All posts by Michael Hamilton

Automate alerting and reporting for AWS Glue job resource usage

Post Syndicated from Michael Hamilton original

Data transformation plays a pivotal role in providing the necessary data insights for businesses in any organization, small and large. To gain these insights, customers often perform ETL (extract, transform, and load) jobs from their source systems and output an enriched dataset. Many organizations today are using AWS Glue to build ETL pipelines that bring data from disparate sources and store the data in repositories like a data lake, database, or data warehouse for further consumption. These organizations are looking for ways they can reduce cost across their IT environments and still be operationally performant and efficient.

Picture a scenario where you, the VP of Data and Analytics, are in charge of your data and analytics environments and workloads running on AWS where you manage a team of data engineers and analysts. This team is allowed to create AWS Glue for Spark jobs in development, test, and production environments. During testing, one of the jobs wasn’t configured to automatically scale its compute resources, resulting in jobs timing out, costing the organization more than anticipated. The next steps usually include completing an analysis of the jobs, looking at cost reports to see which account generated the spike in usage, going through logs to see when what happened with the job, and so on. After the ETL job has been corrected, you may want to implement monitoring and set standard alert thresholds for your AWS Glue environment.

This post will help organizations proactively monitor and cost optimize their AWS Glue environments by providing an easier path for teams to measure efficiency of their ETL jobs and align configuration details according to organizational requirements. Included is a solution you will be able to deploy that will notify your team via email about any Glue job that has been configured incorrectly. Additionally, a weekly report is generated and sent via email that aggregates resource usage and provides cost estimates per job.

AWS Glue cost considerations

AWS Glue for Apache Spark jobs are provisioned with a number of workers and a worker type. These jobs can be either G.1X, G.2X, G.4X, G.8X or Z.2X (Ray) worker types that map to data processing units (DPUs). DPUs include a certain amount of CPU, memory, and disk space. The following table contains more details.

Worker Type DPUs vCPUs Memory (GB) Disk (GB)
G.1X 1 4 16 64
G.2X 2 8 32 128
G.4X 4 16 64 256
G.8X 8 32 128 512
Z.2X 2 8 32 128

For example, if a job is provisioned with 10 workers as G.1X worker type, the job will have access to 40 vCPU and 160 GB of RAM to process data and double using G.2X. Over-provisioning workers can lead to increased cost, due to not all workers being utilized efficiently.

In April 2022, Auto Scaling for AWS Glue was released for AWS Glue version 3.0 and later, which includes AWS Glue for Apache Spark and streaming jobs. Enabling auto scaling on your Glue for Apache Spark jobs will allow you to only allocate workers as needed, up to the worker maximum you specify. We recommend enabling auto scaling for your AWS Glue 3.0 & 4.0 jobs because this feature will help reduce cost and optimize your ETL jobs.

Amazon CloudWatch metrics are also a great way to monitor your AWS Glue environment by creating alarms for certain metrics like average CPU or memory usage. To learn more about how to use CloudWatch metrics with AWS Glue, refer to Monitoring AWS Glue using Amazon CloudWatch metrics.

The following solution provides a simple way to set AWS Glue worker and job duration thresholds, configure monitoring, and receive emails for notifications on how your AWS Glue environment is performing. If a Glue job finishes and detects worker or job duration thresholds were exceeded, it will notify you after the job run has completed, failed, or timed out.

Solution overview

The following diagram illustrates the solution architecture.

Solution Architecture

When you deploy this application via AWS Serverless Application Model (AWS SAM), it will ask what AWS Glue worker and job duration thresholds you would like to set to monitor the AWS Glue for Apache Spark and AWS Glue for Ray jobs running in that account. The solution will use these values as the decision criteria when invoked. The following is a breakdown of each step in the architecture:

