Tag Archives: ssh

What We’re Thankful For

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/what-were-thankful-for/

All of us at Backblaze hope you have a wonderful Thanksgiving, and that you can enjoy it with family and friends. We asked everyone at Backblaze to express what they are thankful for. Here are their responses.

Fall leaves

What We’re Thankful For

Aside from friends, family, hobbies, health, etc. I’m thankful for my home. It’s not much, but it’s mine, and allows me to indulge in everything listed above. Or not, if I so choose. And coffee.

— Tony

I’m thankful for my wife Jen, and my other friends. I’m thankful that I like my coworkers and can call them friends too. I’m thankful for my health. I’m thankful that I was born into a middle class family in the US and that I have been very, very lucky because of that.

— Adam

Besides the most important things which are being thankful for my family, my health and my friends, I am very thankful for Backblaze. This is the first job I’ve ever had where I truly feel like I have a great work/life balance. With having 3 kids ages 8, 6 and 4, a husband that works crazy hours and my tennis career on the rise (kidding but I am on 4 teams) it’s really nice to feel like I have balance in my life. So cheers to Backblaze – where a girl can have it all!

— Shelby

I am thankful to work at a high-tech company that recognizes the contributions of engineers in their 40s and 50s.

— Jeannine

I am thankful for the music, the songs I’m singing. Thankful for all the joy they’re bringing. Who can live without it, I ask in all honesty? What would life be? Without a song or a dance what are we? So I say thank you for the music. For giving it to me!

— Yev

I’m thankful that I don’t look anything like the portrait my son draws of me…seriously.

— Natalie

I am thankful to work for a company that puts its people and product ahead of profits.

— James

I am thankful that even in the middle of disasters, turmoil, and violence, there are always people who commit amazing acts of generosity, courage, and kindness that restore my faith in mankind.

— Roderick

The future.

— Ahin

The Future

I am thankful for the current state of modern inexpensive broadband networking that allows me to stay in touch with friends and family that are far away, allows Backblaze to exist and pay my salary so I can live comfortably, and allows me to watch cat videos for free. The internet makes this an amazing time to be alive.

— Brian

Other than being thankful for family & good health, I’m quite thankful through the years I’ve avoided losing any of my 12+TB photo archive. 20 years of photoshoots, family photos and cell phone photos kept safe through changing storage media (floppy drives, flopticals, ZIP, JAZ, DVD-RAM, CD, DVD and hard drives), not to mention various technology/software solutions. It’s a data minefield out there, especially in the long run with changing media formats.

— Jim

I am thankful for non-profit organizations and their volunteers, such as IMAlive. Possibly the greatest gift you can give someone is empowerment, and an opportunity for them to recognize their own resilience and strength.

— Emily

I am thankful for my loving family, friends who make me laugh, a cool company to work for, talented co-workers who make me a better engineer, and beautiful Fall days in Wisconsin!

— Marjorie

Marjorie Wisconsin

I’m thankful for preschool drawings about thankfulness.

— Adam

I am thankful for new friends and working for a company that allows us to be ourselves.

— Annalisa

I’m thankful for my dog as I always find a reason to smile at him everyday. Yes, he still smells from his skunkin’ last week and he tracks mud in my house, but he came from the San Quentin puppy-prisoner program and I’m thankful I found him and that he found me! My vet is thankful as well.

— Terry

I’m thankful that my colleagues are also my friends outside of the office and that the rain season has started in California.

— Aaron

I’m thankful for family, friends, and beer. Mostly for family and friends, but beer is really nice too!

— Ken

There are so many amazing blessings that make up my daily life that I thank God for, so here I go – my basic needs of food, water and shelter, my husband and 2 daughters and the rest of the family (here and abroad) — their love, support, health, and safety, waking up to a new day every day, friends, music, my job, funny things, hugs and more hugs (who does not like hugs?).

— Cecilia

I am thankful to be blessed with a close-knit extended family, and for everything they do for my new, growing family. With a toddler and a second child on the way, it helps having so many extra sets of hands around to help with the kids!

— Zack

I’m thankful for family and friends, the opportunities my parents gave me by moving the U.S., and that all of us together at Backblaze have built a place to be proud of.

— Gleb

Aside for being thankful for family and friends, I am also thankful I live in a place with such natural beauty. Being so close to mountains and the ocean, and everything in between, is something that I don’t take for granted!

— Sona

I’m thankful for my wonderful wife, family, friends, and co-workers. I’m thankful for having a happy and healthy son, and the chance to watch him grow on a daily basis.

— Ariel

I am thankful for a dog-friendly workplace.

— LeAnn

I’m thankful for my amazing new wife and that she’s as much of a nerd as I am.

— Troy

I am thankful for every reunion with my siblings and families.

— Cecilia

I am thankful for my funny, strong-willed, happy daughter, my awesome husband, my family, and amazing friends. I am also thankful for the USA and all the opportunities that come with living here. Finally, I am thankful for Backblaze, a truly great place to work and for all of my co-workers/friends here.

— Natasha

I am thankful that I do not need to hunt and gather everyday to put food on the table but at the same time I feel that I don’t appreciate the food the sits before me as much as I should. So I use Thanksgiving to think about the people and the animals that put food on my family’s table.

— KC

I am thankful for my cat, Catnip. She’s been with me for 18 years and seen me through so many ups and downs. She’s been along my side through two long-term relationships, several moves, and one marriage. I know we don’t have much time together and feel blessed every day she’s here.

— JC

I am thankful for imperfection and misshapen candies. The imperceptible romance of sunsets through bus windows. The dream that family, friends, co-workers, and strangers are connected by love. I am thankful to my ancestors for enduring so much hardship so that I could be here enjoying Bay Area burritos.

— Damon

Autumn leaves

The post What We’re Thankful For appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Introducing Cloud Native Networking for Amazon ECS Containers

Post Syndicated from Nathan Taber original https://aws.amazon.com/blogs/compute/introducing-cloud-native-networking-for-ecs-containers/

This post courtesy of ECS Sr. Software Dev Engineer Anirudh Aithal.

Today, AWS announced Task Networking for Amazon ECS. This feature brings Amazon EC2 networking capabilities to tasks using elastic network interfaces.

An elastic network interface is a virtual network interface that you can attach to an instance in a VPC. When you launch an EC2 virtual machine, an elastic network interface is automatically provisioned to provide networking capabilities for the instance.

A task is a logical group of running containers. Previously, tasks running on Amazon ECS shared the elastic network interface of their EC2 host. Now, the new awsvpc networking mode lets you attach an elastic network interface directly to a task.

This simplifies network configuration, allowing you to treat each container just like an EC2 instance with full networking features, segmentation, and security controls in the VPC.

In this post, I cover how awsvpc mode works and show you how you can start using elastic network interfaces with your tasks running on ECS.

Background:  Elastic network interfaces in EC2

When you launch EC2 instances within a VPC, you don’t have to configure an additional overlay network for those instances to communicate with each other. By default, routing tables in the VPC enable seamless communication between instances and other endpoints. This is made possible by virtual network interfaces in VPCs called elastic network interfaces. Every EC2 instance that launches is automatically assigned an elastic network interface (the primary network interface). All networking parameters—such as subnets, security groups, and so on—are handled as properties of this primary network interface.

Furthermore, an IPv4 address is allocated to every elastic network interface by the VPC at creation (the primary IPv4 address). This primary address is unique and routable within the VPC. This effectively makes your VPC a flat network, resulting in a simple networking topology.

Elastic network interfaces can be treated as fundamental building blocks for connecting various endpoints in a VPC, upon which you can build higher-level abstractions. This allows elastic network interfaces to be leveraged for:

  • VPC-native IPv4 addressing and routing (between instances and other endpoints in the VPC)
  • Network traffic isolation
  • Network policy enforcement using ACLs and firewall rules (security groups)
  • IPv4 address range enforcement (via subnet CIDRs)

Why use awsvpc?

Previously, ECS relied on the networking capability provided by Docker’s default networking behavior to set up the network stack for containers. With the default bridge network mode, containers on an instance are connected to each other using the docker0 bridge. Containers use this bridge to communicate with endpoints outside of the instance, using the primary elastic network interface of the instance on which they are running. Containers share and rely on the networking properties of the primary elastic network interface, including the firewall rules (security group subscription) and IP addressing.

This means you cannot address these containers with the IP address allocated by Docker (it’s allocated from a pool of locally scoped addresses), nor can you enforce finely grained network ACLs and firewall rules. Instead, containers are addressable in your VPC by the combination of the IP address of the primary elastic network interface of the instance, and the host port to which they are mapped (either via static or dynamic port mapping). Also, because a single elastic network interface is shared by multiple containers, it can be difficult to create easily understandable network policies for each container.

The awsvpc networking mode addresses these issues by provisioning elastic network interfaces on a per-task basis. Hence, containers no longer share or contend use these resources. This enables you to:

  • Run multiple copies of the container on the same instance using the same container port without needing to do any port mapping or translation, simplifying the application architecture.
  • Extract higher network performance from your applications as they no longer contend for bandwidth on a shared bridge.
  • Enforce finer-grained access controls for your containerized applications by associating security group rules for each Amazon ECS task, thus improving the security for your applications.

Associating security group rules with a container or containers in a task allows you to restrict the ports and IP addresses from which your application accepts network traffic. For example, you can enforce a policy allowing SSH access to your instance, but blocking the same for containers. Alternatively, you could also enforce a policy where you allow HTTP traffic on port 80 for your containers, but block the same for your instances. Enforcing such security group rules greatly reduces the surface area of attack for your instances and containers.

ECS manages the lifecycle and provisioning of elastic network interfaces for your tasks, creating them on-demand and cleaning them up after your tasks stop. You can specify the same properties for the task as you would when launching an EC2 instance. This means that containers in such tasks are:

  • Addressable by IP addresses and the DNS name of the elastic network interface
  • Attachable as ‘IP’ targets to Application Load Balancers and Network Load Balancers
  • Observable from VPC flow logs
  • Access controlled by security groups

­This also enables you to run multiple copies of the same task definition on the same instance, without needing to worry about port conflicts. You benefit from higher performance because you don’t need to perform any port translations or contend for bandwidth on the shared docker0 bridge, as you do with the bridge networking mode.

Getting started

If you don’t already have an ECS cluster, you can create one using the create cluster wizard. In this post, I use “awsvpc-demo” as the cluster name. Also, if you are following along with the command line instructions, make sure that you have the latest version of the AWS CLI or SDK.

Registering the task definition

The only change to make in your task definition for task networking is to set the networkMode parameter to awsvpc. In the ECS console, enter this value for Network Mode.

 

If you plan on registering a container in this task definition with an ECS service, also specify a container port in the task definition. This example specifies an NGINX container exposing port 80:

This creates a task definition named “nginx-awsvpc" with networking mode set to awsvpc. The following commands illustrate registering the task definition from the command line:

$ cat nginx-awsvpc.json
{
        "family": "nginx-awsvpc",
        "networkMode": "awsvpc",
        "containerDefinitions": [
            {
                "name": "nginx",
                "image": "nginx:latest",
                "cpu": 100,
                "memory": 512,
                "essential": true,
                "portMappings": [
                  {
                    "containerPort": 80,
                    "protocol": "tcp"
                  }
                ]
            }
        ]
}

$ aws ecs register-task-definition --cli-input-json file://./nginx-awsvpc.json

Running the task

To run a task with this task definition, navigate to the cluster in the Amazon ECS console and choose Run new task. Specify the task definition as “nginx-awsvpc“. Next, specify the set of subnets in which to run this task. You must have instances registered with ECS in at least one of these subnets. Otherwise, ECS can’t find a candidate instance to attach the elastic network interface.

You can use the console to narrow down the subnets by selecting a value for Cluster VPC:

 

Next, select a security group for the task. For the purposes of this example, create a new security group that allows ingress only on port 80. Alternatively, you can also select security groups that you’ve already created.

Next, run the task by choosing Run Task.

You should have a running task now. If you look at the details of the task, you see that it has an elastic network interface allocated to it, along with the IP address of the elastic network interface:

You can also use the command line to do this:

$ aws ecs run-task --cluster awsvpc-ecs-demo --network-configuration "awsvpcConfiguration={subnets=["subnet-c070009b"],securityGroups=["sg-9effe8e4"]}" nginx-awsvpc $ aws ecs describe-tasks --cluster awsvpc-ecs-demo --task $ECS_TASK_ARN --query tasks[0]
{
    "taskArn": "arn:aws:ecs:us-west-2:xx..x:task/f5xx-...",
    "group": "family:nginx-awsvpc",
    "attachments": [
        {
            "status": "ATTACHED",
            "type": "ElasticNetworkInterface",
            "id": "xx..",
            "details": [
                {
                    "name": "subnetId",
                    "value": "subnet-c070009b"
                },
                {
                    "name": "networkInterfaceId",
                    "value": "eni-b0aaa4b2"
                },
                {
                    "name": "macAddress",
                    "value": "0a:47:e4:7a:2b:02"
                },
                {
                    "name": "privateIPv4Address",
                    "value": "10.0.0.35"
                }
            ]
        }
    ],
    ...
    "desiredStatus": "RUNNING",
    "taskDefinitionArn": "arn:aws:ecs:us-west-2:xx..x:task-definition/nginx-awsvpc:2",
    "containers": [
        {
            "containerArn": "arn:aws:ecs:us-west-2:xx..x:container/62xx-...",
            "taskArn": "arn:aws:ecs:us-west-2:xx..x:task/f5x-...",
            "name": "nginx",
            "networkBindings": [],
            "lastStatus": "RUNNING",
            "networkInterfaces": [
                {
                    "privateIpv4Address": "10.0.0.35",
                    "attachmentId": "xx.."
                }
            ]
        }
    ]
}

When you describe an “awsvpc” task, details of the elastic network interface are returned via the “attachments” object. You can also get this information from the “containers” object. For example:

$ aws ecs describe-tasks --cluster awsvpc-ecs-demo --task $ECS_TASK_ARN --query tasks[0].containers[0].networkInterfaces[0].privateIpv4Address
"10.0.0.35"

Conclusion

The nginx container is now addressable in your VPC via the 10.0.0.35 IPv4 address. You did not have to modify the security group on the instance to allow requests on port 80, thus improving instance security. Also, you ensured that all ports apart from port 80 were blocked for this application without modifying the application itself, which makes it easier to manage your task on the network. You did not have to interact with any of the elastic network interface API operations, as ECS handled all of that for you.

You can read more about the task networking feature in the ECS documentation. For a detailed look at how this new networking mode is implemented on an instance, see Under the Hood: Task Networking for Amazon ECS.

Please use the comments section below to send your feedback.

piwheels: making “pip install” fast

Post Syndicated from Ben Nuttall original https://www.raspberrypi.org/blog/piwheels/

TL;DR pip install numpy used to take ages, and now it’s super fast thanks to piwheels.

The Python Package Index (PyPI) is a package repository for Python modules. Members of the Python community publish software and libraries in it as an easy method of distribution. If you’ve ever used pip install, PyPI is the service that hosts the software you installed. You may have noticed that some installations can take a long time on the Raspberry Pi. That usually happens when modules have been implemented in C and require compilation.

XKCD comic of two people sword-fighting on office chairs while their code is compiling

No more slacking off! pip install numpy takes just a few seconds now \o/

Wheels for Python packages

A general solution to this problem exists: Python wheels are a standard for distributing pre-built versions of packages, saving users from having to build from source. However, when C code is compiled, it’s compiled for a particular architecture, so package maintainers usually publish wheels for 32-bit and 64-bit Windows, macOS, and Linux. Although Raspberry Pi runs Linux, its architecture is ARM, so Linux wheels are not compatible.

A comic of snakes biting their own tails to roll down a sand dune like wheels

What Python wheels are not

Pip works by browsing PyPI for a wheel matching the user’s architecture — and if it doesn’t find one, it falls back to the source distribution (usually a tarball or zip of the source code). Then the user has to build it themselves, which can take a long time, or may require certain dependencies. And if pip can’t find a source distribution, the installation fails.

Developing piwheels

In order to solve this problem, I decided to build wheels of every package on PyPI. I wrote some tooling for automating the process and used a postgres database to monitor the status of builds and log the output. Using a Pi 3 in my living room, I attempted to build wheels of the latest version of all 100 000 packages on PyPI and to host them on a web server on the Pi. This took a total of ten days, and my proof-of-concept seemed to show that it generally worked and was likely to be useful! You could install packages directly from the server, and installations were really fast.

A Raspberry Pi 3 sitting atop a Pi 2 on cloth

This Pi 3 was the piwheels beta server, sitting atop my SSH gateway Pi 2 at home

I proceeded to plan for version 2, which would attempt to build every version of every package — about 750 000 versions in total. I estimated this would take 75 days for one Pi, but I intended to scale it up to use multiple Pis. Our web hosts Mythic Beasts provide dedicated Pi 3 hosting, so I fired up 20 of them to share the load. With some help from Dave Jones, who created an efficient queuing system for the builders, we were able make this run like clockwork. In under two weeks, it was complete! Read ALL about the first build run drama on my blog.

A list of the mythic beasts cloud Pis

ALL the cloud Pis

Improving piwheels

We analysed the failures, made some tweaks, installed some key dependencies, and ran the build again to raise our success rate from 76% to 83%. We also rebuilt packages for Python 3.5 (the new default in Raspbian Stretch). The wheels we build are tagged ‘armv7l’, but because our Raspbian image is compatible with all Pi models, they’re really ARMv6, so they’re compatible with Pi 3, Pi 2, Pi 1 and Pi Zero. This means the ‘armv6l’-tagged wheels we provide are really just the ARMv7 wheels renamed.

The piwheels monitor interface created by Dave Jones

The wonderful piwheels monitor interface created by Dave

Now, you might be thinking “Why didn’t you just cross-compile?” I really wanted to have full compatibility, and building natively on Pis seemed to be the best way to achieve that. I had easy access to the Pis, and it really didn’t take all that long. Plus, you know, I wanted to eat my own dog food.

You might also be thinking “Why don’t you just apt install python3-numpy?” It’s true that some Python packages are distributed via the Raspbian/Debian archives too. However, if you’re in a virtual environment, or you need a more recent version than the one packaged for Debian, you need pip.

How it works

Now that the piwheels package repository is running as a service, hosted on a Pi 3 in the Mythic Beasts data centre in London. The pip package in Raspbian Stretch is configured to use piwheels as an additional index, so it falls back to PyPI if we’re missing a package. Just run sudo apt upgrade to get the configuration change. You’ll find that pip installs are much faster now! If you want to use piwheels on Raspbian Jessie, that’s possible too — find the instructions in our FAQs. And now, every time you pip install something, your files come from a web server running on a Raspberry Pi (that capable little machine)!

Try it for yourself in a virtual environment:

sudo apt install virtualenv python3-virtualenv -y
virtualenv -p /usr/bin/python3 testpip
source testpip/bin/activate
pip install numpy

This takes about 20 minutes on a Pi 3, 2.5 hours on a Pi 1, or just a few seconds on either if you use piwheels.

If you’re interested to see the details, try pip install numpy -v for verbose output. You’ll see that pip discovers two indexes to search:

2 location(s) to search for versions of numpy:
  * https://pypi.python.org/simple/numpy/
  * https://www.piwheels.hostedpi.com/simple/numpy/

Then it searches both indexes for available files. From this list of files, it determines the latest version available. Next it looks for a Python version and architecture match, and then opts for a wheel over a source distribution. If a new package or version is released, piwheels will automatically pick it up and add it to the build queue.

