Tag Archives: cameras

Consumer Reports Reviews Wireless Home-Security Cameras

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/11/consumer_report_1.html

Consumer Reports is starting to evaluate the security of IoT devices. As part of that, it’s reviewing wireless home-security cameras.

It found significant security vulnerabilities in D-Link cameras:

In contrast, D-Link doesn’t store video from the DCS-2630L in the cloud. Instead, the camera has its own, onboard web server, which can deliver video to the user in different ways.

Users can view the video using an app, mydlink Lite. The video is encrypted, and it travels from the camera through D-Link’s corporate servers, and ultimately to the user’s phone. Users can also access the same encrypted video feed through a company web page, mydlink.com. Those are both secure methods of accessing the video.

But the D-Link camera also lets you bypass the D-Link corporate servers and access the video directly through a web browser on a laptop or other device. If you do this, the web server on the camera doesn’t encrypt the video.

If you set up this kind of remote access, the camera and unencrypted video is open to the web. They could be discovered by anyone who finds or guesses the camera’s IP address­ — and if you haven’t set a strong password, a hacker might find it easy to gain access.

The real news is that Consumer Reports is able to put pressure on device manufacturers:

In response to a Consumer Reports query, D-Link said that security would be tightened through updates this fall. Consumer Reports will evaluate those updates once they are available.

This is the sort of sustained pressure we need on IoT device manufacturers.

Boing Boing link.

EDITED TO ADD (11/13): In related news, the US Federal Trade Commission is suing D-Link because their routers are so insecure. The lawsuit was filed in January 2017.

Take a photo of yourself as an unreliable cartoon

Post Syndicated from Helen Lynn original https://www.raspberrypi.org/blog/take-a-photo-of-yourself-unreliable-cartoon/

Take a selfie, wait for the image to appear, and behold a cartoon version of yourself. Or, at least, behold a cartoon version of whatever the camera thought it saw. Welcome to Draw This by maker Dan Macnish.

Dan has made code, instructions, and wiring diagrams available to help you bring this beguiling weirdery into your own life.

raspberry pi cartoon polaroid camera

Neural networks, object recognition, and cartoons

One of the fun things about this re-imagined polaroid is that you never get to see the original image. You point, and shoot – and out pops a cartoon; the camera’s best interpretation of what it saw. The result is always a surprise. A food selfie of a healthy salad might turn into an enormous hot dog, or a photo with friends might be photobombed by a goat.

OK. Let’s take this one step at a time.

Pi + camera + button + LED

Draw This uses a Raspberry Pi 3 and a Camera Module, with a button and a useful status LED connected to the GPIO pins via a breadboard. You press the button, and the camera captures a still image while the LED comes on and stays lit for a couple of seconds while the Pi processes the image. So far, so standard Pi camera build.

Interpreting and re-interpreting the camera image

Dan uses Python to process the captured photograph, employing a pre-trained machine learning model from Google to recognise multiple objects in the image. Now he brings the strangeness. The Pi matches the things it sees in the photo with doodles from Google’s huge open-source Quick, Draw! dataset, and generates a new image that represents the objects in the original image as doodles. Then a thermal printer connected to the Pi’s GPIO pins prints the results.

A 28 x 14 grid of kangaroo doodles in dark grey on a white background

Kangaroos from the Quick, Draw! dataset (I got distracted)

Potential for peculiar

Reading about this build leaves me yearning to see its oddest interpretation of a scene, so if you make this and you find it really does turn you or your friend into a goat, please do share that with us.

And as you can see from my kangaroo digression above, there is a ton of potential for bizarro makes that use the Quick, Draw! dataset, object recognition models, or both; it’s not just the marsupials that are inexplicably compelling (I dare you to go and look and see how long it takes you to get back to whatever you were in the middle of). If you’re planning to make this, or something inspired by this, check out Dan’s cartoonify GitHub repo. And tell us all about it in the comments.

The post Take a photo of yourself as an unreliable cartoon appeared first on Raspberry Pi.

Working with the Scout Association on digital skills for life

Post Syndicated from Philip Colligan original https://www.raspberrypi.org/blog/working-with-scout-association-digital-skills-for-life/

Today we’re launching a new partnership between the Scouts and the Raspberry Pi Foundation that will help tens of thousands of young people learn crucial digital skills for life. In this blog post, I want to explain what we’ve got planned, why it matters, and how you can get involved.

This is personal

First, let me tell you why this partnership matters to me. As a child growing up in North Wales in the 1980s, Scouting changed my life. My time with 2nd Rhyl provided me with countless opportunities to grow and develop new skills. It taught me about teamwork and community in ways that continue to shape my decisions today.

As my own kids (now seven and ten) have joined Scouting, I’ve seen the same opportunities opening up for them, and like so many parents, I’ve come back to the movement as a volunteer to support their local section. So this is deeply personal for me, and the same is true for many of my colleagues at the Raspberry Pi Foundation who in different ways have been part of the Scouting movement.

That shouldn’t come as a surprise. Scouting and Raspberry Pi share many of the same values. We are both community-led movements that aim to help young people develop the skills they need for life. We are both powered by an amazing army of volunteers who give their time to support that mission. We both care about inclusiveness, and pride ourselves on combining fun with learning by doing.

Raspberry Pi

Raspberry Pi started life in 2008 as a response to the problem that too many young people were growing up without the skills to create with technology. Our goal is that everyone should be able to harness the power of computing and digital technologies, for work, to solve problems that matter to them, and to express themselves creatively.

In 2012 we launched our first product, the world’s first $35 computer. Just six years on, we have sold over 20 million Raspberry Pi computers and helped kickstart a global movement for digital skills.

The Raspberry Pi Foundation now runs the world’s largest network of volunteer-led computing clubs (Code Clubs and CoderDojos), and creates free educational resources that are used by millions of young people all over the world to learn how to create with digital technologies. And lots of what we are able to achieve is because of partnerships with fantastic organisations that share our goals. For example, through our partnership with the European Space Agency, thousands of young people have written code that has run on two Raspberry Pi computers that Tim Peake took to the International Space Station as part of his Mission Principia.