  1. Any AWS Glue for Apache Spark job that succeeds, fails, stops, or times out is sent to Amazon EventBridge.
  2. EventBridge picks up the event from AWS Glue and triggers an AWS Lambda function.
  3. The Lambda function processes the event and determines if the data and analytics team should be notified about the particular job run. The function performs the following tasks:
    1. The function sends an email using Amazon Simple Notification Service (Amazon SNS) if needed.
      • If the AWS Glue job succeeded or was stopped without going over the worker or job duration thresholds, or is tagged to not be monitored, no alerts or notifications are sent.
      • If the job succeeded but ran with a worker or job duration thresholds higher than allowed, or the job either failed or timed out, Amazon SNS sends a notification to the designated email with information about the AWS Glue job, run ID, and reason for alerting, along with a link to the specific run ID on the AWS Glue console.
    2. The function logs the job run information to Amazon DynamoDB for a weekly aggregated report delivered to email. The Dynamo table has Time to Live enabled for 7 days, which keeps the storage to minimum.
  4. Once a week, the data within DynamoDB is aggregated by a separate Lambda function with meaningful information like longest-running jobs, number of retries, failures, timeouts, cost analysis, and more.
  5. Amazon Simple Email Service (Amazon SES) is used to deliver the report because it can be better formatted than using Amazon SNS. The email is formatted via HTML output that provides tables for the aggregated job run data.
  6. The data and analytics team is notified about the ongoing job runs through Amazon SNS, and they receive the weekly aggregation report through Amazon SES.

Note that AWS Glue Python shell and streaming ETL jobs are not supported because they’re not in scope of this solution.


You must have the following prerequisites:

  • An AWS account to deploy the solution to
  • Proper AWS Identity and Access Management (IAM) privileges to create the resources
  • The AWS SAM CLI to build and deploy the solution button below, to run template on your AWS environment

Deploy the solution

This AWS SAM application provisions the following resources:

  • Two EventBridge rules
  • Two Lambda functions
  • An SNS topic and subscription
  • A DynamoDB table
  • An SES subscription
  • The required IAM roles and policies

To deploy the AWS SAM application, complete the following steps:

Clone the aws-samples GitHub repository:

git clone

Deploy the AWS SAM application:

cd aws-glue-job-tracker
sam deploy --guided

sam deploy configuration

Provide the following parameters:

  • GlueJobWorkerThreshold – Enter the maximum number of workers you want an AWS Glue job to be able to run with before sending threshold alert. The default is 10. An alert will be sent if a Glue job runs with higher workers than specified.
  • GlueJobDurationThreshold – Enter the maximum duration in minutes you want an AWS Glue job to run before sending threshold alert. The default is 480 minutes (8 hours). An alert will be sent if a Glue job runs with higher job duration than specified.
  • GlueJobNotifications – Enter an email or distribution list of those who need to be notified through Amazon SNS and Amazon SES. You can go to the SNS topic after the deployment is complete and add emails as needed.

To receive emails from Amazon SNS and Amazon SES, you must confirm your subscriptions. After the stack is deployed, check your email that was specified in the template and confirm by choosing the link in each message. When the application is successfully provisioned, it will begin monitoring your AWS Glue for Apache Spark job environment. The next time a job fails, times out, or exceeds a specified threshold, you will receive an email via Amazon SNS. For example, the following screenshot shows an SNS message about a job that succeeded but had a job duration threshold violation.

You might have jobs that need to run at a higher worker or job duration threshold, and you don’t want the solution to evaluate them. You can simply tag that job with the key/value of remediate and false. The step function will still be invoked, but will use the PASS state when it recognizes the tag. For more information on job tagging, refer to AWS tags in AWS Glue.

Adding tags to glue job configuration

Configure weekly reporting

As mentioned previously, when an AWS Glue for Apache Spark job succeeds, fails, times out, or is stopped, EventBridge forwards this event to Lambda, where it logs specific information about each job run. Once a week, a separate Lambda function queries DynamoDB and aggregates your job runs to provide meaningful insights and recommendations about your AWS Glue for Apache Spark environment. This report is sent via email with a tabular structure as shown in the following screenshot. It’s meant for top-level visibility so you’re able to see your longest job runs over time, jobs that have had many retries, failures, and more. It also provides an overall cost calculation as an estimate of what each AWS Glue job will cost for that week. It should not be used as a guaranteed cost. If you would like to see exact cost per job, the AWS Cost and Usage Report is the best resource to use. The following screenshot shows one table (of five total) from the AWS Glue report function.

weekly report

Clean up

If you don’t want to run the solution anymore, delete the AWS SAM application for each account that it was provisioned in. To delete your AWS SAM stack, run the following command from your project directory:

sam delete


In this post, we discussed how you can monitor and cost-optimize your AWS Glue job configurations to comply with organizational standards and policy. This method can provide cost controls over AWS Glue jobs across your organization. Some other ways to help control the costs of your AWS Glue for Apache Spark jobs include the newly released AWS Glue Flex jobs and Auto Scaling. We also provided an AWS SAM application as a solution to deploy into your accounts. We encourage you to review the resources provided in this post to continue learning about AWS Glue. To learn more about monitoring and optimizing for cost using AWS Glue, please visit this recent blog. It goes in depth on all of the cost optimization options and includes a template that builds a CloudWatch dashboard for you with metrics about all of your Glue job runs.