A flowchart of how piwheels works

How piwheels works

For the users unfamiliar with virtual environments I should mention that doing this isn’t a requirement — just an easy way of testing installations in a sandbox. Most pip usage will require sudo pip3 install {package}, which installs at a system level.

If you come across any issues with any packages from piwheels, please let us know in a GitHub issue.

Taking piwheels further

We currently provide over 670 000 wheels for more than 96 000 packages, all compiled natively on Raspberry Pi hardware. Moreover, we’ll keep building new packages as they are released.

Note that, at present, we have built wheels for Python 3.4 and 3.5 — we’re planning to add support for Python 3.6 and 2.7. The fact that piwheels is currently missing Python 2 wheels does not affect users: until we rebuild for Python 2, PyPI will be used as normal, it’ll just take longer than installing a Python 3 package for which we have a wheel. But remember, Python 2 end-of-life is less than three years away!

Many thanks to Dave Jones for his contributions to the project, and to Mythic Beasts for providing the excellent hosted Pi service.

Screenshot of the mythic beasts Raspberry Pi 3 server service website

Related/unrelated, check out my poster from the PyCon UK poster session:

A poster about Python and Raspberry Pi

Click to download the PDF!

The post piwheels: making “pip install” fast appeared first on Raspberry Pi.

Enlightenment DR 0.22.0 Release

Post Syndicated from ris original https://lwn.net/Articles/738290/rss

Enlightenment DR 0.22.0 has been released. This
version of the desktop shell features improved Wayland support,
improvements to new gadget infrastructure, a sudo/ssh askpass utility gui,
tiling policy improvements, and integrated per-window volume controls,
along with a switch to the Meson build system.

Bringing Datacenter-Scale Hardware-Software Co-design to the Cloud with FireSim and Amazon EC2 F1 Instances

Post Syndicated from Mia Champion original https://aws.amazon.com/blogs/compute/bringing-datacenter-scale-hardware-software-co-design-to-the-cloud-with-firesim-and-amazon-ec2-f1-instances/

The recent addition of Xilinx FPGAs to AWS Cloud compute offerings is one way that AWS is enabling global growth in the areas of advanced analytics, deep learning and AI. The customized F1 servers use pooled accelerators, enabling interconnectivity of up to 8 FPGAs, each one including 64 GiB DDR4 ECC protected memory, with a dedicated PCIe x16 connection. That makes this a powerful engine with the capacity to process advanced analytical applications at scale, at a significantly faster rate. For example, AWS commercial partner Edico Genome is able to achieve an approximately 30X speedup in analyzing whole genome sequencing datasets using their DRAGEN platform powered with F1 instances.

While the availability of FPGA F1 compute on-demand provides clear accessibility and cost advantages, many mainstream users are still finding that the “threshold to entry” in developing or running FPGA-accelerated simulations is too high. Researchers at the UC Berkeley RISE Lab have developed “FireSim”, powered by Amazon FPGA F1 instances as an open-source resource, FireSim lowers that entry bar and makes it easier for everyone to leverage the power of an FPGA-accelerated compute environment. Whether you are part of a small start-up development team or working at a large datacenter scale, hardware-software co-design enables faster time-to-deployment, lower costs, and more predictable performance. We are excited to feature FireSim in this post from Sagar Karandikar and his colleagues at UC-Berkeley.

―Mia Champion, Sr. Data Scientist, AWS

Mapping an 8-node FireSim cluster simulation to Amazon EC2 F1

As traditional hardware scaling nears its end, the data centers of tomorrow are trending towards heterogeneity, employing custom hardware accelerators and increasingly high-performance interconnects. Prototyping new hardware at scale has traditionally been either extremely expensive, or very slow. In this post, I introduce FireSim, a new hardware simulation platform under development in the computer architecture research group at UC Berkeley that enables fast, scalable hardware simulation using Amazon EC2 F1 instances.

FireSim benefits both hardware and software developers working on new rack-scale systems: software developers can use the simulated nodes with new hardware features as they would use a real machine, while hardware developers have full control over the hardware being simulated and can run real software stacks while hardware is still under development. In conjunction with this post, we’re releasing the first public demo of FireSim, which lets you deploy your own 8-node simulated cluster on an F1 Instance and run benchmarks against it. This demo simulates a pre-built “vanilla” cluster, but demonstrates FireSim’s high performance and usability.

Why FireSim + F1?

FPGA-accelerated hardware simulation is by no means a new concept. However, previous attempts to use FPGAs for simulation have been fraught with usability, scalability, and cost issues. FireSim takes advantage of EC2 F1 and open-source hardware to address the traditional problems with FPGA-accelerated simulation:
Problem #1: FPGA-based simulations have traditionally been expensive, difficult to deploy, and difficult to reproduce.
FireSim uses public-cloud infrastructure like F1, which means no upfront cost to purchase and deploy FPGAs. Developers and researchers can distribute pre-built AMIs and AFIs, as in this public demo (more details later in this post), to make experiments easy to reproduce. FireSim also automates most of the work involved in deploying an FPGA simulation, essentially enabling one-click conversion from new RTL to deploying on an FPGA cluster.

Problem #2: FPGA-based simulations have traditionally been difficult (and expensive) to scale.
Because FireSim uses F1, users can scale out experiments by spinning up additional EC2 instances, rather than spending hundreds of thousands of dollars on large FPGA clusters.

Problem #3: Finding open hardware to simulate has traditionally been difficult. Finding open hardware that can run real software stacks is even harder.
FireSim simulates RocketChip, an open, silicon-proven, RISC-V-based processor platform, and adds peripherals like a NIC and disk device to build up a realistic system. Processors that implement RISC-V automatically support real operating systems (such as Linux) and even support applications like Apache and Memcached. We provide a custom Buildroot-based FireSim Linux distribution that runs on our simulated nodes and includes many popular developer tools.

Problem #4: Writing hardware in traditional HDLs is time-consuming.
Both FireSim and RocketChip use the Chisel HDL, which brings modern programming paradigms to hardware description languages. Chisel greatly simplifies the process of building large, highly parameterized hardware components.

How to use FireSim for hardware/software co-design

FireSim drastically improves the process of co-designing hardware and software by acting as a push-button interface for collaboration between hardware developers and systems software developers. The following diagram describes the workflows that hardware and software developers use when working with FireSim.

Figure 2. The FireSim custom hardware development workflow.

The hardware developer’s view:

  1. Write custom RTL for your accelerator, peripheral, or processor modification in a productive language like Chisel.
  2. Run a software simulation of your hardware design in standard gate-level simulation tools for early-stage debugging.
  3. Run FireSim build scripts, which automatically build your simulation, run it through the Vivado toolchain/AWS shell scripts, and publish an AFI.
  4. Deploy your simulation on EC2 F1 using the generated simulation driver and AFI
  5. Run real software builds released by software developers to benchmark your hardware

The software developer’s view:

  1. Deploy the AMI/AFI generated by the hardware developer on an F1 instance to simulate a cluster of nodes (or scale out to many F1 nodes for larger simulated core-counts).
  2. Connect using SSH into the simulated nodes in the cluster and boot the Linux distribution included with FireSim. This distribution is easy to customize, and already supports many standard software packages.
  3. Directly prototype your software using the same exact interfaces that the software will see when deployed on the real future system you’re prototyping, with the same performance characteristics as observed from software, even at scale.

FireSim demo v1.0

Figure 3. Cluster topology simulated by FireSim demo v1.0.

This first public demo of FireSim focuses on the aforementioned “software-developer’s view” of the custom hardware development cycle. The demo simulates a cluster of 1 to 8 RocketChip-based nodes, interconnected by a functional network simulation. The simulated nodes work just like “real” machines:  they boot Linux, you can connect to them using SSH, and you can run real applications on top. The nodes can see each other (and the EC2 F1 instance on which they’re deployed) on the network and communicate with one another. While the demo currently simulates a pre-built “vanilla” cluster, the entire hardware configuration of these simulated nodes can be modified after FireSim is open-sourced.

In this post, I walk through bringing up a single-node FireSim simulation for experienced EC2 F1 users. For more detailed instructions for new users and instructions for running a larger 8-node simulation, see FireSim Demo v1.0 on Amazon EC2 F1. Both demos walk you through setting up an instance from a demo AMI/AFI and booting Linux on the simulated nodes. The full demo instructions also walk you through an example workload, running Memcached on the simulated nodes, with YCSB as a load generator to demonstrate network functionality.

Deploying the demo on F1

In this release, we provide pre-built binaries for driving simulation from the host and a pre-built AFI that contains the FPGA infrastructure necessary to simulate a RocketChip-based node.

Starting your F1 instances

First, launch an instance using the free FireSim Demo v1.0 product available on the AWS Marketplace on an f1.2xlarge instance. After your instance has booted, log in using the user name centos. On the first login, you should see the message “FireSim network config completed.” This sets up the necessary tap interfaces and bridge on the EC2 instance to enable communicating with the simulated nodes.

AMI contents

The AMI contains a variety of tools to help you run simulations and build software for RISC-V systems, including the riscv64 toolchain, a Buildroot-based Linux distribution that runs on the simulated nodes, and the simulation driver program. For more details, see the AMI Contents section on the FireSim website.

Single-node demo

First, you need to flash the FPGA with the FireSim AFI. To do so, run:

[[email protected]_ADDR ~]$ sudo fpga-load-local-image -S 0 -I agfi-00a74c2d615134b21

To start a simulation, run the following at the command line:

[[email protected]_ADDR ~]$ boot-firesim-singlenode

This automatically calls the simulation driver, telling it to load the Linux kernel image and root filesystem for the Linux distro. This produces output similar to the following:

Simulations Started. You can use the UART console of each simulated node by attaching to the following screens:

There is a screen on:

2492.fsim0      (Detached)

1 Socket in /var/run/screen/S-centos.

You could connect to the simulated UART console by connecting to this screen, but instead opt to use SSH to access the node instead.

First, ping the node to make sure it has come online. This is currently required because nodes may get stuck at Linux boot if the NIC does not receive any network traffic. For more information, see Troubleshooting/Errata. The node is always assigned the IP address 192.168.1.10:

[[email protected]_ADDR ~]$ ping 192.168.1.10

This should eventually produce the following output:

PING 192.168.1.10 (192.168.1.10) 56(84) bytes of data.

From 192.168.1.1 icmp_seq=1 Destination Host Unreachable

64 bytes from 192.168.1.10: icmp_seq=1 ttl=64 time=2017 ms

64 bytes from 192.168.1.10: icmp_seq=2 ttl=64 time=1018 ms

64 bytes from 192.168.1.10: icmp_seq=3 ttl=64 time=19.0 ms

At this point, you know that the simulated node is online. You can connect to it using SSH with the user name root and password firesim. It is also convenient to make sure that your TERM variable is set correctly. In this case, the simulation expects TERM=linux, so provide that:

[[email protected]_ADDR ~]$ TERM=linux ssh [email protected]

The authenticity of host ‘192.168.1.10 (192.168.1.10)’ can’t be established.

ECDSA key fingerprint is 63:e9:66:d0:5c:06:2c:1d:5c:95:33:c8:36:92:30:49.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added ‘192.168.1.10’ (ECDSA) to the list of known hosts.

[email protected]’s password:

#

At this point, you’re connected to the simulated node. Run uname -a as an example. You should see the following output, indicating that you’re connected to a RISC-V system:

# uname -a

Linux buildroot 4.12.0-rc2 #1 Fri Aug 4 03:44:55 UTC 2017 riscv64 GNU/Linux

Now you can run programs on the simulated node, as you would with a real machine. For an example workload (running YCSB against Memcached on the simulated node) or to run a larger 8-node simulation, see the full FireSim Demo v1.0 on Amazon EC2 F1 demo instructions.

Finally, when you are finished, you can shut down the simulated node by running the following command from within the simulated node:

# poweroff

You can confirm that the simulation has ended by running screen -ls, which should now report that there are no detached screens.

Future plans

At Berkeley, we’re planning to keep improving the FireSim platform to enable our own research in future data center architectures, like FireBox. The FireSim platform will eventually support more sophisticated processors, custom accelerators (such as Hwacha), network models, and peripherals, in addition to scaling to larger numbers of FPGAs. In the future, we’ll open source the entire platform, including Midas, the tool used to transform RTL into FPGA simulators, allowing users to modify any part of the hardware/software stack. Follow @firesimproject on Twitter to stay tuned to future FireSim updates.

Acknowledgements

FireSim is the joint work of many students and faculty at Berkeley: Sagar Karandikar, Donggyu Kim, Howard Mao, David Biancolin, Jack Koenig, Jonathan Bachrach, and Krste Asanović. This work is partially funded by AWS through the RISE Lab, by the Intel Science and Technology Center for Agile HW Design, and by ASPIRE Lab sponsors and affiliates Intel, Google, HPE, Huawei, NVIDIA, and SK hynix.

Predict Billboard Top 10 Hits Using RStudio, H2O and Amazon Athena

Post Syndicated from Gopal Wunnava original https://aws.amazon.com/blogs/big-data/predict-billboard-top-10-hits-using-rstudio-h2o-and-amazon-athena/

Success in the popular music industry is typically measured in terms of the number of Top 10 hits artists have to their credit. The music industry is a highly competitive multi-billion dollar business, and record labels incur various costs in exchange for a percentage of the profits from sales and concert tickets.

Predicting the success of an artist’s release in the popular music industry can be difficult. One release may be extremely popular, resulting in widespread play on TV, radio and social media, while another single may turn out quite unpopular, and therefore unprofitable. Record labels need to be selective in their decision making, and predictive analytics can help them with decision making around the type of songs and artists they need to promote.

In this walkthrough, you leverage H2O.ai, Amazon Athena, and RStudio to make predictions on whether a song might make it to the Top 10 Billboard charts. You explore the GLM, GBM, and deep learning modeling techniques using H2O’s rapid, distributed and easy-to-use open source parallel processing engine. RStudio is a popular IDE, licensed either commercially or under AGPLv3, for working with R. This is ideal if you don’t want to connect to a server via SSH and use code editors such as vi to do analytics. RStudio is available in a desktop version, or a server version that allows you to access R via a web browser. RStudio’s Notebooks feature is used to demonstrate the execution of code and output. In addition, this post showcases how you can leverage Athena for query and interactive analysis during the modeling phase. A working knowledge of statistics and machine learning would be helpful to interpret the analysis being performed in this post.

Walkthrough

Your goal is to predict whether a song will make it to the Top 10 Billboard charts. For this purpose, you will be using multiple modeling techniques―namely GLM, GBM and deep learning―and choose the model that is the best fit.

This solution involves the following steps:

  • Install and configure RStudio with Athena
  • Log in to RStudio
  • Install R packages
  • Connect to Athena
  • Create a dataset
  • Create models

Install and configure RStudio with Athena

Use the following AWS CloudFormation stack to install, configure, and connect RStudio on an Amazon EC2 instance with Athena.

Launching this stack creates all required resources and prerequisites:

  • Amazon EC2 instance with Amazon Linux (minimum size of t2.large is recommended)
  • Provisioning of the EC2 instance in an existing VPC and public subnet
  • Installation of Java 8
  • Assignment of an IAM role to the EC2 instance with the required permissions for accessing Athena and Amazon S3
  • Security group allowing access to the RStudio and SSH ports from the internet (I recommend restricting access to these ports)
  • S3 staging bucket required for Athena (referenced within RStudio as ATHENABUCKET)
  • RStudio username and password
  • Setup logs in Amazon CloudWatch Logs (if needed for additional troubleshooting)
  • Amazon EC2 Systems Manager agent, which makes it easy to manage and patch

All AWS resources are created in the US-East-1 Region. To avoid cross-region data transfer fees, launch the CloudFormation stack in the same region. To check the availability of Athena in other regions, see Region Table.

Log in to RStudio

The instance security group has been automatically configured to allow incoming connections on the RStudio port 8787 from any source internet address. You can edit the security group to restrict source IP access. If you have trouble connecting, ensure that port 8787 isn’t blocked by subnet network ACLS or by your outgoing proxy/firewall.

  1. In the CloudFormation stack, choose Outputs, Value, and then open the RStudio URL. You might need to wait for a few minutes until the instance has been launched.
  2. Log in to RStudio with the and password you provided during setup.

Install R packages

Next, install the required R packages from the RStudio console. You can download the R notebook file containing just the code.

#install pacman – a handy package manager for managing installs
if("pacman" %in% rownames(installed.packages()) == FALSE)
{install.packages("pacman")}  
library(pacman)
p_load(h2o,rJava,RJDBC,awsjavasdk)
h2o.init(nthreads = -1)
##  Connection successful!
## 
## R is connected to the H2O cluster: 
##     H2O cluster uptime:         2 hours 42 minutes 
##     H2O cluster version:        3.10.4.6 
##     H2O cluster version age:    4 months and 4 days !!! 
##     H2O cluster name:           H2O_started_from_R_rstudio_hjx881 
##     H2O cluster total nodes:    1 
##     H2O cluster total memory:   3.30 GB 
##     H2O cluster total cores:    4 
##     H2O cluster allowed cores:  4 
##     H2O cluster healthy:        TRUE 
##     H2O Connection ip:          localhost 
##     H2O Connection port:        54321 
##     H2O Connection proxy:       NA 
##     H2O Internal Security:      FALSE 
##     R Version:                  R version 3.3.3 (2017-03-06)
## Warning in h2o.clusterInfo(): 
## Your H2O cluster version is too old (4 months and 4 days)!
## Please download and install the latest version from http://h2o.ai/download/
#install aws sdk if not present (pre-requisite for using Athena with an IAM role)
if (!aws_sdk_present()) {
  install_aws_sdk()
}

load_sdk()
## NULL

Connect to Athena

Next, establish a connection to Athena from RStudio, using an IAM role associated with your EC2 instance. Use ATHENABUCKET to specify the S3 staging directory.

URL <- 'https://s3.amazonaws.com/athena-downloads/drivers/AthenaJDBC41-1.0.1.jar'
fil <- basename(URL)
#download the file into current working directory
if (!file.exists(fil)) download.file(URL, fil)
#verify that the file has been downloaded successfully
list.files()
## [1] "AthenaJDBC41-1.0.1.jar"
drv <- JDBC(driverClass="com.amazonaws.athena.jdbc.AthenaDriver", fil, identifier.quote="'")

con <- jdbcConnection <- dbConnect(drv, 'jdbc:awsathena://athena.us-east-1.amazonaws.com:443/',
                                   s3_staging_dir=Sys.getenv("ATHENABUCKET"),
                                   aws_credentials_provider_class="com.amazonaws.auth.DefaultAWSCredentialsProviderChain")

Verify the connection. The results returned depend on your specific Athena setup.

con
## <JDBCConnection>
dbListTables(con)
##  [1] "gdelt"               "wikistats"           "elb_logs_raw_native"
##  [4] "twitter"             "twitter2"            "usermovieratings"   
##  [7] "eventcodes"          "events"              "billboard"          
## [10] "billboardtop10"      "elb_logs"            "gdelthist"          
## [13] "gdeltmaster"         "twitter"             "twitter3"

Create a dataset

For this analysis, you use a sample dataset combining information from Billboard and Wikipedia with Echo Nest data in the Million Songs Dataset. Upload this dataset into your own S3 bucket. The table below provides a description of the fields used in this dataset.

