Tag Archives: AWS Cloud Development Kit

Creating serverless applications with the AWS Cloud Development Kit

Post Syndicated from Eric Johnson original https://aws.amazon.com/blogs/compute/creating-serverless-applications-with-the-aws-cloud-development-kit/

This post is contributed by Daniele Stroppa, Sr. Solutions Architect

In October 2019, AWS released an improvement to the getting started experience in the AWS Lambda console. This enables you to create applications that follow common best practices, using infrastructure as code (IaC). It also provides a continuous integration and continuous deployment (CI/CD) pipeline for deployment.

Today, we are releasing a new set of ready-to-use examples that use the AWS Cloud Development Kit (AWS CDK) to model application resources. The AWS CDK is an open-source software development framework for defining your cloud infrastructure in code and provisioning it through AWS CloudFormation.

The AWS CDK allows developers to define their infrastructure in familiar programming languages. These include TypeScript, JavaScript, Python, C# and Java. The AWS CDK allows you to take advantage of familiar features that those languages provide, such as objects, loops, and conditions. It provides high-level constructs that preconfigure cloud resources with defaults to help developers build cloud applications.

In this post, I walk through creating a serverless application with the AWS CDK.

Create an application

An AWS Lambda application is a combination of Lambda functions, event sources, and other resources that work together to perform tasks. Create a new application in the AWS Lambda console:

  1. On the left menu, choose Applications.
  2. Choose Create application and then choose Serverless API backend from the list of examples.Lambda application creation screen showing list of examples
  3. Review the setup and configuration of the application and then choose Next.
  4. Configure application settings:
    • Application name – serverless-api-cdk.
    • Application description – A simple serverless API application.
    • Runtime – Node.js 10.x.
    • Template format – AWS CDK (TypeScript).
    • Repository provider – CodeCommit. (Note: If you choose GitHub, you must connect to your GitHub account for authorization).
    • Repository name – serverless-api-cdk.
    • Permissions – Check Create roles and permissions boundary.
  5. Choose Create.Lambda application creation screen showing the selected configuration options

This creates a new serverless application from the Lambda console. The console creates the pipeline and related resources. It also commits the sample application code to the Git repository. Resources appear in the overview page as they are created. Next, I explore the CDK models used to create the application resources.

Clone the application repository

When you create the application, the Lambda console creates a Git repository that contains the sample application. Clone the project repository in your local development environment:

  1. Find your application in the Lambda console.
  2. Choose the Code tab.Lambda Application Console highlighting the Code tab
  3. Copy the HTTP or SSH repository URI, depending on the authentication mode that you configured during setup.Lambda Application Code Tab showing repository URL
  4. Clone the repository on your local machine.
    $ git clone ssh://git-codecommit.us-east-1.amazonaws.com/v1/repos/serverless-api-cdk

NOTE: your repository URL might differ from the one above if you are running in a different Region.

The repository contains the CDK models for the application, a build specification, and the application code.

Install the AWS CDK in your local environment

If you haven’t already, install the AWS CDK in your local environment using the following command:

$ npm install -g [email protected]

Run the following command to verify the version number of the CDK:

$ cdk --version

You should see the following output:

$ 1.42.0 (build 3b64241)

Explore the CDK application

A CDK application is composed of building blocks called constructs. These are cloud components that can represent architectures of any complexity. For example, a single resource, such as an Amazon S3 bucket or an Amazon SNS topic, a static website, or even a complex, multi-stack application that spans multiple AWS accounts and Regions.

To enable reusability, constructs can include other constructs. You compose constructs together into stacks that you can deploy into an AWS environment, and apps, a collection of one of more stacks. Learn more about AWS CDK concepts in the AWS documentation.

The sample application defines a CDK app in the serverless-api-cdk/cdk/bin/cdk.ts file:

Sample app definition

The CDK app is composed of a single CDK stack, defined in the cdk/lib/cdk-stack.ts:

CDK stack definition

The CDK stack first declares an Amazon DynamoDB table used by the API, specifying the partition key and the provisioned read and write capacity units:

DynamoDB declaration

Then, it declares a set of common configuration options for the application’s Lambda functions. These includes an environment variable referencing the DynamoDB table and the S3 location for the function’s code artifact.

S3 declaration

Each Lambda function is declared individually, specifying the function code and configuration. There is a reference to the DynamoDB table resource, passed as an environment variable:

Lambda declaration

The last line in the code is the short form to declare what IAM permissions the function requires. When the CDK app is synthesized, the CDK CLI generates the required IAM role and policy, following the principle of least privilege.

Lastly, the CDK stack declares the APIs:

API Gateway declaration

View the synthesized CloudFormation template

A CloudFormation template is created based on the code. Before you can generate the CloudFormation template, you must install the required npm packages. Execute the following command from the serverless-api-cdk/cdk/ directory:

$ cd serverless-api-cdk/cdk/
$ npm install

The Lambda function’s configuration uses two environment variables that are defined during the build process, S3_BUCKET and CODEBUILD_BUILD_ID. To synthesize the CloudFormation template, you must define these two variables locally:

$ export S3_BUCKET="my_artifact_bucket"
$ export CODEBUILD_BUILD_ID="1234567"

NOTE: actual values of the variables do not matter until you provision resources. The correct values are injected during the build and deploy phase.

From the serverless-api-cdk/cdk/ folder, run the cdk synth command. A CloudFormation template that is generated based on the sample application code is displayed in the console and also available in the serverless-api-cdk/cdk/cdk.out directory.

Sample CloudFormation output


In this post, I show how to create a serverless application with the AWS Cloud Development Kit (AWS CDK). I also show how to create a pipeline to automatically deploy your changes. We also explore some of the CDK constructs you can use to model our cloud resources.

To learn more, see the CDK examples available in the Lambda console.

Building well-architected serverless applications: Approaching application lifecycle management – part 1

Post Syndicated from Julian Wood original https://aws.amazon.com/blogs/compute/building-well-architected-serverless-applications-approaching-application-lifecycle-management-part-1/

This series of blog posts uses the AWS Well-Architected Tool with the Serverless Lens to help customers build and operate applications using best practices. In each post, I address the nine serverless-specific questions identified by the Serverless Lens along with the recommended best practices. See the Introduction post for a table of contents and explanation of the example application.

Question OPS2: How do you approach application lifecycle management?

Adopt lifecycle management approaches that improve the flow of changes to production with higher fidelity, fast feedback on quality, and quick bug fixing. These practices help you rapidly identify, remediate, and limit changes that impact customer experience. By having an approach to application lifecycle management, you can reduce errors caused by manual process and increase the levels of control to gain confidence your workload operates as intended.

Required practice: Use infrastructure as code and stages isolated in separate environments

Infrastructure as code is a process of provisioning and managing cloud resources by storing application configuration in a template file. Using infrastructure as code helps to deploy applications in a repeatable manner, reducing errors caused by manual processes such as creating resources in the AWS Management Console.

Storing code in a version control system enables tracking and auditing of changes and releases over time. This is used to roll back changes safely to a known working state if there is an issue with an application deployment.

Infrastructure as code

For AWS Cloud development the built-in choice for infrastructure as code is AWS CloudFormation. The template file, written in JSON or YAML, contains a description of the resources an application needs. CloudFormation automates the deployment and ongoing updates of the resources by creating CloudFormation stacks.

CloudFormation code example creating infrastructure

CloudFormation code example creating infrastructure

There are a number of higher-level tools and frameworks that abstract and then generate CloudFormation. A serverless specific framework helps model the infrastructure necessary for serverless workloads, providing either declarative or imperative mechanisms to define event sources for functions. It wires permissions between resources automatically, adds resource configuration, code packaging, and any infrastructure necessary for a serverless application to run.

The AWS Serverless Application Model (AWS SAM) is an AWS open-source framework optimized for serverless applications. The AWS Cloud Development Kit allows you to provision cloud resources using familiar programming languages such as TypeScript, JavaScript, Python, Java, and C#/.Net. There are also third-party solutions for creating serverless cloud resources such as the Serverless Framework.

The AWS Amplify Console provides a git-based workflow for building, deploying, and hosting serverless applications including both the frontend and backend. The AWS Amplify CLI toolchain enables you to add backend resources using CloudFormation.

For a large number of resources, consider breaking common functionality such as monitoring, alarms, or dashboards into separate infrastructure as code templates. With CloudFormation, use nested stacks to help deploy them as part of your serverless application stack. When using AWS SAM, import these nested stacks as nested applications from the AWS Serverless Application Repository.

AWS CloudFormation nested stacks

AWS CloudFormation nested stacks

Here is an example AWS SAM template using nested stacks. There are two AWS::Serverless::Application nested resources, api.template.yaml and database.template.yaml. For more information on nested stacks, see the AWS Partner Network blog post: CloudFormation Nested Stacks Primer.

Version control

The serverless airline example application used in this series uses Amplify Console to provide part of the backend resources, including authentication using Amazon Cognito, and a GraphQL API using AWS AppSync.

The airline application code is stored in GitHub as a version control system. Fork, or copy, the application to your GitHub account. Configure Amplify Console to connect to the GitHub fork.