About the authors

Michael Hamilton is a Sr Analytics Solutions Architect focusing on helping enterprise customers in the south east modernize and simplify their analytics workloads on AWS. He enjoys mountain biking and spending time with his wife and three children when not working.

Angus Ferguson is a Solutions Architect at AWS who is passionate about meeting customers across the world, helping them solve their technical challenges. Angus specializes in Data & Analytics with a focus on customers in the financial services industry.

Field Notes: How to Build an AWS Glue Workflow using the AWS Cloud Development Kit

Post Syndicated from Michael Hamilton original

Many customers use AWS Glue workflows to build and orchestrate their ETL (extract-transform-load) pipelines directly in the AWS Glue console using the visual tool to author workflows. This can be time consuming, harder to version control, and error prone due to manual configurations, when compared to managing your workflows as code. To improve your operational excellence, consider deploying the entire AWS Glue ETL pipeline using the AWS Cloud Development Kit (AWS CDK).

In this blog post, you will learn how to build an AWS Glue workflow using Amazon Simple Storage Service (Amazon S3), various components of AWS Glue, AWS Secrets Manager, Amazon Redshift, and the AWS CDK.

Architecture overview

In this architecture, you will use the AWS CDK to deploy your data sources, ETL scripts, AWS Glue workflow components, and an Amazon Redshift cluster for analyzing the transformed data.

AWS Glue workflow architecture

Figure 1. AWS Glue workflow architecture

It is common for customers to pre-aggregate data before sending it downstream to analytical engines, like Amazon Redshift, because table joins and aggregations are computationally expensive. The AWS Glue workflow will join COVID-19 case data, and COVID-19 hiring data together on their date columns in order to run correlation analysis on the final dataset. The datasets may seem arbitrary, but we wanted to offer a way to better understand the impacts COVID-19 had on jobs in the United States. The takeaway here is to use this as a blueprint for automating the deployment of data analytic pipelines for the data of interest to your business.

After the AWS CDK application is deployed, it will begin creating all of the resources required to build the complete workflow. When it completes, the components in the architecture will be created, and the AWS Glue workflow will be ready to start. In this blog post, you start workflows manually, but they can be configured to start on a scheduled time or from a workflow trigger.

The workflow is programmed to dynamically pull the raw data from the Registry of Open Data on AWS where you can find the Covid-19 case data and the Hiring Data respectively.


This blog post uses an AWS CDK stack written in TypeScript and AWS Glue jobs written in Python. Follow the instructions in the AWS CDK Getting Started guide to set up your environment, before you proceed to deployment.

In addition to setting up your environment, you need to clone the Git repository, which contains the AWS CDK scripts and Python ETL scripts used by AWS Glue. The ETL scripts will be deployed to Amazon S3 by the AWS CDK stack as assets, and referenced by the AWS Glue jobs as part of the AWS Glue Workflow.

You should have the following prerequisites:


After you have cloned the repository, navigate to the glue-cdk-blog/lib folder and open the blog-glue-workflow-stack.ts file. This is the AWS CDK script used to deploy all necessary resources to build your AWS Glue workflow. The blog-redshift-vpc-stack.ts contains the necessary resources to deploy the Amazon Redshift cluster, connections, and permissions. The glue-cdk-blog/lib/assets folder also contains the AWS Glue job scripts. These files are uploaded to Amazon S3 by the AWS CDK when you bootstrap.

You won’t review the individual lines of code in the script in this blog post, but if you are unfamiliar with any of the AWS CDK level 1 or level 2 constructs used in the sample, you can review what each construct does with the AWS CDK documentation. Familiarize yourself with the script you cloned and anticipate what resources will be deployed. Then, deploy both stacks and verify your initial findings.

After your environment is configured, and the packages and modules installed, deploy the AWS CDK stack and assets in two commands.

  1. Bootstrap the AWS CDK stack to create an S3 bucket in the predefined account that will contain the assets.

cdk bootstrap

  1. Deploy the AWS CDK stacks.

cdk deploy --all

Verify that both of these commands have completed successfully, and remediate any failures returned. Upon successful completion, you’re ready to start the AWS Glue workflow that was just created. You can find the AWS CDK commands reference in the AWS CDK Toolkit commands documentation, and help with Troubleshooting common AWS CDK issues you may encounter.


