Tag Archives: linux

Deploying a 4K, GPU-backed Linux desktop instance on AWS

Post Syndicated from Roshni Pary original https://aws.amazon.com/blogs/compute/deploying-4k-gpu-backed-linux-desktop-instance-on-aws/

Contributed by Amr Ragab, HPC Application Consultant, AWS Professional Services

AWS currently supports many managed des­ktop delivery mechanisms. Amazon WorkSpaces and Amazon AppStream 2.0 both deliver managed Windows-based machine images with GPU-backed instances. However, many desktop services and applications are better served through a Linux backed instance. Given the variety of Linux distributions as well as desktop managers, it can be valuable to have a generic solution for provisioning a Linux desktop on Amazon EC2.

A GPU-backed instance reduces the computational requirements from the client (local) machine, eliminating the need for a local discrete GPU to run graphical workloads. The framebuffer objects generated by the GPU are compressed when sent over the network, and decompressed by the local CPU resources. This allows clients to take advantage of the server GPU and display the high-resolution content on local thin clients, mobile devices, and low-powered desktops and laptops. Such GPU-backed Linux instances have been used for VFX rendering, computational drug discovery, and computational fluid dynamics (CFD) simulation use cases. An upcoming followup post details enabling this technology on the Windows platform.

Configuration

In this configuration, a client machine connects to the provisioned desktop (server) in the cloud. The server captures the framebuffer, which is sent in real time to the client machine over the network. Thus latency is an important metric to consider when provisioning this solution. I recommend choosing the nearest AWS Region (under 100 ms). Some customers may even prefer to install AWS Direct Connect.

Region Latency
US-East (Virginia) 18 ms
US East (Ohio) 31 ms
US-West (California) 77 ms
US-West (Oregon) 97 ms
Canada (Central) 29 ms
Europe (Ireland) 89 ms
Europe (London) 90 ms
Europe (Frankfurt) 108 ms
Asia Pacific (Mumbai) 197 ms
Asia Pacific (Seoul) 198 ms
Asia Pacific (Singapore) 288 ms
Asia Pacific (Sydney) 218 ms
Asia Pacific (Tokyo) 188 ms
South America (São Paulo) 138 ms
China (Beijing) 267 ms
AWS GovCloud (US) 97 ms

Source: http://www.cloudping.info/ from the Amazon offices located in Herndon, VA

Bandwidth requirements depend on the quality of the desktop experience as well as the desired resolution. Provision the backend Linux desktop instance with a 4096×2160 (4K) resolution. Depending on the specific G3 instance type selected, multi-GPU managed desktops give additional performance benefits. Each instance can also host multiple users, either in collaborative sessions, or with up to four independent 4K monitors. The GPU framebuffer memory used per session generally limits the number of sessions per managed desktop.

A smooth reliable experience depends on a low latency and high-bandwidth connection to the EC2 instance hosting the desktop. One of the benefits of using a multithreaded framebuffer reader is that only the defined block of the rendered desktop that is changing needs to be sent over the network. Full-screen redraws may be necessary only in rare cases. The minimum requirements for this 4K (3840×2160) configuration are as follows:

  • Bandwidth: 50 Mbps
  • Latency: < 30 ms
  • Jitter: < 5 ms

Deployment

Use RHEL/CentOS for the deployment. Except for DCV, this stack is compatible with Debian/Ubuntu distributions. Use the CentOS 7.5 Server AMI and install the NVIDIA/Xorg/KDE stack  to create a fully functioning desktop environment with a max resolution of 16384 x 8640 (that is, 4x4K) at 60 Hz.

This stack contains the following software:

  • CentOS 7.5 Base
  • Xorg 1.19
  • NVIDIA Grid Driver 6.1 (for the G3 instance family)
  • KDE Desktop environment
  • VirtualGL
  • TurboVNC
  • NICE DCV

To make the most efficient use of the NVIDIA Tesla M60 framebuffer memory, disable the compositing features of the desktop manager. Other non-compositing desktop managers (such as XFCE, MATE, etc.) are supported as well. This ensures that the GPU is reserved for specific OpenGL API tasks for the application, and that the performance is not impacted by the desktop environment decorations.

