of the lawsuits can get past that, things might change dramatically.

Meanwhile, much of this is the responsibility of the tech sector. This problem exists primarily because Internet companies collect and retain so much personal data and allow it to be sent across the network with minimal security. Since the government has abdicated its responsibility to protect our privacy and security, these companies need to step up: Minimize data collection. Don’t save data longer than absolutely necessary. Encrypt what has to be saved. Well-designed Internet services will safeguard users, regardless of government surveillance authority.

For the rest of us concerned about this, it’s important not to give up hope. Everything we do to keep the issue in the public eye ­– and not just when the authority comes up for reauthorization again in 2024 — hastens the day when we will reaffirm our rights to privacy in the digital age.

This essay previously appeared in the Washington Post.

Bitcoin: In Crypto We Trust

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/12/bitcoin-in-crypto-we-trust.html

Tim Wu, who coined “net neutrality”, has written an op-ed on the New York Times called “The Bitcoin Boom: In Code We Trust“. He is wrong about “code”.

The wrong “trust”

Wu builds a big manifesto about how real-world institutions can’t be trusted. Certainly, this reflects the rhetoric from a vocal wing of Bitcoin fanatics, but it’s not the Bitcoin manifesto.

Instead, the word “trust” in the Bitcoin paper is much narrower, referring to how online merchants can’t trust credit-cards (for example). When I bought school supplies for my niece when she studied in Canada, the online site wouldn’t accept my U.S. credit card. They didn’t trust my credit card. However, they trusted my Bitcoin, so I used that payment method instead, and succeeded in the purchase.

Real-world currencies like dollars are tethered to the real-world, which means no single transaction can be trusted, because “they” (the credit-card company, the courts, etc.) may decide to reverse the transaction. The manifesto behind Bitcoin is that a transaction cannot be reversed — and thus, can always be trusted.

Deliberately confusing the micro-trust in a transaction and macro-trust in banks and governments is a sort of bait-and-switch.

The wrong inspiration

Wu claims:

“It was, after all, a carnival of human errors and misfeasance that inspired the invention of Bitcoin in 2009, namely, the financial crisis.”

Not true. Bitcoin did not appear fully formed out of the void, but was instead based upon a series of innovations that predate the financial crisis by a decade. Moreover, the financial crisis had little to do with “currency”. The value of the dollar and other major currencies were essentially unscathed by the crisis. Certainly, enthusiasts looking backward like to cherry pick the financial crisis as yet one more reason why the offline world sucks, but it had little to do with Bitcoin.

In crypto we trust

It’s not in code that Bitcoin trusts, but in crypto. Satoshi makes that clear in one of his posts on the subject:

A generation ago, multi-user time-sharing computer systems had a similar problem. Before strong encryption, users had to rely on password protection to secure their files, placing trust in the system administrator to keep their information private. Privacy could always be overridden by the admin based on his judgment call weighing the principle of privacy against other concerns, or at the behest of his superiors. Then strong encryption became available to the masses, and trust was no longer required. Data could be secured in a way that was physically impossible for others to access, no matter for what reason, no matter how good the excuse, no matter what.

You don’t possess Bitcoins. Instead, all the coins are on the public blockchain under your “address”. What you possess is the secret, private key that matches the address. Transferring Bitcoin means using your private key to unlock your coins and transfer them to another. If you print out your private key on paper, and delete it from the computer, it can never be hacked.

Trust is in this crypto operation. Trust is in your private crypto key.

We don’t trust the code

The manifesto “in code we trust” has been proven wrong again and again. We don’t trust computer code (software) in the cryptocurrency world.

The most profound example is something known as the “DAO” on top of Ethereum, Bitcoin’s major competitor. Ethereum allows “smart contracts” containing code. The quasi-religious manifesto of the DAO smart-contract is that the “code is the contract”, that all the terms and conditions are specified within the smart-contract code, completely untethered from real-world terms-and-conditions.

Then a hacker found a bug in the DAO smart-contract and stole most of the money.

In principle, this is perfectly legal, because “the code is the contract”, and the hacker just used the code. In practice, the system didn’t live up to this. The Ethereum core developers, acting as central bankers, rewrote the Ethereum code to fix this one contract, returning the money back to its original owners. They did this because those core developers were themselves heavily invested in the DAO and got their money back.

