Tag Archives: keys

Backblaze and GDPR

Post Syndicated from Andy Klein original https://www.backblaze.com/blog/gdpr-compliance/

GDPR General Data Protection Regulation

Over the next few months the noise over GDPR will finally reach a crescendo. For the uninitiated, “GDPR” stands for “General Data Protection Regulation” and it goes into effect on May 25th of this year. GDPR is designed to protect how personal information of EU (European Union) citizens is collected, stored, and shared. The regulation should also improve transparency as to how personal information is managed by a business or organization.

Backblaze fully expects to be GDPR compliant when May 25th rolls around and we thought we’d share our experience along the way. We’ll start with this post as an introduction to GDPR. In future posts, we’ll dive into some of the details of the process we went through in meeting the GDPR objectives.

GDPR: A Two Way Street

To ensure we are GDPR compliant, Backblaze has assembled a dedicated internal team, engaged outside counsel in the United Kingdom, and consulted with other tech companies on best practices. While it is a sizable effort on our part, we view this as a waypoint in our ongoing effort to secure and protect our customers’ data and to be transparent in how we work as a company.

In addition to the effort we are putting into complying with the regulation, we think it is important to underscore and promote the idea that data privacy and security is a two-way street. We can spend millions of dollars on protecting the security of our systems, but we can’t stop a bad actor from finding and using your account credentials left on a note stuck to your monitor. We can give our customers tools like two factor authentication and private encryption keys, but it is the partnership with our customers that is the most powerful protection. The same thing goes for your digital privacy — we’ll do our best to protect your information, but we will need your help to do so.

Why GDPR is Important

At the center of GDPR is the protection of Personally Identifiable Information or “PII.” The definition for PII is information that can be used stand-alone or in concert with other information to identify a specific person. This includes obvious data like: name, address, and phone number, less obvious data like email address and IP address, and other data such as a credit card number, and unique identifiers that can be decoded back to the person.

How Will GDPR Affect You as an Individual

If you are a citizen in the EU, GDPR is designed to protect your private information from being used or shared without your permission. Technically, this only applies when your data is collected, processed, stored or shared outside of the EU, but it’s a good practice to hold all of your service providers to the same standard. For example, when you are deciding to sign up with a service, you should be able to quickly access and understand what personal information is being collected, why it is being collected, and what the business can do with that information. These terms are typically found in “Terms and Conditions” and “Privacy Policy” documents, or perhaps in a written contract you signed before starting to use a given service or product.

Even if you are not a citizen of the EU, GDPR will still affect you. Why? Because nearly every company you deal with, especially online, will have customers that live in the EU. It makes little sense for Backblaze, or any other service provider or vendor, to create a separate set of rules for just EU citizens. In practice, protection of private information should be more accountable and transparent with GDPR.

How Will GDPR Affect You as a Backblaze Customer

Over the coming months Backblaze customers will see changes to our current “Terms and Conditions,” “Privacy Policy,” and to our Backblaze services. While the changes to the Backblaze services are expected to be minimal, the “terms and privacy” documents will change significantly. The changes will include among other things the addition of a group of model clauses and related materials. These clauses will be generally consistent across all GDPR compliant vendors and are meant to be easily understood so that a customer can easily determine how their PII is being collected and used.

Common GDPR Questions:

Here are a few of the more common questions we have heard regarding GDPR.