Start up a CentOS 7.5 server desktop based on the latest AMI available in the closest Region:

Distributor ID:    CentOS
Description:       CentOS Linux release 7.5.1804 (Core)
Release:           7.5.1804
Codename:          Core

Now install the Xorg stack with the KDE desktop manager:

sudo yum install epel-release
sudo yum update
sudo yum groupinstall "Development Tools"
sudo yum install xorg-* kernel-devel dkms python-pip lsb
sudo pip install awscli
sudo yum groupinstall "KDE Plasma Workspaces"
sudo systemctl disable firewalld #AWS security groups will provide our firewall rules
# if there is a kernel update
sudo reboot

Download the NVIDIA Grid driver (6.1). For more information, see Installing the NVIDIA Driver on Linux Instances.

aws s3 cp --recursive s3://ec2-linux-nvidia-drivers/ .
chmod +x latest/NVIDIA-Linux-x86_64-390.57-grid.run
sudo .latest/NVIDIA-Linux-x86_64-390.57-grid.run
# register the driver with dkms, ignore errors associated with 32bit compatible libraries

Deposit the xorg.conf file in /etc/X11/xorg.conf:

Section "ServerLayout"
        Identifier     "X.org Configured"
        Screen      0  "Screen0" 0 0
        InputDevice    "Mouse0" "CorePointer"
        InputDevice    "Keyboard0" "CoreKeyboard"
EndSection
 
Section "Files"
        ModulePath   "/usr/lib64/xorg/modules"
        FontPath     "catalogue:/etc/X11/fontpath.d"
        FontPath     "built-ins"
EndSection
 
Section "Module"
        Load  "glx"
EndSection
 
Section "InputDevice"
        Identifier  "Keyboard0"
        Driver      "kbd"
EndSection
 
Section "InputDevice"
        Identifier  "Mouse0"
        Driver      "mouse"
        Option      "Protocol" "auto"
        Option      "Device" "/dev/input/mice"
        Option      "ZAxisMapping" "4 5 6 7"
EndSection
 
Section "Monitor"
        Identifier   "Monitor0"
        VendorName   "Monitor Vendor"
        ModelName    "Monitor Model"
        Modeline "3840x2160_60.00"  712.34  3840 4152 4576 5312  2160 2161 2164 2235  -HSync +Vsync
EndSection

 
Section "Device"
        Identifier  "Card0"
        Driver      "nvidia"
        Option "ConnectToAcpid" "0"
        BusID       "PCI:0:30:0"
EndSection
 
Section "Screen"
        Identifier "Screen0"
        Device     "Card0"
        Monitor    "Monitor0"
        SubSection "Display"
                Viewport   0 0
                Depth     24
        Modes    "4096x2160" "3840x2160"
        EndSubSection
EndSection

Reboot again and check that the nvidia-gridd service is running. You may notice errors. They can be safely ignored after the nvidia-gridd service successfully acquires a license.

[[email protected] ~]# systemctl status nvidia-gridd.service
● nvidia-gridd.service - NVIDIA Grid Daemon
   Loaded: loaded (/usr/lib/systemd/system/nvidia-gridd.service; enabled; vendor preset: disabled)
   Active: active (running) since Tue 2018-05-29 18:37:35 UTC; 39s ago
  Process: 863 ExecStart=/usr/bin/nvidia-gridd (code=exited, status=0/SUCCESS)
 Main PID: 881 (nvidia-gridd)
   CGroup: /system.slice/nvidia-gridd.service
           └─881 /usr/bin/nvidia-gridd
May 29 18:37:35 ip-10-0-125-164.ec2.internal systemd[1]: Starting NVIDIA Grid Daemon...
May 29 18:37:35 ip-10-0-125-164.ec2.internal nvidia-gridd[881]: Started (881)
May 29 18:37:35 ip-10-0-125-164.ec2.internal systemd[1]: Started NVIDIA Grid Daemon.
May 29 18:37:36 ip-10-0-125-164.ec2.internal nvidia-gridd[881]: Configuration parameter ( ServerAddress  FeatureType) not set
May 29 18:37:40 ip-10-0-125-164.ec2.internal nvidia-gridd[881]: Calling load_byte_array(tra)
May 29 18:37:41 ip-10-0-125-164.ec2.internal nvidia-gridd[881]: License acquired successfully (2)