Similar things happen with the original Bitcoin code. A disagreement has arisen about how to expand Bitcoin to handle more transactions. One group wants smaller and “off-chain” transactions. Another group wants a “large blocksize”. This caused a “fork” in Bitcoin with two versions, “Bitcoin” and “Bitcoin Cash”. The fork championed by the core developers (central bankers) is worth around $20,000 right now, while the other fork is worth around $2,000.

So it’s still “in central bankers we trust”, it’s just that now these central bankers are mostly online instead of offline institutions. They have proven to be even more corrupt than real-world central bankers. It’s certainly not the code that is trusted.

The bubble

Wu repeats the well-known reference to Amazon during the dot-com bubble. If you bought Amazon’s stock for $107 right before the dot-com crash, it still would be one of wisest investments you could’ve made. Amazon shares are now worth around $1,200 each.

The implication is that Bitcoin, too, may have such long term value. Even if you buy it today and it crashes tomorrow, it may still be worth ten-times its current value in another decade or two.

This is a poor analogy, for three reasons.

The first reason is that we knew the Internet had fundamentally transformed commerce. We knew there were going to be winners in the long run, it was just a matter of picking who would win (Amazon) and who would lose (Pets.com). We have yet to prove Bitcoin will be similarly transformative.

The second reason is that businesses are real, they generate real income. While the stock price may include some irrational exuberance, it’s ultimately still based on the rational expectations of how much the business will earn. With Bitcoin, it’s almost entirely irrational exuberance — there are no long term returns.

The third flaw in the analogy is that there are an essentially infinite number of cryptocurrencies. We saw this today as Coinbase started trading Bitcoin Cash, a fork of Bitcoin. The two are nearly identical, so there’s little reason one should be so much valuable than another. It’s only a fickle fad that makes one more valuable than another, not business fundamentals. The successful future cryptocurrency is unlikely to exist today, but will be invented in the future.

The lessons of the dot-com bubble is not that Bitcoin will have long term value, but that cryptocurrency companies like Coinbase and BitPay will have long term value. Or, the lesson is that “old” companies like JPMorgan that are early adopters of the technology will grow faster than their competitors.

Conclusion

The point of Wu’s paper is to distinguish trust in traditional real-world institutions and trust in computer software code. This is an inaccurate reading of the situation.

Bitcoin is not about replacing real-world institutions but about untethering online transactions.

The trust in Bitcoin is in crypto — the power crypto gives individuals instead of third-parties.

The trust is not in the code. Bitcoin is a “cryptocurrency” not a “codecurrency”.

Warrant Protections against Police Searches of Our Data

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/11/warrant_protect.html

The cell phones we carry with us constantly are the most perfect surveillance device ever invented, and our laws haven’t caught up to that reality. That might change soon.

This week, the Supreme Court will hear a case with profound implications on your security and privacy in the coming years. The Fourth Amendment’s prohibition of unlawful search and seizure is a vital right that protects us all from police overreach, and the way the courts interpret it is increasingly nonsensical in our computerized and networked world. The Supreme Court can either update current law to reflect the world, or it can further solidify an unnecessary and dangerous police power.

The case centers on cell phone location data and whether the police need a warrant to get it, or if they can use a simple subpoena, which is easier to obtain. Current Fourth Amendment doctrine holds that you lose all privacy protections over any data you willingly share with a third party. Your cellular provider, under this interpretation, is a third party with whom you’ve willingly shared your movements, 24 hours a day, going back months — even though you don’t really have any choice about whether to share with them. So police can request records of where you’ve been from cell carriers without any judicial oversight. The case before the court, Carpenter v. United States, could change that.

Traditionally, information that was most precious to us was physically close to us. It was on our bodies, in our homes and offices, in our cars. Because of that, the courts gave that information extra protections. Information that we stored far away from us, or gave to other people, afforded fewer protections. Police searches have been governed by the “third-party doctrine,” which explicitly says that information we share with others is not considered private.

The Internet has turned that thinking upside-down. Our cell phones know who we talk to and, if we’re talking via text or e-mail, what we say. They track our location constantly, so they know where we live and work. Because they’re the first and last thing we check every day, they know when we go to sleep and when we wake up. Because everyone has one, they know whom we sleep with. And because of how those phones work, all that information is naturally shared with third parties.