Field Description
year Year that song was released
songtitle Title of the song
artistname Name of the song artist
songid Unique identifier for the song
artistid Unique identifier for the song artist
timesignature Variable estimating the time signature of the song
timesignature_confidence Confidence in the estimate for the timesignature
loudness Continuous variable indicating the average amplitude of the audio in decibels
tempo Variable indicating the estimated beats per minute of the song
tempo_confidence Confidence in the estimate for tempo
key Variable with twelve levels indicating the estimated key of the song (C, C#, B)
key_confidence Confidence in the estimate for key
energy Variable that represents the overall acoustic energy of the song, using a mix of features such as loudness
pitch Continuous variable that indicates the pitch of the song
timbre_0_min thru timbre_11_min Variables that indicate the minimum values over all segments for each of the twelve values in the timbre vector
timbre_0_max thru timbre_11_max Variables that indicate the maximum values over all segments for each of the twelve values in the timbre vector
top10 Indicator for whether or not the song made it to the Top 10 of the Billboard charts (1 if it was in the top 10, and 0 if not)

Create an Athena table based on the dataset

In the Athena console, select the default database, sampled, or create a new database.

Run the following create table statement.

create external table if not exists billboard
(
year int,
songtitle string,
artistname string,
songID string,
artistID string,
timesignature int,
timesignature_confidence double,
loudness double,
tempo double,
tempo_confidence double,
key int,
key_confidence double,
energy double,
pitch double,
timbre_0_min double,
timbre_0_max double,
timbre_1_min double,
timbre_1_max double,
timbre_2_min double,
timbre_2_max double,
timbre_3_min double,
timbre_3_max double,
timbre_4_min double,
timbre_4_max double,
timbre_5_min double,
timbre_5_max double,
timbre_6_min double,
timbre_6_max double,
timbre_7_min double,
timbre_7_max double,
timbre_8_min double,
timbre_8_max double,
timbre_9_min double,
timbre_9_max double,
timbre_10_min double,
timbre_10_max double,
timbre_11_min double,
timbre_11_max double,
Top10 int
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
STORED AS TEXTFILE
LOCATION 's3://aws-bigdata-blog/artifacts/predict-billboard/data'
;

Inspect the table definition for the ‘billboard’ table that you have created. If you chose a database other than sampledb, replace that value with your choice.

dbGetQuery(con, "show create table sampledb.billboard")
##                                      createtab_stmt
## 1       CREATE EXTERNAL TABLE `sampledb.billboard`(
## 2                                       `year` int,
## 3                               `songtitle` string,
## 4                              `artistname` string,
## 5                                  `songid` string,
## 6                                `artistid` string,
## 7                              `timesignature` int,
## 8                `timesignature_confidence` double,
## 9                                `loudness` double,
## 10                                  `tempo` double,
## 11                       `tempo_confidence` double,
## 12                                       `key` int,
## 13                         `key_confidence` double,
## 14                                 `energy` double,
## 15                                  `pitch` double,
## 16                           `timbre_0_min` double,
## 17                           `timbre_0_max` double,
## 18                           `timbre_1_min` double,
## 19                           `timbre_1_max` double,
## 20                           `timbre_2_min` double,
## 21                           `timbre_2_max` double,
## 22                           `timbre_3_min` double,
## 23                           `timbre_3_max` double,
## 24                           `timbre_4_min` double,
## 25                           `timbre_4_max` double,
## 26                           `timbre_5_min` double,
## 27                           `timbre_5_max` double,
## 28                           `timbre_6_min` double,
## 29                           `timbre_6_max` double,
## 30                           `timbre_7_min` double,
## 31                           `timbre_7_max` double,
## 32                           `timbre_8_min` double,
## 33                           `timbre_8_max` double,
## 34                           `timbre_9_min` double,
## 35                           `timbre_9_max` double,
## 36                          `timbre_10_min` double,
## 37                          `timbre_10_max` double,
## 38                          `timbre_11_min` double,
## 39                          `timbre_11_max` double,
## 40                                     `top10` int)
## 41                             ROW FORMAT DELIMITED 
## 42                         FIELDS TERMINATED BY ',' 
## 43                            STORED AS INPUTFORMAT 
## 44       'org.apache.hadoop.mapred.TextInputFormat' 
## 45                                     OUTPUTFORMAT 
## 46  'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
## 47                                        LOCATION
## 48    's3://aws-bigdata-blog/artifacts/predict-billboard/data'
## 49                                  TBLPROPERTIES (
## 50            'transient_lastDdlTime'='1505484133')

Run a sample query

Next, run a sample query to obtain a list of all songs from Janet Jackson that made it to the Billboard Top 10 charts.

dbGetQuery(con, " SELECT songtitle,artistname,top10   FROM sampledb.billboard WHERE lower(artistname) =     'janet jackson' AND top10 = 1")
##                       songtitle    artistname top10
## 1                       Runaway Janet Jackson     1
## 2               Because Of Love Janet Jackson     1
## 3                         Again Janet Jackson     1
## 4                            If Janet Jackson     1
## 5  Love Will Never Do (Without You) Janet Jackson 1
## 6                     Black Cat Janet Jackson     1
## 7               Come Back To Me Janet Jackson     1
## 8                       Alright Janet Jackson     1
## 9                      Escapade Janet Jackson     1
## 10                Rhythm Nation Janet Jackson     1

Determine how many songs in this dataset are specifically from the year 2010.

dbGetQuery(con, " SELECT count(*)   FROM sampledb.billboard WHERE year = 2010")
##   _col0
## 1   373

The sample dataset provides certain song properties of interest that can be analyzed to gauge the impact to the song’s overall popularity. Look at one such property, timesignature, and determine the value that is the most frequent among songs in the database. Timesignature is a measure of the number of beats and the type of note involved.

Running the query directly may result in an error, as shown in the commented lines below. This error is a result of trying to retrieve a large result set over a JDBC connection, which can cause out-of-memory issues at the client level. To address this, reduce the fetch size and run again.

#t<-dbGetQuery(con, " SELECT timesignature FROM sampledb.billboard")
#Note:  Running the preceding query results in the following error: 
#Error in .jcall(rp, "I", "fetch", stride, block): java.sql.SQLException: The requested #fetchSize is more than the allowed value in Athena. Please reduce the fetchSize and try #again. Refer to the Athena documentation for valid fetchSize values.
# Use the dbSendQuery function, reduce the fetch size, and run again
r <- dbSendQuery(con, " SELECT timesignature     FROM sampledb.billboard")
dftimesignature<- fetch(r, n=-1, block=100)
dbClearResult(r)
## [1] TRUE
table(dftimesignature)
## dftimesignature
##    0    1    3    4    5    7 
##   10  143  503 6787  112   19
nrow(dftimesignature)
## [1] 7574

From the results, observe that 6787 songs have a timesignature of 4.

Next, determine the song with the highest tempo.

dbGetQuery(con, " SELECT songtitle,artistname,tempo   FROM sampledb.billboard WHERE tempo = (SELECT max(tempo) FROM sampledb.billboard) ")
##                   songtitle      artistname   tempo
## 1 Wanna Be Startin' Somethin' Michael Jackson 244.307

Create the training dataset

Your model needs to be trained such that it can learn and make accurate predictions. Split the data into training and test datasets, and create the training dataset first.  This dataset contains all observations from the year 2009 and earlier. You may face the same JDBC connection issue pointed out earlier, so this query uses a fetch size.

#BillboardTrain <- dbGetQuery(con, "SELECT * FROM sampledb.billboard WHERE year <= 2009")
#Running the preceding query results in the following error:-
#Error in .verify.JDBC.result(r, "Unable to retrieve JDBC result set for ", : Unable to retrieve #JDBC result set for SELECT * FROM sampledb.billboard WHERE year <= 2009 (Internal error)
#Follow the same approach as before to address this issue.

r <- dbSendQuery(con, "SELECT * FROM sampledb.billboard WHERE year <= 2009")
BillboardTrain <- fetch(r, n=-1, block=100)
dbClearResult(r)
## [1] TRUE
BillboardTrain[1:2,c(1:3,6:10)]
##   year           songtitle artistname timesignature
## 1 2009 The Awkward Goodbye    Athlete             3
## 2 2009        Rubik's Cube    Athlete             3
##   timesignature_confidence loudness   tempo tempo_confidence
## 1                    0.732   -6.320  89.614   0.652
## 2                    0.906   -9.541 117.742   0.542
nrow(BillboardTrain)
## [1] 7201

Create the test dataset

BillboardTest <- dbGetQuery(con, "SELECT * FROM sampledb.billboard where year = 2010")
BillboardTest[1:2,c(1:3,11:15)]
##   year              songtitle        artistname key
## 1 2010 This Is the House That Doubt Built A Day to Remember  11
## 2 2010        Sticks & Bricks A Day to Remember  10
##   key_confidence    energy pitch timbre_0_min
## 1          0.453 0.9666556 0.024        0.002
## 2          0.469 0.9847095 0.025        0.000
nrow(BillboardTest)
## [1] 373

Convert the training and test datasets into H2O dataframes

train.h2o <- as.h2o(BillboardTrain)
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |=================================================================| 100%
test.h2o <- as.h2o(BillboardTest)
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |=================================================================| 100%

Inspect the column names in your H2O dataframes.

colnames(train.h2o)
##  [1] "year"                     "songtitle"               
##  [3] "artistname"               "songid"                  
##  [5] "artistid"                 "timesignature"           
##  [7] "timesignature_confidence" "loudness"                
##  [9] "tempo"                    "tempo_confidence"        
## [11] "key"                      "key_confidence"          
## [13] "energy"                   "pitch"                   
## [15] "timbre_0_min"             "timbre_0_max"            
## [17] "timbre_1_min"             "timbre_1_max"            
## [19] "timbre_2_min"             "timbre_2_max"            
## [21] "timbre_3_min"             "timbre_3_max"            
## [23] "timbre_4_min"             "timbre_4_max"            
## [25] "timbre_5_min"             "timbre_5_max"            
## [27] "timbre_6_min"             "timbre_6_max"            
## [29] "timbre_7_min"             "timbre_7_max"            
## [31] "timbre_8_min"             "timbre_8_max"            
## [33] "timbre_9_min"             "timbre_9_max"            
## [35] "timbre_10_min"            "timbre_10_max"           
## [37] "timbre_11_min"            "timbre_11_max"           
## [39] "top10"

Create models

You need to designate the independent and dependent variables prior to applying your modeling algorithms. Because you’re trying to predict the ‘top10’ field, this would be your dependent variable and everything else would be independent.

Create your first model using GLM. Because GLM works best with numeric data, you create your model by dropping non-numeric variables. You only use the variables in the dataset that describe the numerical attributes of the song in the logistic regression model. You won’t use these variables:  “year”, “songtitle”, “artistname”, “songid”, or “artistid”.

y.dep <- 39
x.indep <- c(6:38)
x.indep
##  [1]  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
## [24] 29 30 31 32 33 34 35 36 37 38

Create Model 1: All numeric variables

Create Model 1 with the training dataset, using GLM as the modeling algorithm and H2O’s built-in h2o.glm function.

modelh1 <- h2o.glm( y = y.dep, x = x.indep, training_frame = train.h2o, family = "binomial")
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |=====                                                            |   8%
  |                                                                       
  |=================================================================| 100%

Measure the performance of Model 1, using H2O’s built-in performance function.

h2o.performance(model=modelh1,newdata=test.h2o)
## H2OBinomialMetrics: glm
## 
## MSE:  0.09924684
## RMSE:  0.3150347
## LogLoss:  0.3220267
## Mean Per-Class Error:  0.2380168
## AUC:  0.8431394
## Gini:  0.6862787
## R^2:  0.254663
## Null Deviance:  326.0801
## Residual Deviance:  240.2319
## AIC:  308.2319
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##          0   1    Error     Rate
## 0      255  59 0.187898  =59/314
## 1       17  42 0.288136   =17/59
## Totals 272 101 0.203753  =76/373
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold    value idx
## 1                       max f1  0.192772 0.525000 100
## 2                       max f2  0.124912 0.650510 155
## 3                 max f0point5  0.416258 0.612903  23
## 4                 max accuracy  0.416258 0.879357  23
## 5                max precision  0.813396 1.000000   0
## 6                   max recall  0.037579 1.000000 282
## 7              max specificity  0.813396 1.000000   0
## 8             max absolute_mcc  0.416258 0.455251  23
## 9   max min_per_class_accuracy  0.161402 0.738854 125
## 10 max mean_per_class_accuracy  0.124912 0.765006 155
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or ` 
h2o.auc(h2o.performance(modelh1,test.h2o)) 
## [1] 0.8431394

The AUC metric provides insight into how well the classifier is able to separate the two classes. In this case, the value of 0.8431394 indicates that the classification is good. (A value of 0.5 indicates a worthless test, while a value of 1.0 indicates a perfect test.)

Next, inspect the coefficients of the variables in the dataset.

dfmodelh1 <- as.data.frame(h2o.varimp(modelh1))
dfmodelh1
##                       names coefficients sign
## 1              timbre_0_max  1.290938663  NEG
## 2                  loudness  1.262941934  POS
## 3                     pitch  0.616995941  NEG
## 4              timbre_1_min  0.422323735  POS
## 5              timbre_6_min  0.349016024  NEG
## 6                    energy  0.348092062  NEG
## 7             timbre_11_min  0.307331997  NEG
## 8              timbre_3_max  0.302225619  NEG
## 9             timbre_11_max  0.243632060  POS
## 10             timbre_4_min  0.224233951  POS
## 11             timbre_4_max  0.204134342  POS
## 12             timbre_5_min  0.199149324  NEG
## 13             timbre_0_min  0.195147119  POS
## 14 timesignature_confidence  0.179973904  POS
## 15         tempo_confidence  0.144242598  POS
## 16            timbre_10_max  0.137644568  POS
## 17             timbre_7_min  0.126995955  NEG
## 18            timbre_10_min  0.123851179  POS
## 19             timbre_7_max  0.100031481  NEG
## 20             timbre_2_min  0.096127636  NEG
## 21           key_confidence  0.083115820  POS
## 22             timbre_6_max  0.073712419  POS
## 23            timesignature  0.067241917  POS
## 24             timbre_8_min  0.061301881  POS
## 25             timbre_8_max  0.060041698  POS
## 26                      key  0.056158445  POS
## 27             timbre_3_min  0.050825116  POS
## 28             timbre_9_max  0.033733561  POS
## 29             timbre_2_max  0.030939072  POS
## 30             timbre_9_min  0.020708113  POS
## 31             timbre_1_max  0.014228818  NEG
## 32                    tempo  0.008199861  POS
## 33             timbre_5_max  0.004837870  POS
## 34                                    NA <NA>

Typically, songs with heavier instrumentation tend to be louder (have higher values in the variable “loudness”) and more energetic (have higher values in the variable “energy”). This knowledge is helpful for interpreting the modeling results.

You can make the following observations from the results:

  • The coefficient estimates for the confidence values associated with the time signature, key, and tempo variables are positive. This suggests that higher confidence leads to a higher predicted probability of a Top 10 hit.
  • The coefficient estimate for loudness is positive, meaning that mainstream listeners prefer louder songs with heavier instrumentation.
  • The coefficient estimate for energy is negative, meaning that mainstream listeners prefer songs that are less energetic, which are those songs with light instrumentation.

These coefficients lead to contradictory conclusions for Model 1. This could be due to multicollinearity issues. Inspect the correlation between the variables “loudness” and “energy” in the training set.

cor(train.h2o$loudness,train.h2o$energy)
## [1] 0.7399067

This number indicates that these two variables are highly correlated, and Model 1 does indeed suffer from multicollinearity. Typically, you associate a value of -1.0 to -0.5 or 1.0 to 0.5 to indicate strong correlation, and a value of 0.1 to 0.1 to indicate weak correlation. To avoid this correlation issue, omit one of these two variables and re-create the models.

You build two variations of the original model:

  • Model 2, in which you keep “energy” and omit “loudness”
  • Model 3, in which you keep “loudness” and omit “energy”

You compare these two models and choose the model with a better fit for this use case.

Create Model 2: Keep energy and omit loudness

colnames(train.h2o)
##  [1] "year"                     "songtitle"               
##  [3] "artistname"               "songid"                  
##  [5] "artistid"                 "timesignature"           
##  [7] "timesignature_confidence" "loudness"                
##  [9] "tempo"                    "tempo_confidence"        
## [11] "key"                      "key_confidence"          
## [13] "energy"                   "pitch"                   
## [15] "timbre_0_min"             "timbre_0_max"            
## [17] "timbre_1_min"             "timbre_1_max"            
## [19] "timbre_2_min"             "timbre_2_max"            
## [21] "timbre_3_min"             "timbre_3_max"            
## [23] "timbre_4_min"             "timbre_4_max"            
## [25] "timbre_5_min"             "timbre_5_max"            
## [27] "timbre_6_min"             "timbre_6_max"            
## [29] "timbre_7_min"             "timbre_7_max"            
## [31] "timbre_8_min"             "timbre_8_max"            
## [33] "timbre_9_min"             "timbre_9_max"            
## [35] "timbre_10_min"            "timbre_10_max"           
## [37] "timbre_11_min"            "timbre_11_max"           
## [39] "top10"
y.dep <- 39
x.indep <- c(6:7,9:38)
x.indep
##  [1]  6  7  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
## [24] 30 31 32 33 34 35 36 37 38
modelh2 <- h2o.glm( y = y.dep, x = x.indep, training_frame = train.h2o, family = "binomial")
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |=======                                                          |  10%
  |                                                                       
  |=================================================================| 100%

Measure the performance of Model 2.

h2o.performance(model=modelh2,newdata=test.h2o)
## H2OBinomialMetrics: glm
## 
## MSE:  0.09922606
## RMSE:  0.3150017
## LogLoss:  0.3228213
## Mean Per-Class Error:  0.2490554
## AUC:  0.8431933
## Gini:  0.6863867
## R^2:  0.2548191
## Null Deviance:  326.0801
## Residual Deviance:  240.8247
## AIC:  306.8247
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##          0  1    Error     Rate
## 0      280 34 0.108280  =34/314
## 1       23 36 0.389831   =23/59
## Totals 303 70 0.152815  =57/373
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold    value idx
## 1                       max f1  0.254391 0.558140  69
## 2                       max f2  0.113031 0.647208 157
## 3                 max f0point5  0.413999 0.596026  22
## 4                 max accuracy  0.446250 0.876676  18
## 5                max precision  0.811739 1.000000   0
## 6                   max recall  0.037682 1.000000 283
## 7              max specificity  0.811739 1.000000   0
## 8             max absolute_mcc  0.254391 0.469060  69
## 9   max min_per_class_accuracy  0.141051 0.716561 131
## 10 max mean_per_class_accuracy  0.113031 0.761821 157
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
dfmodelh2 <- as.data.frame(h2o.varimp(modelh2))
dfmodelh2
##                       names coefficients sign
## 1                     pitch  0.700331511  NEG
## 2              timbre_1_min  0.510270513  POS
## 3              timbre_0_max  0.402059546  NEG
## 4              timbre_6_min  0.333316236  NEG
## 5             timbre_11_min  0.331647383  NEG
## 6              timbre_3_max  0.252425901  NEG
## 7             timbre_11_max  0.227500308  POS
## 8              timbre_4_max  0.210663865  POS
## 9              timbre_0_min  0.208516163  POS
## 10             timbre_5_min  0.202748055  NEG
## 11             timbre_4_min  0.197246582  POS
## 12            timbre_10_max  0.172729619  POS
## 13         tempo_confidence  0.167523934  POS
## 14 timesignature_confidence  0.167398830  POS
## 15             timbre_7_min  0.142450727  NEG
## 16             timbre_8_max  0.093377516  POS
## 17            timbre_10_min  0.090333426  POS
## 18            timesignature  0.085851625  POS
## 19             timbre_7_max  0.083948442  NEG
## 20           key_confidence  0.079657073  POS
## 21             timbre_6_max  0.076426046  POS
## 22             timbre_2_min  0.071957831  NEG
## 23             timbre_9_max  0.071393189  POS
## 24             timbre_8_min  0.070225578  POS
## 25                      key  0.061394702  POS
## 26             timbre_3_min  0.048384697  POS
## 27             timbre_1_max  0.044721121  NEG
## 28                   energy  0.039698433  POS
## 29             timbre_5_max  0.039469064  POS
## 30             timbre_2_max  0.018461133  POS
## 31                    tempo  0.013279926  POS
## 32             timbre_9_min  0.005282143  NEG
## 33                                    NA <NA>

h2o.auc(h2o.performance(modelh2,test.h2o)) 
## [1] 0.8431933

You can make the following observations:

  • The AUC metric is 0.8431933.
  • Inspecting the coefficient of the variable energy, Model 2 suggests that songs with high energy levels tend to be more popular. This is as per expectation.
  • As H2O orders variables by significance, the variable energy is not significant in this model.