You can confirm that 4K resolution is enabled by running the following command:

DISPLAY=:0 xrandr -q
Screen 0: minimum 8 x 8, current 4096 x 2160, maximum 16384 x 8640
DVI-D-0 connected primary 4096x2160+0+0 (normal left inverted right x axis y axis) 641mm x 400mm
2560x1600 59.86+
4096x2160 60.03*
3840x2160 60.00 

Finally, check that your underlying GL renderer is using the NVIDIA driver by querying glxinfo

DISPLAY=:0 glxinfo

OpenGL vendor string: NVIDIA Corporation
OpenGL renderer string: Quadro FX Tesla M60/PCIe/SSE2
OpenGL core profile version string: 4.5.0 NVIDIA 390.57
OpenGL core profile shading language version string: 4.50 NVIDIA
OpenGL core profile context flags: (none)
OpenGL core profile profile mask: core profile
OpenGL core profile extensions:
OpenGL version string: 4.6.0 NVIDIA 390.57
OpenGL shading language version string: 4.60 NVIDIA

At the time of publication, OpenGL 4.5 is enabled. Your applications can take advantage of that API for rendering.

To interact with the instance, install server-side desktop remote display software that can specifically take advantage of the 3D hardware acceleration. For example, AWS provides the NICE DCV platform.

DCV is an accelerated remote desktop framework that provides in-web browser desktop connections. DCV is supported in both Windows and Linux (RHEL/CentOS). In the Windows platform, OpenGL and DirectX are fully supported. DCV entitlement is free when provisioning on AWS. NICE DCV is also provided as a component to the AWS EnginFrame and myHPC solutions.

To install DCV, download the NICE DCV 2017 EL7 archive and Administrative Guide. After you extract the archive in the instance, you see a list of nice-* RPMS. You don’t have to worry about licensing, as the installer captures that the instance is running in AWS.

sudo yum localinstall nice-*
sudo systemctl enable dcvserver
sudo systemctl start dcvserver

When the DCV server starts, you have the option to create a single console session or multiple virtual sessions. You must assign a password for the CentOS user issued, by running the following command:

sudo passwd centos

Start the console session:

sudo dcv create-session --type=console --owner centos session1
sudo dcv list-sessions

The AWS security groups are enabled to allow TCP 8443 traffic to the instance. You see the DCV login portal and can interact with the instance. Other popular frameworks include the following:

You can also find plug and play images for managed desktops in the AWS Marketplace.

Optimization

Implement the changes outlined in the Optimizing GPU Settings (P2, P3, and G3 Instances) topic. You can turn off the autoboost feature and set the maximum graphics and memory clocks manually.

sudo nvidia-smi --auto-boost-default=0
sudo nvidia-smi -ac 2505,1177

Application testing

For testing, look at PyMOL (PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC.). PyMOL is a standard commercial drug discovery application that is used for processing, and visualizing biochemical structures.  I used the opensource fork.

With the NVIDIA GRID licensing enabled earlier, PyMOL can take advantage of the Quadro features supplied by the Tesla M60. After it’s installed and loaded, you can confirm the functionality of the entire G3 instance software stack installed earlier:

PyMOL(TM) Molecular Graphics System, Version 2.1.0.
 Copyright (c) Schrodinger, LLC.
 All Rights Reserved.
 
    Created by Warren L. DeLano, Ph.D. 
 
    PyMOL is user-supported open-source software.  Although some versions
    are freely available, PyMOL is not in the public domain.
 
    If PyMOL is helpful in your work or study, then please volunteer 
    support for our ongoing efforts to create open and affordable scientific
    software by purchasing a PyMOL Maintenance and/or Support subscription.