Digital makers

Today we’re launching the new Digital Maker Staged Activity Badge to help tens of thousands of young people learn how to create with technology through Scouting. Over the past few months, we’ve been working with the Scouts all over the UK to develop and test the new badge requirements, along with guidance, project ideas, and resources that really make them work for Scouting. We know that we need to get two things right: relevance and accessibility.

Relevance is all about making sure that the activities and resources we provide are a really good fit for Scouting and Scouting’s mission to equip young people with skills for life. From the digital compass to nature cameras and the reinvented wide game, we’ve had a lot of fun thinking about ways we can bring to life the crucial role that digital technologies can play in the outdoors and adventure.

Compass Coding with Raspberry Pi

We are beyond excited to be launching a new partnership with the Raspberry Pi Foundation, which will help tens of thousands of young people learn digital skills for life.

We also know that there are great opportunities for Scouts to use digital technologies to solve social problems in their communities, reflecting the movement’s commitment to social action. Today we’re launching the first set of project ideas and resources, with many more to follow over the coming weeks and months.

Accessibility is about providing every Scout leader with the confidence, support, and kit to enable them to offer the Digital Maker Staged Activity Badge to their young people. A lot of work and care has gone into designing activities that require very little equipment: for example, activities at Stages 1 and 2 can be completed with a laptop without access to the internet. For the activities that do require kit, we will be working with Scout Stores and districts to make low-cost kit available to buy or loan.

We’re producing accessible instructions, worksheets, and videos to help leaders run sessions with confidence, and we’ll also be planning training for leaders. We will work with our network of Code Clubs and CoderDojos to connect them with local sections to organise joint activities, bringing both kit and expertise along with them.




Get involved

Today’s launch is just the start. We’ll be developing our partnership over the next few years, and we can’t wait for you to join us in getting more young people making things with technology.

Take a look at the brand-new Raspberry Pi resources designed especially for Scouts, to get young people making and creating right away.

The post Working with the Scout Association on digital skills for life appeared first on Raspberry Pi.

Lifting a Fingerprint from a Photo

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/04/lifting_a_finge.html

Police in the UK were able to read a fingerprint from a photo of a hand:

Staff from the unit’s specialist imaging team were able to enhance a picture of a hand holding a number of tablets, which was taken from a mobile phone, before fingerprint experts were able to positively identify that the hand was that of Elliott Morris.

[…]

Speaking about the pioneering techniques used in the case, Dave Thomas, forensic operations manager at the Scientific Support Unit, added: “Specialist staff within the JSIU fully utilised their expert image-enhancing skills which enabled them to provide something that the unit’s fingerprint identification experts could work. Despite being provided with only a very small section of the fingerprint which was visible in the photograph, the team were able to successfully identify the individual.”

Build a solar-powered nature camera for your garden

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/solar-powered-nature-camera/

Spring has sprung, and with it, sleepy-eyed wildlife is beginning to roam our gardens and local woodlands. So why not follow hackster.io maker reichley’s tutorial and build your own solar-powered squirrelhouse nature cam?

Raspberry Pi- and solar-powered nature camera

Inspiration

“I live half a mile above sea level and am SURROUNDED by animals…bears, foxes, turkeys, deer, squirrels, birds”, reichley explains in his tutorial. “Spring has arrived, and there are LOADS of squirrels running around. I was in the building mood and, being a nerd, wished to combine a common woodworking project with the connectivity and observability provided by single-board computers (and their camera add-ons).”

Building a tiny home

reichley started by sketching out a design for the house to determine where the various components would fit.

Raspberry Pi- and solar-powered nature camera

Since he’s fan of autonomy and renewable energy, he decided to run the project’s Raspberry Pi Zero W via solar power. To do so, he reiterated the design to include the necessary tech, scaling the roof to fit the panels.

Raspberry Pi- and solar-powered squirrel cam
Raspberry Pi- and solar-powered squirrel cam
Raspberry Pi- and solar-powered squirrel cam

To keep the project running 24/7, reichley had to figure out the overall power consumption of both the Zero W and the Raspberry Pi Camera Module, factoring in the constant WiFi connection and the sunshine hours in his garden.

Raspberry Pi- and solar-powered nature camera

He used a LiPo SHIM to bump up the power to the required 5V for the Zero. Moreover, he added a BH1750 lux sensor to shut off the LiPo SHIM, and thus the Pi, whenever it’s too dark for decent video.

Raspberry Pi- and solar-powered nature camera

To control the project, he used Calin Crisan’s motionEyeOS video surveillance operating system for single-board computers.

Build your own nature camera

To build your own version, follow reichley’s tutorial, in which you can also find links to all the necessary code and components. You can also check out our free tutorial for building an infrared bird box using the Raspberry Pi NoIR Camera Module. As Eben said in our YouTube live Q&A last week, we really like nature cameras here at Pi Towers, and we’d love to see yours. So if you have any live-stream links or photography from your Raspberry Pi–powered nature cam, please share them with us!

The post Build a solar-powered nature camera for your garden appeared first on Raspberry Pi.

Introducing the B2 Snapshot Return Refund Program

Post Syndicated from Ahin Thomas original https://www.backblaze.com/blog/b2-snapshot-return-refund-program/

B2 Snapshot Return Refund Program

What Is the B2 Snapshot Return Refund Program?

Backblaze’s mission is making cloud storage astonishingly easy and affordable. That guides our focus — making our customers’ data more usable. Today, we’re pleased to introduce a trial of the B2 Snapshot Return Refund program. B2 customers have long been able to create a Snapshot of their data and order a hard drive with that data sent via FedEx anywhere in the world. Starting today, if the customer sends the drive back to Backblaze within 30 days, they will get a full refund. This new feature is available automatically for B2 customers when they order a Snapshot. There are no extra buttons to push or boxes to check — just send back the drive within 30 days and we’ll refund your money. To put it simply, we are offering the cloud storage industry’s only refundable rapid data egress service.

You Shouldn’t be Afraid to Use Your Own Data

Last week, we cut the price of B2 downloads in half — from 2¢ per GB to 1¢ per GB. That 50% reduction makes B2’s download price 1/5 that of Amazon’s S3 (with B2 storage pricing already 1/4 that of S3). The price reduction and today’s introduction of the B2 Snapshot Return Refund program are deliberate moves to eliminate the industry’s biggest barrier to entry — the cost of using data stored in the cloud.  Storage vendors who make it expensive to restore, or place time lag impediments to access, are reducing the usefulness of your data. We believe this is antithetical to encouraging the use of the cloud in the first place.