You can conclude that Model 2 is not ideal for this use , as energy is not significant.

CreateModel 3: Keep loudness but omit energy

colnames(train.h2o)
##  [1] "year"                     "songtitle"               
##  [3] "artistname"               "songid"                  
##  [5] "artistid"                 "timesignature"           
##  [7] "timesignature_confidence" "loudness"                
##  [9] "tempo"                    "tempo_confidence"        
## [11] "key"                      "key_confidence"          
## [13] "energy"                   "pitch"                   
## [15] "timbre_0_min"             "timbre_0_max"            
## [17] "timbre_1_min"             "timbre_1_max"            
## [19] "timbre_2_min"             "timbre_2_max"            
## [21] "timbre_3_min"             "timbre_3_max"            
## [23] "timbre_4_min"             "timbre_4_max"            
## [25] "timbre_5_min"             "timbre_5_max"            
## [27] "timbre_6_min"             "timbre_6_max"            
## [29] "timbre_7_min"             "timbre_7_max"            
## [31] "timbre_8_min"             "timbre_8_max"            
## [33] "timbre_9_min"             "timbre_9_max"            
## [35] "timbre_10_min"            "timbre_10_max"           
## [37] "timbre_11_min"            "timbre_11_max"           
## [39] "top10"
y.dep <- 39
x.indep <- c(6:12,14:38)
x.indep
##  [1]  6  7  8  9 10 11 12 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
## [24] 30 31 32 33 34 35 36 37 38
modelh3 <- h2o.glm( y = y.dep, x = x.indep, training_frame = train.h2o, family = "binomial")
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |========                                                         |  12%
  |                                                                       
  |=================================================================| 100%
perfh3<-h2o.performance(model=modelh3,newdata=test.h2o)
perfh3
## H2OBinomialMetrics: glm
## 
## MSE:  0.0978859
## RMSE:  0.3128672
## LogLoss:  0.3178367
## Mean Per-Class Error:  0.264925
## AUC:  0.8492389
## Gini:  0.6984778
## R^2:  0.2648836
## Null Deviance:  326.0801
## Residual Deviance:  237.1062
## AIC:  303.1062
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##          0  1    Error     Rate
## 0      286 28 0.089172  =28/314
## 1       26 33 0.440678   =26/59
## Totals 312 61 0.144772  =54/373
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                         metric threshold    value idx
## 1                       max f1  0.273799 0.550000  60
## 2                       max f2  0.125503 0.663265 155
## 3                 max f0point5  0.435479 0.628931  24
## 4                 max accuracy  0.435479 0.882038  24
## 5                max precision  0.821606 1.000000   0
## 6                   max recall  0.038328 1.000000 280
## 7              max specificity  0.821606 1.000000   0
## 8             max absolute_mcc  0.435479 0.471426  24
## 9   max min_per_class_accuracy  0.173693 0.745763 120
## 10 max mean_per_class_accuracy  0.125503 0.775073 155
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
dfmodelh3 <- as.data.frame(h2o.varimp(modelh3))
dfmodelh3
##                       names coefficients sign
## 1              timbre_0_max 1.216621e+00  NEG
## 2                  loudness 9.780973e-01  POS
## 3                     pitch 7.249788e-01  NEG
## 4              timbre_1_min 3.891197e-01  POS
## 5              timbre_6_min 3.689193e-01  NEG
## 6             timbre_11_min 3.086673e-01  NEG
## 7              timbre_3_max 3.025593e-01  NEG
## 8             timbre_11_max 2.459081e-01  POS
## 9              timbre_4_min 2.379749e-01  POS
## 10             timbre_4_max 2.157627e-01  POS
## 11             timbre_0_min 1.859531e-01  POS
## 12             timbre_5_min 1.846128e-01  NEG
## 13 timesignature_confidence 1.729658e-01  POS
## 14             timbre_7_min 1.431871e-01  NEG
## 15            timbre_10_max 1.366703e-01  POS
## 16            timbre_10_min 1.215954e-01  POS
## 17         tempo_confidence 1.183698e-01  POS
## 18             timbre_2_min 1.019149e-01  NEG
## 19           key_confidence 9.109701e-02  POS
## 20             timbre_7_max 8.987908e-02  NEG
## 21             timbre_6_max 6.935132e-02  POS
## 22             timbre_8_max 6.878241e-02  POS
## 23            timesignature 6.120105e-02  POS
## 24                      key 5.814805e-02  POS
## 25             timbre_8_min 5.759228e-02  POS
## 26             timbre_1_max 2.930285e-02  NEG
## 27             timbre_9_max 2.843755e-02  POS
## 28             timbre_3_min 2.380245e-02  POS
## 29             timbre_2_max 1.917035e-02  POS
## 30             timbre_5_max 1.715813e-02  POS
## 31                    tempo 1.364418e-02  NEG
## 32             timbre_9_min 8.463143e-05  NEG
## 33                                    NA <NA>
h2o.sensitivity(perfh3,0.5)
## Warning in h2o.find_row_by_threshold(object, t): Could not find exact
## threshold: 0.5 for this set of metrics; using closest threshold found:
## 0.501855569251422. Run `h2o.predict` and apply your desired threshold on a
## probability column.
## [[1]]
## [1] 0.2033898
h2o.auc(perfh3)
## [1] 0.8492389

You can make the following observations:

  • The AUC metric is 0.8492389.
  • From the confusion matrix, the model correctly predicts that 33 songs will be top 10 hits (true positives). However, it has 26 false positives (songs that the model predicted would be Top 10 hits, but ended up not being Top 10 hits).
  • Loudness has a positive coefficient estimate, meaning that this model predicts that songs with heavier instrumentation tend to be more popular. This is the same conclusion from Model 2.
  • Loudness is significant in this model.

Overall, Model 3 predicts a higher number of top 10 hits with an accuracy rate that is acceptable. To choose the best fit for production runs, record labels should consider the following factors:

  • Desired model accuracy at a given threshold
  • Number of correct predictions for top10 hits
  • Tolerable number of false positives or false negatives

Next, make predictions using Model 3 on the test dataset.

predict.regh <- h2o.predict(modelh3, test.h2o)
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |=================================================================| 100%
print(predict.regh)
##   predict        p0          p1
## 1       0 0.9654739 0.034526052
## 2       0 0.9654748 0.034525236
## 3       0 0.9635547 0.036445318
## 4       0 0.9343579 0.065642149
## 5       0 0.9978334 0.002166601
## 6       0 0.9779949 0.022005078
## 
## [373 rows x 3 columns]
predict.regh$predict
##   predict
## 1       0
## 2       0
## 3       0
## 4       0
## 5       0
## 6       0
## 
## [373 rows x 1 column]
dpr<-as.data.frame(predict.regh)
#Rename the predicted column 
colnames(dpr)[colnames(dpr) == 'predict'] <- 'predict_top10'
table(dpr$predict_top10)
## 
##   0   1 
## 312  61

The first set of output results specifies the probabilities associated with each predicted observation.  For example, observation 1 is 96.54739% likely to not be a Top 10 hit, and 3.4526052% likely to be a Top 10 hit (predict=1 indicates Top 10 hit and predict=0 indicates not a Top 10 hit).  The second set of results list the actual predictions made.  From the third set of results, this model predicts that 61 songs will be top 10 hits.

Compute the baseline accuracy, by assuming that the baseline predicts the most frequent outcome, which is that most songs are not Top 10 hits.

table(BillboardTest$top10)
## 
##   0   1 
## 314  59

Now observe that the baseline model would get 314 observations correct, and 59 wrong, for an accuracy of 314/(314+59) = 0.8418231.

It seems that Model 3, with an accuracy of 0.8552, provides you with a small improvement over the baseline model. But is this model useful for record labels?

View the two models from an investment perspective:

  • A production company is interested in investing in songs that are more likely to make it to the Top 10. The company’s objective is to minimize the risk of financial losses attributed to investing in songs that end up unpopular.
  • How many songs does Model 3 correctly predict as a Top 10 hit in 2010? Looking at the confusion matrix, you see that it predicts 33 top 10 hits correctly at an optimal threshold, which is more than half the number
  • It will be more useful to the record label if you can provide the production company with a list of songs that are highly likely to end up in the Top 10.
  • The baseline model is not useful, as it simply does not label any song as a hit.

Considering the three models built so far, you can conclude that Model 3 proves to be the best investment choice for the record label.

GBM model

H2O provides you with the ability to explore other learning models, such as GBM and deep learning. Explore building a model using the GBM technique, using the built-in h2o.gbm function.

Before you do this, you need to convert the target variable to a factor for multinomial classification techniques.

train.h2o$top10=as.factor(train.h2o$top10)
gbm.modelh <- h2o.gbm(y=y.dep, x=x.indep, training_frame = train.h2o, ntrees = 500, max_depth = 4, learn_rate = 0.01, seed = 1122,distribution="multinomial")
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |===                                                              |   5%
  |                                                                       
  |=====                                                            |   7%
  |                                                                       
  |======                                                           |   9%
  |                                                                       
  |=======                                                          |  10%
  |                                                                       
  |======================                                           |  33%
  |                                                                       
  |=====================================                            |  56%
  |                                                                       
  |====================================================             |  79%
  |                                                                       
  |================================================================ |  98%
  |                                                                       
  |=================================================================| 100%
perf.gbmh<-h2o.performance(gbm.modelh,test.h2o)
perf.gbmh
## H2OBinomialMetrics: gbm
## 
## MSE:  0.09860778
## RMSE:  0.3140188
## LogLoss:  0.3206876
## Mean Per-Class Error:  0.2120263
## AUC:  0.8630573
## Gini:  0.7261146
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##          0  1    Error     Rate
## 0      266 48 0.152866  =48/314
## 1       16 43 0.271186   =16/59
## Totals 282 91 0.171582  =64/373
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                       metric threshold    value idx
## 1                     max f1  0.189757 0.573333  90
## 2                     max f2  0.130895 0.693717 145
## 3               max f0point5  0.327346 0.598802  26
## 4               max accuracy  0.442757 0.876676  14
## 5              max precision  0.802184 1.000000   0
## 6                 max recall  0.049990 1.000000 284
## 7            max specificity  0.802184 1.000000   0
## 8           max absolute_mcc  0.169135 0.496486 104
## 9 max min_per_class_accuracy  0.169135 0.796610 104
## 10 max mean_per_class_accuracy  0.169135 0.805948 104
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `
h2o.sensitivity(perf.gbmh,0.5)
## Warning in h2o.find_row_by_threshold(object, t): Could not find exact
## threshold: 0.5 for this set of metrics; using closest threshold found:
## 0.501205344484314. Run `h2o.predict` and apply your desired threshold on a
## probability column.
## [[1]]
## [1] 0.1355932
h2o.auc(perf.gbmh)
## [1] 0.8630573

This model correctly predicts 43 top 10 hits, which is 10 more than the number predicted by Model 3. Moreover, the AUC metric is higher than the one obtained from Model 3.

As seen above, H2O’s API provides the ability to obtain key statistical measures required to analyze the models easily, using several built-in functions. The record label can experiment with different parameters to arrive at the model that predicts the maximum number of Top 10 hits at the desired level of accuracy and threshold.

H2O also allows you to experiment with deep learning models. Deep learning models have the ability to learn features implicitly, but can be more expensive computationally.

Now, create a deep learning model with the h2o.deeplearning function, using the same training and test datasets created before. The time taken to run this model depends on the type of EC2 instance chosen for this purpose.  For models that require more computation, consider using accelerated computing instances such as the P2 instance type.

system.time(
  dlearning.modelh <- h2o.deeplearning(y = y.dep,
                                      x = x.indep,
                                      training_frame = train.h2o,
                                      epoch = 250,
                                      hidden = c(250,250),
                                      activation = "Rectifier",
                                      seed = 1122,
                                      distribution="multinomial"
  )
)
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |===                                                              |   4%
  |                                                                       
  |=====                                                            |   8%
  |                                                                       
  |========                                                         |  12%
  |                                                                       
  |==========                                                       |  16%
  |                                                                       
  |=============                                                    |  20%
  |                                                                       
  |================                                                 |  24%
  |                                                                       
  |==================                                               |  28%
  |                                                                       
  |=====================                                            |  32%
  |                                                                       
  |=======================                                          |  36%
  |                                                                       
  |==========================                                       |  40%
  |                                                                       
  |=============================                                    |  44%
  |                                                                       
  |===============================                                  |  48%
  |                                                                       
  |==================================                               |  52%
  |                                                                       
  |====================================                             |  56%
  |                                                                       
  |=======================================                          |  60%
  |                                                                       
  |==========================================                       |  64%
  |                                                                       
  |============================================                     |  68%
  |                                                                       
  |===============================================                  |  72%
  |                                                                       
  |=================================================                |  76%
  |                                                                       
  |====================================================             |  80%
  |                                                                       
  |=======================================================          |  84%
  |                                                                       
  |=========================================================        |  88%
  |                                                                       
  |============================================================     |  92%
  |                                                                       
  |==============================================================   |  96%
  |                                                                       
  |=================================================================| 100%
##    user  system elapsed 
##   1.216   0.020 166.508
perf.dl<-h2o.performance(model=dlearning.modelh,newdata=test.h2o)
perf.dl
## H2OBinomialMetrics: deeplearning
## 
## MSE:  0.1678359
## RMSE:  0.4096778
## LogLoss:  1.86509
## Mean Per-Class Error:  0.3433013
## AUC:  0.7568822
## Gini:  0.5137644
## 
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal threshold:
##          0  1    Error     Rate
## 0      290 24 0.076433  =24/314
## 1       36 23 0.610169   =36/59
## Totals 326 47 0.160858  =60/373
## 
## Maximum Metrics: Maximum metrics at their respective thresholds
##                       metric threshold    value idx
## 1                     max f1  0.826267 0.433962  46
## 2                     max f2  0.000000 0.588235 239
## 3               max f0point5  0.999929 0.511811  16
## 4               max accuracy  0.999999 0.865952  10
## 5              max precision  1.000000 1.000000   0
## 6                 max recall  0.000000 1.000000 326
## 7            max specificity  1.000000 1.000000   0
## 8           max absolute_mcc  0.999929 0.363219  16
## 9 max min_per_class_accuracy  0.000004 0.662420 145
## 10 max mean_per_class_accuracy  0.000000 0.685334 224
## 
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
h2o.sensitivity(perf.dl,0.5)
## Warning in h2o.find_row_by_threshold(object, t): Could not find exact
## threshold: 0.5 for this set of metrics; using closest threshold found:
## 0.496293348880151. Run `h2o.predict` and apply your desired threshold on a
## probability column.
## [[1]]
## [1] 0.3898305
h2o.auc(perf.dl)
## [1] 0.7568822

The AUC metric for this model is 0.7568822, which is less than what you got from the earlier models. I recommend further experimentation using different hyper parameters, such as the learning rate, epoch or the number of hidden layers.

H2O’s built-in functions provide many key statistical measures that can help measure model performance. Here are some of these key terms.

Metric Description
Sensitivity Measures the proportion of positives that have been correctly identified. It is also called the true positive rate, or recall.
Specificity Measures the proportion of negatives that have been correctly identified. It is also called the true negative rate.
Threshold Cutoff point that maximizes specificity and sensitivity. While the model may not provide the highest prediction at this point, it would not be biased towards positives or negatives.
Precision The fraction of the documents retrieved that are relevant to the information needed, for example, how many of the positively classified are relevant
AUC

Provides insight into how well the classifier is able to separate the two classes. The implicit goal is to deal with situations where the sample distribution is highly skewed, with a tendency to overfit to a single class.

0.90 – 1 = excellent (A)

0.8 – 0.9 = good (B)

0.7 – 0.8 = fair (C)

.6 – 0.7 = poor (D)

0.5 – 0.5 = fail (F)

Here’s a summary of the metrics generated from H2O’s built-in functions for the three models that produced useful results.

Metric Model 3 GBM Model Deep Learning Model

Accuracy

(max)

0.882038

(t=0.435479)

0.876676

(t=0.442757)

0.865952

(t=0.999999)

Precision

(max)

1.0

(t=0.821606)

1.0

(t=0802184)

1.0

(t=1.0)

Recall

(max)

1.0 1.0

1.0

(t=0)

Specificity

(max)

1.0 1.0

1.0

(t=1)

Sensitivity

 

0.2033898 0.1355932

0.3898305

(t=0.5)

AUC 0.8492389 0.8630573 0.756882

Note: ‘t’ denotes threshold.

Your options at this point could be narrowed down to Model 3 and the GBM model, based on the AUC and accuracy metrics observed earlier.  If the slightly lower accuracy of the GBM model is deemed acceptable, the record label can choose to go to production with the GBM model, as it can predict a higher number of Top 10 hits.  The AUC metric for the GBM model is also higher than that of Model 3.

Record labels can experiment with different learning techniques and parameters before arriving at a model that proves to be the best fit for their business. Because deep learning models can be computationally expensive, record labels can choose more powerful EC2 instances on AWS to run their experiments faster.

Conclusion

In this post, I showed how the popular music industry can use analytics to predict the type of songs that make the Top 10 Billboard charts. By running H2O’s scalable machine learning platform on AWS, data scientists can easily experiment with multiple modeling techniques and interactively query the data using Amazon Athena, without having to manage the underlying infrastructure. This helps record labels make critical decisions on the type of artists and songs to promote in a timely fashion, thereby increasing sales and revenue.

If you have questions or suggestions, please comment below.


Additional Reading

Learn how to build and explore a simple geospita simple GEOINT application using SparkR.


About the Authors

gopalGopal Wunnava is a Partner Solution Architect with the AWS GSI Team. He works with partners and customers on big data engagements, and is passionate about building analytical solutions that drive business capabilities and decision making. In his spare time, he loves all things sports and movies related and is fond of old classics like Asterix, Obelix comics and Hitchcock movies.