    More information can be found at "http://www.pymol.org".
 
    Enter "help" for a list of commands.
    Enter "help <command-name>" for information on a specific command.

 Hit ESC anytime to toggle between text and graphics.

 Detected OpenGL version 2.0 or greater. Shaders available.
 Detected GLSL version 4.60.
 OpenGL graphics engine:
  GL_VENDOR:   NVIDIA Corporation
  GL_RENDERER: Quadro FX Tesla M60/PCIe/SSE2
  GL_VERSION:  4.6.0 NVIDIA 390.57
 Adapting to Quadro hardware.
 Detected 16 CPU cores.  Enabled multithreaded rendering.

In the PyMOL window, run “fetch 5ta3”, which is a 39k amino acid protein, under the 4K desktop environment. Rotating and translating the protein should be smooth and respond quickly to pointer events.

The PyMOL Gallery contains other representative examples that take advantage of various visualization and processing workflows. Also, you can find many demos (choose Wizard, Demo).

Under the Sculpting demo, you can show the pointer latency between the client and server.

Finally, look at ray tracing. From the PyMOL wiki, take a chemical structure and render each frame with ray tracing to produce a video. On the Tesla M60 with Quadro features enabled, the total render time was approximately 1 minute.

Scalability

As I mentioned previously, the framebuffer redirection protocols have a feature set to create multiple virtual sessions per node. A virtual session is not necessarily tied to a single user either. In other words, the number of independent virtual sessions is limited by the total amount of GPU frame buffer memory used in all sessions per GPU. Thus, it’s possible to scale horizontally by increasing the number of G3 instances, or vertically by using larger instance types in the G3 family.

Summary

The G3 instance type is purpose-built to provide a managed, high-end professional graphics infrastructure for visual computing needs. With NICE DCV, you can take advantage of NVIDIA Quadro software features for a range of applications including drug discovery and VFX rendering. Connected with the AWS high-performance network backbone, the instance can become an integral part of your graphics workload pipeline. Now, you can power up and deliver your applications to teams working anywhere in the world.

[$] A filesystem “change journal” and other topics

Post Syndicated from jake original https://lwn.net/Articles/755277/rss

At the 2017 Linux Storage, Filesystem, and Memory-Management Summit
(LSFMM), Amir Goldstein presented his work
on adding a superblock watch mechanism to provide a scalable way to notify
applications
of changes in a filesystem. At the 2018 edition of LSFMM, he was back to
discuss adding NTFS-like change
journals
to the kernel in support of backup solutions of various
sorts. As a second topic for the session, he also wanted to discuss doing
more performance-regression testing
for filesystems.

EC2 Instance Update – M5 Instances with Local NVMe Storage (M5d)

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/ec2-instance-update-m5-instances-with-local-nvme-storage-m5d/

Earlier this month we launched the C5 Instances with Local NVMe Storage and I told you that we would be doing the same for additional instance types in the near future!

Today we are introducing M5 instances equipped with local NVMe storage. Available for immediate use in 5 regions, these instances are a great fit for workloads that require a balance of compute and memory resources. Here are the specs:

Instance Name vCPUs RAM Local Storage EBS-Optimized Bandwidth Network Bandwidth
m5d.large 2 8 GiB 1 x 75 GB NVMe SSD Up to 2.120 Gbps Up to 10 Gbps
m5d.xlarge 4 16 GiB 1 x 150 GB NVMe SSD Up to 2.120 Gbps Up to 10 Gbps
m5d.2xlarge 8 32 GiB 1 x 300 GB NVMe SSD Up to 2.120 Gbps Up to 10 Gbps
m5d.4xlarge 16 64 GiB 1 x 600 GB NVMe SSD 2.210 Gbps Up to 10 Gbps
m5d.12xlarge 48 192 GiB 2 x 900 GB NVMe SSD 5.0 Gbps 10 Gbps
m5d.24xlarge 96 384 GiB 4 x 900 GB NVMe SSD 10.0 Gbps 25 Gbps

The M5d instances are powered by Custom Intel® Xeon® Platinum 8175M series processors running at 2.5 GHz, including support for AVX-512.