Learning From Our Customers

Our Computer Backup product already has a Restore Return Refund program. It’s incredibly popular, and we enjoy the almost daily “you just saved my bacon” letters that come back with the returned hard drives. Our customer surveys have repeatedly demonstrated that the ability to get data back is one of the things that has made our Computer Backup service one of the most popular in the industry. So, it made sense to us that our B2 customers could use a similar program.

There are many ways B2 customers can benefit from using the B2 Snapshot Return Refund program, here is a typical scenario.

Media and Entertainment Workflow Based Snapshots

Businesses in the Media and Entertainment (M&E) industry tend to have large quantities of digital media, and the amount of data will continue to increase in the coming years with more 4K and 8K cameras coming into regular use. When an organization needs to deliver or share that data, they typically have to manually download data from their internal storage system, and copy it on a thumb drive or hard drive, or perhaps create an LTO tape. Once that is done, they take their storage device, label it, and mail to their customer. Not only is this practice costly, time consuming, and potentially insecure, it doesn’t scale well with larger amounts of data.

With just a few clicks, you can easily distribute or share your digital media if it stored in the B2 Cloud. Here’s how the process works:

  1. Log in to your Backblaze B2 account.
  2. Navigate to the bucket where the data is located.
  3. Select the files, or the entire bucket, you wish to send and create a “Snapshot.”
  4. Once the Snapshot is complete you have choices:
    • Download the Snapshot and pay $0.01/GB for the download
    • Have Backblaze copy the Snapshot to an external hard drive and FedEx it anywhere in the world. This stores up to 3.5 TB and costs $189.00. Return the hard drive to Backblaze within 30 days and you’ll get your $189.00 back.
    • Have Backblaze copy the Snapshot to a flash drive and FedEx it anywhere in the world. This stores up to 110 GB and costs $99.00. FedEx shipping to the specified location is included. Return the flash drive to Backblaze within 30 days and you’ll get your $99.00 back.

You can always keep the hard drive or flash drive and Backblaze, of course, will keep your money.

Each drive containing a Snapshot is encrypted. The encryption key can be found in your Backblaze B2 account after you log in. The FedEX tracking number is there as well. When the hard drive arrives at its destination you can provide the encryption key to the recipient and they’ll be able to access the files. Note that the encryption key must be entered each time the hard drive is started, so the data remains protected even if the hard drive is returned to Backblaze.

The B2 Snapshot Return Refund program supports Snapshots as large as 3.5 terabytes. That means you can send about 50 hours of 4k video to a client or partner by selecting the hard drive option. If you select the flash drive option, a Snapshot can be up to 110 gigabytes, which is about 1hr and 45 min of 4k video.

While the example uses an M&E workflow, any workflow requiring the exchange or distribution of large amounts of data across distinct geographies will benefit from this service.

This is a Trial Program

Backblaze fully intends to offer the B2 Snapshot Return Refund Program for a long time. That said, there is no program like this in the industry and so we want to put some guardrails on it to ensure we can offer a sustainable program for all. Thus, the “fine print”:

  • Minimum Snapshot Size — a Snapshot must be greater than 10 GB to qualify for this program. Why? You can download a 10 GB Snapshot in a few minutes. Why pay us to do the same thing and have it take a couple of days??
  • The 30 Day Clock — The clock starts on the day the drive is marked as delivered to you by FedEx and the clock ends on the date postmarked on the package we receive. If that’s 30 days or less, your refund will be granted.
  • 5 Drive Refunds Per Year — We are initially setting a limit of 5 drive refunds per B2 account per year. By placing a cap on the number of drive refunds per year, we are able to provide a service that is responsive to our entire client base. We expect to change or remove this limit once we have enough data to understand the demand and can make sure we are staffed properly.

It is Your Data — Use It

Our industry has a habit of charging little to store data and then usurious amounts to get it back. There are certainly real costs involved in data retrieval. We outlined them in our post on the Cost of Cloud Storage. The industry rates charged for data retrieval are clearly strategic moves to try and lock customers in. To us, that runs counter to trying to do our part to make data useful and our customers’ lives easier. That viewpoint drives our efforts behind lowering our download pricing and the creation of this program.

We hope you enjoy the B2 Snapshot Return Refund program. If you have a moment, please tell us in the comments below how you might use it!

The post Introducing the B2 Snapshot Return Refund Program appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

The Challenges of Opening a Data Center — Part 2

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/factors-for-choosing-data-center/

Rows of storage pods in a data center

This is part two of a series on the factors that an organization needs to consider when opening a data center and the challenges that must be met in the process.

In Part 1 of this series, we looked at the different types of data centers, the importance of location in planning a data center, data center certification, and the single most expensive factor in running a data center, power.

In Part 2, we continue to look at factors that need to considered both by those interested in a dedicated data center and those seeking to colocate in an existing center.

Power (continued from Part 1)

In part 1, we began our discussion of the power requirements of data centers.

As we discussed, redundancy and failover is a chief requirement for data center power. A redundantly designed power supply system is also a necessity for maintenance, as it enables repairs to be performed on one network, for example, without having to turn off servers, databases, or electrical equipment.

Power Path

The common critical components of a data center’s power flow are:

  • Utility Supply
  • Generators
  • Transfer Switches
  • Distribution Panels
  • Uninterruptible Power Supplies (UPS)
  • PDUs

Utility Supply is the power that comes from one or more utility grids. While most of us consider the grid to be our primary power supply (hats off to those of you who manage to live off the grid), politics, economics, and distribution make utility supply power susceptible to outages, which is why data centers must have autonomous power available to maintain availability.

Generators are used to supply power when the utility supply is unavailable. They convert mechanical energy, usually from motors, to electrical energy.

Transfer Switches are used to transfer electric load from one source or electrical device to another, such as from one utility line to another, from a generator to a utility, or between generators. The transfer could be manually activated or automatic to ensure continuous electrical power.

Distribution Panels get the power where it needs to go, taking a power feed and dividing it into separate circuits to supply multiple loads.