Prior to initiating the AWS Glue workflow, explore the resources the AWS CDK stacks just deployed to your account.

  1. Log in to the AWS Management Console and the AWS CDK account.
  2. Navigate to Amazon S3 in the AWS console (you should see an S3 bucket with the name prefix of cdktoolkit-stagingbucket-xxxxxxxxxxxx).
  3. Review the objects stored in the bucket in the assets folder. These are the .py files used by your AWS Glue jobs. They were uploaded to the bucket when you issued the AWS CDK bootstrap command, and referenced within the AWS CDK script as the scripts to use for the AWS Glue jobs. When retrieving data from multiple sources, you cannot always control the naming convention of the sourced files. To solve this and create better standardization, you will use a job within the AWS Glue workflow to copy these scripts to another folder and rename them with a more meaningful name.
  4. Navigate to Amazon Redshift in the AWS console and verify your new cluster. You can use the Amazon Redshift Query Editor within the console to connect to the cluster and see that you have an empty database called db-covid-hiring. The Amazon Redshift cluster and networking resources were created by the redshift_vpc_stack which are listed here:
    • VPC, subnet and security group for Amazon Redshift
    • Secrets Manager secret
    • AWS Glue connection and S3 endpoint
    • Amazon Redshift cluster
  1. Navigate to AWS Glue in the AWS console and review the following new resources created by the workflow_stack CDK stack:
    • Two crawlers to crawl the data in S3
    • Three AWS Glue jobs used within the AWS Glue workflow
    • Five triggers to initiate AWS Glue jobs and crawlers
    • One AWS Glue workflow to manage the ETL orchestration
  1. All of these resources could have been deployed within a single stack, but this is intended to be a simple example on how to share resources across multiple stacks. The AWS Identity and Access Management (IAM) role that AWS Glue uses to run the ETL jobs in the workflow_stack, is also used by Secrets Manager for Amazon Redshift in the redshift_vpc_stack. Inspect the /bin/blog-glue-workflow-stack.ts file to further understand cross stack resource sharing.

By performing these steps, you have deployed all of the AWS Glue resources necessary to perform common ETL tasks. You then combined the resources to create an orchestration of tasks using an AWS Glue workflow. All of this was done using IaC with AWS CDK. Your workflow should look like Figure 2.

AWS Glue console showing the workflow created by the CDK

Figure 2. AWS Glue console showing the workflow created by the CDK

As mentioned earlier, you could have started your workflow using a scheduled cron trigger, but you initiated the workflow manually so you had time to review the resources the workflow_stack CDK deployed, prior to initiation of the workflow. Now that you have reviewed the resources, validate your workflow by initiating it and verifying it runs successfully.

  1. From within the AWS Glue console, select Workflows under ETL.
  2. Select the workflow named glue-workflow, and then select Run from the actions listbox.
  3. You can verify the status of the workflow by viewing the run details under the History tab.
  4. Your job will take approximately 15 minutes to successfully complete, and your history should look like Figure 3.
AWS Glue console showing the workflow as completed after the run

Figure 3. AWS Glue console showing the workflow as completed after the run

The workflow performs the following tasks:

  1. Prepares the ETL scripts by copying the files in the S3 asset bucket to a new folder and renames them with a more relevant name.
  2. Initiates a crawler to crawl the raw source data as csv files and adds tables to the Glue Data Catalog.
  3. Runs a Python script to perform some ETL tasks on the .csv files and converts them to parquet files.
  4. Crawls the parquet files and adds them to the Glue Data Catalog.
  5. Loads the parquet files into a DynamicFrame and runs an Amazon Redshift COPY command to load the data into the Amazon Redshift database.

After the workflow completes, you can query and perform analytics on the data that was populated in Amazon Redshift. Open the Amazon Redshift Query Editor and run a simple SELECT statement to query the covid_hiring_table which is the joined Covid-19 case data and hiring data (see Figure 4).

Amazon Redshift query editor showing the data that the workflow loaded into the Redshift tables

Figure 4. Amazon Redshift query editor showing the data that the workflow loaded into the Redshift tables

Cleaning up

Some resources, like S3 buckets and Amazon DynamoDB tables, must be manually emptied and deleted through the console to be fully removed. To clean up the deployment, delete all objects in the AWS CDK asset bucket in Amazon S3 by using the AWS console to empty the bucket, and then run cdk destroy –all to delete the resources the AWS CDK stacks created in your account. Finally, if you don’t plan on using AWS CloudFormation assets in this account in the future, you will need to delete the AWS CDK asset stack within the CloudFormation console to remove the AWS CDK asset bucket.