When pushing code changes to a fork, Amplify Console automatically deploys these backend resources along with the rest of the application. It hosts the application at the Production branch URL, and you can also configure a custom domain name if needed.

AWS Amplify Console App details

AWS Amplify Console App details

The Amplify Console configuration to create the API and Authentication backend resources is found in the backend-config.json file. The resources are provisioned during the Amplify Console build phase.

To view the deployed resources, within the Amplify Console, navigate to the awsserverlessairline application. Select Backend environments and then select an environment, in this example sampledev.

Select the API and Authentication tabs to view the created backend resources.

AWS Amplify Console deployed backend resources

AWS Amplify Console deployed backend resources

Using multiple tools

Applications can use multiple tools and frameworks even within a single project to manage the infrastructure as code. Within the airline application, AWS SAM is also used to provision the rest of the serverless infrastructure using nested stacks. During the Amplify Console build process, the Makefile contains the AWS SAM build instructions for each application service.

For example, the AWS SAM build instructions to deploy the booking service are as follows:

deploy.booking: ##=> Deploy booking service using SAM
	$(info [*] Packaging and deploying Booking service...)
	cd src/backend/booking && \
		sam build && \
		sam package \
			--s3-bucket $${DEPLOYMENT_BUCKET_NAME} \
			--output-template-file packaged.yaml && \
		sam deploy \
			--template-file packaged.yaml \
			--stack-name $${STACK_NAME}-booking-$${AWS_BRANCH} \
			--capabilities CAPABILITY_IAM \
			--parameter-overrides \
	BookingTable=/$${AWS_BRANCH}/service/amplify/storage/table/booking \
	FlightTable=/$${AWS_BRANCH}/service/amplify/storage/table/flight \
	CollectPaymentFunction=/$${AWS_BRANCH}/service/payment/function/collect \
	RefundPaymentFunction=/$${AWS_BRANCH}/service/payment/function/refund \
	AppsyncApiId=/$${AWS_BRANCH}/service/amplify/api/id \

Each service has its own AWS SAM template.yml file. The files contain the resources for each of the booking, catalog, log-processing, loyalty, and payment services. This means that the services can be managed independently within the application as separate stacks. In larger applications, these services may be managed by separate teams, or be in separate repositories, environments or AWS accounts. It may make sense to split out some common functionality such as alarms, or dashboards into separate infrastructure as code templates.

AWS SAM can also use IAM roles to assume temporary credentials and deploy a serverless application to separate AWS accounts.

For more information on managing serverless code, see Best practices for organizing larger serverless applications.

View the deployed resources in the AWS CloudFormation Console. Select Stacks from the left-side navigation bar, and select the View nested toggle.

Viewing CloudFormation nested stacks

Viewing CloudFormation nested stacks

The serverless airline application is a more complex example application comprising multiple services composed of multiple CloudFormation stacks. Some stacks are managed via Amplify Console and others via AWS SAM. Using infrastructure as code is not only for large and complex applications. As a best practice, we suggest using SAM or another framework for even simple, small serverless applications with a single stack. For a getting started tutorial, see the example Deploying a Hello World Application.

Improvement plan summary:

  1. Use a serverless framework to help you execute functions locally, build and package application code. Separate packaging from deployment, deploy to isolated stages in separate environments, and support secrets via configuration management systems.
  2. For a large number of resources, consider breaking common functionalities such as alarms into separate infrastructure as code templates.


Introducing application lifecycle management improves the development, deployment, and management of serverless applications. In this post I cover using infrastructure as code with version control to deploy applications in a repeatable manner. This reduces errors caused by manual processes and gives you more confidence your application works as expected.

This well-architected question will continue in an upcoming post where I look further at deploying to multiple stages using temporary environments, and rollout deployments.

Deploying a serverless application using AWS CDK

Post Syndicated from Georges Leschener original https://aws.amazon.com/blogs/devops/deploying-a-serverless-application-using-aws-cdk/

There are multiple ways to deploy API endpoints, such as this example, in which you could use an application running on Amazon EC2 to demonstrate how to integrate Amazon ElastiCache with Amazon DocumentDB (with MongoDB capability). While the approach in this example help achieve great performance and reliability through the elasticity and the ability to scale up or down the number of EC2 instances in order to accommodate the load on the application, there is still however some operational overhead you still have to manage the EC2 instances yourself. One way of addressing the operational overhead issue and related costs could be to transform the application into a serverless architecture.

The example in this blog post uses an application that provides a similar use case, leveraging a serverless architecture showcasing some of the tools that are being leveraged by customers transitioning from lift-and-shift to building cloud-native applications. It uses Amazon API Gateway to provide the REST API endpoint connected to an AWS Lambda function to provide the business logic to read and write from an Amazon Aurora Serverless database. It also showcases the deployment of most of the infrastructure with the AWS Cloud Development Kit, known as the CDK. By moving your applications to cloud native architecture like the example showcased in this blog post, you will be able to realize a number of benefits including:

  • Fast and clean deployment of your application thereby achieving fast time to market
  • Reduce operational costs by serverless and managed services

Architecture Diagram

At the end of this blog, you have an AWS Cloud9 instance environment containing a CDK project which deploys an API Gateway and Lambda function. This Lambda function leverages a secret stored in your AWS Secrets Manager to read and write from your Aurora Serverless database through the data API, as shown in the following diagram.


Architecture diagram for deploying a serverless application using AWS CDK

This above architecture diagram showcases the resources to be deployed in your AWS Account

Through the blog post you will be creating the following resources:

  1. Deploy an Amazon Aurora Serverless database cluster
  2. Secure the cluster credentials in AWS Secrets Manager
  3. Create and populate your database in the AWS Console
  4. Deploy an AWS Cloud9 instance used as a development environment
  5. Initialize and configure an AWS Cloud Development Kit project including the definition of your Amazon API Gateway endpoint and AWS Lambda function
  6. Deploy an AWS CloudFormation template through the AWS Cloud Development Kit


In order to deploy the CDK application, there are a few prerequisites that need to be met:

  1. Create an AWS account or use an existing account.
  2. Install Postman for testing purposes

Amazon Aurora serverless cluster creation

To begin, navigate to the AWS console to create a new Amazon RDS database.

  1. Select Create Database from the Amazon RDS service.
  2. Select Standard Create under Choose a database creation method.
  3. Select Serverless under Database features.
  4. Select Amazon Aurora as the engine type under Engine options.
  5. Enter db-blog for your DB Cluster Identifier.
  6. Expand the Additional Connectivity section and select the Data API option. This functionality enables you to access Aurora Serverless with web services-based applications. It also allows you to use the query editor feature for Aurora Serverless in order to run SQL queries against your database instance.
  7. Leave the default selection for everything else and choose Create Database.

Your database instance is created in a single availability zone (AZ), but an Aurora Serverless database cluster has a capability known as automatic multi-AZ failover, which enables Aurora to recreate the database instance in a different AZ should the current database instance or the AZ become unavailable. The storage volume for the cluster is spread across multiple AZs, since Aurora separates computation capacity and storage. This allows for data to remain available even if the database instance or the associated AZ is affected by an outage.

Securing database credentials with AWS Secrets Manager

After creating the database instance, the next step is to store your secrets for your database in AWS Secrets Manager.

  • Navigate to AWS Secrets Manager, and select Store a New Secret.
  • Leave the default selection (Credentials for RDS database) for the secret type. Enter your database username and password and then select the radio button for the database you created in the previous step (in this example, db-blog), as shown in the following screenshot.

database search in aws secrets manager

  •  Choose Next.
  • Enter a name and optionally a description. For the name, make sure to add the prefix rds-db-credentials/ as shown in the following screenshot.

AWS Secrets Manager Store a new secret window

  • Choose Next and leave the default selection.
  • Review your settings on the last page and choose Store to have your secrets created and stored in AWS Secrets Manager, which you can now use to connect to your database.

Creating and populating your Amazon Aurora Serverless database

After creating the DB cluster, create the database instance; create your tables and populate them; and finally, test a connection to ensure that you can query your database.

  • Navigate to the Amazon RDS service from the AWS console, and select your db-blog database cluster.
  • Select Query under Actions to open the Connect to database window as shown in the screenshot below . Enter your database connection details. You can copy your secret manager ARN from the Secrets Manager service and paste it into the corresponding field in the database connection window.

Amazon RDS connect to database window

  • To create the DB instance run the following SQL query: CREATE DATABASE recordstore;from the Query editor shown in the screenshot below:


Amazon RDS Query editor

  • Before you can run the following commands, make sure you are using the Recordstore database you just created by running the command:
USE recordstore;
  • Create a records table using the following command:
CREATE TABLE IF NOT EXISTS records (recordid INT PRIMARY KEY, title VARCHAR(255) NOT NULL, release_date DATE);
  • Create a singers table using the following command:
  • Add a record to your records table and a singer to your singers table.
INSERT INTO records(recordid,title,release_date) VALUES(001,'Liberian Girl','2012-05-03');
INSERT INTO singers(id,name,nationality,recordid) VALUES(100,'Michael Jackson','American',001);

If you have the AWS CLI set up on your computer, you can connect to your database and retrieve records.