A UPS, as we touched on earlier, ensures that continuous power is available even when the main power source isn’t. It often consists of batteries that can come online almost instantaneously when the current power ceases. The power from a UPS does not have to last a long time as it is considered an emergency measure until the main power source can be restored. Another function of the UPS is to filter and stabilize the power from the main power supply.

Data Center UPS

Data center UPSs

PDU stands for the Power Distribution Unit and is the device that distributes power to the individual pieces of equipment.

Network

After power, the networking connections to the data center are of prime importance. Can the data center obtain and maintain high-speed networking connections to the building? With networking, as with all aspects of a data center, availability is a primary consideration. Data center designers think of all possible ways service can be interrupted or lost, even briefly. Details such as the vulnerabilities in the route the network connections make from the core network (the backhaul) to the center, and where network connections enter and exit a building, must be taken into consideration in network and data center design.

Routers and switches are used to transport traffic between the servers in the data center and the core network. Just as with power, network redundancy is a prime factor in maintaining availability of data center services. Two or more upstream service providers are required to ensure that availability.

How fast a customer can transfer data to a data center is affected by: 1) the speed of the connections the data center has with the outside world, 2) the quality of the connections between the customer and the data center, and 3) the distance of the route from customer to the data center. The longer the length of the route and the greater the number of packets that must be transferred, the more significant a factor will be played by latency in the data transfer. Latency is the delay before a transfer of data begins following an instruction for its transfer. Generally latency, not speed, will be the most significant factor in transferring data to and from a data center. Packets transferred using the TCP/IP protocol suite, which is the conceptual model and set of communications protocols used on the internet and similar computer networks, must be acknowledged when received (ACK’d) and requires a communications roundtrip for each packet. If the data is in larger packets, the number of ACKs required is reduced, so latency will be a smaller factor in the overall network communications speed.

Latency generally will be less significant for data storage transfers than for cloud computing. Optimizations such as multi-threading, which is used in Backblaze’s Cloud Backup service, will generally improve overall transfer throughput if sufficient bandwidth is available.

Those interested in testing the overall speed and latency of their connection to Backblaze’s data centers can use the Check Your Bandwidth tool on our website.
Data center telecommunications equipment

Data center telecommunications equipment

Data center under floor cable runs

Data center under floor cable runs

Cooling

Computer, networking, and power generation equipment generates heat, and there are a number of solutions employed to rid a data center of that heat. The location and climate of the data center is of great importance to the data center designer because the climatic conditions dictate to a large degree what cooling technologies should be deployed that in turn affect the power used and the cost of using that power. The power required and cost needed to manage a data center in a warm, humid climate will vary greatly from managing one in a cool, dry climate. Innovation is strong in this area and many new approaches to efficient and cost-effective cooling are used in the latest data centers.

Switch's uninterruptible, multi-system, HVAC Data Center Cooling Units

Switch’s uninterruptible, multi-system, HVAC Data Center Cooling Units

There are three primary ways data center cooling can be achieved:

Room Cooling cools the entire operating area of the data center. This method can be suitable for small data centers, but becomes more difficult and inefficient as IT equipment density and center size increase.

Row Cooling concentrates on cooling a data center on a row by row basis. In its simplest form, hot aisle/cold aisle data center design involves lining up server racks in alternating rows with cold air intakes facing one way and hot air exhausts facing the other. The rows composed of rack fronts are called cold aisles. Typically, cold aisles face air conditioner output ducts. The rows the heated exhausts pour into are called hot aisles. Typically, hot aisles face air conditioner return ducts.

Rack Cooling tackles cooling on a rack by rack basis. Air-conditioning units are dedicated to specific racks. This approach allows for maximum densities to be deployed per rack. This works best in data centers with fully loaded racks, otherwise there would be too much cooling capacity, and the air-conditioning losses alone could exceed the total IT load.

Security

Data Centers are high-security facilities as they house business, government, and other data that contains personal, financial, and other secure information about businesses and individuals.

This list contains the physical-security considerations when opening or co-locating in a data center:

Layered Security Zones. Systems and processes are deployed to allow only authorized personnel in certain areas of the data center. Examples include keycard access, alarm systems, mantraps, secure doors, and staffed checkpoints.

Physical Barriers. Physical barriers, fencing and reinforced walls are used to protect facilities. In a colocation facility, one customers’ racks and servers are often inaccessible to other customers colocating in the same data center.

Backblaze racks secured in the data center

Backblaze racks secured in the data center

Monitoring Systems. Advanced surveillance technology monitors and records activity on approaching driveways, building entrances, exits, loading areas, and equipment areas. These systems also can be used to monitor and detect fire and water emergencies, providing early detection and notification before significant damage results.

Top-tier providers evaluate their data center security and facilities on an ongoing basis. Technology becomes outdated quickly, so providers must stay-on-top of new approaches and technologies in order to protect valuable IT assets.

To pass into high security areas of a data center requires passing through a security checkpoint where credentials are verified.

Data Center security

The gauntlet of cameras and steel bars one must pass before entering this data center

Facilities and Services

Data center colocation providers often differentiate themselves by offering value-added services. In addition to the required space, power, cooling, connectivity and security capabilities, the best solutions provide several on-site amenities. These accommodations include offices and workstations, conference rooms, and access to phones, copy machines, and office equipment.

Additional features may consist of kitchen facilities, break rooms and relaxation lounges, storage facilities for client equipment, and secure loading docks and freight elevators.

Moving into A Data Center

Moving into a data center is a major job for any organization. We wrote a post last year, Desert To Data in 7 Days — Our New Phoenix Data Center, about what it was like to move into our new data center in Phoenix, Arizona.

Desert To Data in 7 Days — Our New Phoenix Data Center

Visiting a Data Center

Our Director of Product Marketing Andy Klein wrote a popular post last year on what it’s like to visit a data center called A Day in the Life of a Data Center.

A Day in the Life of a Data Center

Would you Like to Know More about The Challenges of Opening and Running a Data Center?

That’s it for part 2 of this series. If readers are interested, we could write a post about some of the new technologies and trends affecting data center design and use. Please let us know in the comments.

Here's a tip!Here’s a tip on finding all the posts tagged with data center on our blog. Just follow https://www.backblaze.com/blog/tag/data-center/.