 

 

Bob Strahan, a Senior Consultant with AWS Professional Services, contributed to this post.

 

 

How to Automatically Revert and Receive Notifications About Changes to Your Amazon VPC Security Groups

Post Syndicated from Rob Barnes original https://aws.amazon.com/blogs/security/how-to-automatically-revert-and-receive-notifications-about-changes-to-your-amazon-vpc-security-groups/

In a previous AWS Security Blog post, Jeff Levine showed how you can monitor changes to your Amazon EC2 security groups. The methods he describes in that post are examples of detective controls, which can help you determine when changes are made to security controls on your AWS resources.

In this post, I take that approach a step further by introducing an example of a responsive control, which you can use to automatically respond to a detected security event by applying a chosen security mitigation. I demonstrate a solution that continuously monitors changes made to an Amazon VPC security group, and if a new ingress rule (the same as an inbound rule) is added to that security group, the solution removes the rule and then sends you a notification after the changes have been automatically reverted.

The scenario

Let’s say you want to reduce your infrastructure complexity by replacing your Secure Shell (SSH) bastion hosts with Amazon EC2 Systems Manager (SSM). SSM allows you to run commands on your hosts remotely, removing the need to manage bastion hosts or rely on SSH to execute commands. To support this objective, you must prevent your staff members from opening SSH ports to your web server’s Amazon VPC security group. If one of your staff members does modify the VPC security group to allow SSH access, you want the change to be automatically reverted and then receive a notification that the change to the security group was automatically reverted. If you are not yet familiar with security groups, see Security Groups for Your VPC before reading the rest of this post.

Solution overview

This solution begins with a directive control to mandate that no web server should be accessible using SSH. The directive control is enforced using a preventive control, which is implemented using a security group rule that prevents ingress from port 22 (typically used for SSH). The detective control is a “listener” that identifies any changes made to your security group. Finally, the responsive control reverts changes made to the security group and then sends a notification of this security mitigation.

The detective control, in this case, is an Amazon CloudWatch event that detects changes to your security group and triggers the responsive control, which in this case is an AWS Lambda function. I use AWS CloudFormation to simplify the deployment.

The following diagram shows the architecture of this solution.

Solution architecture diagram

Here is how the process works:

  1. Someone on your staff adds a new ingress rule to your security group.
  2. A CloudWatch event that continually monitors changes to your security groups detects the new ingress rule and invokes a designated Lambda function (with Lambda, you can run code without provisioning or managing servers).
  3. The Lambda function evaluates the event to determine whether you are monitoring this security group and reverts the new security group ingress rule.
  4. Finally, the Lambda function sends you an email to let you know what the change was, who made it, and that the change was reverted.

Deploy the solution by using CloudFormation

In this section, you will click the Launch Stack button shown below to launch the CloudFormation stack and deploy the solution.

Prerequisites

  • You must have AWS CloudTrail already enabled in the AWS Region where you will be deploying the solution. CloudTrail lets you log, continuously monitor, and retain events related to API calls across your AWS infrastructure. See Getting Started with CloudTrail for more information.
  • You must have a default VPC in the region in which you will be deploying the solution. AWS accounts have one default VPC per AWS Region. If you’ve deleted your VPC, see Creating a Default VPC to recreate it.

Resources that this solution creates

When you launch the CloudFormation stack, it creates the following resources:

  • A sample VPC security group in your default VPC, which is used as the target for reverting ingress rule changes.
  • A CloudWatch event rule that monitors changes to your AWS infrastructure.
  • A Lambda function that reverts changes to the security group and sends you email notifications.
  • A permission that allows CloudWatch to invoke your Lambda function.
  • An AWS Identity and Access Management (IAM) role with limited privileges that the Lambda function assumes when it is executed.
  • An Amazon SNS topic to which the Lambda function publishes notifications.

Launch the CloudFormation stack

The link in this section uses the us-east-1 Region (the US East [N. Virginia] Region). Change the region if you want to use this solution in a different region. See Selecting a Region for more information about changing the region.

To deploy the solution, click the following Launch Stack button to launch the stack. After you click the button, you must sign in to the AWS Management Console if you have not already done so.

Click this "Launch Stack" button

Then:

  1. Choose Next to proceed to the Specify Details page.
  2. On the Specify Details page, type your email address in the Send notifications to box. This is the email address to which change notifications will be sent. (After the stack is launched, you will receive a confirmation email that you must accept before you can receive notifications.)
  3. Choose Next until you get to the Review page, and then choose the I acknowledge that AWS CloudFormation might create IAM resources check box. This confirms that you are aware that the CloudFormation template includes an IAM resource.
  4. Choose Create. CloudFormation displays the stack status, CREATE_COMPLETE, when the stack has launched completely, which should take less than two minutes.Screenshot showing that the stack has launched completely

Testing the solution

  1. Check your email for the SNS confirmation email. You must confirm this subscription to receive future notification emails. If you don’t confirm the subscription, your security group ingress rules still will be automatically reverted, but you will not receive notification emails.
  2. Navigate to the EC2 console and choose Security Groups in the navigation pane.
  3. Choose the security group created by CloudFormation. Its name is Web Server Security Group.
  4. Choose the Inbound tab in the bottom pane of the page. Note that only one rule allows HTTPS ingress on port 443 from 0.0.0.0/0 (from anywhere).Screenshot showing the "Inbound" tab in the bottom pane of the page
  1. Choose Edit to display the Edit inbound rules dialog box (again, an inbound rule and an ingress rule are the same thing).
  2. Choose Add Rule.
  3. Choose SSH from the Type drop-down list.
  4. Choose My IP from the Source drop-down list. Your IP address is populated for you. By adding this rule, you are simulating one of your staff members violating your organization’s policy (in this blog post’s hypothetical example) against allowing SSH access to your EC2 servers. You are testing the solution created when you launched the CloudFormation stack in the previous section. The solution should remove this newly created SSH rule automatically.
    Screenshot of editing inbound rules
  5. Choose Save.

Adding this rule creates an EC2 AuthorizeSecurityGroupIngress service event, which triggers the Lambda function created in the CloudFormation stack. After a few moments, choose the refresh button ( The "refresh" icon ) to see that the new SSH ingress rule that you just created has been removed by the solution you deployed earlier with the CloudFormation stack. If the rule is still there, wait a few more moments and choose the refresh button again.

Screenshot of refreshing the page to see that the SSH ingress rule has been removed

You should also receive an email to notify you that the ingress rule was added and subsequently reverted.

Screenshot of the notification email

Cleaning up

If you want to remove the resources created by this CloudFormation stack, you can delete the CloudFormation stack:

  1. Navigate to the CloudFormation console.
  2. Choose the stack that you created earlier.
  3. Choose the Actions drop-down list.
  4. Choose Delete Stack, and then choose Yes, Delete.
  5. CloudFormation will display a status of DELETE_IN_PROGRESS while it deletes the resources created with the stack. After a few moments, the stack should no longer appear in the list of completed stacks.
    Screenshot of stack "DELETE_IN_PROGRESS"

Other applications of this solution

I have shown one way to use multiple AWS services to help continuously ensure that your security controls haven’t deviated from your security baseline. However, you also could use the CIS Amazon Web Services Foundations Benchmarks, for example, to establish a governance baseline across your AWS accounts and then use the principles in this blog post to automatically mitigate changes to that baseline.

To scale this solution, you can create a framework that uses resource tags to identify particular resources for monitoring. You also can use a consolidated monitoring approach by using cross-account event delivery. See Sending and Receiving Events Between AWS Accounts for more information. You also can extend the principle of automatic mitigation to detect and revert changes to other resources such as IAM policies and Amazon S3 bucket policies.

Summary

In this blog post, I demonstrated how you can automatically revert changes to a VPC security group and have a notification sent about the changes. You can use this solution in your own AWS accounts to enforce your security requirements continuously.

If you have comments about this blog post or other ideas for ways to use this solution, submit a comment in the “Comments” section below. If you have implementation questions, start a new thread in the EC2 forum or contact AWS Support.

– Rob

Now Available – Amazon Linux AMI 2017.09

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/now-available-amazon-linux-ami-2017-09/

I’m happy to announce that the latest version of the Amazon Linux AMI (2017.09) is now available in all AWS Regions for all current-generation EC2 instances. The AMI contains a supported and maintained Linux image that is designed to provide a stable, secure, high performance environment for applications running on EC2.

Easy Upgrade
You can upgrade your existing instances by running two commands and then rebooting:

$ sudo yum clean all
$ sudo yum update

Lots of Goodies
The AMI contains many new features, many of which were added in response to requests from our customers. Here’s a summary:

Kernel 4.9.51 – Based on the 4.9 stable kernel series, this kernel includes the ENA 1.3.0 driver along with support for TCP Bottleneck Bandwidth and RTT (BBR). Read my post, Elastic Network Adapter – High-Performance Network Interface for Amazon EC2 to learn more about ENA. Read the Release Notes to learn how to enable BBR.

Amazon SSM Agent – The Amazon SSM Agent is now installed by default. This means that you can now use EC2 Run Command to configure and run scripts on your instances with no further setup. To learn more, read Executing Commands Using Systems Manager Run Command or Manage Instances at Scale Without SSH Access Using EC2 Run Command.

Python 3.6 – The newest version of Python is now included and can be managed via virtualenv and alternatives. You can install Python 3.6 like this:

$ sudo yum install python36 python36-virtualenv python36-pip

Ruby 2.4 – The latest version of Ruby in the 2.4 series is now available. Install it like this:

$ sudo yum install ruby24

OpenSSL – The AMI now uses OpenSSL 1.0.2k.

HTTP/2 – The HTTP/2 protocol is now supported by the AMI’s httpd24, nginx, and curl packages.

Relational DatabasesPostgres 9.6 and MySQL 5.7 are now available, and can be installed like this:

$ sudo yum install postgresql96
$ sudo yum install mysql57

OpenMPI – The OpenMPI package has been upgraded from 1.6.4 to 2.1.1. OpenMPI compatibility packages are available and can be used to build and run older OpenMPI applications.

And More – Other updated packages include Squid 3.5, Nginx 1.12, Tomcat 8.5, and GCC 6.4.

Launch it Today
You can use this AMI to launch EC2 instances in all AWS Regions today. It is available for EBS-backed and Instance Store-backed instances and supports HVM and PV modes.

Jeff;

Creating a Cost-Efficient Amazon ECS Cluster for Scheduled Tasks

Post Syndicated from Nathan Taber original https://aws.amazon.com/blogs/compute/creating-a-cost-efficient-amazon-ecs-cluster-for-scheduled-tasks/

Madhuri Peri
Sr. DevOps Consultant

When you use Amazon Relational Database Service (Amazon RDS), depending on the logging levels on the RDS instances and the volume of transactions, you could generate a lot of log data. To ensure that everything is running smoothly, many customers search for log error patterns using different log aggregation and visualization systems, such as Amazon Elasticsearch Service, Splunk, or other tool of their choice. A module needs to periodically retrieve the RDS logs using the SDK, and then send them to Amazon S3. From there, you can stream them to your log aggregation tool.

One option is writing an AWS Lambda function to retrieve the log files. However, because of the time that this function needs to execute, depending on the volume of log files retrieved and transferred, it is possible that Lambda could time out on many instances.  Another approach is launching an Amazon EC2 instance that runs this job periodically. However, this would require you to run an EC2 instance continuously, not an optimal use of time or money.

Using the new Amazon CloudWatch integration with Amazon EC2 Container Service, you can trigger this job to run in a container on an existing Amazon ECS cluster. Additionally, this would allow you to improve costs by running containers on a fleet of Spot Instances.

In this post, I will show you how to use the new scheduled tasks (cron) feature in Amazon ECS and launch tasks using CloudWatch events, while leveraging Spot Fleet to maximize availability and cost optimization for containerized workloads.

Architecture

The following diagram shows how the various components described schedule a task that retrieves log files from Amazon RDS database instances, and deposits the logs into an S3 bucket.

Amazon ECS cluster container instances are using Spot Fleet, which is a perfect match for the workload that needs to run when it can. This improves cluster costs.

The task definition defines which Docker image to retrieve from the Amazon EC2 Container Registry (Amazon ECR) repository and run on the Amazon ECS cluster.

The container image has Python code functions to make AWS API calls using boto3. It iterates over the RDS database instances, retrieves the logs, and deposits them in the S3 bucket. Many customers choose these logs to be delivered to their centralized log-store. CloudWatch Events defines the schedule for when the container task has to be launched.

Walkthrough

To provide the basic framework, we have built an AWS CloudFormation template that creates the following resources:

  • Amazon ECR repository for storing the Docker image to be used in the task definition
  • S3 bucket that holds the transferred logs
  • Task definition, with image name and S3 bucket as environment variables provided via input parameter
  • CloudWatch Events rule
  • Amazon ECS cluster
  • Amazon ECS container instances using Spot Fleet
  • IAM roles required for the container instance profiles

Before you begin

Ensure that Git, Docker, and the AWS CLI are installed on your computer.

In your AWS account, instantiate one Amazon Aurora instance using the console. For more information, see Creating an Amazon Aurora DB Cluster.

Implementation Steps

  1. Clone the code from GitHub that performs RDS API calls to retrieve the log files.
    git clone https://github.com/awslabs/aws-ecs-scheduled-tasks.git
  2. Build and tag the image.
    cd aws-ecs-scheduled-tasks/container-code/src && ls

    Dockerfile		rdslogsshipper.py	requirements.txt

    docker build -t rdslogsshipper .

    Sending build context to Docker daemon 9.728 kB
    Step 1 : FROM python:3
     ---> 41397f4f2887
    Step 2 : WORKDIR /usr/src/app
     ---> Using cache
     ---> 59299c020e7e
    Step 3 : COPY requirements.txt ./
     ---> 8c017e931c3b
    Removing intermediate container df09e1bed9f2
    Step 4 : COPY rdslogsshipper.py /usr/src/app
     ---> 099a49ca4325
    Removing intermediate container 1b1da24a6699
    Step 5 : RUN pip install --no-cache-dir -r requirements.txt
     ---> Running in 3ed98b30901d
    Collecting boto3 (from -r requirements.txt (line 1))
      Downloading boto3-1.4.6-py2.py3-none-any.whl (128kB)
    Collecting botocore (from -r requirements.txt (line 2))
      Downloading botocore-1.6.7-py2.py3-none-any.whl (3.6MB)
    Collecting s3transfer<0.2.0,>=0.1.10 (from boto3->-r requirements.txt (line 1))
      Downloading s3transfer-0.1.10-py2.py3-none-any.whl (54kB)
    Collecting jmespath<1.0.0,>=0.7.1 (from boto3->-r requirements.txt (line 1))
      Downloading jmespath-0.9.3-py2.py3-none-any.whl
    Collecting python-dateutil<3.0.0,>=2.1 (from botocore->-r requirements.txt (line 2))
      Downloading python_dateutil-2.6.1-py2.py3-none-any.whl (194kB)
    Collecting docutils>=0.10 (from botocore->-r requirements.txt (line 2))
      Downloading docutils-0.14-py3-none-any.whl (543kB)
    Collecting six>=1.5 (from python-dateutil<3.0.0,>=2.1->botocore->-r requirements.txt (line 2))
      Downloading six-1.10.0-py2.py3-none-any.whl
    Installing collected packages: six, python-dateutil, docutils, jmespath, botocore, s3transfer, boto3
    Successfully installed boto3-1.4.6 botocore-1.6.7 docutils-0.14 jmespath-0.9.3 python-dateutil-2.6.1 s3transfer-0.1.10 six-1.10.0
     ---> f892d3cb7383
    Removing intermediate container 3ed98b30901d
    Step 6 : COPY . .
     ---> ea7550c04fea
    Removing intermediate container b558b3ebd406
    Successfully built ea7550c04fea
  3. Run the CloudFormation stack and get the names for the Amazon ECR repo and S3 bucket. In the stack, choose Outputs.
  4. Open the ECS console and choose Repositories. The rdslogs repo has been created. Choose View Push Commands and follow the instructions to connect to the repository and push the image for the code that you built in Step 2. The screenshot shows the final result:
  5. Associate the CloudWatch scheduled task with the created Amazon ECS Task Definition, using a new CloudWatch event rule that is scheduled to run at intervals. The following rule is scheduled to run every 15 minutes:
    aws --profile default --region us-west-2 events put-rule --name demo-ecs-task-rule  --schedule-expression "rate(15 minutes)"

    {
        "RuleArn": "arn:aws:events:us-west-2:12345678901:rule/demo-ecs-task-rule"
    }
  6. CloudWatch requires IAM permissions to place a task on the Amazon ECS cluster when the CloudWatch event rule is executed, in addition to an IAM role that can be assumed by CloudWatch Events. This is done in three steps:
    1. Create the IAM role to be assumed by CloudWatch.
      aws --profile default --region us-west-2 iam create-role --role-name Test-Role --assume-role-policy-document file://event-role.json

      {
          "Role": {
              "AssumeRolePolicyDocument": {
                  "Version": "2012-10-17", 
                  "Statement": [
                      {
                          "Action": "sts:AssumeRole", 
                          "Effect": "Allow", 
                          "Principal": {
                              "Service": "events.amazonaws.com"
                          }
                      }
                  ]
              }, 
              "RoleId": "AROAIRYYLDCVZCUACT7FS", 
              "CreateDate": "2017-07-14T22:44:52.627Z", 
              "RoleName": "Test-Role", 
              "Path": "/", 
              "Arn": "arn:aws:iam::12345678901:role/Test-Role"
          }
      }

      The following is an example of the event-role.json file used earlier:

      {
          "Version": "2012-10-17",
          "Statement": [
              {
                  "Effect": "Allow",
                  "Principal": {
                    "Service": "events.amazonaws.com"
                  },
                  "Action": "sts:AssumeRole"
              }
          ]
      }
    2. Create the IAM policy defining the ECS cluster and task definition. You need to get these values from the CloudFormation outputs and resources.
      aws --profile default --region us-west-2 iam create-policy --policy-name test-policy --policy-document file://event-policy.json

      {
          "Policy": {
              "PolicyName": "test-policy", 
              "CreateDate": "2017-07-14T22:51:20.293Z", 
              "AttachmentCount": 0, 
              "IsAttachable": true, 
              "PolicyId": "ANPAI7XDIQOLTBUMDWGJW", 
              "DefaultVersionId": "v1", 
              "Path": "/", 
              "Arn": "arn:aws:iam::123455678901:policy/test-policy", 
              "UpdateDate": "2017-07-14T22:51:20.293Z"
          }
      }

      The following is an example of the event-policy.json file used earlier:

      {
          "Version": "2012-10-17",
          "Statement": [
            {
                "Effect": "Allow",
                "Action": [
                    "ecs:RunTask"
                ],
                "Resource": [
                    "arn:aws:ecs:*::task-definition/"
                ],
                "Condition": {
                    "ArnLike": {
                        "ecs:cluster": "arn:aws:ecs:*::cluster/"
                    }
                }
            }
          ]
      }
    3. Attach the IAM policy to the role.
      aws --profile default --region us-west-2 iam attach-role-policy --role-name Test-Role --policy-arn arn:aws:iam::1234567890:policy/test-policy
  7. Associate the CloudWatch rule created earlier to place the task on the ECS cluster. The following command shows an example. Replace the AWS account ID and region with your settings.
    aws events put-targets --rule demo-ecs-task-rule --targets "Id"="1","Arn"="arn:aws:ecs:us-west-2:12345678901:cluster/test-cwe-blog-ecsCluster-15HJFWCH4SP67","EcsParameters"={"TaskDefinitionArn"="arn:aws:ecs:us-west-2:12345678901:task-definition/test-cwe-blog-taskdef:8"},"RoleArn"="arn:aws:iam::12345678901:role/Test-Role"

    {
        "FailedEntries": [], 
        "FailedEntryCount": 0
    }

That’s it. The logs now run based on the defined schedule.