You can use any AMI that includes drivers for the Elastic Network Adapter (ENA) and NVMe; this includes the latest Amazon Linux, Microsoft Windows (Server 2008 R2, Server 2012, Server 2012 R2 and Server 2016), Ubuntu, RHEL, SUSE, and CentOS AMIs.

Here are a couple of things to keep in mind about the local NVMe storage on the M5d instances:

Naming – You don’t have to specify a block device mapping in your AMI or during the instance launch; the local storage will show up as one or more devices (/dev/nvme*1 on Linux) after the guest operating system has booted.

Encryption – Each local NVMe device is hardware encrypted using the XTS-AES-256 block cipher and a unique key. Each key is destroyed when the instance is stopped or terminated.

Lifetime – Local NVMe devices have the same lifetime as the instance they are attached to, and do not stick around after the instance has been stopped or terminated.

Available Now
M5d instances are available in On-Demand, Reserved Instance, and Spot form in the US East (N. Virginia), US West (Oregon), EU (Ireland), US East (Ohio), and Canada (Central) Regions. Prices vary by Region, and are just a bit higher than for the equivalent M5 instances.

Jeff;

 

Security updates for Friday

Post Syndicated from ris original https://lwn.net/Articles/756260/rss

Security updates have been issued by Debian (kernel, procps, and tiff), Fedora (ca-certificates, chromium, and git), Mageia (kernel, kernel-linus, kernel-tmb, and libvirt), openSUSE (chromium and xen), Oracle (procps, xmlrpc, and xmlrpc3), Red Hat (xmlrpc and xmlrpc3), Scientific Linux (procps, xmlrpc, and xmlrpc3), SUSE (HA kernel modules and kernel), and Ubuntu (libytnef and python-oslo.middleware).

Security updates for Wednesday

Post Syndicated from ris original https://lwn.net/Articles/756020/rss

Security updates have been issued by Arch Linux (strongswan, wireshark-cli, wireshark-common, wireshark-gtk, and wireshark-qt), CentOS (libvirt, procps-ng, and thunderbird), Debian (apache2, git, and qemu), Gentoo (beep, git, and procps), Mageia (mariadb, microcode, python, virtualbox, and webkit2), openSUSE (ceph, pdns, and perl-DBD-mysql), Red Hat (kernel), SUSE (HA kernel modules, libmikmod, ntp, and tiff), and Ubuntu (nvidia-graphics-drivers-384).

[$] Stratis: Easy local storage management for Linux

Post Syndicated from jake original https://lwn.net/Articles/755454/rss

Stratis is a new local
storage-management solution for Linux. It can be compared to
ZFS, Btrfs, or LVM. Its focus is on simplicity of concepts and ease of use,
while giving users access to advanced storage features. Internally,
Stratis’s implementation favors tight integration of existing
components instead of the fully-integrated, in-kernel approach that ZFS and
Btrfs use. This has benefits and drawbacks for Stratis, but also greatly
decreases the overall time needed to develop a useful and stable initial
version, which can then be a base for further improvement in later
versions. Subscribers can read on for an introduction to Stratis, by guest
author (and Stratis team lead at Red Hat) Andy Grover.

openSUSE Leap 15 released

Post Syndicated from ris original https://lwn.net/Articles/755670/rss

OpenSUSE Leap 15 has been released.
With a brand new look developed by the community, openSUSE Leap 15
brings plenty of community packages built on top of a core from SUSE Linux
Enterprise (SLE) 15 sources, with the two major releases being built in
parallel from the beginning for the first time. Leap 15 shares a common
core with SLE 15, which is due for release in the coming months. The first
release of Leap was version 42.1, and it was based on the first Service
Pack (SP1) of SLE 12. Three years later SUSE’s enterprise version and
openSUSE’s community version are now aligned at 15 with a fresh
rebase.
” Leap 15 will receive maintenance and security updates for
at least 3 years.