Don’t miss future posts on data centers and other topics, including hard drive stats, cloud storage, and tips and tricks for backing up to the cloud. Use the Join button above to receive notification of future posts on our blog.

The post The Challenges of Opening a Data Center — Part 2 appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

OTON GLASS: turning text to speech

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/oton-glass/

With OTON GLASS, users are able to capture text with a blink and have it read back to them in their chosen language. It’s wonderful tool for people with dyslexia or poor vision, or for travellers abroad.

OTON GLASS

A wearable device for people who have difficulty reading.

OTON GLASS

Inspired by his father’s dyslexia, Keisuke Shimakage of the Media Creation Research Department at the Institute of Advanced Media Arts and Sciences, Japan, began to develop OTON GLASS:

I was determined to develop OTON GLASS because of my father’s dyslexia experience. In 2012, my father had a brain tumor, and developed dyslexia after his operation — the catalyst for OTON GLASS. Fortunately, he recovered fully after rehabilitation. However, many people have congenital dyslexia regardless of their health.

Assembling a team of engineers and designers, Keisuke got to work.

A collage images illustrating the history of developing OTON GLASS — OTON GLASS RASPBERRY PI GLASSES FOR DYSLEXIC USERS

The OTON GLASS device includes a Raspberry Pi 3, two cameras, and an earphone. One camera on the inside of the frame tracks the user’s eyes, and when it detects the blinked trigger, the outward-facing camera captures an image of what the user is looking at. This image is then processed by the Raspberry Pi via a program that performs optical character recognition. If the Pi detects written words, it converts them to speech, which the earphone plays back for the user.

A collage of images and text explaining how OTON GLASS works — OTON GLASS RASPBERRY PI GLASSES FOR DYSLEXIC USERS

The initial prototype of OTON GLASS had a 15-second delay between capturing text and replaying audio. This was cut down to three seconds in the team’s second prototype, designed in CAD software and housed within a 3D-printed case. The makers were then able to do real-world testing of the prototype to collect feedback from dyslexic users, and continued to upgrade the device based on user opinions.

Awards buzz

OTON GLASS is on its way to public distribution this year, and is currently doing the rounds at various trade and tech shows throughout Japan. Models are also available for trial at the Japan Blind Party Association, Kobe Eye Centre, and Nippon Keihan Library. In 2016, the device was runner-up for the James Dyson Award, and it has also garnered attention at various other awards shows and in the media. We’re looking forward to getting out hands on OTON GLASS, and we can’t wait to find out where team will take this device in the future.

The post OTON GLASS: turning text to speech appeared first on Raspberry Pi.

Raspberry Pi Spy’s Alexa Skill

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/pi-spy-alexa-skill/

With Raspberry Pi projects using home assistant services such as Amazon Alexa and Google Home becoming more and more popular, we invited Raspberry Pi maker Matt ‘Raspberry Pi Spy‘ Hawkins to write a guest post about his latest project, the Pi Spy Alexa Skill.

Pi Spy Alexa Skill Raspberry Pi

Pi Spy Skill

The Alexa system uses Skills to provide voice-activated functionality, and it allows you to create new Skills to add extra features. With the Pi Spy Skill, you can ask Alexa what function each pin on the Raspberry Pi’s GPIO header provides, for example by using the phrase “Alexa, ask Pi Spy what is Pin 2.” In response to a phrase such as “Alexa, ask Pi Spy where is GPIO 8”, Alexa can now also tell you on which pin you can find a specific GPIO reference number.

This information is already available in various forms, but I thought it would be useful to retrieve it when I was busy soldering or building circuits and had no hands free.

Creating an Alexa Skill

There is a learning curve to creating a new Skill, and in some regards it was similar to mobile app development.

A Skill consists of two parts: the first is created within the Amazon Developer Console and defines the structure of the voice commands Alexa should recognise. The second part is a webservice that can receive data extracted from the voice commands and provide a response back to the device. You can create the webservice on a webserver, internet-connected device, or cloud service.

I decided to use Amazon’s AWS Lambda service. Once set up, this allows you to write code without having to worry about the server it is running on. It also supports Python, so it fit in nicely with most of my other projects.

To get started, I logged into the Amazon Developer Console with my personal Amazon account and navigated to the Alexa section. I created a new Skill named Pi Spy. Within a Skill, you define an Intent Schema and some Sample Utterances. The schema defines individual intents, and the utterances define how these are invoked by the user.

Here is how my ExaminePin intent is defined in the schema:

Pi Spy Alexa Skill Raspberry Pi

Example utterances then attempt to capture the different phrases the user might speak to their device.

Pi Spy Alexa Skill Raspberry Pi

Whenever Alexa matches a spoken phrase to an utterance, it passes the name of the intent and the variable PinID to the webservice.

In the test section, you can check what JSON data will be generated and passed to your webservice in response to specific phrases. This allows you to verify that the webservices’ responses are correct.

Pi Spy Alexa Skill Raspberry Pi

Over on the AWS Services site, I created a Lambda function based on one of the provided examples to receive the incoming requests. Here is the section of that code which deals with the ExaminePin intent:

Pi Spy Alexa Skill Raspberry Pi

For this intent, I used a Python dictionary to match the incoming pin number to its description. Another Python function deals with the GPIO queries. A URL to this Lambda function was added to the Skill as its ‘endpoint’.

As with the Skill, the Python code can be tested to iron out any syntax errors or logic problems.

With suitable configuration, it would be possible to create the webservice on a Pi, and that is something I’m currently working on. This approach is particularly interesting, as the Pi can then be used to control local hardware devices such as cameras, lights, or pet feeders.

Note

My Alexa Skill is currently only available to UK users. I’m hoping Amazon will choose to copy it to the US service, but I think that is down to its perceived popularity, or it may be done in bulk based on release date. In the next update, I’ll be adding an American English version to help speed up this process.

The post Raspberry Pi Spy’s Alexa Skill appeared first on Raspberry Pi.