In this blog post, you learned how to automate the deployment of AWS Glue workflows using the AWS CDK. This further enhances your continuous integration and delivery (CI/CD) data pipelines by automating the deployment of the ETL jobs and AWS Glue workflow orchestration, providing an efficient, fast, and repeatable way to build and deploy AWS Glue workflows at scale.

Although AWS CDK primarily supports level 1 constructs for most AWS Glue resources, new constructs are added continually. See the AWS CDK API Reference for updates, prior to authoring your stacks, for AWS Glue level 2 construct support. You can find the code used in this blog post in this GitHub repository, and the AWS CDK in TypeScript reference to the AWS CDK namespace.

We hope this blog post helps enrich your work through the skills gained of automating the creation of Glue Workflows, enabling you to quickly build and deploy your own ETL pipelines and run analytical models that power your business.

Field Notes provides hands-on technical guidance from AWS Solutions Architects, consultants, and technical account managers, based on their experiences in the field solving real-world business problems for customers.

Automating AWS service logs table creation and querying them with Amazon Athena

Post Syndicated from Michael Hamilton original

I was working with a customer who was just getting started using AWS, and they wanted to understand how to query their AWS service logs that were being delivered to Amazon Simple Storage Service (Amazon S3). I introduced them to Amazon Athena, a serverless, interactive query service that allows you to easily analyze data in Amazon S3 and other sources. Together, we used Athena to query service logs, and were able to create tables for AWS CloudTrail logs, Amazon S3 access logs, and VPC flow logs. As I was walking the customer through the documentation and creating tables and partitions for each service log in Athena, I thought there had to be an easier and faster way to allow customers to query their logs in Amazon S3, which is the focus of this post.

This post demonstrates how to use AWS CloudFormation to automatically create AWS service log tables, partitions, and example queries in Athena. We also use the SQL query editor in Athena to query the AWS service log tables that AWS CloudFormation created.

Athena best practices

This solution is appropriate for ad hoc use and queries the raw log files. These raw files can range from compressed JSON to uncompressed text formats, depending on how they were configured to be sent to Amazon S3. If you need to query over hundreds of GBs or TBs of data per day in Amazon S3, performing ETL on your raw files and transforming them to a columnar file format like Apache Parquet can lead to increased performance and cost savings. You can save on your Amazon S3 storage costs by using snappy compression for Parquet files stored in Amazon S3. To learn more about Athena best practices, see Top 10 Performance Tuning Tips for Amazon Athena.

Table partition strategies

There are a few important considerations when deciding how to define your table partitions. Mainly you should ask: what types of queries will I be writing against my data in Amazon S3? Do I only need to query data for that day and for a single account, or do I need to query across months of data and multiple accounts? In this post, we talk about how to query across a single, partitioned account.

By partitioning data, you can restrict the amount of data scanned per query, thereby improving performance and reducing cost. When creating a table schema in Athena, you set the location of where the files reside in Amazon S3, and you can also define how the table is partitioned. The location is a bucket path that leads to the desired files. If you query a partitioned table and specify the partition in the WHERE clause, Athena scans the data only for that partition. For more information, see Table Location in Amazon S3 and Partitioning Data. You can then define partitions in Athena that map to the data residing in Amazon S3.

Let’s look at an example to see how defining a location and partitioning our table can improve performance and reduce costs. In the following tree diagram, we’ve outlined what the bucket path may look like as logs are delivered to your S3 bucket, starting from the bucket name and going all the way down to the day.

In the following tree diagram, we’ve outlined what the bucket path may look like as logs are delivered to your S3 bucket

Outlined in red is where we set the location for our table schema, and Athena then scans everything after the CloudTrail folder. We then outlined our partitions in blue. This is where we can specify the granularity of our queries. In this case, we partition our table down to the day, which is very granular because we can tell Athena exactly where to look for our data. This is also the most performant and cost-effective option because it results in scanning only the required data and nothing else.

If you have to query multiple accounts and Regions, you should back off the location to AWSLogs and then create a non-partitioned CloudTrail table. This allows you to write queries across all your accounts and Regions, but the trade-off is that your queries take much longer and are more expensive due to Athena having to scan all the data that comes after AWSLogs every query. However, querying multiple accounts is beyond the scope of this post.


Before you get started, you should have the following prerequisites:

  • Service logs already being delivered to Amazon S3
  • An AWS account with access to your service logs

Deploying the automated solution in your AWS account

The following steps walk you through deploying a CloudFormation template that creates saved queries for you to run (Create Table, Create Partition, and example queries for each service log).