Security updates for Friday

Post Syndicated from ris original https://lwn.net/Articles/755667/rss

Security updates have been issued by Arch Linux (bind, libofx, and thunderbird), Debian (thunderbird, xdg-utils, and xen), Fedora (procps-ng), Mageia (gnupg2, mbedtls, pdns, and pdns-recursor), openSUSE (bash, GraphicsMagick, icu, and kernel), Oracle (thunderbird), Red Hat (java-1.7.1-ibm, java-1.8.0-ibm, and thunderbird), Scientific Linux (thunderbird), and Ubuntu (curl).

Robin “Roblimo” Miller

Post Syndicated from corbet original https://lwn.net/Articles/755563/rss

The Linux Journal mourns
the passing of Robin Miller
, a longtime presence in our community.
Miller was perhaps best known by the community for his roll as
Editor in Chief of Open Source Technology Group, the company that owned
Slashdot, SourceForge.net, freshmeat, Linux.com, NewsForge, and ThinkGeek
from 2000 to 2008.

Replacing macOS Server with Synology NAS

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/replacing-macos-server-with-synology-nas/

Synology NAS boxes backed up to the cloud

Businesses and organizations that rely on macOS server for essential office and data services are facing some decisions about the future of their IT services.

Apple recently announced that it is deprecating a significant portion of essential network services in macOS Server, as they described in a support statement posted on April 24, 2018, “Prepare for changes to macOS Server.” Apple’s note includes:

macOS Server is changing to focus more on management of computers, devices, and storage on your network. As a result, some changes are coming in how Server works. A number of services will be deprecated, and will be hidden on new installations of an update to macOS Server coming in spring 2018.

The note lists the services that will be removed in a future release of macOS Server, including calendar and contact support, Dynamic Host Configuration Protocol (DHCP), Domain Name Services (DNS), mail, instant messages, virtual private networking (VPN), NetInstall, Web server, and the Wiki.

Apple assures users who have already configured any of the listed services that they will be able to use them in the spring 2018 macOS Server update, but the statement ends with links to a number of alternative services, including hosted services, that macOS Server users should consider as viable replacements to the features it is removing. These alternative services are all FOSS (Free and Open-Source Software).

As difficult as this could be for organizations that use macOS server, this is not unexpected. Apple left the server hardware space back in 2010, when Steve Jobs announced the company was ending its line of Xserve rackmount servers, which were introduced in May, 2002. Since then, macOS Server has hardly been a prominent part of Apple’s product lineup. It’s not just the product itself that has lost some luster, but the entire category of SMB office and business servers, which has been undergoing a gradual change in recent years.

Some might wonder how important the news about macOS Server is, given that macOS Server represents a pretty small share of the server market. macOS Server has been important to design shops, agencies, education users, and small businesses that likely have been on Macs for ages, but it’s not a significant part of the IT infrastructure of larger organizations and businesses.

What Comes After macOS Server?

Lovers of macOS Server don’t have to fear having their Mac minis pried from their cold, dead hands quite yet. Installed services will continue to be available. In the fall of 2018, new installations and upgrades of macOS Server will require users to migrate most services to other software. Since many of the services of macOS Server were already open-source, this means that a change in software might not be required. It does mean more configuration and management required from those who continue with macOS Server, however.

Users can continue with macOS Server if they wish, but many will see the writing on the wall and look for a suitable substitute.

The Times They Are A-Changin’

For many people working in organizations, what is significant about this announcement is how it reflects the move away from the once ubiquitous server-based IT infrastructure. Services that used to be centrally managed and office-based, such as storage, file sharing, communications, and computing, have moved to the cloud.

In selecting the next office IT platforms, there’s an opportunity to move to solutions that reflect and support how people are working and the applications they are using both in the office and remotely. For many, this means including cloud-based services in office automation, backup, and business continuity/disaster recovery planning. This includes Software as a Service, Platform as a Service, and Infrastructure as a Service (Saas, PaaS, IaaS) options.

IT solutions that integrate well with the cloud are worth strong consideration for what comes after a macOS Server-based environment.