Turn your smartphone into a universal remote

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/zero-universal-remote/

Honolulu-based software developer bbtinkerer was tired of never being able to find the TV remote. So he made his own using a Raspberry Pi Zero, and connected it to a web app accessible on his smartphone.

bbtinkerer universal remote Raspberry Pi zero

Finding a remote alternative

“I needed one because the remote in my house tends to go missing a lot,” explains Bernard aka bbtinkerer on the Instructables page for his Raspberry Pi Zero Universal Remote.”If I want the controller, I have to hunt down three people and hope one of them remembers that they took it.”

bbtinkerer universal remote Raspberry Pi zero

For the build, Bernard used a Raspberry Pi Zero, an IR LED and corresponding receiver, Raspbian Lite, and a neat little 3D-printed housing.

bbtinkerer universal remote Raspberry Pi zero
bbtinkerer universal remote Raspberry Pi zero
bbtinkerer universal remote Raspberry Pi zero

First, he soldered a circuit for the LED and resistors on a small piece of perf board. Then he assembled the hardware components. Finally, all he needed to do was to write the code to control his devices (including a tower fan), and to set up the app.

bbtinkerer universal remote Raspberry Pi zero

Bernard employed the Linux Infrared Remote Control (LIRC) package to control the television with the Raspberry Pi Zero, accessing the Zero via SSH. He gives a complete rundown of the installation process on Instructables.

bbtinkerer universal remote Raspberry Pi zero

Setting up a remote’s buttons with LIRC is a simple case of pressing them and naming their functions one by one. You’ll need the remote to set up the system, but after that, feel free to lock it in a drawer and use your smartphone instead.



Finally, Bernard created the web interface using Node.js, and again, because he’s lovely, he published the code for anyone wanting to build their own. Thanks, Bernard!

Life hacks

If you’ve used a Raspberry Pi to build a time-saving life hack like Bernard’s, be sure to share it with us. Other favourites of ours include fridge cameras, phone app doorbell notifications, and Alan’s ocarina home automation system. I’m not sure if this last one can truly be considered a time-saving life hack. It’s still cool though!

The post Turn your smartphone into a universal remote appeared first on Raspberry Pi.

Fake Santa Surveillance Camera

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/01/fake_santa_surv.html

Reka makes a “decorative Santa cam,” meaning that it’s not a real camera. Instead, it just gets children used to being under constant surveillance.

Our Santa Cam has a cute Father Christmas and mistletoe design, and a red, flashing LED light which will make the most logical kids suspend their disbelief and start to believe!

Thank you for my new Raspberry Pi, Santa! What next?

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/thank-you-for-my-new-raspberry-pi-santa-what-next/

Note: the Pi Towers team have peeled away from their desks to spend time with their families over the festive season, and this blog will be quiet for a while as a result. We’ll be back in the New Year with a bushel of amazing projects, awesome resources, and much merriment and fun times. Happy holidays to all!

Now back to the matter at hand. Your brand new Christmas Raspberry Pi.

Your new Raspberry Pi

Did you wake up this morning to find a new Raspberry Pi under the tree? Congratulations, and welcome to the Raspberry Pi community! You’re one of us now, and we’re happy to have you on board.

But what if you’ve never seen a Raspberry Pi before? What are you supposed to do with it? What’s all the fuss about, and why does your new computer look so naked?

Setting up your Raspberry Pi

Are you comfy? Good. Then let us begin.

Download our free operating system

First of all, you need to make sure you have an operating system on your micro SD card: we suggest Raspbian, the Raspberry Pi Foundation’s official supported operating system. If your Pi is part of a starter kit, you might find that it comes with a micro SD card that already has Raspbian preinstalled. If not, you can download Raspbian for free from our website.

An easy way to get Raspbian onto your SD card is to use a free tool called Etcher. Watch The MagPi’s Lucy Hattersley show you what you need to do. You can also use NOOBS to install Raspbian on your SD card, and our Getting Started guide explains how to do that.

Plug it in and turn it on

Your new Raspberry Pi 3 comes with four USB ports and an HDMI port. These allow you to plug in a keyboard, a mouse, and a television or monitor. If you have a Raspberry Pi Zero, you may need adapters to connect your devices to its micro USB and micro HDMI ports. Both the Raspberry Pi 3 and the Raspberry Pi Zero W have onboard wireless LAN, so you can connect to your home network, and you can also plug an Ethernet cable into the Pi 3.

Make sure to plug the power cable in last. There’s no ‘on’ switch, so your Pi will turn on as soon as you connect the power. Raspberry Pi uses a micro USB power supply, so you can use a phone charger if you didn’t receive one as part of a kit.

Learn with our free projects

If you’ve never used a Raspberry Pi before, or you’re new to the world of coding, the best place to start is our projects site. It’s packed with free projects that will guide you through the basics of coding and digital making. You can create projects right on your screen using Scratch and Python, connect a speaker to make music with Sonic Pi, and upgrade your skills to physical making using items from around your house.

Here’s James to show you how to build a whoopee cushion using a Raspberry Pi, paper plates, tin foil and a sponge:

Whoopee cushion PRANK with a Raspberry Pi: HOW-TO

Explore the world of Raspberry Pi physical computing with our free FutureLearn courses: http://rpf.io/futurelearn Free make your own Whoopi Cushion resource: http://rpf.io/whoopi For more information on Raspberry Pi and the charitable work of the Raspberry Pi Foundation, including Code Club and CoderDojo, visit http://rpf.io Our resources are free to use in schools, clubs, at home and at events.

Diving deeper

You’ve plundered our projects, you’ve successfully rigged every chair in the house to make rude noises, and now you want to dive deeper into digital making. Good! While you’re digesting your Christmas dinner, take a moment to skim through the Raspberry Pi blog for inspiration. You’ll find projects from across our worldwide community, with everything from home automation projects and retrofit upgrades, to robots, gaming systems, and cameras.

You’ll also find bucketloads of ideas in The MagPi magazine, the official monthly Raspberry Pi publication, available in both print and digital format. You can download every issue for free. If you subscribe, you’ll get a Raspberry Pi Zero W to add to your new collection. HackSpace magazine is another fantastic place to turn for Raspberry Pi projects, along with other maker projects and tutorials.

And, of course, simply typing “Raspberry Pi projects” into your preferred search engine will find thousands of ideas. Sites like Hackster, Hackaday, Instructables, Pimoroni, and Adafruit all have plenty of fab Raspberry Pi tutorials that they’ve devised themselves and that community members like you have created.