To test this, open the Amazon ECS console, select the Amazon ECS cluster that you created, and then choose Tasks, Run New Task. Select the task definition created by the CloudFormation template, and the cluster should be selected automatically. As this runs, the S3 bucket should be populated with the RDS logs for the instance.

Conclusion

In this post, you’ve seen that the choices for workloads that need to run at a scheduled time include Lambda with CloudWatch events or EC2 with cron. However, sometimes the job could run outside of Lambda execution time limits or be not cost-effective for an EC2 instance.

In such cases, you can schedule the tasks on an ECS cluster using CloudWatch rules. In addition, you can use a Spot Fleet cluster with Amazon ECS for cost-conscious workloads that do not have hard requirements on execution time or instance availability in the Spot Fleet. For more information, see Powering your Amazon ECS Cluster with Amazon EC2 Spot Instances and Scheduled Events.

If you have questions or suggestions, please comment below.

How to Enable LDAPS for Your AWS Microsoft AD Directory

Post Syndicated from Vijay Sharma original https://aws.amazon.com/blogs/security/how-to-enable-ldaps-for-your-aws-microsoft-ad-directory/

Starting today, you can encrypt the Lightweight Directory Access Protocol (LDAP) communications between your applications and AWS Directory Service for Microsoft Active Directory, also known as AWS Microsoft AD. Many Windows and Linux applications use Active Directory’s (AD) LDAP service to read and write sensitive information about users and devices, including personally identifiable information (PII). Now, you can encrypt your AWS Microsoft AD LDAP communications end to end to protect this information by using LDAP Over Secure Sockets Layer (SSL)/Transport Layer Security (TLS), also called LDAPS. This helps you protect PII and other sensitive information exchanged with AWS Microsoft AD over untrusted networks.

To enable LDAPS, you need to add a Microsoft enterprise Certificate Authority (CA) server to your AWS Microsoft AD domain and configure certificate templates for your domain controllers. After you have enabled LDAPS, AWS Microsoft AD encrypts communications with LDAPS-enabled Windows applications, Linux computers that use Secure Shell (SSH) authentication, and applications such as Jira and Jenkins.

In this blog post, I show how to enable LDAPS for your AWS Microsoft AD directory in six steps: 1) Delegate permissions to CA administrators, 2) Add a Microsoft enterprise CA to your AWS Microsoft AD directory, 3) Create a certificate template, 4) Configure AWS security group rules, 5) AWS Microsoft AD enables LDAPS, and 6) Test LDAPS access using the LDP tool.

Assumptions

For this post, I assume you are familiar with following:

Solution overview

Before going into specific deployment steps, I will provide a high-level overview of deploying LDAPS. I cover how you enable LDAPS on AWS Microsoft AD. In addition, I provide some general background about CA deployment models and explain how to apply these models when deploying Microsoft CA to enable LDAPS on AWS Microsoft AD.

How you enable LDAPS on AWS Microsoft AD

LDAP-aware applications (LDAP clients) typically access LDAP servers using Transmission Control Protocol (TCP) on port 389. By default, LDAP communications on port 389 are unencrypted. However, many LDAP clients use one of two standards to encrypt LDAP communications: LDAP over SSL on port 636, and LDAP with StartTLS on port 389. If an LDAP client uses port 636, the LDAP server encrypts all traffic unconditionally with SSL. If an LDAP client issues a StartTLS command when setting up the LDAP session on port 389, the LDAP server encrypts all traffic to that client with TLS. AWS Microsoft AD now supports both encryption standards when you enable LDAPS on your AWS Microsoft AD domain controllers.

You enable LDAPS on your AWS Microsoft AD domain controllers by installing a digital certificate that a CA issued. Though Windows servers have different methods for installing certificates, LDAPS with AWS Microsoft AD requires you to add a Microsoft CA to your AWS Microsoft AD domain and deploy the certificate through autoenrollment from the Microsoft CA. The installed certificate enables the LDAP service running on domain controllers to listen for and negotiate LDAP encryption on port 636 (LDAP over SSL) and port 389 (LDAP with StartTLS).

Background of CA deployment models

You can deploy CAs as part of a single-level or multi-level CA hierarchy. In a single-level hierarchy, all certificates come from the root of the hierarchy. In a multi-level hierarchy, you organize a collection of CAs in a hierarchy and the certificates sent to computers and users come from subordinate CAs in the hierarchy (not the root).

Certificates issued by a CA identify the hierarchy to which the CA belongs. When a computer sends its certificate to another computer for verification, the receiving computer must have the public certificate from the CAs in the same hierarchy as the sender. If the CA that issued the certificate is part of a single-level hierarchy, the receiver must obtain the public certificate of the CA that issued the certificate. If the CA that issued the certificate is part of a multi-level hierarchy, the receiver can obtain a public certificate for all the CAs that are in the same hierarchy as the CA that issued the certificate. If the receiver can verify that the certificate came from a CA that is in the hierarchy of the receiver’s “trusted” public CA certificates, the receiver trusts the sender. Otherwise, the receiver rejects the sender.

Deploying Microsoft CA to enable LDAPS on AWS Microsoft AD

Microsoft offers a standalone CA and an enterprise CA. Though you can configure either as single-level or multi-level hierarchies, only the enterprise CA integrates with AD and offers autoenrollment for certificate deployment. Because you cannot sign in to run commands on your AWS Microsoft AD domain controllers, an automatic certificate enrollment model is required. Therefore, AWS Microsoft AD requires the certificate to come from a Microsoft enterprise CA that you configure to work in your AD domain. When you install the Microsoft enterprise CA, you can configure it to be part of a single-level hierarchy or a multi-level hierarchy. As a best practice, AWS recommends a multi-level Microsoft CA trust hierarchy consisting of a root CA and a subordinate CA. I cover only a multi-level hierarchy in this post.

In a multi-level hierarchy, you configure your subordinate CA by importing a certificate from the root CA. You must issue a certificate from the root CA such that the certificate gives your subordinate CA the right to issue certificates on behalf of the root. This makes your subordinate CA part of the root CA hierarchy. You also deploy the root CA’s public certificate on all of your computers, which tells all your computers to trust certificates that your root CA issues and to trust certificates from any authorized subordinate CA.

In such a hierarchy, you typically leave your root CA offline (inaccessible to other computers in the network) to protect the root of your hierarchy. You leave the subordinate CA online so that it can issue certificates on behalf of the root CA. This multi-level hierarchy increases security because if someone compromises your subordinate CA, you can revoke all certificates it issued and set up a new subordinate CA from your offline root CA. To learn more about setting up a secure CA hierarchy, see Securing PKI: Planning a CA Hierarchy.

When a Microsoft CA is part of your AD domain, you can configure certificate templates that you publish. These templates become visible to client computers through AD. If a client’s profile matches a template, the client requests a certificate from the Microsoft CA that matches the template. Microsoft calls this process autoenrollment, and it simplifies certificate deployment. To enable LDAPS on your AWS Microsoft AD domain controllers, you create a certificate template in the Microsoft CA that generates SSL and TLS-compatible certificates. The domain controllers see the template and automatically import a certificate of that type from the Microsoft CA. The imported certificate enables LDAP encryption.

Steps to enable LDAPS for your AWS Microsoft AD directory

The rest of this post is composed of the steps for enabling LDAPS for your AWS Microsoft AD directory. First, though, I explain which components you must have running to deploy this solution successfully. I also explain how this solution works and include an architecture diagram.

Prerequisites

The instructions in this post assume that you already have the following components running:

  1. An active AWS Microsoft AD directory – To create a directory, follow the steps in Create an AWS Microsoft AD directory.
  2. An Amazon EC2 for Windows Server instance for managing users and groups in your directory – This instance needs to be joined to your AWS Microsoft AD domain and have Active Directory Administration Tools installed. Active Directory Administration Tools installs Active Directory Administrative Center and the LDP tool.
  3. An existing root Microsoft CA or a multi-level Microsoft CA hierarchy – You might already have a root CA or a multi-level CA hierarchy in your on-premises network. If you plan to use your on-premises CA hierarchy, you must have administrative permissions to issue certificates to subordinate CAs. If you do not have an existing Microsoft CA hierarchy, you can set up a new standalone Microsoft root CA by creating an Amazon EC2 for Windows Server instance and installing a standalone root certification authority. You also must create a local user account on this instance and add this user to the local administrator group so that the user has permissions to issue a certificate to a subordinate CA.

The solution setup

The following diagram illustrates the setup with the steps you need to follow to enable LDAPS for AWS Microsoft AD. You will learn how to set up a subordinate Microsoft enterprise CA (in this case, SubordinateCA) and join it to your AWS Microsoft AD domain (in this case, corp.example.com). You also will learn how to create a certificate template on SubordinateCA and configure AWS security group rules to enable LDAPS for your directory.

As a prerequisite, I already created a standalone Microsoft root CA (in this case RootCA) for creating SubordinateCA. RootCA also has a local user account called RootAdmin that has administrative permissions to issue certificates to SubordinateCA. Note that you may already have a root CA or a multi-level CA hierarchy in your on-premises network that you can use for creating SubordinateCA instead of creating a new root CA. If you choose to use your existing on-premises CA hierarchy, you must have administrative permissions on your on-premises CA to issue a certificate to SubordinateCA.

Lastly, I also already created an Amazon EC2 instance (in this case, Management) that I use to manage users, configure AWS security groups, and test the LDAPS connection. I join this instance to the AWS Microsoft AD directory domain.

Diagram showing the process discussed in this post

Here is how the process works:

  1. Delegate permissions to CA administrators (in this case, CAAdmin) so that they can join a Microsoft enterprise CA to your AWS Microsoft AD domain and configure it as a subordinate CA.
  2. Add a Microsoft enterprise CA to your AWS Microsoft AD domain (in this case, SubordinateCA) so that it can issue certificates to your directory domain controllers to enable LDAPS. This step includes joining SubordinateCA to your directory domain, installing the Microsoft enterprise CA, and obtaining a certificate from RootCA that grants SubordinateCA permissions to issue certificates.
  3. Create a certificate template (in this case, ServerAuthentication) with server authentication and autoenrollment enabled so that your AWS Microsoft AD directory domain controllers can obtain certificates through autoenrollment to enable LDAPS.
  4. Configure AWS security group rules so that AWS Microsoft AD directory domain controllers can connect to the subordinate CA to request certificates.
  5. AWS Microsoft AD enables LDAPS through the following process:
    1. AWS Microsoft AD domain controllers request a certificate from SubordinateCA.
    2. SubordinateCA issues a certificate to AWS Microsoft AD domain controllers.
    3. AWS Microsoft AD enables LDAPS for the directory by installing certificates on the directory domain controllers.
  6. Test LDAPS access by using the LDP tool.

I now will show you these steps in detail. I use the names of components—such as RootCA, SubordinateCA, and Management—and refer to users—such as Admin, RootAdmin, and CAAdmin—to illustrate who performs these steps. All component names and user names in this post are used for illustrative purposes only.

Deploy the solution

Step 1: Delegate permissions to CA administrators


In this step, you delegate permissions to your users who manage your CAs. Your users then can join a subordinate CA to your AWS Microsoft AD domain and create the certificate template in your CA.

To enable use with a Microsoft enterprise CA, AWS added a new built-in AD security group called AWS Delegated Enterprise Certificate Authority Administrators that has delegated permissions to install and administer a Microsoft enterprise CA. By default, your directory Admin is part of the new group and can add other users or groups in your AWS Microsoft AD directory to this security group. If you have trust with your on-premises AD directory, you can also delegate CA administrative permissions to your on-premises users by adding on-premises AD users or global groups to this new AD security group.

To create a new user (in this case CAAdmin) in your directory and add this user to the AWS Delegated Enterprise Certificate Authority Administrators security group, follow these steps:

  1. Sign in to the Management instance using RDP with the user name admin and the password that you set for the admin user when you created your directory.
  2. Launch the Microsoft Windows Server Manager on the Management instance and navigate to Tools > Active Directory Users and Computers.
    Screnshot of the menu including the "Active Directory Users and Computers" choice
  3. Switch to the tree view and navigate to corp.example.com > CORP > Users. Right-click Users and choose New > User.
    Screenshot of choosing New > User
  4. Add a new user with the First name CA, Last name Admin, and User logon name CAAdmin.
    Screenshot of completing the "New Object - User" boxes
  5. In the Active Directory Users and Computers tool, navigate to corp.example.com > AWS Delegated Groups. In the right pane, right-click AWS Delegated Enterprise Certificate Authority Administrators and choose Properties.
    Screenshot of navigating to AWS Delegated Enterprise Certificate Authority Administrators > Properties
  6. In the AWS Delegated Enterprise Certificate Authority Administrators window, switch to the Members tab and choose Add.
    Screenshot of the "Members" tab of the "AWS Delegate Enterprise Certificate Authority Administrators" window
  7. In the Enter the object names to select box, type CAAdmin and choose OK.
    Screenshot showing the "Enter the object names to select" box
  8. In the next window, choose OK to add CAAdmin to the AWS Delegated Enterprise Certificate Authority Administrators security group.
    Screenshot of adding "CA Admin" to the "AWS Delegated Enterprise Certificate Authority Administrators" security group
  9. Also add CAAdmin to the AWS Delegated Server Administrators security group so that CAAdmin can RDP in to the Microsoft enterprise CA machine.
    Screenshot of adding "CAAdmin" to the "AWS Delegated Server Administrators" security group also so that "CAAdmin" can RDP in to the Microsoft enterprise CA machine

 You have granted CAAdmin permissions to join a Microsoft enterprise CA to your AWS Microsoft AD directory domain.

Step 2: Add a Microsoft enterprise CA to your AWS Microsoft AD directory


In this step, you set up a subordinate Microsoft enterprise CA and join it to your AWS Microsoft AD directory domain. I will summarize the process first and then walk through the steps.

First, you create an Amazon EC2 for Windows Server instance called SubordinateCA and join it to the domain, corp.example.com. You then publish RootCA’s public certificate and certificate revocation list (CRL) to SubordinateCA’s local trusted store. You also publish RootCA’s public certificate to your directory domain. Doing so enables SubordinateCA and your directory domain controllers to trust RootCA. You then install the Microsoft enterprise CA service on SubordinateCA and request a certificate from RootCA to make SubordinateCA a subordinate Microsoft CA. After RootCA issues the certificate, SubordinateCA is ready to issue certificates to your directory domain controllers.

Note that you can use an Amazon S3 bucket to pass the certificates between RootCA and SubordinateCA.

In detail, here is how the process works, as illustrated in the preceding diagram:

  1. Set up an Amazon EC2 instance joined to your AWS Microsoft AD directory domain – Create an Amazon EC2 for Windows Server instance to use as a subordinate CA, and join it to your AWS Microsoft AD directory domain. For this example, the machine name is SubordinateCA and the domain is corp.example.com.
  2. Share RootCA’s public certificate with SubordinateCA – Log in to RootCA as RootAdmin and start Windows PowerShell with administrative privileges. Run the following commands to copy RootCA’s public certificate and CRL to the folder c:\rootcerts on RootCA.
    New-Item c:\rootcerts -type directory
    copy C:\Windows\system32\certsrv\certenroll\*.cr* c:\rootcerts

    Upload RootCA’s public certificate and CRL from c:\rootcerts to an S3 bucket by following the steps in How Do I Upload Files and Folders to an S3 Bucket.

The following screenshot shows RootCA’s public certificate and CRL uploaded to an S3 bucket.
Screenshot of RootCA’s public certificate and CRL uploaded to the S3 bucket

  1. Publish RootCA’s public certificate to your directory domain – Log in to SubordinateCA as the CAAdmin. Download RootCA’s public certificate and CRL from the S3 bucket by following the instructions in How Do I Download an Object from an S3 Bucket? Save the certificate and CRL to the C:\rootcerts folder on SubordinateCA. Add RootCA’s public certificate and the CRL to the local store of SubordinateCA and publish RootCA’s public certificate to your directory domain by running the following commands using Windows PowerShell with administrative privileges.
    certutil –addstore –f root <path to the RootCA public certificate file>
    certutil –addstore –f root <path to the RootCA CRL file>
    certutil –dspublish –f <path to the RootCA public certificate file> RootCA
  2. Install the subordinate Microsoft enterprise CA – Install the subordinate Microsoft enterprise CA on SubordinateCA by following the instructions in Install a Subordinate Certification Authority. Ensure that you choose Enterprise CA for Setup Type to install an enterprise CA.

For the CA Type, choose Subordinate CA.

  1. Request a certificate from RootCA – Next, copy the certificate request on SubordinateCA to a folder called c:\CARequest by running the following commands using Windows PowerShell with administrative privileges.
    New-Item c:\CARequest -type directory
    Copy c:\*.req C:\CARequest

    Upload the certificate request to the S3 bucket.
    Screenshot of uploading the certificate request to the S3 bucket

  1. Approve SubordinateCA’s certificate request – Log in to RootCA as RootAdmin and download the certificate request from the S3 bucket to a folder called CARequest. Submit the request by running the following command using Windows PowerShell with administrative privileges.
    certreq -submit <path to certificate request file>

    In the Certification Authority List window, choose OK.
    Screenshot of the Certification Authority List window

Navigate to Server Manager > Tools > Certification Authority on RootCA.
Screenshot of "Certification Authority" in the drop-down menu

In the Certification Authority window, expand the ROOTCA tree in the left pane and choose Pending Requests. In the right pane, note the value in the Request ID column. Right-click the request and choose All Tasks > Issue.
Screenshot of noting the value in the "Request ID" column

  1. Retrieve the SubordinateCA certificate – Retrieve the SubordinateCA certificate by running following command using Windows PowerShell with administrative privileges. The command includes the <RequestId> that you noted in the previous step.
    certreq –retrieve <RequestId> <drive>:\subordinateCA.crt

    Upload SubordinateCA.crt to the S3 bucket.

  1. Install the SubordinateCA certificate – Log in to SubordinateCA as the CAAdmin and download SubordinateCA.crt from the S3 bucket. Install the certificate by running following commands using Windows PowerShell with administrative privileges.
    certutil –installcert c:\subordinateCA.crt
    start-service certsvc
  2. Delete the content that you uploaded to S3  As a security best practice, delete all the certificates and CRLs that you uploaded to the S3 bucket in the previous steps because you already have installed them on SubordinateCA.

You have finished setting up the subordinate Microsoft enterprise CA that is joined to your AWS Microsoft AD directory domain. Now you can use your subordinate Microsoft enterprise CA to create a certificate template so that your directory domain controllers can request a certificate to enable LDAPS for your directory.

Step 3: Create a certificate template


In this step, you create a certificate template with server authentication and autoenrollment enabled on SubordinateCA. You create this new template (in this case, ServerAuthentication) by duplicating an existing certificate template (in this case, Domain Controller template) and adding server authentication and autoenrollment to the template.