To test it, use the rds-data execute-statement API within the AWS CLI to connect to your database via the data API web service and query the singers table, as shown below:

aws rds-data execute-statement —secret-arn "arn:aws:secretsmanager:REGION:xxxxxxxxxxx:secret:rds-db-credentials/xxxxxxxxxxxxxxx" —resource-arn "arn:aws:rds:us-east-1:xxxxxxxxxx:cluster:db-blog" —database demodb —sql "select * from singers" —output json

You should see the following result:

    "numberOfRecordsUpdated": 0,
    "records": [
                "longValue": 100
                "stringValue": "Michael Jackson"
                "stringValue": "American"
                "longValue": 1

Creating a Cloud9 instance

To create a Cloud9 instance:

  1. Navigate to the Cloud9 console and select Create Environment.
  2. Name your environment AuroraServerlessBlog.
  3. Keep the default values under the Environment Settings.

Once your instance is launched, you see the screen shown in the following screenshot:

AWS Cloud9


You can now install the CDK in your environment. Run the following command inside your bash terminal on the blue section at the bottom of your screen:

npm install -g [email protected]

For the next section of this example, you mostly work on the command line of your Cloud9 terminal and on your file explorer.

Creating the CDK deployment

The AWS Cloud Development Kit (AWS CDK) is an open-source software development framework to model and provision your cloud application resources using familiar programming languages. If you would like to familiarize yourself the CDKWorkshop is a great place to start.

First, create a working directory called RecordsApp and initialize a CDK project from a template.

Run the following commands:

mkdir RecordsApp
cd RecordsApp
cdk init app --language typescript
mkdir resources
npm install @aws-cdk/[email protected] @aws-cdk/[email protected] @aws-cdk/[email protected]

Now your instance should look like the example shown in the following screenshot:

AWS Cloud9 shell


You are mainly working in two directories:

  • Resources
  • Lib

Your initial set up is ready, and you can move into creating specific services and deploying them to your account.

Creating AWS resources using the CDK

  1. Follow these steps to create AWS resources using the CDK:
  2. Under the /lib folder,  create a new file called records_service.ts.
    • Inside of your new file, paste the following code with these changes:
    • Replace the dbARN with the ARN of your AuroraServerless DB ARN from the previous steps.

Replace the dbSecretARN with the ARN of your Secrets Manager secret ARN from the previous steps.

import core = require("@aws-cdk/core");
import apigateway = require("@aws-cdk/aws-apigateway");
import lambda = require("@aws-cdk/aws-lambda");
import iam = require("@aws-cdk/aws-iam");

const dbARN = "arn:aws:rds:XXXX:XXXX:cluster:aurora-serverless-blog";
const dbSecretARN = "arn:aws:secretsmanager:XXXXX:XXXXX:secret:rds-db-credentials/XXXXX";

export class RecordsService extends core.Construct {
  constructor(scope: core.Construct, id: string) {
    super(scope, id);

    const lambdaRole = new iam.Role(this, 'AuroraServerlessBlogLambdaRole', {
      assumedBy: new iam.ServicePrincipal('lambda.amazonaws.com'),
      managedPolicies: [

    const handler = new lambda.Function(this, "RecordsHandler", {
     role: lambdaRole,
     runtime: lambda.Runtime.NODEJS_12_X, // So we can use async in widget.js
     code: lambda.Code.asset("resources"),
     handler: "records.main",
     environment: {
       TABLE: dbARN,
       TABLESECRET: dbSecretARN,
       DATABASE: "recordstore"

    const api = new apigateway.RestApi(this, "records-api", {
      restApiName: "Records Service",
      description: "This service serves records."

    const getRecordsIntegration = new apigateway.LambdaIntegration(handler, {
      requestTemplates: { "application/json": '{ "statusCode": 200 }' }

    api.root.addMethod("GET", getRecordsIntegration); // GET /

    const record = api.root.addResource("{id}");
    const postRecordIntegration = new apigateway.LambdaIntegration(handler);
    const getRecordIntegration = new apigateway.LambdaIntegration(handler);

    record.addMethod("POST", postRecordIntegration); // POST /{id}
    record.addMethod("GET", getRecordIntegration); // GET/{id}

This snippet of code will instruct the AWS CDK to create the following resources:

  • IAM role: AuroraServerlessBlogLambdaRole containing the following managed policies:
    • AmazonRDSDataFullAccess
    • service-role/AWSLambdaBasicExecutionRole
  • Lambda function: RecordsHandler, which has a Node.js 8.10 runtime and three environmental variables
  • API Gateway: Records Service, which has the following characteristics:
    • GET Method
      • GET /
    • { id } Resource
      • GET method
        • GET /{id}
      • POST method
        • POST /{id}

Now that you have a service, you need to add it to your stack under the /lib directory.

  1. Open the records_app-stack.ts
  2. Replace the contents of this file with the following:
import cdk = require('@aws-cdk/core'); 
import records_service = require('../lib/records_service'); 
export class RecordsAppStack extends cdk.Stack { 
  constructor(scope: cdk.Construct, id: string, props?
: cdk.StackProps) { 
    super(scope, id, props); 
    new records_service.RecordsService(this, 'Records'
  1. Create the Lambda code that is invoked from the API Gateway endpoint. Under the /resources directory, create a file called records.js and paste the following code in this file
const AWS = require('aws-sdk');
var rdsdataservice = new AWS.RDSDataService();

exports.main = async function(event, context) {
  try {
    var method = event.httpMethod;
    var recordName = event.path.startsWith('/') ? event.path.substring(1) : event.path;
// Defining parameters for rdsdataservice
    var params = {
      resourceArn: process.env.TABLE,
      secretArn: process.env.TABLESECRET,
      database: process.env.DATABASE,
   if (method === "GET") {
      if (event.path === "/") {
       //Here is where we are defining the SQL query that will be run at the DATA API
       params['sql'] = 'select * from records';
       const data = await rdsdataservice.executeStatement(params).promise();
       var body = {
           records: data
       return {
         statusCode: 200,
         headers: {},
         body: JSON.stringify(body)
     else if (recordName) {
       params['sql'] = `SELECT singers.id, singers.name, singers.nationality, records.title FROM singers INNER JOIN records on records.recordid = singers.recordid WHERE records.title LIKE '${recordName}%';`
       const data = await rdsdataservice.executeStatement(params).promise();
       var body = {
           singer: data
       return {
         statusCode: 200,
         headers: {},
         body: JSON.stringify(body)
   else if (method === "POST") {
     var payload = JSON.parse(event.body);
     if (!payload) {
       return {
         statusCode: 400,
         headers: {},
         body: "The body is missing"

     //Generating random IDs
     var recordId = uuidv4();
     var singerId = uuidv4();

     //Parsing the payload from body
     var recordTitle = `${payload.recordTitle}`;
     var recordReleaseDate = `${payload.recordReleaseDate}`;
     var singerName = `${payload.singerName}`;
     var singerNationality = `${payload.singerNationality}`;

      //Making 2 calls to the data API to insert the new record and singer
      params['sql'] = `INSERT INTO records(recordid,title,release_date) VALUES(${recordId},"${recordTitle}","${recordReleaseDate}");`;
      const recordsWrite = await rdsdataservice.executeStatement(params).promise();
      params['sql'] = `INSERT INTO singers(recordid,id,name,nationality) VALUES(${recordId},${singerId},"${singerName}","${singerNationality}");`;
      const singersWrite = await rdsdataservice.executeStatement(params).promise();

      return {
        statusCode: 200,
        headers: {},
        body: JSON.stringify("Your record has been saved")

    // We got something besides a GET, POST, or DELETE
    return {
      statusCode: 400,
      headers: {},
      body: "We only accept GET, POST, and DELETE, not " + method
  } catch(error) {
    var body = error.stack || JSON.stringify(error, null, 2);
    return {
      statusCode: 400,
      headers: {},
      body: body
function uuidv4() {
  return 'xxxx'.replace(/[xy]/g, function(c) {
    var r = Math.random() * 16 | 0, v = c == 'x' ? r : (r & 0x3 | 0x8);
    return v;

Take a look at what this Lambda function is doing. You have two functions inside of your Lambda function. The first is the exported handler, which is defined as an asynchronous function. The second is a unique identifier function to generate four-digit random numbers you use as UIDs for your database records. In your handler function, you handle the following actions based on the event you get from API Gateway:

  • Method GETwith empty path /:
    • This calls the data API executeStatement method with the following SQL query:
SELECT * from records
  • Method GET with a record name in the path /{recordName}:
    • This calls the data API executeStatmentmethod with the following SQL query:
SELECT singers.id, singers.name, singers.nationality, records.title FROM singers INNER JOIN records on records.recordid = singers.recordid WHERE records.title LIKE '${recordName}%';
  • Method POST with a payload in the body:
    • This makes two calls to the data API executeStatement with the following SQL queries:
INSERT INTO records(recordid,titel,release_date) VALUES(${recordId},"${recordTitle}",“${recordReleaseDate}”);<br />INSERT INTO singers(recordid,id,name,nationality) VALUES(${recordId},${singerId},"${singerName}","${singerNationality}");