  1. GDPR will only affect citizens in the EU.
    Answer: The changes that are being made by companies such as Backblaze to comply with GDPR will almost certainly apply to customers from all countries. And that’s a good thing. The protections afforded to EU citizens by GDPR are something all users of our service should benefit from.
  2. After May 25, 2018, a citizen of the EU will not be allowed to use any applications or services that store data outside of the EU.
    Answer: False, no one will stop you as an EU citizen from using the internet-based service you choose. But, you should make sure you know where your data is being collected, processed, and stored. If any of those activities occur outside the EU, make sure the company is following the GDPR guidelines.
  3. My business only has a few EU citizens as customers, so I don’t need to care about GDPR?
    Answer: False, even if you have just one EU citizen as a customer, and you capture, process or store data their PII outside of the EU, you need to comply with GDPR.
  4. Companies can be fined millions of dollars for not complying with GDPR.
    True, but: the regulation allows for companies to be fined up to $4 Million dollars or 20% of global revenue (whichever is greater) if they don’t comply with GDPR. In practice, the feeling is that such fines will be reserved (at least initially) for egregious violators that ignore or merely give “lip-service” to GDPR.
  5. You’ll be able to tell a company is GDPR compliant because they have a “GDPR Certified” badge on their website.
    Answer: There is no official GDPR certification or an official GDPR certification program. Companies that comply with GDPR are expected to follow the articles in the regulation and it should be clear from the outside looking in that they have followed the regulations. For example, their “Terms and Conditions,” and “Privacy Policy” should clearly spell out how and why they collect, use, and share your information. At some point a real GDPR certification program may be adopted, but not yet.

For all the hoopla about GDPR, the regulation is reasonably well thought out and addresses a very important issue — people’s privacy online. Creating a best practices document, or in this case a regulation, that companies such as Backblaze can follow is a good idea. The document isn’t perfect, and over the coming years we expect there to be changes. One thing we hope for is that the countries within the EU continue to stand behind one regulation and not fragment the document into multiple versions, each applying to themselves. We believe that having multiple different GDPR versions for different EU countries would lead to less protection overall of EU citizens.

In summary, GDPR changes are coming over the next few months. Backblaze has our internal staff and our EU-based legal council working diligently to ensure that we will be GDPR compliant by May 25th. We believe that GDPR will have a positive effect in enhancing the protection of personally identifiable information for not only EU citizens, but all of our Backblaze customers.

The post Backblaze and GDPR appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

The Fisher Piano: make music in the air

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/air-piano/

Piano keys are so limiting! Why not swap them out for LEDs and the wealth of instruments in Pygame to build air keys, as demonstrated by Instructables maker 2fishy?

Raspberry Pi LED Light Schroeder Piano – Twinkle Little Star

Raspberry Pi LED Light Schroeder Piano – Twinkle Little Star

Keys? Where we’re going you don’t need keys!

This project, created by either Yolanda or Ken Fisher (or both!), uses an array of LEDs and photoresistors to form a MIDI sequencer. Twelve LEDs replace piano keys, and another three change octaves and access the menu.

Each LED is paired with a photoresistor, which detects the emitted light to form a closed circuit. Interrupting the light beam — in this case with a finger — breaks the circuit, telling the Python program to perform an action.

2fishy LED light piano raspberry pi

We’re all hoping this is just the scaled-down prototype of a full-sized LED grand piano

Using Pygame, the 2fishy team can access 75 different instruments and 128 notes per instrument, making their wooden piano more than just a one-hit wonder.

Piano building

The duo made the piano’s body out of plywood, hardboard, and dowels, and equipped it with a Raspberry Pi 2, a speaker, and the aforementioned LEDs and photoresistors.

2fishy LED light piano raspberry pi

A Raspberry Pi 2 and speaker sit within the wooden body, with LEDs and photoresistors in place of the keys.

A complete how-to for the build, including some rather fancy and informative schematics, is available at Instructables, where 2fishy received a bronze medal for their project. Congratulations!

Learn more

If you’d like to learn more about using Pygame, check out The MagPi’s Make Games with Python Essentials Guide, available both in print and as a free PDF download.

And for more music-based projects using a variety of tech, be sure to browse our free resources.

Lastly, if you’d like to see more piano-themed Raspberry Pi projects, take a look at our Big Minecraft Piano, these brilliant piano stairs, this laser-guided piano teacher, and our video below about the splendid Street Fighter duelling pianos we witnessed at Maker Faire.