Follow these steps to create a certificate template:

  1. Log in to SubordinateCA as CAAdmin.
  2. Launch Microsoft Windows Server Manager. Select Tools > Certification Authority.
  3. In the Certificate Authority window, expand the SubordinateCA tree in the left pane. Right-click Certificate Templates, and choose Manage.
    Screenshot of choosing "Manage" under "Certificate Template"
  4. In the Certificate Templates Console window, right-click Domain Controller and choose Duplicate Template.
    Screenshot of the Certificate Templates Console window
  5. In the Properties of New Template window, switch to the General tab and change the Template display name to ServerAuthentication.
    Screenshot of the "Properties of New Template" window
  6. Switch to the Security tab, and choose Domain Controllers in the Group or user names section. Select the Allow check box for Autoenroll in the Permissions for Domain Controllers section.
    Screenshot of the "Permissions for Domain Controllers" section of the "Properties of New Template" window
  7. Switch to the Extensions tab, choose Application Policies in the Extensions included in this template section, and choose Edit
    Screenshot of the "Extensions" tab of the "Properties of New Template" window
  8. In the Edit Application Policies Extension window, choose Client Authentication and choose Remove. Choose OK to create the ServerAuthentication certificate template. Close the Certificate Templates Console window.
    Screenshot of the "Edit Application Policies Extension" window
  9. In the Certificate Authority window, right-click Certificate Templates, and choose New > Certificate Template to Issue.
    Screenshot of choosing "New" > "Certificate Template to Issue"
  10. In the Enable Certificate Templates window, choose ServerAuthentication and choose OK.
    Screenshot of the "Enable Certificate Templates" window

You have finished creating a certificate template with server authentication and autoenrollment enabled on SubordinateCA. Your AWS Microsoft AD directory domain controllers can now obtain a certificate through autoenrollment to enable LDAPS.

Step 4: Configure AWS security group rules


In this step, you configure AWS security group rules so that your directory domain controllers can connect to the subordinate CA to request a certificate. To do this, you must add outbound rules to your directory’s AWS security group (in this case, sg-4ba7682d) to allow all outbound traffic to SubordinateCA’s AWS security group (in this case, sg-6fbe7109) so that your directory domain controllers can connect to SubordinateCA for requesting a certificate. You also must add inbound rules to SubordinateCA’s AWS security group to allow all incoming traffic from your directory’s AWS security group so that the subordinate CA can accept incoming traffic from your directory domain controllers.

Follow these steps to configure AWS security group rules:

  1. Log in to the Management instance as Admin.
  2. Navigate to the EC2 console.
  3. In the left pane, choose Network & Security > Security Groups.
  4. In the right pane, choose the AWS security group (in this case, sg-6fbe7109) of SubordinateCA.
  5. Switch to the Inbound tab and choose Edit.
  6. Choose Add Rule. Choose All traffic for Type and Custom for Source. Enter your directory’s AWS security group (in this case, sg-4ba7682d) in the Source box. Choose Save.
    Screenshot of adding an inbound rule
  7. Now choose the AWS security group (in this case, sg-4ba7682d) of your AWS Microsoft AD directory, switch to the Outbound tab, and choose Edit.
  8. Choose Add Rule. Choose All traffic for Type and Custom for Destination. Enter your directory’s AWS security group (in this case, sg-6fbe7109) in the Destination box. Choose Save.

You have completed the configuration of AWS security group rules to allow traffic between your directory domain controllers and SubordinateCA.

Step 5: AWS Microsoft AD enables LDAPS


The AWS Microsoft AD domain controllers perform this step automatically by recognizing the published template and requesting a certificate from the subordinate Microsoft enterprise CA. The subordinate CA can take up to 180 minutes to issue certificates to the directory domain controllers. The directory imports these certificates into the directory domain controllers and enables LDAPS for your directory automatically. This completes the setup of LDAPS for the AWS Microsoft AD directory. The LDAP service on the directory is now ready to accept LDAPS connections!

Step 6: Test LDAPS access by using the LDP tool


In this step, you test the LDAPS connection to the AWS Microsoft AD directory by using the LDP tool. The LDP tool is available on the Management machine where you installed Active Directory Administration Tools. Before you test the LDAPS connection, you must wait up to 180 minutes for the subordinate CA to issue a certificate to your directory domain controllers.

To test LDAPS, you connect to one of the domain controllers using port 636. Here are the steps to test the LDAPS connection:

  1. Log in to Management as Admin.
  2. Launch the Microsoft Windows Server Manager on Management and navigate to Tools > Active Directory Users and Computers.
  3. Switch to the tree view and navigate to corp.example.com > CORP > Domain Controllers. In the right pane, right-click on one of the domain controllers and choose Properties. Copy the DNS name of the domain controller.
    Screenshot of copying the DNS name of the domain controller
  4. Launch the LDP.exe tool by launching Windows PowerShell and running the LDP.exe command.
  5. In the LDP tool, choose Connection > Connect.
    Screenshot of choosing "Connnection" > "Connect" in the LDP tool
  6. In the Server box, paste the DNS name you copied in the previous step. Type 636 in the Port box. Choose OK to test the LDAPS connection to port 636 of your directory.
    Screenshot of completing the boxes in the "Connect" window
  7. You should see the following message to confirm that your LDAPS connection is now open.

You have completed the setup of LDAPS for your AWS Microsoft AD directory! You can now encrypt LDAP communications between your Windows and Linux applications and your AWS Microsoft AD directory using LDAPS.

Summary

In this blog post, I walked through the process of enabling LDAPS for your AWS Microsoft AD directory. Enabling LDAPS helps you protect PII and other sensitive information exchanged over untrusted networks between your Windows and Linux applications and your AWS Microsoft AD. To learn more about how to use AWS Microsoft AD, see the Directory Service documentation. For general information and pricing, see the Directory Service home page.

If you have comments about this blog post, submit a comment in the “Comments” section below. If you have implementation or troubleshooting questions, start a new thread on the Directory Service forum.

– Vijay

Manage Kubernetes Clusters on AWS Using CoreOS Tectonic

Post Syndicated from Arun Gupta original https://aws.amazon.com/blogs/compute/kubernetes-clusters-aws-coreos-tectonic/

There are multiple ways to run a Kubernetes cluster on Amazon Web Services (AWS). The first post in this series explained how to manage a Kubernetes cluster on AWS using kops. This second post explains how to manage a Kubernetes cluster on AWS using CoreOS Tectonic.

Tectonic overview

Tectonic delivers the most current upstream version of Kubernetes with additional features. It is a commercial offering from CoreOS and adds the following features over the upstream:

  • Installer
    Comes with a graphical installer that installs a highly available Kubernetes cluster. Alternatively, the cluster can be installed using AWS CloudFormation templates or Terraform scripts.
  • Operators
    An operator is an application-specific controller that extends the Kubernetes API to create, configure, and manage instances of complex stateful applications on behalf of a Kubernetes user. This release includes an etcd operator for rolling upgrades and a Prometheus operator for monitoring capabilities.
  • Console
    A web console provides a full view of applications running in the cluster. It also allows you to deploy applications to the cluster and start the rolling upgrade of the cluster.
  • Monitoring
    Node CPU and memory metrics are powered by the Prometheus operator. The graphs are available in the console. A large set of preconfigured Prometheus alerts are also available.
  • Security
    Tectonic ensures that cluster is always up to date with the most recent patches/fixes. Tectonic clusters also enable role-based access control (RBAC). Different roles can be mapped to an LDAP service.
  • Support
    CoreOS provides commercial support for clusters created using Tectonic.

Tectonic can be installed on AWS using a GUI installer or Terraform scripts. The installer prompts you for the information needed to boot the Kubernetes cluster, such as AWS access and secret key, number of master and worker nodes, and instance size for the master and worker nodes. The cluster can be created after all the options are specified. Alternatively, Terraform assets can be downloaded and the cluster can be created later. This post shows using the installer.

CoreOS License and Pull Secret

Even though Tectonic is a commercial offering, a cluster for up to 10 nodes can be created by creating a free account at Get Tectonic for Kubernetes. After signup, a CoreOS License and Pull Secret files are provided on your CoreOS account page. Download these files as they are needed by the installer to boot the cluster.

IAM user permission

The IAM user to create the Kubernetes cluster must have access to the following services and features:

  • Amazon Route 53
  • Amazon EC2
  • Elastic Load Balancing
  • Amazon S3
  • Amazon VPC
  • Security groups

Use the aws-policy policy to grant the required permissions for the IAM user.

DNS configuration

A subdomain is required to create the cluster, and it must be registered as a public Route 53 hosted zone. The zone is used to host and expose the console web application. It is also used as the static namespace for the Kubernetes API server. This allows kubectl to be able to talk directly with the master.

The domain may be registered using Route 53. Alternatively, a domain may be registered at a third-party registrar. This post uses a kubernetes-aws.io domain registered at a third-party registrar and a tectonic subdomain within it.

Generate a Route 53 hosted zone using the AWS CLI. Download jq to run this command:

ID=$(uuidgen) && \
aws route53 create-hosted-zone \
--name tectonic.kubernetes-aws.io \
--caller-reference $ID \
| jq .DelegationSet.NameServers

The command shows an output such as the following:

[
  "ns-1924.awsdns-48.co.uk",
  "ns-501.awsdns-62.com",
  "ns-1259.awsdns-29.org",
  "ns-749.awsdns-29.net"
]

Create NS records for the domain with your registrar. Make sure that the NS records can be resolved using a utility like dig web interface. A sample output would look like the following:

The bottom of the screenshot shows NS records configured for the subdomain.

Download and run the Tectonic installer

Download the Tectonic installer (version 1.7.1) and extract it. The latest installer can always be found at coreos.com/tectonic. Start the installer:

./tectonic/tectonic-installer/$PLATFORM/installer

Replace $PLATFORM with either darwin or linux. The installer opens your default browser and prompts you to select the cloud provider. Choose Amazon Web Services as the platform. Choose Next Step.

Specify the Access Key ID and Secret Access Key for the IAM role that you created earlier. This allows the installer to create resources required for the Kubernetes cluster. This also gives the installer full access to your AWS account. Alternatively, to protect the integrity of your main AWS credentials, use a temporary session token to generate temporary credentials.

You also need to choose a region in which to install the cluster. For the purpose of this post, I chose a region close to where I live, Northern California. Choose Next Step.

Give your cluster a name. This name is part of the static namespace for the master and the address of the console.

To enable in-place update to the Kubernetes cluster, select the checkbox next to Automated Updates. It also enables update to the etcd and Prometheus operators. This feature may become a default in future releases.

Choose Upload “tectonic-license.txt” and upload the previously downloaded license file.

Choose Upload “config.json” and upload the previously downloaded pull secret file. Choose Next Step.

Let the installer generate a CA certificate and key. In this case, the browser may not recognize this certificate, which I discuss later in the post. Alternatively, you can provide a CA certificate and a key in PEM format issued by an authorized certificate authority. Choose Next Step.

Use the SSH key for the region specified earlier. You also have an option to generate a new key. This allows you to later connect using SSH into the Amazon EC2 instances provisioned by the cluster. Here is the command that can be used to log in:

ssh –i <key> [email protected]<ec2-instance-ip>

Choose Next Step.

Define the number and instance type of master and worker nodes. In this case, create a 6 nodes cluster. Make sure that the worker nodes have enough processing power and memory to run the containers.

An etcd cluster is used as persistent storage for all of Kubernetes API objects. This cluster is required for the Kubernetes cluster to operate. There are three ways to use the etcd cluster as part of the Tectonic installer:

  • (Default) Provision the cluster using EC2 instances. Additional EC2 instances are used in this case.
  • Use an alpha support for cluster provisioning using the etcd operator. The etcd operator is used for automated operations of the etcd master nodes for the cluster itself, in addition to for etcd instances that are created for application usage. The etcd cluster is provisioned within the Tectonic installer.
  • Bring your own pre-provisioned etcd cluster.

Use the first option in this case.

For more information about choosing the appropriate instance type, see the etcd hardware recommendation. Choose Next Step.

Specify the networking options. The installer can create a new public VPC or use a pre-existing public or private VPC. Make sure that the VPC requirements are met for an existing VPC.

Give a DNS name for the cluster. Choose the domain for which the Route 53 hosted zone was configured earlier, such as tectonic.kubernetes-aws.io. Multiple clusters may be created under a single domain. The cluster name and the DNS name would typically match each other.

To select the CIDR range, choose Show Advanced Settings. You can also choose the Availability Zones for the master and worker nodes. By default, the master and worker nodes are spread across multiple Availability Zones in the chosen region. This makes the cluster highly available.

Leave the other values as default. Choose Next Step.

Specify an email address and password to be used as credentials to log in to the console. Choose Next Step.

At any point during the installation, you can choose Save progress. This allows you to save configurations specified in the installer. This configuration file can then be used to restore progress in the installer at a later point.

To start the cluster installation, choose Submit. At another time, you can download the Terraform assets by choosing Manually boot. This allows you to boot the cluster later.

The logs from the Terraform scripts are shown in the installer. When the installation is complete, the console shows that the Terraform scripts were successfully applied, the domain name was resolved successfully, and that the console has started. The domain works successfully if the DNS resolution worked earlier, and it’s the address where the console is accessible.

Choose Download assets to download assets related to your cluster. It contains your generated CA, kubectl configuration file, and the Terraform state. This download is an important step as it allows you to delete the cluster later.

Choose Next Step for the final installation screen. It allows you to access the Tectonic console, gives you instructions about how to configure kubectl to manage this cluster, and finally deploys an application using kubectl.

Choose Go to my Tectonic Console. In our case, it is also accessible at http://cluster.tectonic.kubernetes-aws.io/.

As I mentioned earlier, the browser does not recognize the self-generated CA certificate. Choose Advanced and connect to the console. Enter the login credentials specified earlier in the installer and choose Login.

The Kubernetes upstream and console version are shown under Software Details. Cluster health shows All systems go and it means that the API server and the backend API can be reached.

To view different Kubernetes resources in the cluster choose, the resource in the left navigation bar. For example, all deployments can be seen by choosing Deployments.

By default, resources in the all namespace are shown. Other namespaces may be chosen by clicking on a menu item on the top of the screen. Different administration tasks such as managing the namespaces, getting list of the nodes and RBAC can be configured as well.

Download and run Kubectl

Kubectl is required to manage the Kubernetes cluster. The latest version of kubectl can be downloaded using the following command:

curl -LO https://storage.googleapis.com/kubernetes-release/release/$(curl -s https://storage.googleapis.com/kubernetes-release/release/stable.txt)/bin/darwin/amd64/kubectl

It can also be conveniently installed using the Homebrew package manager. To find and access a cluster, Kubectl needs a kubeconfig file. By default, this configuration file is at ~/.kube/config. This file is created when a Kubernetes cluster is created from your machine. However, in this case, download this file from the console.

In the console, choose admin, My Account, Download Configuration and follow the steps to download the kubectl configuration file. Move this file to ~/.kube/config. If kubectl has already been used on your machine before, then this file already exists. Make sure to take a backup of that file first.

Now you can run the commands to view the list of deployments:

~ $ kubectl get deployments --all-namespaces
NAMESPACE         NAME                                    DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
kube-system       etcd-operator                           1         1         1            1           43m
kube-system       heapster                                1         1         1            1           40m
kube-system       kube-controller-manager                 3         3         3            3           43m
kube-system       kube-dns                                1         1         1            1           43m
kube-system       kube-scheduler                          3         3         3            3           43m
tectonic-system   container-linux-update-operator         1         1         1            1           40m
tectonic-system   default-http-backend                    1         1         1            1           40m
tectonic-system   kube-state-metrics                      1         1         1            1           40m
tectonic-system   kube-version-operator                   1         1         1            1           40m
tectonic-system   prometheus-operator                     1         1         1            1           40m
tectonic-system   tectonic-channel-operator               1         1         1            1           40m
tectonic-system   tectonic-console                        2         2         2            2           40m
tectonic-system   tectonic-identity                       2         2         2            2           40m
tectonic-system   tectonic-ingress-controller             1         1         1            1           40m
tectonic-system   tectonic-monitoring-auth-alertmanager   1         1         1            1           40m
tectonic-system   tectonic-monitoring-auth-prometheus     1         1         1            1           40m
tectonic-system   tectonic-prometheus-operator            1         1         1            1           40m
tectonic-system   tectonic-stats-emitter                  1         1         1            1           40m

This output is similar to the one shown in the console earlier. Now, this kubectl can be used to manage your resources.

Upgrade the Kubernetes cluster

Tectonic allows the in-place upgrade of the cluster. This is an experimental feature as of this release. The clusters can be updated either automatically, or with manual approval.

To perform the update, choose Administration, Cluster Settings. If an earlier Tectonic installer, version 1.6.2 in this case, is used to install the cluster, then this screen would look like the following:

Choose Check for Updates. If any updates are available, choose Start Upgrade. After the upgrade is completed, the screen is refreshed.

This is an experimental feature in this release and so should only be used on clusters that can be easily replaced. This feature may become a fully supported in a future release. For more information about the upgrade process, see Upgrading Tectonic & Kubernetes.

Delete the Kubernetes cluster

Typically, the Kubernetes cluster is a long-running cluster to serve your applications. After its purpose is served, you may delete it. It is important to delete the cluster as this ensures that all resources created by the cluster are appropriately cleaned up.

The easiest way to delete the cluster is using the assets downloaded in the last step of the installer. Extract the downloaded zip file. This creates a directory like <cluster-name>_TIMESTAMP. In that directory, give the following command to delete the cluster:

TERRAFORM_CONFIG=$(pwd)/.terraformrc terraform destroy --force

This destroys the cluster and all associated resources.

You may have forgotten to download the assets. There is a copy of the assets in the directory tectonic/tectonic-installer/darwin/clusters. In this directory, another directory with the name <cluster-name>_TIMESTAMP contains your assets.

Conclusion

This post explained how to manage Kubernetes clusters using the CoreOS Tectonic graphical installer.  For more details, see Graphical Installer with AWS. If the installation does not succeed, see the helpful Troubleshooting tips. After the cluster is created, see the Tectonic tutorials to learn how to deploy, scale, version, and delete an application.

Future posts in this series will explain other ways of creating and running a Kubernetes cluster on AWS.

Arun

Security updates for Friday

Post Syndicated from corbet original https://lwn.net/Articles/732649/rss

Security updates have been issued by CentOS (openssh, poppler, and thunderbird), Debian (graphicsmagick and openexr), Fedora (cacti, dnsdist, exim, groovy18, kernel, libsndfile, mingw-libzip, and taglib), Oracle (openssh), Red Hat (openssh), Scientific Linux (openssh), and SUSE (git and xen).

New – Descriptions for Security Group Rules

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/new-descriptions-for-security-group-rules/

I’m often impressed when I look back to the early days of EC2 and see just how many features from the launch have survived until today. AMIs, Availability Zones, KeyPairs, Security Groups, and Security Group Rules were all present at the beginning, as was pay-as-you-go usage. Even though we have made innumerable additions to the service in the past eleven years, the fundamentals formed a strong base and are still prominent today.

We put security first from the get-go, and gave you the ability to use Security Groups and Security Group Rules to exercise fine-grained control over the traffic that flows to and from to your instances. Our customers make extensive use of this feature, with large collections of groups and even larger collections of rules.