And finally

If you make something marvellous with your new Raspberry Pi – and we know you will – don’t forget to share it with us! Our Twitter, Facebook, Instagram and Google+ accounts are brimming with chatter, projects, and events. And our forums are a great place to visit if you have questions about your Raspberry Pi or if you need some help.

It’s good to get together with like-minded folks, so check out the growing Raspberry Jam movement. Raspberry Jams are community-run events where makers and enthusiasts can meet other makers, show off their projects, and join in with workshops and discussions. Find your nearest Jam here.

Have a great festive holiday and welcome to the community. We’ll see you in 2018!

The post Thank you for my new Raspberry Pi, Santa! What next? appeared first on Raspberry Pi.

The deep learning Santa/Not Santa detector

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/deep-learning-santa-detector/

Did you see Mommy kissing Santa Claus? Or was it simply an imposter? The Not Santa detector is here to help solve the mystery once and for all.

Building a “Not Santa” detector on the Raspberry Pi using deep learning, Keras, and Python

The video is a demo of my “Not Santa” detector that I deployed to the Raspberry Pi. I trained the detector using deep learning, Keras, and Python. You can find the full source code and tutorial here: https://www.pyimagesearch.com/2017/12/18/keras-deep-learning-raspberry-pi/

Ho-ho-how does it work?

Note: Adrian Rosebrock is not Santa. But he does a good enough impression of the jolly old fellow that his disguise can fool a Raspberry Pi into thinking otherwise.

Raspberry Pi 'Not Santa' detector

We jest, but has anyone seen Adrian and Santa in the same room together?
Image c/o Adrian Rosebrock

But how is the Raspberry Pi able to detect the Santa-ness or Not-Santa-ness of people who walk into the frame?

Two words: deep learning

If you’re not sure what deep learning is, you’re not alone. It’s a hefty topic, and one that Adrian has written a book about, so I grilled him for a bluffers’ guide. In his words, deep learning is:

…a subfield of machine learning, which is, in turn a subfield of artificial intelligence (AI). While AI embodies a large, diverse set of techniques and algorithms related to automatic reasoning (inference, planning, heuristics, etc), the machine learning subfields are specifically interested in pattern recognition and learning from data.

Artificial Neural Networks (ANNs) are a class of machine learning algorithms that can learn from data. We have been using ANNs successfully for over 60 years, but something special happened in the past 5 years — (1) we’ve been able to accumulate massive datasets, orders of magnitude larger than previous datasets, and (2) we have access to specialized hardware to train networks faster (i.e., GPUs).

Given these large datasets and specialized hardware, deeper neural networks can be trained, leading to the term “deep learning”.

So now we have a bird’s-eye view of deep learning, how does the detector detect?

Cameras and twinkly lights

Adrian used a model he had trained on two datasets to detect whether or not an image contains Santa. He deployed the Not Santa detector code to a Raspberry Pi, then attached a camera, speakers, and The Pi Hut’s 3D Xmas Tree.

Raspberry Pi 'Not Santa' detector

Components for Santa detection
Image c/o Adrian Rosebrock

The camera captures footage of Santa in the wild, while the Christmas tree add-on provides a twinkly notification, accompanied by a resonant ho, ho, ho from the speakers.

A deeper deep dive into deep learning

A full breakdown of the project and the workings of the Not Santa detector can be found on Adrian’s blog, PyImageSearch, which includes links to other deep learning and image classification tutorials using TensorFlow and Keras. It’s an excellent place to start if you’d like to understand more about deep learning.

Build your own Santa detector

Santa might catch on to Adrian’s clever detector and start avoiding the camera, and for that eventuality, we have our own Santa detector. It uses motion detection to notify you of his presence (and your presents!).

Raspberry Pi Santa detector

Check out our Santa Detector resource here and use a passive infrared sensor, Raspberry Pi, and Scratch to catch the big man in action.

The post The deep learning Santa/Not Santa detector appeared first on Raspberry Pi.

The Raspberry Pi Christmas shopping list 2017

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/christmas-shopping-list-2017/

Looking for the perfect Christmas gift for a beloved maker in your life? Maybe you’d like to give a relative or friend a taste of the world of coding and Raspberry Pi? Whatever you’re looking for, the Raspberry Pi Christmas shopping list will point you in the right direction.

An ice-skating Raspberry Pi - The Raspberry Pi Christmas Shopping List 2017

For those getting started

Thinking about introducing someone special to the wonders of Raspberry Pi during the holidays? Although you can set up your Pi with peripherals from around your home, such as a mobile phone charger, your PC’s keyboard, and the old mouse dwelling in an office drawer, a starter kit is a nice all-in-one package for the budding coder.



Check out the starter kits from Raspberry Pi Approved Resellers such as Pimoroni, The Pi Hut, ModMyPi, Adafruit, CanaKit…the list is pretty long. Our products page will direct you to your closest reseller, or you can head to element14 to pick up the official Raspberry Pi Starter Kit.



You can also buy the Raspberry Pi Press’s brand-new Raspberry Pi Beginners Book, which includes a Raspberry Pi Zero W, a case, a ready-made SD card, and adapter cables.

Once you’ve presented a lucky person with their first Raspberry Pi, it’s time for them to spread their maker wings and learn some new skills.

MagPi Essentials books - The Raspberry Pi Christmas Shopping List 2017

To help them along, you could pick your favourite from among the Official Projects Book volume 3, The MagPi Essentials guides, and the brand-new third edition of Carrie Anne Philbin’s Adventures in Raspberry Pi. (She is super excited about this new edition!)

And you can always add a link to our free resources on the gift tag.

For the maker in your life

If you’re looking for something for a confident digital maker, you can’t go wrong with adding to their arsenal of electric and electronic bits and bobs that are no doubt cluttering drawers and boxes throughout their house.



Components such as servomotors, displays, and sensors are staples of the maker world. And when it comes to jumper wires, buttons, and LEDs, one can never have enough.



You could also consider getting your person a soldering iron, some helpings hands, or small tools such as a Dremel or screwdriver set.

And to make their life a little less messy, pop it all inside a Really Useful Box…because they’re really useful.



For kit makers

While some people like to dive into making head-first and to build whatever comes to mind, others enjoy working with kits.