Pianette: Piano Street Fighter at Maker Faire NYC 2016

Two pianos wired up as Playstation 2 controllers allow users to battle…musically! We caught up with makers Eric Redon and Cyril Chapellier of foobarflies a…

The post The Fisher Piano: make music in the air appeared first on Raspberry Pi.

Sharing Secrets with AWS Lambda Using AWS Systems Manager Parameter Store

Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/sharing-secrets-with-aws-lambda-using-aws-systems-manager-parameter-store/

This post courtesy of Roberto Iturralde, Sr. Application Developer- AWS Professional Services

Application architects are faced with key decisions throughout the process of designing and implementing their systems. One decision common to nearly all solutions is how to manage the storage and access rights of application configuration. Shared configuration should be stored centrally and securely with each system component having access only to the properties that it needs for functioning.

With AWS Systems Manager Parameter Store, developers have access to central, secure, durable, and highly available storage for application configuration and secrets. Parameter Store also integrates with AWS Identity and Access Management (IAM), allowing fine-grained access control to individual parameters or branches of a hierarchical tree.

This post demonstrates how to create and access shared configurations in Parameter Store from AWS Lambda. Both encrypted and plaintext parameter values are stored with only the Lambda function having permissions to decrypt the secrets. You also use AWS X-Ray to profile the function.

Solution overview

This example is made up of the following components:

  • An AWS SAM template that defines:
    • A Lambda function and its permissions
    • An unencrypted Parameter Store parameter that the Lambda function loads
    • A KMS key that only the Lambda function can access. You use this key to create an encrypted parameter later.
  • Lambda function code in Python 3.6 that demonstrates how to load values from Parameter Store at function initialization for reuse across invocations.

Launch the AWS SAM template

To create the resources shown in this post, you can download the SAM template or choose the button to launch the stack. The template requires one parameter, an IAM user name, which is the name of the IAM user to be the admin of the KMS key that you create. In order to perform the steps listed in this post, this IAM user will need permissions to execute Lambda functions, create Parameter Store parameters, administer keys in KMS, and view the X-Ray console. If you have these privileges in your IAM user account you can use your own account to complete the walkthrough. You can not use the root user to administer the KMS keys.

SAM template resources

The following sections show the code for the resources defined in the template.
Lambda function

    Type: 'AWS::Serverless::Function'
      FunctionName: 'ParameterStoreBlogFunctionDev'
      Description: 'Integrating lambda with Parameter Store'
      Handler: 'lambda_function.lambda_handler'
      Role: !GetAtt ParameterStoreBlogFunctionRoleDev.Arn
      CodeUri: './code'
          ENV: 'dev'
          APP_CONFIG_PATH: 'parameterStoreBlog'
          AWS_XRAY_TRACING_NAME: 'ParameterStoreBlogFunctionDev'
      Runtime: 'python3.6'
      Timeout: 5
      Tracing: 'Active'

    Type: AWS::IAM::Role
        Version: '2012-10-17'
            Effect: Allow
                - 'lambda.amazonaws.com'
              - 'sts:AssumeRole'
        - 'arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole'
          PolicyName: 'ParameterStoreBlogDevParameterAccess'
            Version: '2012-10-17'
                Effect: Allow
                  - 'ssm:GetParameter*'
                Resource: !Sub 'arn:aws:ssm:${AWS::Region}:${AWS::AccountId}:parameter/dev/parameterStoreBlog*'
          PolicyName: 'ParameterStoreBlogDevXRayAccess'
            Version: '2012-10-17'
                Effect: Allow
                  - 'xray:PutTraceSegments'
                  - 'xray:PutTelemetryRecords'
                Resource: '*'

In this YAML code, you define a Lambda function named ParameterStoreBlogFunctionDev using the SAM AWS::Serverless::Function type. The environment variables for this function include the ENV (dev) and the APP_CONFIG_PATH where you find the configuration for this app in Parameter Store. X-Ray tracing is also enabled for profiling later.