Now you have all the pieces you need to deploy your endpoint and Lambda function by running the following commands:

npm run build
cdk synth
cdk bootstrap
cdk deploy

If you change the Lambda code or add aditional AWS resources to your CDK deployment, you can redeploy the application by running all four commands in a single line:

npm run build; cdk synth; cdk bootstrap; cdk deploy

Testing with Postman

Once it’s done, you can test it using Postman:

GET = ‘RecordName’ in the path

  • example:
    • ENDPOINT/RecordName

POST = Payload in the body

  • example:
   "recordTitle" : "BlogTest",
   "recordReleaseDate" : "2020-01-01",
   "singerName" : "BlogSinger",
   "singerNationality" : "AWS"

Clean up

To clean up the resources created by the CDK, run the following command in your Cloud9 instance:

cdk destroy

To clean up the resources created manually, run the following commands:

aws rds delete-db-cluster --db-cluster-identifier Serverless-blog --skip-final-snapshot
aws secretsmanager delete-secret --secret-id XXXXX --recovery-window-in-days 7


This blog post demonstrated how to transform an application running on Amazon EC2 from a previous blog into serverless architecture by leveraging services such as Amazon API Gateway, Lambda, Cloud 9, AWS CDK, and Aurora Serverless. The benefit of serverless architecture is that it takes away the overhead of having to manage a server and helps reduce costs, as you only pay for the time in which your code executes.

This example used a record-store application written in Node.js that allows users to find their favorite singer’s record titles, as well as the dates when they were released. This example could be expanded, for instance, by adding a payment gateway and a shopping cart to allow users to shop and pay for their favorite records. You could then incorporate some machine learning into the application to predict user choice based on previous visits, purchases, or information provided through registration profiles.



About the Authors

Luis Lopez Soria is an AI/ML specialist solutions architect working with the AWS machine learning team. He works with AWS customers to help them with the adoption of Machine Learning on a large scale. He enjoys doing sports in addition to traveling around the world, exploring new foods and cultures.




 Georges Leschener is a Partner Solutions Architect in the Global System Integrator (GSI) team at Amazon Web Services. He works with our GSIs partners to help migrate customers’ workloads to AWS cloud, design and architect innovative solutions on AWS by applying AWS recommended best practices.


DevOps at re:Invent 2019!

Post Syndicated from Matt Dwyer original https://aws.amazon.com/blogs/devops/devops-at-reinvent-2019/

re:Invent 2019 is fast approaching (NEXT WEEK!) and we here at the AWS DevOps blog wanted to take a moment to highlight DevOps focused presentations, share some tips from experienced re:Invent pro’s, and highlight a few sessions that still have availability for pre-registration. We’ve broken down the track into one overarching leadership session and four topic areas: (a) architecture, (b) culture, (c) software delivery/operations, and (d) AWS tools, services, and CLI.

In total there will be 145 DevOps track sessions, stretched over 5 days, and divided into four distinct session types:

  • Sessions (34) are one-hour presentations delivered by AWS experts and customer speakers who share their expertise / use cases
  • Workshops (20) are two-hours and fifteen minutes, hands-on sessions where you work in teams to solve problems using AWS services
  • Chalk Talks (41) are interactive white-boarding sessions with a smaller audience. They typically begin with a 10–15-minute presentation delivered by an AWS expert, followed by 45–50-minutes of Q&A
  • Builders Sessions (50) are one-hour, small group sessions with six customers and one AWS expert, who is there to help, answer questions, and provide guidance
  • Select DevOps focused sessions have been highlighted below. If you want to view and/or register for any session, including Keynotes, builders’ fairs, and demo theater sessions, you can access the event catalog using your re:Invent registration credentials.

Reserve your seat for AWS re:Invent activities today >>

re:Invent TIP #1: Identify topics you are interested in before attending re:Invent and reserve a seat. We hold space in sessions, workshops, and chalk talks for walk-ups, however, if you want to get into a popular session be prepared to wait in line!

Please see below for select sessions, workshops, and chalk talks that will be conducted during re:Invent.


[Session] Leadership Session: Developer Tools on AWS (DOP210-L) — SPACE AVAILABLE! REGISTER TODAY!

Speaker 1: Ken Exner – Director, AWS Dev Tools, Amazon Web Services
Speaker 2: Kyle Thomson – SDE3, Amazon Web Services

Join Ken Exner, GM of AWS Developer Tools, as he shares the state of developer tooling on AWS, as well as the future of development on AWS. Ken uses insight from his position managing Amazon’s internal tooling to discuss Amazon’s practices and patterns for releasing software to the cloud. Additionally, Ken provides insight and updates across many areas of developer tooling, including infrastructure as code, authoring and debugging, automation and release, and observability. Throughout this session Ken will recap recent launches and show demos for some of the latest features.

re:Invent TIP #2: Leadership Sessions are a topic area’s State of the Union, where AWS leadership will share the vision and direction for a given topic at AWS.re:Invent.


[Session] Amazon’s approach to failing successfully (DOP208-RDOP208-R1) — SPACE AVAILABLE! REGISTER TODAY!

Speaker: Becky Weiss – Senior Principal Engineer, Amazon Web Services

Welcome to the real world, where things don’t always go your way. Systems can fail despite being designed to be highly available, scalable, and resilient. These failures, if used correctly, can be a powerful lever for gaining a deep understanding of how a system actually works, as well as a tool for learning how to avoid future failures. In this session, we cover Amazon’s favorite techniques for defining and reviewing metrics—watching the systems before they fail—as well as how to do an effective postmortem that drives both learning and meaningful improvement.

[Session] Improving resiliency with chaos engineering (DOP309-RDOP309-R1) — SPACE AVAILABLE! REGISTER TODAY!

Speaker 1: Olga Hall – Senior Manager, Tech Program Management
Speaker 2: Adrian Hornsby – Principal Evangelist, Amazon Web Services

Failures are inevitable. Regardless of the engineering efforts put into building resilient systems and handling edge cases, sometimes a case beyond our reach turns a benign failure into a catastrophic one. Therefore, we should test and continuously improve our system’s resilience to failures to minimize impact on a user’s experience. Chaos engineering is one of the best ways to achieve that. In this session, you learn how Amazon Prime Video has implemented chaos engineering into its regular testing methods, helping it achieve increased resiliency.

[Session] Amazon’s approach to security during development (DOP310-RDOP310-R1) — SPACE AVAILABLE! REGISTER TODAY!

Speaker: Colm MacCarthaigh – Senior Principal Engineer, Amazon Web Services

At AWS we say that security comes first—and we really mean it. In this session, hear about how AWS teams both minimize security risks in our products and respond to security issues proactively. We talk through how we integrate security reviews, penetration testing, code analysis, and formal verification into the development process. Additionally, we discuss how AWS engineering teams react quickly and decisively to new security risks as they emerge. We also share real-life firefighting examples and the lessons learned in the process.

[Session] Amazon’s approach to building resilient services (DOP342-RDOP342-R1) — SPACE AVAILABLE! REGISTER TODAY!

Speaker: Marc Brooker – Senior Principal Engineer, Amazon Web Services

One of the biggest challenges of building services and systems is predicting the future. Changing load, business requirements, and customer behavior can all change in unexpected ways. In this talk, we look at how AWS builds, monitors, and operates services that handle the unexpected. Learn how to make your own services handle a changing world, from basic design principles to patterns you can apply today.

re:Invent TIP #3: Not sure where to spend your time? Let an AWS Hero give you some pointers. AWS Heroes are prominent AWS advocates who are passionate about sharing AWS knowledge with others. They have written guides to help attendees find relevant activities by providing recommendations based on specific demographics or areas of interest.


[Session] Driving change and building a high-performance DevOps culture (DOP207-R; DOP207-R1)

Speaker: Mark Schwartz – Enterprise Strategist, Amazon Web Services

When it comes to digital transformation, every enterprise is different. There is often a person or group with a vision, knowledge of good practices, a sense of urgency, and the energy to break through impediments. They may be anywhere in the organizational structure: high, low, or—in a typical scenario—somewhere in middle management. Mark Schwartz, an enterprise strategist at AWS and the author of “The Art of Business Value” and “A Seat at the Table: IT Leadership in the Age of Agility,” shares some of his research into building a high-performance culture by driving change from every level of the organization.

[Session] Amazon’s approach to running service-oriented organizations (DOP301-R; DOP301-R1DOP301-R2)

Speaker: Andy Troutman – Director AWS Developer Tools, Amazon Web Services

Amazon’s “two-pizza teams” are famously small teams that support a single service or feature. Each of these teams has the autonomy to build and operate their service in a way that best supports their customers. But how do you coordinate across tens, hundreds, or even thousands of two-pizza teams? In this session, we explain how Amazon coordinates technology development at scale by focusing on strategies that help teams coordinate while maintaining autonomy to drive innovation.

re:Invent TIP #4: The max number of 60-minute sessions you can attend during re:Invent is 24! These sessions (e.g., sessions, chalk talks, builders sessions) will usually make up the bulk of your agenda.