More generally, all our data is literally stored on computers belonging to other people. It’s our e-mail, text messages, photos, Google docs, and more ­ all in the cloud. We store it there not because it’s unimportant, but precisely because it is important. And as the Internet of Things computerizes the rest our lives, even more data will be collected by other people: data from our health trackers and medical devices, data from our home sensors and appliances, data from Internet-connected “listeners” like Alexa, Siri, and your voice-activated television.

All this data will be collected and saved by third parties, sometimes for years. The result is a detailed dossier of your activities more complete than any private investigator –­ or police officer –­ could possibly collect by following you around.

The issue here is not whether the police should be allowed to use that data to help solve crimes. Of course they should. The issue is whether that information should be protected by the warrant process that requires the police to have probable cause to investigate you and get approval by a court.

Warrants are a security mechanism. They prevent the police from abusing their authority to investigate someone they have no reason to suspect of a crime. They prevent the police from going on “fishing expeditions.” They protect our rights and liberties, even as we willingly give up our privacy to the legitimate needs of law enforcement.

The third-party doctrine never made a lot of sense. Just because I share an intimate secret with my spouse, friend, or doctor doesn’t mean that I no longer consider it private. It makes even less sense in today’s hyper-connected world. It’s long past time the Supreme Court recognized that a months’-long history of my movements is private, and my e-mails and other personal data deserve the same protections, whether they’re on my laptop or on Google’s servers.

This essay previously appeared in the Washington Post.

Details on the case. Two opinion pieces.

I signed on to two amicus briefs on the case.

EDITED TO ADD (12/1): Good commentary on the Supreme Court oral arguments.

Under the Hood: Task Networking for Amazon ECS

Post Syndicated from Nathan Taber original https://aws.amazon.com/blogs/compute/under-the-hood-task-networking-for-amazon-ecs/

This post courtsey of ECS Sr. Software Dev Engineer Anirudh Aithal.

Today, AWS announced Task Networking for Amazon ECS, which enables elastic network interfaces to be attached to containers.

In this post, I take a closer look at how this new container-native “awsvpc” network mode is implemented using container networking interface plugins on ECS managed instances (referred to as container instances).

This post is a deep dive into how task networking works with Amazon ECS. If you want to learn more about how you can start using task networking for your containerized applications, see Introducing Cloud Native Networking for Amazon ECS Containers. Cloud Native Computing Foundation (CNCF) hosts the Container Networking Interface (CNI) project, which consists of a specification and libraries for writing plugins to configure network interfaces in Linux containers. For more about cloud native computing in AWS, see Adrian Cockcroft’s post on Cloud Native Computing.

Container instance setup

Before I discuss the details of enabling task networking on container instances, look at how a typical instance looks in ECS.

The diagram above shows a typical container instance. The ECS agent, which itself is running as a container, is responsible for:

  • Registering the EC2 instance with the ECS backend
  • Ensuring that task state changes communicated to it by the ECS backend are enacted on the container instance
  • Interacting with the Docker daemon to create, start, stop, and monitor
  • Relaying container state and task state transitions to the ECS backend

Because the ECS agent is just acting as the supervisor for containers under its management, it offloads the problem of setting up networking for containers to either the Docker daemon (for containers configured with one of Docker’s default networking modes) or a set of CNI plugins (for containers in task with networking mode set to awsvpc).

In either case, network stacks of containers are configured via network namespaces. As per the ip-netns(8) manual, “A network namespace is logically another copy of the network stack, with its own routes, firewall rules, and network devices.” The network namespace construct makes the partitioning of network stack between processes and containers running on a host possible.

Network namespaces and CNI plugins

CNI plugins are executable files that comply with the CNI specification and configure the network connectivity of containers. The CNI project defines a specification for the plugins and provides a library for interacting with plugins, thus providing a consistent, reliable, and simple interface with which to interact with the plugins.

You specify the container or its network namespace and invoke the plugin with the ADD command to add network interfaces to a container, and then the DEL command to tear them down. For example, the reference bridge plugin adds all containers on the same host into a bridge that resides in the host network namespace.