The IAM role for this function extends the AWSLambdaBasicExecutionRole by adding IAM policies that grant the function permissions to write to X-Ray and get parameters from Parameter Store, limited to paths under /dev/parameterStoreBlog*.
Parameter Store parameter

    Type: AWS::SSM::Parameter
      Name: '/dev/parameterStoreBlog/appConfig'
      Description: 'Sample dev config values for my app'
      Type: String
      Value: '{"key1": "value1","key2": "value2","key3": "value3"}'

This YAML code creates a plaintext string parameter in Parameter Store in a path that your Lambda function can access.
KMS encryption key

    Type: AWS::KMS::Alias
      AliasName: 'alias/ParameterStoreBlogKeyDev'
      TargetKeyId: !Ref ParameterStoreBlogDevEncryptionKey

    Type: AWS::KMS::Key
      Description: 'Encryption key for secret config values for the Parameter Store blog post'
      Enabled: True
      EnableKeyRotation: False
        Version: '2012-10-17'
        Id: 'key-default-1'
            Sid: 'Allow administration of the key & encryption of new values'
            Effect: Allow
                - !Sub 'arn:aws:iam::${AWS::AccountId}:user/${IAMUsername}'
              - 'kms:Create*'
              - 'kms:Encrypt'
              - 'kms:Describe*'
              - 'kms:Enable*'
              - 'kms:List*'
              - 'kms:Put*'
              - 'kms:Update*'
              - 'kms:Revoke*'
              - 'kms:Disable*'
              - 'kms:Get*'
              - 'kms:Delete*'
              - 'kms:ScheduleKeyDeletion'
              - 'kms:CancelKeyDeletion'
            Resource: '*'
            Sid: 'Allow use of the key'
            Effect: Allow
              AWS: !GetAtt ParameterStoreBlogFunctionRoleDev.Arn
              - 'kms:Encrypt'
              - 'kms:Decrypt'
              - 'kms:ReEncrypt*'
              - 'kms:GenerateDataKey*'
              - 'kms:DescribeKey'
            Resource: '*'

This YAML code creates an encryption key with a key policy with two statements.

The first statement allows a given user (${IAMUsername}) to administer the key. Importantly, this includes the ability to encrypt values using this key and disable or delete this key, but does not allow the administrator to decrypt values that were encrypted with this key.

The second statement grants your Lambda function permission to encrypt and decrypt values using this key. The alias for this key in KMS is ParameterStoreBlogKeyDev, which is how you reference it later.

Lambda function

Here I walk you through the Lambda function code.

import os, traceback, json, configparser, boto3
from aws_xray_sdk.core import patch_all

# Initialize boto3 client at global scope for connection reuse
client = boto3.client('ssm')
env = os.environ['ENV']
app_config_path = os.environ['APP_CONFIG_PATH']
full_config_path = '/' + env + '/' + app_config_path
# Initialize app at global scope for reuse across invocations
app = None

class MyApp:
    def __init__(self, config):
        Construct new MyApp with configuration
        :param config: application configuration
        self.config = config

    def get_config(self):
        return self.config

def load_config(ssm_parameter_path):
    Load configparser from config stored in SSM Parameter Store
    :param ssm_parameter_path: Path to app config in SSM Parameter Store
    :return: ConfigParser holding loaded config
    configuration = configparser.ConfigParser()
        # Get all parameters for this app
        param_details = client.get_parameters_by_path(