[Session] Strategies for securing code in the cloud and on premises. Speakers: (DOP320-RDOP320-R1) — SPACE AVAILABLE! REGISTER TODAY!

Speaker 1: Craig Smith – Senior Solutions Architect
Speaker 2: Lee Packham – Solutions Architect

Some people prefer to keep their code and tooling on premises, though this can create headaches and slow teams down. Others prefer keeping code off of laptops that can be misplaced. In this session, we walk through the alternatives and recommend best practices for securing your code in cloud and on-premises environments. We demonstrate how to use services such as Amazon WorkSpaces to keep code secure in the cloud. We also show how to connect tools such as Amazon Elastic Container Registry (Amazon ECR) and AWS CodeBuild with your on-premises environments so that your teams can go fast while keeping your data off of the public internet.

[Session] Deploy your code, scale your application, and lower Cloud costs using AWS Elastic Beanstalk (DOP326) — SPACE AVAILABLE! REGISTER TODAY!

Speaker: Prashant Prahlad – Sr. Manager

You can effortlessly convert your code into web applications without having to worry about provisioning and managing AWS infrastructure, applying patches and updates to your platform or using a variety of tools to monitor health of your application. In this session, we show how anyone- not just professional developers – can use AWS Elastic Beanstalk in various scenarios: From an administrator moving a Windows .NET workload into the Cloud, a developer building a containerized enterprise app as a Docker image, to a data scientist being able to deploy a machine learning model, all without the need to understand or manage the infrastructure details.

[Session] Amazon’s approach to high-availability deployment (DOP404-RDOP404-R1) — SPACE AVAILABLE! REGISTER TODAY!

Speaker: Peter Ramensky – Senior Manager

Continuous-delivery failures can lead to reduced service availability and bad customer experiences. To maximize the rate of successful deployments, Amazon’s development teams implement guardrails in the end-to-end release process to minimize deployment errors, with a goal of achieving zero deployment failures. In this session, learn the continuous-delivery practices that we invented that help raise the bar and prevent costly deployment failures.

[Session] Introduction to DevOps on AWS (DOP209-R; DOP209-R1)

Speaker 1: Jonathan Weiss – Senior Manager
Speaker 2: Sebastien Stormacq – Senior Technical Evangelist

How can you accelerate the delivery of new, high-quality services? Are you able to experiment and get feedback quickly from your customers? How do you scale your development team from 1 to 1,000? To answer these questions, it is essential to leverage some key DevOps principles and use CI/CD pipelines so you can iterate on and quickly release features. In this talk, we walk you through the journey of a single developer building a successful product and scaling their team and processes to hundreds or thousands of deployments per day. We also walk you through best practices and using AWS tools to achieve your DevOps goals.

[Workshop] DevOps essentials: Introductory workshop on CI/CD practices (DOP201-R; DOP201-R1; DOP201-R2; DOP201-R3)

Speaker 1: Leo Zhadanovsky – Principal Solutions Architect
Speaker 2: Karthik Thirugnanasambandam – Partner Solutions Architect

In this session, learn how to effectively leverage various AWS services to improve developer productivity and reduce the overall time to market for new product capabilities. We demonstrate a prescriptive approach to incrementally adopt and embrace some of the best practices around continuous integration and delivery using AWS developer tools and third-party solutions, including, AWS CodeCommit, AWS CodeBuild, Jenkins, AWS CodePipeline, AWS CodeDeploy, AWS X-Ray and AWS Cloud9. We also highlight some best practices and productivity tips that can help make your software release process fast, automated, and reliable.

[Workshop] Implementing GitFLow with AWS tools (DOP202-R; DOP202-R1; DOP202-R2)

Speaker 1: Amit Jha – Sr. Solutions Architect
Speaker 2: Ashish Gore – Sr. Technical Account Manager

Utilizing short-lived feature branches is the development method of choice for many teams. In this workshop, you learn how to use AWS tools to automate merge-and-release tasks. We cover high-level frameworks for how to implement GitFlow using AWS CodePipeline, AWS CodeCommit, AWS CodeBuild, and AWS CodeDeploy. You also get an opportunity to walk through a prebuilt example and examine how the framework can be adopted for individual use cases.

[Chalk Talk] Generating dynamic deployment pipelines with AWS CDK (DOP311-R; DOP311-R1; DOP311-R2)

Speaker 1: Flynn Bundy – AppDev Consultant
Speaker 2: Koen van Blijderveen – Senior Security Consultant

In this session we dive deep into dynamically generating deployment pipelines that deploy across multiple AWS accounts and Regions. Using the power of the AWS Cloud Development Kit (AWS CDK), we demonstrate how to simplify and abstract the creation of deployment pipelines to suit a range of scenarios. We highlight how AWS CodePipeline—along with AWS CodeBuild, AWS CodeCommit, and AWS CodeDeploy—can be structured together with the AWS deployment framework to get the most out of your infrastructure and application deployments.

[Chalk Talk] Customize AWS CloudFormation with open-source tools (DOP312-R; DOP312-R1; DOP312-E)

Speaker 1: Luis Colon – Senior Developer Advocate
Speaker 2: Ryan Lohan – Senior Software Engineer

In this session, we showcase some of the best open-source tools available for AWS CloudFormation customers, including conversion and validation utilities. Get a glimpse of the many open-source projects that you can use as you create and maintain your AWS CloudFormation stacks.

[Chalk Talk] Optimizing Java applications for scale on AWS (DOP314-R; DOP314-R1; DOP314-R2)

Speaker 1: Sam Fink – SDE II
Speaker 2: Kyle Thomson – SDE3

Executing at scale in the cloud can require more than the conventional best practices. During this talk, we offer a number of different Java-related tools you can add to your AWS tool belt to help you more efficiently develop Java applications on AWS—as well as strategies for optimizing those applications. We adapt the talk on the fly to cover the topics that interest the group most, including more easily accessing Amazon DynamoDB, handling high-throughput uploads to and downloads from Amazon Simple Storage Service (Amazon S3), troubleshooting Amazon ECS services, working with local AWS Lambda invocations, optimizing the Java SDK, and more.

[Chalk Talk] Securing your CI/CD tools and environments (DOP316-R; DOP316-R1; DOP316-R2)

Speaker: Leo Zhadanovsky – Principal Solutions Architect

In this session, we discuss how to configure security for AWS CodePipeline, deployments in AWS CodeDeploy, builds in AWS CodeBuild, and git access with AWS CodeCommit. We discuss AWS Identity and Access Management (IAM) best practices, to allow you to set up least-privilege access to these services. We also demonstrate how to ensure that your pipelines meet your security and compliance standards with the CodePipeline AWS Config integration, as well as manual approvals. Lastly, we show you best-practice patterns for integrating security testing of your deployment artifacts inside of your CI/CD pipelines.

[Chalk Talk] Amazon’s approach to automated testing (DOP317-R; DOP317-R1; DOP317-R2)

Speaker 1: Carlos Arguelles – Principal Engineer
Speaker 2: Charlie Roberts – Senior SDET

Join us for a session about how Amazon uses testing strategies to build a culture of quality. Learn Amazon’s best practices around load testing, unit testing, integration testing, and UI testing. We also discuss what parts of testing are automated and how we take advantage of tools, and share how we strategize to fail early to ensure minimum impact to end users.

[Chalk Talk] Building and deploying applications on AWS with Python (DOP319-R; DOP319-R1; DOP319-R2)

Speaker 1: James Saryerwinnie – Senior Software Engineer
Speaker 2: Kyle Knapp – Software Development Engineer

In this session, hear from core developers of the AWS SDK for Python (Boto3) as we walk through the design of sample Python applications. We cover best practices in using Boto3 and look at other libraries to help build these applications, including AWS Chalice, a serverless microframework for Python. Additionally, we discuss testing and deployment strategies to manage the lifecycle of your applications.

[Chalk Talk] Deploying AWS CloudFormation StackSets across accounts and Regions (DOP325-R; DOP325-R1)

Speaker 1: Mahesh Gundelly – Software Development Manager
Speaker 2: Prabhu Nakkeeran – Software Development Manager

AWS CloudFormation StackSets can be a critical tool to efficiently manage deployments of resources across multiple accounts and regions. In this session, we cover how AWS CloudFormation StackSets can help you ensure that all of your accounts have the proper resources in place to meet security, governance, and regulation requirements. We also cover how to make the most of the latest functionalities and discuss best practices, including how to plan for safe deployments with minimal blast radius for critical changes.

[Chalk Talk] Monitoring and observability of serverless apps using AWS X-Ray (DOP327-R; DOP327-R1; DOP327-R2)

Speaker 1 (R, R1, R2): Shengxin Li – Software Development Engineer
Speaker 2 (R, R1): Sirirat Kongdee – Solutions Architect
Speaker 3 (R2): Eric Scholz – Solutions Architect, Amazon

Monitoring and observability are essential parts of DevOps best practices. You need monitoring to debug and trace unhandled errors, performance bottlenecks, and customer impact in the distributed nature of a microservices architecture. In this chalk talk, we show you how to integrate the AWS X-Ray SDK to your code to provide observability to your overall application and drill down to each service component. We discuss how X-Ray can be used to analyze, identify, and alert on performance issues and errors and how it can help you troubleshoot application issues faster.