Synology NAS as a macOS Server Alternative

One solution that is becoming popular is to replace macOS Server with a device that has the ability to provide important office services, but also bridges the office and cloud environments. Using Network-Attached Storage (NAS) to take up the server slack makes a lot of sense. Many customers are already using NAS for file sharing, local data backup, automatic cloud backup, and other uses. In the case of Synology, their operating system, Synology DiskStation Manager (DSM), is Linux based, and integrates the basic functions of file sharing, centralized backup, RAID storage, multimedia streaming, virtual storage, and other common functions.

Synology NAS box

Synology NAS

Since DSM is based on Linux, there are numerous server applications available, including many of the same ones that are available for macOS Server, which shares conceptual roots with Linux as it comes from BSD Unix.

Synology DiskStation Manager Package Center screenshot

Synology DiskStation Manager Package Center

According to Ed Lukacs, COO at 2FIFTEEN Systems Management in Salt Lake City, their customers have found the move from macOS Server to Synology NAS not only painless, but positive. DSM works seamlessly with macOS and has been faster for their customers, as well. Many of their customers are running Adobe Creative Suite and Google G Suite applications, so a workflow that combines local storage, remote access, and the cloud, is already well known to them. Remote users are supported by Synology’s QuickConnect or VPN.

Business continuity and backup are simplified by the flexible storage capacity of the NAS. Synology has built-in backup to Backblaze B2 Cloud Storage with Synology’s Cloud Sync, as well as a choice of a number of other B2-compatible applications, such as Cloudberry, Comet, and Arq.

Customers have been able to get up and running quickly, with only initial data transfers requiring some time to complete. After that, management of the NAS can be handled in-house or with the support of a Managed Service Provider (MSP).

Are You Sticking with macOS Server or Moving to Another Platform?

If you’re affected by this change in macOS Server, please let us know in the comments how you’re planning to cope. Are you using Synology NAS for server services? Please tell us how that’s working for you.

The post Replacing macOS Server with Synology NAS appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Security updates for Thursday

Post Syndicated from ris original https://lwn.net/Articles/755540/rss

Security updates have been issued by Debian (imagemagick), Fedora (curl, glibc, kernel, and thunderbird-enigmail), openSUSE (enigmail, knot, and python), Oracle (procps-ng), Red Hat (librelp, procps-ng, redhat-virtualization-host, rhev-hypervisor7, and unboundid-ldapsdk), Scientific Linux (procps-ng), SUSE (bash, ceph, icu, kvm, and qemu), and Ubuntu (procps and spice, spice-protocol).

[$] An update on bcachefs

Post Syndicated from jake original https://lwn.net/Articles/755276/rss

The bcachefs filesystem has been under
development for a number of years now; according to lead developer Kent
Overstreet, it is time to start talking about getting the code upstream.
He came to the 2018 Linux Storage, Filesystem, and Memory-Management Summit
(LSFMM) to discuss that in a combined filesystem and storage
session. Bcachefs grew out of bcache, which is a block layer
cache that was merged into Linux 3.10 in mid-2013.

Security updates for Wednesday

Post Syndicated from ris original https://lwn.net/Articles/755386/rss

Security updates have been issued by CentOS (java-1.7.0-openjdk, java-1.8.0-openjdk, kernel, libvirt, and qemu-kvm), Debian (procps), Fedora (curl, mariadb, and procps-ng), Gentoo (samba, shadow, and virtualbox), openSUSE (opencv, openjpeg2, pdns, qemu, and wget), Oracle (java-1.8.0-openjdk and kernel), Red Hat (java-1.7.0-openjdk, java-1.8.0-openjdk, kernel, kernel-rt, libvirt, qemu-kvm, qemu-kvm-rhev, redhat-virtualization-host, and vdsm), Scientific Linux (java-1.7.0-openjdk, java-1.8.0-openjdk, kernel, libvirt, and qemu-kvm), Slackware (kernel, mozilla, and procps), SUSE (ghostscript-library, kernel, mariadb, python, qemu, and wget), and Ubuntu (linux-raspi2 and linux-raspi2, linux-snapdragon).