This plugin model fits in nicely with the ECS agent’s “minimal intrusion in the container lifecycle” model, as the agent doesn’t need to concern itself with the details of the network setup for containers. It’s also an extensible model, which allows the agent to switch to a different set of plugins if the need arises in future. Finally, the ECS agent doesn’t need to monitor the liveliness of these plugins as they are only invoked when required.

Invoking CNI plugins from the ECS agent

When ECS attaches an elastic network interface to the instance and sends the message to the agent to provision the elastic network interface for containers in a task, the elastic network interface (as with any network device) shows up in the global default network namespace of the host. The ECS agent invokes a chain of CNI plugins to ensure that the elastic network interface is configured appropriately in the container’s network namespace. You can review these plugins in the amazon-ecs-cni-plugins GitHub repo.

The first plugin invoked in this chain is the ecs-eni plugin, which ensures that the elastic network interface is attached to container’s network namespace and configured with the VPC-allocated IP addresses and the default route to use the subnet gateway. The container also needs to make HTTP requests to the credentials endpoint (hosted by the ECS agent) for getting IAM role credentials. This is handled by the ecs-bridge and ecs-ipam plugins, which are invoked next. The CNI library provides mechanisms to interpret the results from the execution of these plugins, which results in an efficient error handling in the agent. The following diagram illustrates the different steps in this process:

To avoid the race condition between configuring the network stack and commands being invoked in application containers, the ECS agent creates an additional “pause” container for each task before starting the containers in the task definition. It then sets up the network namespace of the pause container by executing the previously mentioned CNI plugins. It also starts the rest of the containers in the task so that they share their network stack of the pause container. This means that all containers in a task are addressable by the IP addresses of the elastic network interface, and they can communicate with each other over the localhost interface.

In this example setup, you have two containers in a task behind an elastic network interface. The following commands show that they have a similar view of the network stack and can talk to each other over the localhost interface.

List the last three containers running on the host (you launched a task with two containers and the ECS agent launched the additional container to configure the network namespace):

$ docker ps -n 3 --format "{{.ID}}\t{{.Names}}\t{{.Command}}\t{{.Status}}"
7d7b7fbc30b9	ecs-front-envoy-5-envoy-sds-ecs-ce8bd9eca6dd81a8d101	"/bin/sh -c '/usr/..."	Up 3 days
dfdcb2acfc91	ecs-front-envoy-5-front-envoy-faeae686adf9c1d91000	"/bin/sh -c '/usr/..."	Up 3 days
f731f6dbb81c	ecs-front-envoy-5-internalecspause-a8e6e19e909fa9c9e901	"./pause"	Up 3 days

List interfaces for these containers and make sure that they are the same:

$ for id in `docker ps -n 3 -q`; do pid=`docker inspect $id -f '{{.State.Pid}}'`; echo container $id; sudo nsenter -t $pid -n ip link show; done
container 7d7b7fbc30b9
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
3: [email protected]: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default
    link/ether 0a:58:a9:fe:ac:0c brd ff:ff:ff:ff:ff:ff link-netnsid 0
27: eth12: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9001 qdisc mq state UP mode DEFAULT group default qlen 1000
    link/ether 02:5a:a1:1a:43:42 brd ff:ff:ff:ff:ff:ff

container dfdcb2acfc91
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
3: [email protected]: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default
    link/ether 0a:58:a9:fe:ac:0c brd ff:ff:ff:ff:ff:ff link-netnsid 0
27: eth12: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9001 qdisc mq state UP mode DEFAULT group default qlen 1000
    link/ether 02:5a:a1:1a:43:42 brd ff:ff:ff:ff:ff:ff

container f731f6dbb81c
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
3: [email protected]: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default
    link/ether 0a:58:a9:fe:ac:0c brd ff:ff:ff:ff:ff:ff link-netnsid 0
27: eth12: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9001 qdisc mq state UP mode DEFAULT group default qlen 1000
    link/ether 02:5a:a1:1a:43:42 brd ff:ff:ff:ff:ff:ff

Conclusion

All of this work means that you can use the new awsvpc networking mode and benefit from native networking support for your containers. You can learn more about using awsvpc mode in Introducing Cloud Native Networking for Amazon ECS Containers or the ECS documentation.

I appreciate your feedback in the comments section. You can also reach me on GitHub in either the ECS CNI Plugins or the ECS Agent repositories.