[Chalk Talk] Optimizing deployment strategies for speed & safety (DOP341-R; DOP341-R1; DOP341-R2)

Speaker: Karan Mahant – Software Development Manager, Amazon

Modern application development moves fast and demands continuous delivery. However, the greatest risk to an application’s availability can occur during deployments. Join us in this chalk talk to learn about deployment strategies for web servers and for Amazon EC2, container-based, and serverless architectures. Learn how you can optimize your deployments to increase productivity during development cycles and mitigate common risks when deploying to production by using canary and blue/green deployment strategies. Further, we share our learnings from operating production services at AWS.

[Chalk Talk] Continuous integration using AWS tools (DOP216-R; DOP216-R1; DOP216-R2)

Speaker: Richard Boyd – Sr Developer Advocate, Amazon Web Services

Today, more teams are adopting continuous-integration (CI) techniques to enable collaboration, increase agility, and deliver a high-quality product faster. Cloud-based development tools such as AWS CodeCommit and AWS CodeBuild can enable teams to easily adopt CI practices without the need to manage infrastructure. In this session, we showcase best practices for continuous integration and discuss how to effectively use AWS tools for CI.

re:Invent TIP #5: If you’re traveling to another session across campus, give yourself at least 60 minutes!


[Session] Best practices for authoring AWS CloudFormation (DOP302-R; DOP302-R1)

Speaker 1: Olivier Munn – Sr Product Manager Technical, Amazon Web Services
Speaker 2: Dan Blanco – Developer Advocate, Amazon Web Services

Incorporating infrastructure as code into software development practices can help teams and organizations improve automation and throughput without sacrificing quality and uptime. In this session, we cover multiple best practices for writing, testing, and maintaining AWS CloudFormation template code. You learn about IDE plug-ins, reusability, testing tools, modularizing stacks, and more. During the session, we also review sample code that showcases some of the best practices in a way that lends more context and clarity.

[Chalk Talk] Using AWS tools to author and debug applications (DOP215-RDOP215-R1DOP215-R2) — SPACE AVAILABLE! REGISTER TODAY!

Speaker: Fabian Jakobs – Principal Engineer, Amazon Web Services

Every organization wants its developers to be faster and more productive. AWS Cloud9 lets you create isolated cloud-based development environments for each project and access them from a powerful web-based IDE anywhere, anytime. In this session, we demonstrate how to use AWS Cloud9 and provide an overview of IDE toolkits that can be used to author application code.

[Session] Migrating .Net frameworks to the cloud (DOP321) — SPACE AVAILABLE! REGISTER TODAY!

Speaker: Robert Zhu – Principal Technical Evangelist, Amazon Web Services

Learn how to migrate your .NET application to AWS with minimal steps. In this demo-heavy session, we share best practices for migrating a three-tiered application on ASP.NET and SQL Server to AWS. Throughout the process, you get to see how AWS Toolkit for Visual Studio can enable you to fully leverage AWS services such as AWS Elastic Beanstalk, modernizing your application for more agile and flexible development.

[Session] Deep dive into AWS Cloud Development Kit (DOP402-R; DOP402-R1)

Speaker 1: Elad Ben-Israel – Principal Software Engineer, Amazon Web Services
Speaker 2: Jason Fulghum – Software Development Manager, Amazon Web Services

The AWS Cloud Development Kit (AWS CDK) is a multi-language, open-source framework that enables developers to harness the full power of familiar programming languages to define reusable cloud components and provision applications built from those components using AWS CloudFormation. In this session, you develop an AWS CDK application and learn how to quickly assemble AWS infrastructure. We explore the AWS Construct Library and show you how easy it is to configure your cloud resources, manage permissions, connect event sources, and build and publish your own constructs.

[Session] Introduction to the AWS CLI v2 (DOP406-R; DOP406-R1)

Speaker 1: James Saryerwinnie – Senior Software Engineer, Amazon Web Services
Speaker 2: Kyle Knapp – Software Development Engineer, Amazon Web Services

The AWS Command Line Interface (AWS CLI) is a command-line tool for interacting with AWS services and managing your AWS resources. We’ve taken all of the lessons learned from AWS CLI v1 (launched in 2013), and have been working on AWS CLI v2—the next major version of the AWS CLI—for the past year. AWS CLI v2 includes features such as improved installation mechanisms, a better getting-started experience, interactive workflows for resource management, and new high-level commands. Come hear from the core developers of the AWS CLI about how to upgrade and start using AWS CLI v2 today.

[Session] What’s new in AWS CloudFormation (DOP408-R; DOP408-R1; DOP408-R2)

Speaker 1: Jing Ling – Senior Product Manager, Amazon Web Services
Speaker 2: Luis Colon – Senior Developer Advocate, Amazon Web Services

AWS CloudFormation is one of the most widely used AWS tools, enabling infrastructure as code, deployment automation, repeatability, compliance, and standardization. In this session, we cover the latest improvements and best practices for AWS CloudFormation customers in particular, and for seasoned infrastructure engineers in general. We cover new features and improvements that span many use cases, including programmability options, cross-region and cross-account automation, operational safety, and additional integration with many other AWS services.

[Workshop] Get hands-on with Python/boto3 with no or minimal Python experience (DOP203-R; DOP203-R1; DOP203-R2)

Speaker 1: Herbert-John Kelly – Solutions Architect, Amazon Web Services
Speaker 2: Carl Johnson – Enterprise Solutions Architect, Amazon Web Services

Learning a programming language can seem like a huge investment. However, solving strategic business problems using modern technology approaches, like machine learning and big-data analytics, often requires some understanding. In this workshop, you learn the basics of using Python, one of the most popular programming languages that can be used for small tasks like simple operations automation, or large tasks like analyzing billions of records and training machine-learning models. You also learn about and use the AWS SDK (software development kit) for Python, called boto3, to write a Python program running on and interacting with resources in AWS.

[Workshop] Building reusable AWS CloudFormation templates (DOP304-R; DOP304-R1; DOP304-R2)

Speaker 1: Chelsey Salberg – Front End Engineer, Amazon Web Services
Speaker 2: Dan Blanco – Developer Advocate, Amazon Web Services

AWS CloudFormation gives you an easy way to define your infrastructure as code, but are you using it to its full potential? In this workshop, we take real-world architecture from a sandbox template to production-ready reusable code. We start by reviewing an initial template, which you update throughout the session to incorporate AWS CloudFormation features, like nested stacks and intrinsic functions. By the end of the workshop, expect to have a set of AWS CloudFormation templates that demonstrate the same best practices used in AWS Quick Starts.

[Workshop] Building a scalable serverless application with AWS CDK (DOP306-R; DOP306-R1; DOP306-R2; DOP306-R3)

Speaker 1: David Christiansen – Senior Partner Solutions Architect, Amazon Web Services
Speaker 2: Daniele Stroppa – Solutions Architect, Amazon Web Services

Dive into AWS and build a web application with the AWS Mythical Mysfits tutorial. In this workshop, you build a serverless application using AWS Lambda, Amazon API Gateway, and the AWS Cloud Development Kit (AWS CDK). Through the tutorial, you get hands-on experience using AWS CDK to model and provision a serverless distributed application infrastructure, you connect your application to a backend database, and you capture and analyze data on user behavior. Other AWS services that are utilized include Amazon Kinesis Data Firehose and Amazon DynamoDB.

[Chalk Talk] Assembling an AWS CloudFormation authoring tool chain (DOP313-R; DOP313-R1; DOP313-R2)

Speaker 1: Nathan McCourtney – Sr System Development Engineer, Amazon Web Services
Speaker 2: Dan Blanco – Developer Advocate, Amazon Web Services

In this session, we provide a prescriptive tool chain and methodology to improve your coding productivity as you create and maintain AWS CloudFormation stacks. We cover authoring recommendations from editors and plugins, to setting up a deployment pipeline for your AWS CloudFormation code.

[Chalk Talk] Build using JavaScript with AWS Amplify, AWS Lambda, and AWS Fargate (DOP315-R; DOP315-R1; DOP315-R2)

Speaker 1: Trivikram Kamat – Software Development Engineer, Amazon Web Services
Speaker 2: Vinod Dinakaran – Software Development Manager, Amazon Web Services

Learn how to build applications with AWS Amplify on the front end and AWS Fargate and AWS Lambda on the backend, and protocols (like HTTP/2), using the JavaScript SDKs in the browser and node. Leverage the AWS SDK for JavaScript’s modular NPM packages in resource-constrained environments, and benefit from the built-in async features to run your node and mobile applications, and SPAs, at scale.