The Naturebytes kit allows you to record the animal visitors of your garden with the help of a camera and a motion sensor. Footage of your local badgers, birds, deer, and more will be saved to an SD card, or tweeted or emailed to you if it’s in range of WiFi.

Cortec Tiny 4WD - The Raspberry Pi Christmas Shopping List 2017

Coretec’s Tiny 4WD is a kit for assembling a Pi Zero–powered remote-controlled robot at home. Not only is the robot adorable, building it also a great introduction to motors and wireless control.



Bare Conductive’s Touch Board Pro Kit offers everything you need to create interactive electronics projects using conductive paint.

Pi Hut Arcade Kit - The Raspberry Pi Christmas Shopping List 2017

Finally, why not help your favourite maker create their own gaming arcade using the Arcade Building Kit from The Pi Hut?

For the reader

For those who like to curl up with a good read, or spend too much of their day on public transport, a book or magazine subscription is the perfect treat.

For makers, hackers, and those interested in new technologies, our brand-new HackSpace magazine and the ever popular community magazine The MagPi are ideal. Both are available via a physical or digital subscription, and new subscribers to The MagPi also receive a free Raspberry Pi Zero W plus case.

Cover of CoderDojo Nano Make your own game

Marc Scott Beginner's Guide to Coding Book

You can also check out other publications from the Raspberry Pi family, including CoderDojo’s new CoderDojo Nano: Make Your Own Game, Eben Upton and Gareth Halfacree’s Raspberry Pi User Guide, and Marc Scott’s A Beginner’s Guide to Coding. And have I mentioned Carrie Anne’s Adventures in Raspberry Pi yet?

Stocking fillers for everyone

Looking for something small to keep your loved ones occupied on Christmas morning? Or do you have to buy a Secret Santa gift for the office tech? Here are some wonderful stocking fillers to fill your boots with this season.

Pi Hut 3D Christmas Tree - The Raspberry Pi Christmas Shopping List 2017

The Pi Hut 3D Xmas Tree: available as both a pre-soldered and a DIY version, this gadget will work with any 40-pin Raspberry Pi and allows you to create your own mini light show.



Google AIY Voice kit: build your own home assistant using a Raspberry Pi, the MagPi Essentials guide, and this brand-new kit. “Google, play Mariah Carey again…”



Pimoroni’s Raspberry Pi Zero W Project Kits offer everything you need, including the Pi, to make your own time-lapse cameras, music players, and more.



The official Raspberry Pi Sense HAT, Camera Module, and cases for the Pi 3 and Pi Zero will complete the collection of any Raspberry Pi owner, while also opening up exciting project opportunities.

STEAM gifts that everyone will love

Awesome Astronauts | Building LEGO’s Women of NASA!

LEGO Idea’s bought out this amazing ‘Women of NASA’ set, and I thought it would be fun to build, play and learn from these inspiring women! First up, let’s discover a little more about Sally Ride and Mae Jemison, two AWESOME ASTRONAUTS!

Treat the kids, and big kids, in your life to the newest LEGO Ideas set, the Women of NASA — starring Nancy Grace Roman, Margaret Hamilton, Sally Ride, and Mae Jemison!



Explore the world of wearables with Pimoroni’s sewable, hackable, wearable, adorable Bearables kits.



Add lights and motors to paper creations with the Activating Origami Kit, available from The Pi Hut.




We all loved Hidden Figures, and the STEAM enthusiast you know will do too. The film’s available on DVD, and you can also buy the original book, along with other fascinating non-fiction such as Rebecca Skloot’s The Immortal Life of Henrietta Lacks, Rachel Ignotofsky’s Women in Science, and Sydney Padua’s (mostly true) The Thrilling Adventures of Lovelace and Babbage.

Have we missed anything?

With so many amazing kits, HATs, and books available from members of the Raspberry Pi community, it’s hard to only pick a few. Have you found something splendid for the maker in your life? Maybe you’ve created your own kit that uses the Raspberry Pi? Share your favourites with us in the comments below or via our social media accounts.

The post The Raspberry Pi Christmas shopping list 2017 appeared first on Raspberry Pi.

The AWS Cloud Goes Underground at re:Invent

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/the-aws-cloud-goes-underground-at-reinvent/

As you wander through the AWS re:Invent campus, take a minute to think about your expectations for all of the elements that need to come together…

Starting with the location, my colleagues have chosen the best venues, designed the sessions, picked the speakers, laid out the menu, selected the color schemes, programmed or printed all of the signs, and much more, all with the goal of creating an optimal learning environment for you and tens of thousands of other AWS customers.

However, as is often the case, the part that you can see is just a part of the picture. Behind the scenes, people, processes, plans, and systems come together to put all of this infrastructure in to place and to make it run so smoothly that you don’t usually notice it.

Today I would like to tell you about a mission-critical aspect of the re:Invent infrastructure that is actually underground. In addition to providing great Wi-Fi for your phones, tablets, cameras, laptops, and other devices, we need to make sure that a myriad of events, from the live-streamed keynotes, to the live-streamed keynotes and the WorkSpaces-powered hands-on labs are well-connected to each other and to the Internet. With events running at hotels up and down the Las Vegas Strip, reliable, low-latency connectivity is essential!

Thank You CenturyLink / Level3
Over the years we have been working with the great folks at Level3 to make this happen. They recently became part of CenturyLink and are now the Official Network Sponsor of re:Invent, responsible for the network fiber, circuits, and services that tie the re:Invent campus together.

To make this happen, they set up two miles of dark fiber beneath the Strip, routed to multiple Availability Zones in two separate AWS Regions. The Sands Expo Center is equipped with redundant 10 gigabit connections and the other venues (Aria, MGM, Mirage, and Wynn) are each provisioned for 2 to 10 gigabits, meaning that over half of the Strip is enabled for Direct Connect. According to the IT manager at one of the facilities, this may be the largest temporary hybrid network ever configured in Las Vegas.

On the Wi-Fi side, showNets is plugged in to the same network; your devices are talking directly to Direct Connect access points (how cool is that?).

Here’s a simplified illustration of how it all fits together:

The CenturyLink team will be onsite at re:Invent and will be tweeting live network stats throughout the week.

I hope you have enjoyed this quick look behind the scenes and beneath the street!

Jeff;