There was, however, one problem! While each group had an associated description (“Production Web Server Access”, “Development Access”, and so forth), the individual rules did not. Some of our larger customers created external tracking systems to ensure that they captured the intent behind each rule. This was tedious and error prone, and now it is unnecessary!

Descriptions for Security Group Rules
You can now add descriptive text to each of your Security Group Rules! This will simplify your operations and remove some opportunities for operator error. Descriptions can be up to 255 characters long and can be set and viewed from the AWS Management Console, AWS Command Line Interface (CLI), and the AWS APIs. You can enter a description when you create a new rule and you can edit descriptions for existing rules.

Here’s how I can enter descriptions when creating a new Security Group (Of course, allowing SSH access from arbitrary IP addresses is not a best practice):

I can select my Security Group and review all of the descriptions:

I can also click on the Edit button to modify the rules and the descriptions.

From the CLI I can include a description when I use the authorize-security-group-ingress and authorize-security-group-egress commands. I can use update-security-group-rule-descriptions-ingress and update-security-group-rule-descriptions-egress to change an existing description, and describe-security-groups to see the descriptions for each rule.

This feature is available now and you can start using it today in all commercial AWS Regions. It works for VPC Security Groups and for EC2 Classic Security Groups. CloudFormation support is on the way!

Jeff;

 

How to Configure an LDAPS Endpoint for Simple AD

Post Syndicated from Cameron Worrell original https://aws.amazon.com/blogs/security/how-to-configure-an-ldaps-endpoint-for-simple-ad/

Simple AD, which is powered by Samba  4, supports basic Active Directory (AD) authentication features such as users, groups, and the ability to join domains. Simple AD also includes an integrated Lightweight Directory Access Protocol (LDAP) server. LDAP is a standard application protocol for the access and management of directory information. You can use the BIND operation from Simple AD to authenticate LDAP client sessions. This makes LDAP a common choice for centralized authentication and authorization for services such as Secure Shell (SSH), client-based virtual private networks (VPNs), and many other applications. Authentication, the process of confirming the identity of a principal, typically involves the transmission of highly sensitive information such as user names and passwords. To protect this information in transit over untrusted networks, companies often require encryption as part of their information security strategy.

In this blog post, we show you how to configure an LDAPS (LDAP over SSL/TLS) encrypted endpoint for Simple AD so that you can extend Simple AD over untrusted networks. Our solution uses Elastic Load Balancing (ELB) to send decrypted LDAP traffic to HAProxy running on Amazon EC2, which then sends the traffic to Simple AD. ELB offers integrated certificate management, SSL/TLS termination, and the ability to use a scalable EC2 backend to process decrypted traffic. ELB also tightly integrates with Amazon Route 53, enabling you to use a custom domain for the LDAPS endpoint. The solution needs the intermediate HAProxy layer because ELB can direct traffic only to EC2 instances. To simplify testing and deployment, we have provided an AWS CloudFormation template to provision the ELB and HAProxy layers.

This post assumes that you have an understanding of concepts such as Amazon Virtual Private Cloud (VPC) and its components, including subnets, routing, Internet and network address translation (NAT) gateways, DNS, and security groups. You should also be familiar with launching EC2 instances and logging in to them with SSH. If needed, you should familiarize yourself with these concepts and review the solution overview and prerequisites in the next section before proceeding with the deployment.

Note: This solution is intended for use by clients requiring an LDAPS endpoint only. If your requirements extend beyond this, you should consider accessing the Simple AD servers directly or by using AWS Directory Service for Microsoft AD.

Solution overview

The following diagram and description illustrates and explains the Simple AD LDAPS environment. The CloudFormation template creates the items designated by the bracket (internal ELB load balancer and two HAProxy nodes configured in an Auto Scaling group).

Diagram of the the Simple AD LDAPS environment

Here is how the solution works, as shown in the preceding numbered diagram:

  1. The LDAP client sends an LDAPS request to ELB on TCP port 636.
  2. ELB terminates the SSL/TLS session and decrypts the traffic using a certificate. ELB sends the decrypted LDAP traffic to the EC2 instances running HAProxy on TCP port 389.
  3. The HAProxy servers forward the LDAP request to the Simple AD servers listening on TCP port 389 in a fixed Auto Scaling group configuration.
  4. The Simple AD servers send an LDAP response through the HAProxy layer to ELB. ELB encrypts the response and sends it to the client.

Note: Amazon VPC prevents a third party from intercepting traffic within the VPC. Because of this, the VPC protects the decrypted traffic between ELB and HAProxy and between HAProxy and Simple AD. The ELB encryption provides an additional layer of security for client connections and protects traffic coming from hosts outside the VPC.

Prerequisites

  1. Our approach requires an Amazon VPC with two public and two private subnets. The previous diagram illustrates the environment’s VPC requirements. If you do not yet have these components in place, follow these guidelines for setting up a sample environment:
    1. Identify a region that supports Simple AD, ELB, and NAT gateways. The NAT gateways are used with an Internet gateway to allow the HAProxy instances to access the internet to perform their required configuration. You also need to identify the two Availability Zones in that region for use by Simple AD. You will supply these Availability Zones as parameters to the CloudFormation template later in this process.
    2. Create or choose an Amazon VPC in the region you chose. In order to use Route 53 to resolve the LDAPS endpoint, make sure you enable DNS support within your VPC. Create an Internet gateway and attach it to the VPC, which will be used by the NAT gateways to access the internet.
    3. Create a route table with a default route to the Internet gateway. Create two NAT gateways, one per Availability Zone in your public subnets to provide additional resiliency across the Availability Zones. Together, the routing table, the NAT gateways, and the Internet gateway enable the HAProxy instances to access the internet.
    4. Create two private routing tables, one per Availability Zone. Create two private subnets, one per Availability Zone. The dual routing tables and subnets allow for a higher level of redundancy. Add each subnet to the routing table in the same Availability Zone. Add a default route in each routing table to the NAT gateway in the same Availability Zone. The Simple AD servers use subnets that you create.
    5. The LDAP service requires a DNS domain that resolves within your VPC and from your LDAP clients. If you do not have an existing DNS domain, follow the steps to create a private hosted zone and associate it with your VPC. To avoid encryption protocol errors, you must ensure that the DNS domain name is consistent across your Route 53 zone and in the SSL/TLS certificate (see Step 2 in the “Solution deployment” section).
  2. Make sure you have completed the Simple AD Prerequisites.
  3. We will use a self-signed certificate for ELB to perform SSL/TLS decryption. You can use a certificate issued by your preferred certificate authority or a certificate issued by AWS Certificate Manager (ACM).
    Note: To prevent unauthorized connections directly to your Simple AD servers, you can modify the Simple AD security group on port 389 to block traffic from locations outside of the Simple AD VPC. You can find the security group in the EC2 console by creating a search filter for your Simple AD directory ID. It is also important to allow the Simple AD servers to communicate with each other as shown on Simple AD Prerequisites.

Solution deployment

This solution includes five main parts:

  1. Create a Simple AD directory.
  2. Create a certificate.
  3. Create the ELB and HAProxy layers by using the supplied CloudFormation template.
  4. Create a Route 53 record.
  5. Test LDAPS access using an Amazon Linux client.

1. Create a Simple AD directory

With the prerequisites completed, you will create a Simple AD directory in your private VPC subnets:

  1. In the Directory Service console navigation pane, choose Directories and then choose Set up directory.
  2. Choose Simple AD.
    Screenshot of choosing "Simple AD"
  3. Provide the following information:
    • Directory DNS – The fully qualified domain name (FQDN) of the directory, such as corp.example.com. You will use the FQDN as part of the testing procedure.
    • NetBIOS name – The short name for the directory, such as CORP.
    • Administrator password – The password for the directory administrator. The directory creation process creates an administrator account with the user name Administrator and this password. Do not lose this password because it is nonrecoverable. You also need this password for testing LDAPS access in a later step.
    • Description – An optional description for the directory.
    • Directory Size – The size of the directory.
      Screenshot of the directory details to provide
  4. Provide the following information in the VPC Details section, and then choose Next Step:
    • VPC – Specify the VPC in which to install the directory.
    • Subnets – Choose two private subnets for the directory servers. The two subnets must be in different Availability Zones. Make a note of the VPC and subnet IDs for use as CloudFormation input parameters. In the following example, the Availability Zones are us-east-1a and us-east-1c.
      Screenshot of the VPC details to provide
  5. Review the directory information and make any necessary changes. When the information is correct, choose Create Simple AD.

It takes several minutes to create the directory. From the AWS Directory Service console , refresh the screen periodically and wait until the directory Status value changes to Active before continuing. Choose your Simple AD directory and note the two IP addresses in the DNS address section. You will enter them when you run the CloudFormation template later.

Note: Full administration of your Simple AD implementation is out of scope for this blog post. See the documentation to add users, groups, or instances to your directory. Also see the previous blog post, How to Manage Identities in Simple AD Directories.

2. Create a certificate

In the previous step, you created the Simple AD directory. Next, you will generate a self-signed SSL/TLS certificate using OpenSSL. You will use the certificate with ELB to secure the LDAPS endpoint. OpenSSL is a standard, open source library that supports a wide range of cryptographic functions, including the creation and signing of x509 certificates. You then import the certificate into ACM that is integrated with ELB.

  1. You must have a system with OpenSSL installed to complete this step. If you do not have OpenSSL, you can install it on Amazon Linux by running the command, sudo yum install openssl. If you do not have access to an Amazon Linux instance you can create one with SSH access enabled to proceed with this step. Run the command, openssl version, at the command line to see if you already have OpenSSL installed.
    [[email protected] ~]$ openssl version
    OpenSSL 1.0.1k-fips 8 Jan 2015

  2. Create a private key using the command, openssl genrsa command.
    [[email protected] tmp]$ openssl genrsa 2048 > privatekey.pem
    Generating RSA private key, 2048 bit long modulus
    ......................................................................................................................................................................+++
    ..........................+++
    e is 65537 (0x10001)

  3. Generate a certificate signing request (CSR) using the openssl req command. Provide the requested information for each field. The Common Name is the FQDN for your LDAPS endpoint (for example, ldap.corp.example.com). The Common Name must use the domain name you will later register in Route 53. You will encounter certificate errors if the names do not match.
    [[email protected] tmp]$ openssl req -new -key privatekey.pem -out server.csr
    You are about to be asked to enter information that will be incorporated into your certificate request.

  4. Use the openssl x509 command to sign the certificate. The following example uses the private key from the previous step (privatekey.pem) and the signing request (server.csr) to create a public certificate named server.crt that is valid for 365 days. This certificate must be updated within 365 days to avoid disruption of LDAPS functionality.
    [[email protected] tmp]$ openssl x509 -req -sha256 -days 365 -in server.csr -signkey privatekey.pem -out server.crt
    Signature ok
    subject=/C=XX/L=Default City/O=Default Company Ltd/CN=ldap.corp.example.com
    Getting Private key

  5. You should see three files: privatekey.pem, server.crt, and server.csr.
    [[email protected] tmp]$ ls
    privatekey.pem server.crt server.csr

    Restrict access to the private key.

    [[email protected] tmp]$ chmod 600 privatekey.pem

    Keep the private key and public certificate for later use. You can discard the signing request because you are using a self-signed certificate and not using a Certificate Authority. Always store the private key in a secure location and avoid adding it to your source code.

  6. In the ACM console, choose Import a certificate.
  7. Using your favorite Linux text editor, paste the contents of your server.crt file in the Certificate body box.
  8. Using your favorite Linux text editor, paste the contents of your privatekey.pem file in the Certificate private key box. For a self-signed certificate, you can leave the Certificate chain box blank.
  9. Choose Review and import. Confirm the information and choose Import.

3. Create the ELB and HAProxy layers by using the supplied CloudFormation template

Now that you have created your Simple AD directory and SSL/TLS certificate, you are ready to use the CloudFormation template to create the ELB and HAProxy layers.

  1. Load the supplied CloudFormation template to deploy an internal ELB and two HAProxy EC2 instances into a fixed Auto Scaling group. After you load the template, provide the following input parameters. Note: You can find the parameters relating to your Simple AD from the directory details page by choosing your Simple AD in the Directory Service console.
Input parameter Input parameter description
HAProxyInstanceSize The EC2 instance size for HAProxy servers. The default size is t2.micro and can scale up for large Simple AD environments.
MyKeyPair The SSH key pair for EC2 instances. If you do not have an existing key pair, you must create one.
VPCId The target VPC for this solution. Must be in the VPC where you deployed Simple AD and is available in your Simple AD directory details page.
SubnetId1 The Simple AD primary subnet. This information is available in your Simple AD directory details page.
SubnetId2 The Simple AD secondary subnet. This information is available in your Simple AD directory details page.
MyTrustedNetwork Trusted network Classless Inter-Domain Routing (CIDR) to allow connections to the LDAPS endpoint. For example, use the VPC CIDR to allow clients in the VPC to connect.
SimpleADPriIP The primary Simple AD Server IP. This information is available in your Simple AD directory details page.
SimpleADSecIP The secondary Simple AD Server IP. This information is available in your Simple AD directory details page.
LDAPSCertificateARN The Amazon Resource Name (ARN) for the SSL certificate. This information is available in the ACM console.
  1. Enter the input parameters and choose Next.
  2. On the Options page, accept the defaults and choose Next.
  3. On the Review page, confirm the details and choose Create. The stack will be created in approximately 5 minutes.

4. Create a Route 53 record

The next step is to create a Route 53 record in your private hosted zone so that clients can resolve your LDAPS endpoint.

  1. If you do not have an existing DNS domain for use with LDAP, create a private hosted zone and associate it with your VPC. The hosted zone name should be consistent with your Simple AD (for example, corp.example.com).
  2. When the CloudFormation stack is in CREATE_COMPLETE status, locate the value of the LDAPSURL on the Outputs tab of the stack. Copy this value for use in the next step.
  3. On the Route 53 console, choose Hosted Zones and then choose the zone you used for the Common Name box for your self-signed certificate. Choose Create Record Set and enter the following information:
    1. Name – The label of the record (such as ldap).
    2. Type – Leave as A – IPv4 address.
    3. Alias – Choose Yes.
    4. Alias Target – Paste the value of the LDAPSURL on the Outputs tab of the stack.
  4. Leave the defaults for Routing Policy and Evaluate Target Health, and choose Create.
    Screenshot of finishing the creation of the Route 53 record

5. Test LDAPS access using an Amazon Linux client

At this point, you have configured your LDAPS endpoint and now you can test it from an Amazon Linux client.

  1. Create an Amazon Linux instance with SSH access enabled to test the solution. Launch the instance into one of the public subnets in your VPC. Make sure the IP assigned to the instance is in the trusted IP range you specified in the CloudFormation parameter MyTrustedNetwork in Step 3.b.
  2. SSH into the instance and complete the following steps to verify access.
    1. Install the openldap-clients package and any required dependencies:
      sudo yum install -y openldap-clients.
    2. Add the server.crt file to the /etc/openldap/certs/ directory so that the LDAPS client will trust your SSL/TLS certificate. You can copy the file using Secure Copy (SCP) or create it using a text editor.
    3. Edit the /etc/openldap/ldap.conf file and define the environment variables BASE, URI, and TLS_CACERT.
      • The value for BASE should match the configuration of the Simple AD directory name.
      • The value for URI should match your DNS alias.
      • The value for TLS_CACERT is the path to your public certificate.

Here is an example of the contents of the file.

BASE dc=corp,dc=example,dc=com
URI ldaps://ldap.corp.example.com
TLS_CACERT /etc/openldap/certs/server.crt

To test the solution, query the directory through the LDAPS endpoint, as shown in the following command. Replace corp.example.com with your domain name and use the Administrator password that you configured with the Simple AD directory

$ ldapsearch -D "[email protected]corp.example.com" -W sAMAccountName=Administrator

You should see a response similar to the following response, which provides the directory information in LDAP Data Interchange Format (LDIF) for the administrator distinguished name (DN) from your Simple AD LDAP server.

# extended LDIF
#
# LDAPv3
# base <dc=corp,dc=example,dc=com> (default) with scope subtree
# filter: sAMAccountName=Administrator
# requesting: ALL
#

# Administrator, Users, corp.example.com
dn: CN=Administrator,CN=Users,DC=corp,DC=example,DC=com
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: user
description: Built-in account for administering the computer/domain
instanceType: 4
whenCreated: 20170721123204.0Z
uSNCreated: 3223
name: Administrator
objectGUID:: l3h0HIiKO0a/ShL4yVK/vw==
userAccountControl: 512
…

You can now use the LDAPS endpoint for directory operations and authentication within your environment. If you would like to learn more about how to interact with your LDAPS endpoint within a Linux environment, here are a few resources to get started:

Troubleshooting

If you receive an error such as the following error when issuing the ldapsearch command, there are a few things you can do to help identify issues.

ldap_sasl_bind(SIMPLE): Can't contact LDAP server (-1)
  • You might be able to obtain additional error details by adding the -d1 debug flag to the ldapsearch command in the previous section.
    $ ldapsearch -D "[email protected]" -W sAMAccountName=Administrator –d1

  • Verify that the parameters in ldap.conf match your configured LDAPS URI endpoint and that all parameters can be resolved by DNS. You can use the following dig command, substituting your configured endpoint DNS name.
    $ dig ldap.corp.example.com

  • Confirm that the client instance from which you are connecting is in the CIDR range of the CloudFormation parameter, MyTrustedNetwork.
  • Confirm that the path to your public SSL/TLS certificate configured in ldap.conf as TLS_CAERT is correct. You configured this in Step 5.b.3. You can check your SSL/TLS connection with the command, substituting your configured endpoint DNS name for the string after –connect.
    $ echo -n | openssl s_client -connect ldap.corp.example.com:636

  • Verify that your HAProxy instances have the status InService in the EC2 console: Choose Load Balancers under Load Balancing in the navigation pane, highlight your LDAPS load balancer, and then choose the Instances

Conclusion

You can use ELB and HAProxy to provide an LDAPS endpoint for Simple AD and transport sensitive authentication information over untrusted networks. You can explore using LDAPS to authenticate SSH users or integrate with other software solutions that support LDAP authentication. This solution’s CloudFormation template is available on GitHub.

If you have comments about this post, submit them in the “Comments” section below. If you have questions about or issues implementing this solution, start a new thread on the Directory Service forum.

– Cameron and Jeff

Security updates for Tuesday

Post Syndicated from corbet original https://lwn.net/Articles/731678/rss

Security updates have been issued by Debian (extplorer and libraw), Fedora (mingw-libsoup, python-tablib, ruby, and subversion), Mageia (avidemux, clamav, nasm, php-pear-CAS, and shutter), Oracle (xmlsec1), Red Hat (openssl tomcat), Scientific Linux (authconfig, bash, curl, evince, firefox, freeradius, gdm gnome-session, ghostscript, git, glibc, gnutls, groovy, GStreamer, gtk-vnc, httpd, java-1.7.0-openjdk, kernel, libreoffice, libsoup, libtasn1, log4j, mariadb, mercurial, NetworkManager, openldap, openssh, pidgin, pki-core, postgresql, python, qemu-kvm, samba, spice, subversion, tcpdump, tigervnc fltk, tomcat, X.org, and xmlsec1), SUSE (git), and Ubuntu (augeas, cvs, and texlive-base).