[Chalk Talk] Scaling CI/CD adoption using AWS CodePipeline and AWS CloudFormation (DOP318-R; DOP318-R1; DOP318-R2)

Speaker 1: Andrew Baird – Principal Solutions Architect, Amazon Web Services
Speaker 2: Neal Gamradt – Applications Architect, WarnerMedia

Enabling CI/CD across your organization through repeatable patterns and infrastructure-as-code templates can unlock development speed while encouraging best practices. The SEAD Architecture team at WarnerMedia helps encourage CI/CD adoption across their company. They do so by creating and maintaining easily extensible infrastructure-as-code patterns for creating new services and deploying to them automatically using CI/CD. In this session, learn about the patterns they have created and the lessons they have learned.

re:Invent TIP #6: There are lots of extra activities at re:Invent. Expect your evenings to fill up onsite! Check out the peculiar programs including, board games, bingo, arts & crafts or ‘80s sing-alongs…

AWS Cloud Development Kit (CDK) – Java and .NET are Now Generally Available

Post Syndicated from Martin Beeby original https://aws.amazon.com/blogs/aws/aws-cloud-development-kit-cdk-java-and-net-are-now-generally-available/

Today, we are happy to announce that Java and .NET support inside the AWS Cloud Development Kit (CDK) is now generally available. The AWS CDK is an open-source software development framework to model and provision your cloud application resources through AWS CloudFormationAWS CDK also offers support for TypeScript and Python.

With the AWS CDK, you can design, compose, and share your own custom resources that incorporate your unique requirements. For example, you can use the AWS CDK to model a VPC, with its associated routing and security configurations. You could then wrap that code into a construct and then share it with the rest of your organization. In this way, you can start to build up libraries of these constructs that you can use to standardize the way your organization creates AWS resources.

I like that by using the AWS CDK, you can build your application, including the infrastructure, in your favorite IDE, using the same programming language that you use for your application code. As you code your AWS CDK model in either .NET or Java, you get productivity benefits like code completion and inline documentation, which make it faster to model your infrastructure.

How the AWS CDK Works
Everything in the AWS CDK is a construct. You can think of constructs as cloud components that can represent architectures of any complexity: a single resource, such as a Amazon Simple Storage Service (S3) bucket or a Amazon Simple Notification Service (SNS) topic, a static website, or even a complex, multi-stack application that spans multiple AWS accounts and regions. You compose constructs together into stacks that you can deploy into an AWS environment, and apps – a collection of one or more stacks.

The AWS CDK includes the AWS Construct Library, which contains constructs representing AWS resources.

How to use the AWS CDK
I’m going to use the AWS CDK to build a simple queue, but rather than handcraft a CloudFormation template in YAML or JSON, the AWS CDK allows me to use a familiar programming language to generate and deploy AWS CloudFormation templates.

To get started, I need to install the AWS CDK command-line interface using NPM. Once this download completes, I can code my infrastructure in either TypeScript, Python, JavaScript, Java, or, .NET.

npm i -g aws-cdk

On my local machine, I create a new folder and navigate into it.

mkdir cdk-newsblog-dotnet && cd cdk-newsblog-dotnet

Now I have installed the CLI I can execute commands such as cdk init and pass a language switch, in this instance, I am using .NET, and the sample app with the csharp language switch.

cdk init sample-app --language csharp

If I wanted to use Java rather than .NET, I would change the --language switch to java.

cdk init sample-app --language java

Since I am in the terminal, I type code . which is a shortcut to open the current folder in VS Code. You could, of course, use any editor, such as Visual Studio or JetBrains Rider. As you can see below, the init command has created a basic .NET AWS CDK project.

If I look into the Program.cs, the Main void creates an App and then a CDKDotnetStack. This stack CDKDotnetStack is defined in the CDKDotnetStack.cs file. This is where the meat of the project resides and where all the AWS resources are defined.

Inside the CDKDotnetStack.cs file, some code creates a Amazon Simple Queue Service (SQS) then a topic and then finally adds a Amazon Simple Notification Service (SNS) subscription to the topic.

Now that I have written the code, the next step is to deploy it. When I do, the AWS CDK will compile and execute this project, converting my .NET code into a AWS CloudFormation template.

If I were to just deploy this now, I wouldn’t actually see the CloudFormation template, so the AWS CDK provides a command cdk synth that takes my application, compiles it, executes it, and then outputs a CloudFormation template.

This is just standard CloudFormation, if you look through it, you will find the following items:

  • AWS::SQS::Queue – The queue I added.
  • AWS::SQS::QueuePolicy – An IAM policy that allows my topic to send messages to my queue. I didn’t actually define this in code, but the AWS CDK is smart enough to know I need one of these, and so creates one.
  • AWS::SNS::Topic – The topic I created.
  • AWS::SNS::Subscription – The subscription between the queue and the topic.
  • AWS::CDK::Metadata This section is specific to the AWS CDK and is automatically added by the toolkit to every stack. It is used by the AWS CDK team for analytics and to allow us to identify versions if there are any issues.

Before I deploy this project to my AWS account, I will use cdk bootstrap. The bootstrap command will create a Amazon Simple Storage Service (S3) bucket for me, which will be used by the AWS CDK to store any assets that might be required during deployment. In this example, I am not using any assets, so technically, I could skip this step. However, it is good practice to bootstrap your environment from the start, so you don’t get deployment errors later if you choose to use assets.

I’m now ready to deploy my project and to do that I issue the following command cdk deploy

This command first creates the AWS CloudFormation template then deploys it into my account. Since my project will make a security change, it asks me if I wish to deploy these changes. I select yes, and a CloudFormation changeset is created, and my resources start building.

Once complete, I can go over to the CloudFormation console and see that all the resources are now part of a AWS CloudFormation stack.

That’s it, my resources have been successfully built in the cloud, all using .NET.

With the addition of Java and .NET, the AWS CDK now supports 5 programming languages in total, giving you more options in how you build your AWS resources. Why not install the AWS CDK today and give it a try in whichever language is your favorite?

— Martin


Sharing automated blueprints for Amazon ECS continuous delivery using AWS Service Catalog

Post Syndicated from Ignacio Riesgo original https://aws.amazon.com/blogs/compute/sharing-automated-blueprints-for-amazon-ecs-continuous-delivery-using-aws-service-catalog/

This post is contributed by Mahmoud ElZayet | Specialist SA – Dev Tech, AWS


Modern application development processes enable organizations to improve speed and quality continually. In this innovative culture, small, autonomous teams own the entire application life cycle. While such nimble, autonomous teams speed product delivery, they can also impose costs on compliance, quality assurance, and code deployment infrastructures.

Standardized tooling and application release code helps share best practices across teams, reduce duplicated code, speed on-boarding, create consistent governance, and prevent resource over-provisioning.



In this post, I show you how to use AWS Service Catalog to provide standardized and automated deployment blueprints. This helps accelerate and improve your product teams’ application release workflows on Amazon ECS. Follow my instructions to create a sample blueprint that your product teams can use to release containerized applications on ECS. You can also apply the blueprint concept to other technologies, such as serverless or Amazon EC2–based deployments.

The sample templates and scripts provided here are for demonstration purposes and should not be used “as-is” in your production environment. After you become familiar with these resources, create customized versions for your production environment, taking account of in-house tools and team skills, as well as all applicable standards and restrictions.



To use this solution, you need the following resources:


Sample scenario

Example Corp. has various product teams that develop applications and services on AWS. Example Corp. teams have expressed interest in deploying their containerized applications managed by AWS Fargate on ECS. As part of Example Corp’s central tooling team, you want to enable teams to quickly release their applications on Fargate. However, you also make sure that they comply with all best practices and governance requirements.

For convenience, I also assume that you have supplied product teams working on the same domain, application, or project with a shared AWS account for service deployment. Using this account, they all deploy to the same ECS cluster.

In this scenario, you can author and provide these teams with a shared deployment blueprint on ECS Fargate. Using AWS Service Catalog, you can share the blueprint with teams as follows:

  1. Every time that a product team wants to release a new containerized application on ECS, they retrieve a new AWS Service Catalog ECS blueprint product. This enables them to obtain the required infrastructure, permissions, and tools. As a prerequisite, the ECS blueprint requires building blocks such as a git repository or an AWS CodeBuild project. Again, you can acquire those blocks through another AWS Service Catalog product.
  2. The product team completes the ECS blueprint’s required parameters, such as the desired number of ECS tasks and application name. As an administrator, you can constrain the value of some parameters such as the VPC and the cluster name. For more information, see AWS Service Catalog Template Constraints.
  3. The ECS blueprint product deploys all the required ECS resources, configured according to best practices. You can also use the AWS Cloud Development Kit (CDK) to maintain and provision pre-defined constructs for your infrastructure.
  4. A standardized CI/CD pipeline also generates, enabling your product teams to publish their application to ECS automatically. Ideally, this pipeline should have all stages, practices, security checks, and standards required for application release. Product teams must still author application code, create a Dockerfile, build specifications, run automated tests and deployment scripts, and complete other tasks required for application release.
  5. The ECS blueprint can be continually updated based on organization-wide feedback and to support new use cases. Your product team can always access the latest version through AWS Service Catalog. I recommend retaining multiple, customizable blueprints for various technologies.


For simplicity’s sake, my explanation envisions your environment as consisting of one AWS account. In practice, you can use IAM controls to segregate teams’ access to each other’s resources, even when they share an account. However, I recommend having at least two AWS accounts, one for testing and one for production purposes.