  1. Choose Launch Stack:

  1. Choose Next.
  2. For Stack name, enter a name for your stack.

You don’t need to have every AWS service log that the template asks for. If you don’t have CloudFront logs for example, you can leave the PathParameter as is. If you need CloudFront logs in the future, you can simply update the Create Table statement with the correct Amazon S3 location in Athena.

  1. For each service log table you want to create, follow the steps below:
  • Replace <_BUCKET_NAME> with the name of your S3 bucket that holds each AWS service log. You can use the same bucket name if it’s used to hold more than one type of service log.
  • Replace <Prefix> with your own folder prefix in Amazon S3. If you don’t have a prefix, make sure to remove it from the path parameters.
  • Replace <ACCOUNT-ID> and <REGION> with desired account and region.

Choose Next.

  1. Choose Next.
  2. Enter any tags you wish to assign to the stack.
  3. Choose Next.
  4. Verify parameters are correct and choose Create stack at the bottom.

Verify the stack has been created successfully. The stack takes about 1 minute to create the resources.

Querying your tables

You’re now ready to start querying your service logs.

  1. On the Athena console, on the Saved queries tab, search for the service log you want to interact with.

On the Athena console, on the Saved queries tab, search for the service log you want to interact with.

  1. Choose Create Table – CloudTrail Logs to run the SQL statement in the Athena query editor.

Make sure the location for Amazon S3 is correct in your SQL statement and verify you have the correct database selected.

  1. Choose Run query or press Tab+Enter to run the query.

Choose Run query or press Tab+Enter to run the query.

The table cloudtrail_logs is created in the selected database. You can repeat this process to create other service log tables.

For partitioned tables like cloudtrail_logs, you must add partitions to your table before querying.

  1. On the Saved queries tab, choose Create Partition – CloudTrail.
  2. Update the Region, year, month, and day you want to partition. Choose Run query or press Tab+Enter to run the query.

Choose Run query or press Tab+Enter to run the query.

After you run the query, you have successfully added a partition to your cloudtrail_logs table. Let’s look at some of the example queries we can run now.

  1. On the Saved queries tab, choose Query – CloudTrail Logs.

This is a base template included to begin querying your CloudTrail logs.

  1. Highlight the query and choose Run query.

You can see the base query template uses the WHERE clause to leverage partitions that have been loaded.

You can see the base query template uses the WHERE clause to leverage partitions that have been loaded.

Let’s say we have a spike in API calls from AWS Lambda and we want to see the users that the calls were coming from in a specific time range as well as the count for each user. Our query looks like the following code:

SELECT useridentity.sessioncontext.sessionissuer.username as "User",
       count(eventname) as "Lambda API Calls"
FROM cloudtrail_logs
WHERE eventsource = ''
       AND eventtime BETWEEN '2020-11-24T18:00:00Z' AND '2020-11-24T21:00:00Z' 
group by useridentity.sessioncontext.sessionissuer.username
order by count(eventname) desc

Or if we wanted to check our S3 Access Logs to make sure only authorized users are accessing certain prefixes:

FROM s3_access_logs
WHERE key='prefix/images/example.jpg'
        AND requester != 'arn:aws:iam::accountid:user/username'

Cost of solution and cleaning up

Deploying the CloudFormation template doesn’t cost anything. You’re only charged for the amount of data scanned by Athena. Remember to use the best practices we discussed earlier when querying your data in Amazon S3. For more pricing information, see Amazon Athena pricing and Amazon S3 pricing.

To clean up the resources that were created, delete the CloudFormation stack you created earlier. This also deletes the saved queries in Athena.


In this post, we discussed how we can use AWS CloudFormation to easily create AWS service log tables, partitions, and starter queries in Athena by entering bucket paths as parameters. We used CloudTrail and Amazon S3 access logs as examples, but you can replicate these steps for other service logs that you may need to query by visiting the Saved queries tab in Athena. Feel free to check out the video as well, where I go over how we store logs in Amazon S3 and then give a quick demo on how to deploy the solution.

For more information about service logs, see Easily query AWS service logs using Amazon Athena.

About the Author

Michael Hamilton is a Solutions Architect at Amazon Web Services and is based out of Charlotte, NC. He has a focus in analytics and enjoys helping customers solve their unique use cases. When he’s not working, he loves going hiking with his wife, kids, and a 2-year-old German shepherd.