[$] Case-insensitive filesystem lookups

Post Syndicated from jake original https://lwn.net/Articles/754508/rss

Case-insensitive file name lookups are a feature that is fairly frequently
raised at the Linux
Storage, Filesystem, and Memory-Management Summit (LSFMM). At the 2018
summit, Gabriel Bertazi proposed a new way to support
the feature, though it met with a rather skeptical reception—with one
notable exception. Ted Ts’o seemed favorably disposed to the idea, in part
because
it would potentially be a way to get rid of some longstanding Android ugliness:
wrapfs.

[$] SMB/CIFS compounding support

Post Syndicated from jake original https://lwn.net/Articles/754507/rss

In a filesystem-track session at the 2018 Linux Storage, Filesystem, and
Memory-Management Summit (LSFMM), Ronnie Sahlberg talked about some changes
he has made to add support for compounding to the SMB/CIFS
implementation in Linux. Compounding is a way to combine multiple
operations into a single request that can help reduce network round-trips.

Security updates for Tuesday

Post Syndicated from ris original https://lwn.net/Articles/755205/rss

Security updates have been issued by Debian (gitlab and packagekit), Fedora (glibc, postgresql, and webkitgtk4), Oracle (java-1.7.0-openjdk, java-1.8.0-openjdk, kernel, libvirt, and qemu-kvm), Red Hat (java-1.7.0-openjdk, kernel-rt, qemu-kvm, and qemu-kvm-rhev), SUSE (openjpeg2, qemu, and squid3), and Ubuntu (kernel, linux, linux-aws, linux-azure, linux-gcp, linux-kvm, linux-oem, linux, linux-aws, linux-kvm,, linux-hwe, linux-azure, linux-gcp, linux-oem, linux-lts-trusty, linux-lts-xenial, linux-aws, qemu, and xdg-utils).

[$] Network filesystem topics

Post Syndicated from jake original https://lwn.net/Articles/754506/rss

At the 2018 Linux Storage, Filesystem, and
Memory-Management Summit (LSFMM), Steve French led a discussion of various
problem areas for network filesystems. Unlike previous sessions (in 2016 and 2017), there was some good news to report
because the long-awaited statx()
system call
was released in Linux 4.11. But there
is still plenty of work to be done to better support network filesystems in
Linux.

Security updates for Monday

Post Syndicated from ris original https://lwn.net/Articles/755076/rss

Security updates have been issued by Arch Linux (lib32-curl, lib32-libcurl-compat, lib32-libcurl-gnutls, libcurl-compat, and libcurl-gnutls), CentOS (firefox), Debian (imagemagick), Fedora (exiv2, LibRaw, and love), Gentoo (chromium), Mageia (kernel, librelp, and miniupnpc), openSUSE (curl, enigmail, ghostscript, libvorbis, lilypond, and thunderbird), Red Hat (Red Hat OpenStack Platform director), and Ubuntu (firefox).

All Systems Go! 2018 CfP Open

Post Syndicated from Lennart Poettering original http://0pointer.net/blog/all-systems-go-2018-cfp-open.html

The All Systems Go! 2018 Call for Participation is Now Open!

The Call for Participation (CFP) for All Systems Go!
2018
is now open. We’d like to invite you
to submit your proposals for consideration to the CFP submission
site
.

ASG image

The CFP will close on July 30th. Notification of acceptance and
non-acceptance will go out within 7 days of the closing of the CFP.

All topics relevant to foundational open-source Linux technologies are
welcome. In particular, however, we are looking for proposals
including, but not limited to, the following topics:

  • Low-level container executors and infrastructure
  • IoT and embedded OS infrastructure
  • BPF and eBPF filtering
  • OS, container, IoT image delivery and updating
  • Building Linux devices and applications
  • Low-level desktop technologies
  • Networking
  • System and service management
  • Tracing and performance measuring
  • IPC and RPC systems
  • Security and Sandboxing

While our focus is definitely more on the user-space side of things,
talks about kernel projects are welcome, as long as they have a clear
and direct relevance for user-space.

For more information please visit our conference
website
!