To see an example framework that helps deploy your AWS Service Catalog products to multiple accounts, see AWS Deployment Framework (ADF). This framework can also help you create cross-account pipelines that cater to different product teams’ needs, even when these teams deploy to the same technology stack.

To set up shared deployment blueprints for your production teams, follow the steps outlined in the following sections.


Set up the environment

In this section, I explain how to create a central ECS cluster in the appropriate VPC where teams can deploy their containers. I provide an AWS CloudFormation template to help you set up these resources. This template also creates an IAM role to be used by AWS Service Catalog later.

To run the CloudFormation template:

1. Use a git client to clone the following GitHub repository to a local directory. This will be the directory where you will run all the subsequent AWS CLI commands.

2. Using the AWS CLI, run the following commands. Replace <Application_Name> with a lowercase string with no spaces representing the application or microservice that your product team plans to release—for example, myapp.

aws cloudformation create-stack --stack-name "fargate-blueprint-prereqs" --template-body file://environment-setup.yaml --capabilities CAPABILITY_NAMED_IAM --parameters ParameterKey=ApplicationName,ParameterValue=<Application_Name>

3. Keep running the following command until the output reads CREATE_COMPLETE:

aws cloudformation describe-stacks --stack-name "fargate-blueprint-prereqs" --query Stacks[0].StackStatus

4. In case of error, use the describe-events CLI command or review error details on the console.

5. When the stack creation reads CREATE_COMPLETE, run the following command, and make a note of the output values in an editor of your choice. You need this information for a later step:

aws cloudformation describe-stacks  --stack-name fargate-blueprint-prereqs --query Stacks[0].Outputs

6. Run the following commands to copy those CloudFormation templates to Amazon S3. Replace <Template_Bucket_Name> with the template bucket output value you just copied into your editor of choice:

aws s3 cp core-build-tools.yml s3://<Template_Bucket_Name>/core-build-tools.yml

aws s3 cp ecs-fargate-deployment-blueprint.yml s3://<Template_Bucket_Name>/ecs-fargate-deployment-blueprint.yml

Create AWS Service Catalog products

In this section, I show you how to create two AWS Service Catalog products for teams to use in publishing their containerized app:

  1. Core Build Tools
  2. ECS Fargate Deployment Blueprint

To create an AWS Service Catalog portfolio that includes these products:

1. Using the AWS CLI, run the following command, replacing <Application_Name>
with the application name you defined earlier and replacing <Template_Bucket_Name>
with the template bucket output value you copied into your editor of choice:

aws cloudformation create-stack --stack-name "fargate-blueprint-catalog-products" --template-body file://catalog-products.yaml --parameters ParameterKey=ApplicationName,ParameterValue=<Application_Name> ParameterKey=TemplateBucketName,ParameterValue=<Template_Bucket_Name>

2. After a few minutes, check the stack creation completion. Run the following command until the output reads CREATE_COMPLETE:

aws cloudformation describe-stacks --stack-name "fargate-blueprint-catalog-products" --query Stacks[0].StackStatus

3. In case of error, use the describe-events CLI command or check error details in the console.

Your AWS Service Catalog configuration should now be ready.


Test product teams experience

In this section, I show you how to use IAM roles to impersonate a product team member and simulate their first experience of containerized application deployment.


Assume team role

To assume the role that you created during the environment setup step

1.     In the Management console, follow the instructions in Switching a Role.

  • For Account, enter the account ID used in the sample solution. To learn more about how to find an AWS account ID, see Your AWS Account ID and Its Alias.
  • For Role, enter <Application_Name>-product-team-role, where <Application_Name> is the same application name you defined in Environment Setup section.
  • (Optional) For Display name, enter a custom session value.

You are now logged in as a member of the product team.


Provision core build product

Next, provision the core build tools for your blueprint:

  1. In the Service Catalog console, you should now see the two products created earlier listed under Products.
  2. Select the first product, Core Build Tools.
  4. Name the product something such as <Application_Name>-build-tools, replacing <Application_Name> with the name previously defined for your application.
  5. Provide the same application name you defined previously.
  6. Leave the ContainerBuild parameter default setting as yes, as you are building a container requiring a container repository and its associated permissions.
  7. Choose NEXT three times, then choose LAUNCH.
  8. Under Events, watch the Status property. Keep refreshing until the status reads Succeeded. In case of failure, choose the URL value next to the key CloudformationStackARN. This choice takes you to the CloudFormation console, where you can find more information on the errors.

Now you have the following build tools created along with the required permissions:

  • AWS CodeCommit repository to store your code
  • CodeBuild project to build your container image and test your application code
  • Amazon ECR repository to store your container images
  • Amazon S3 bucket to store your build and release artifacts


Provision ECS Fargate deployment blueprint

In the Service Catalog console, follow the same steps to deploy the blueprint for ECS deployment. Here are the product provisioning details:

  • Product Name: <Application_Name>-fargate-blueprint.
  • Provisioned Product Name: <Application_Name>-ecs-fargate-blueprint.
  • For the parameters Subnet1, Subnet2, VpcId, enter the output values you copied earlier into your editor of choice in the Setup Environment section.
  • For other parameters, enter the following:
    • ApplicationName: The same application name you defined previously.
    • ClusterName: Enter the value example-corp-ecs-cluster, which is the name chosen in the template for the central cluster.
  • Leave the DesiredCount and LaunchType parameters to their default values.

After the blueprint product creation completes, you should have an ECS service with a sample task definition for your product team. The build tools created earlier include the permissions required for deploying to the ECS service. Also, a CI/CD pipeline has been created to guide your product teams as they publish their application to the ECS service. Ideally, this pipeline should have all stages, practices, security checks, and standards required for application release.

Product teams still have to author application code, create a Dockerfile, build specifications, run automated tests and deployment scripts, and perform other tasks required for application release. The blueprint product can provide wiki links to reference examples for these steps, or access to pre-provisioned sample pipelines.


Test your pipeline

Now, upload a sample app to test your pipeline:

  1. Log in with the product team role.
  2. In the CodeCommit console, select the repository with the application name that you defined in the environment setup section.
  3. Scroll down, choose Add file, Create file.
  4. Paste the following in the page editor, which is a script to build the container image and push it to the ECR repository:
version: 0.2
      - $(aws ecr get-login --no-include-email)
      - TAG="$(echo $CODEBUILD_RESOLVED_SOURCE_VERSION | head -c 8)"
      - docker build --tag "$IMAGE_URI" .
      - docker push "$IMAGE_URI"      
      - printf '[{"name":"%s","imageUri":"%s"}]' "$APPLICATION_NAME" "$IMAGE_URI" > images.json
    - images.json
    - '**/*'

5. For File name, enter buildspec.yml.

6. For Author name and Email address, enter your name and your preferred email address for the commit. Although optional, the addition of a commit message is a good practice.

7. Choose Commit changes.

8. Repeat the same steps for the Dockerfile. The sample Dockerfile creates a straightforward PHP application. Typically, you add your application content to that image.

File name: Dockerfile

File content:

FROM ubuntu:12.04

# Install dependencies
RUN apt-get update -y
RUN apt-get install -y git curl apache2 php5 libapache2-mod-php5 php5-mcrypt php5-mysql

# Configure apache
RUN a2enmod rewrite
RUN chown -R www-data:www-data /var/www
ENV APACHE_LOG_DIR /var/log/apache2


CMD ["/usr/sbin/apache2", "-D",  "FOREGROUND"]

Your pipeline should now be ready to run successfully. Although you can list all current pipelines in the Region, you can only describe and modify pipelines that have a prefix matching your application name. To confirm:

  1. In the AWS CodePipeline console, select the pipeline <Application_Name>-ecs-fargate-pipeline.
  2. The pipeline should now be running.

Because you performed two commits to the repository from the console, you must wait for the second run to complete before successful deployment to ECS Fargate.


Clean up

To clean up the environment, run the following commands in the AWS CLI, replacing <Application_Name>
with your application name, <Account_Id> with your AWS Account ID with no hyphens and <Template_Bucket_Name>
with the template bucket output value you copied into your editor of choice:

aws ecr delete-repository --repository-name <Application_Name> --force

aws s3 rm s3://<Application_Name>-artifactbucket-<Account_Id> --recursive

aws s3 rm s3://<Template_Bucket_Name> --recursive


To remove the AWS Service Catalog products:

  1. Log in with the Product team role
  2. In the console, follow the instructions at Deleting Provisioned Products.
  3. Delete the AWS Service Catalog products in reverse order, starting with the blueprint product.

Run the following commands to delete the administrative resources:

aws cloudformation delete-stack --stack-name fargate-blueprint-catalog-products

aws cloudformation delete-stack --stack-name fargate-blueprint-prereqs


In this post, I showed you how to design and build ECS Fargate deployment blueprints. I explained how these accelerate and standardize the release of containerized applications on AWS. Your product teams can keep getting the latest standards and coded best practices through those automated blueprints.

As always, AWS welcomes feedback. Please submit comments or questions below.