        # Loop through the returned parameters and populate the ConfigParser
        if 'Parameters' in param_details and len(param_details.get('Parameters')) > 0:
            for param in param_details.get('Parameters'):
                param_path_array = param.get('Name').split("/")
                section_position = len(param_path_array) - 1
                section_name = param_path_array[section_position]
                config_values = json.loads(param.get('Value'))
                config_dict = {section_name: config_values}
                print("Found configuration: " + str(config_dict))

        print("Encountered an error loading config from SSM.")
        return configuration

def lambda_handler(event, context):
    global app
    # Initialize app if it doesn't yet exist
    if app is None:
        print("Loading config and creating new MyApp...")
        config = load_config(full_config_path)
        app = MyApp(config)

    return "MyApp config is " + str(app.get_config()._sections)

Beneath the import statements, you import the patch_all function from the AWS X-Ray library, which you use to patch boto3 to create X-Ray segments for all your boto3 operations.

Next, you create a boto3 SSM client at the global scope for reuse across function invocations, following Lambda best practices. Using the function environment variables, you assemble the path where you expect to find your configuration in Parameter Store. The class MyApp is meant to serve as an example of an application that would need its configuration injected at construction. In this example, you create an instance of ConfigParser, a class in Python’s standard library for handling basic configurations, to give to MyApp.

The load_config function loads the all the parameters from Parameter Store at the level immediately beneath the path provided in the Lambda function environment variables. Each parameter found is put into a new section in ConfigParser. The name of the section is the name of the parameter, less the base path. In this example, the full parameter name is /dev/parameterStoreBlog/appConfig, which is put in a section named appConfig.

Finally, the lambda_handler function initializes an instance of MyApp if it doesn’t already exist, constructing it with the loaded configuration from Parameter Store. Then it simply returns the currently loaded configuration in MyApp. The impact of this design is that the configuration is only loaded from Parameter Store the first time that the Lambda function execution environment is initialized. Subsequent invocations reuse the existing instance of MyApp, resulting in improved performance. You see this in the X-Ray traces later in this post. For more advanced use cases where configuration changes need to be received immediately, you could implement an expiry policy for your configuration entries or push notifications to your function.

To confirm that everything was created successfully, test the function in the Lambda console.

  1. Open the Lambda console.
  2. In the navigation pane, choose Functions.
  3. In the Functions pane, filter to ParameterStoreBlogFunctionDev to find the function created by the SAM template earlier. Open the function name to view its details.
  4. On the top right of the function detail page, choose Test. You may need to create a new test event. The input JSON doesn’t matter as this function ignores the input.

After running the test, you should see output similar to the following. This demonstrates that the function successfully fetched the unencrypted configuration from Parameter Store.

Create an encrypted parameter

You currently have a simple, unencrypted parameter and a Lambda function that can access it.

Next, you create an encrypted parameter that only your Lambda function has permission to use for decryption. This limits read access for this parameter to only this Lambda function.

To follow along with this section, deploy the SAM template for this post in your account and make your IAM user name the KMS key admin mentioned earlier.

  1. In the Systems Manager console, under Shared Resources, choose Parameter Store.
  2. Choose Create Parameter.
    • For Name, enter /dev/parameterStoreBlog/appSecrets.
    • For Type, select Secure String.
    • For KMS Key ID, choose alias/ParameterStoreBlogKeyDev, which is the key that your SAM template created.
    • For Value, enter {"secretKey": "secretValue"}.
    • Choose Create Parameter.
  3. If you now try to view the value of this parameter by choosing the name of the parameter in the parameters list and then choosing Show next to the Value field, you won’t see the value appear. This is because, even though you have permission to encrypt values using this KMS key, you do not have permissions to decrypt values.
  4. In the Lambda console, run another test of your function. You now also see the secret parameter that you created and its decrypted value.

If you do not see the new parameter in the Lambda output, this may be because the Lambda execution environment is still warm from the previous test. Because the parameters are loaded at Lambda startup, you need a fresh execution environment to refresh the values.

Adjust the function timeout to a different value in the Advanced Settings at the bottom of the Lambda Configuration tab. Choose Save and test to trigger the creation of a new Lambda execution environment.

Profiling the impact of querying Parameter Store using AWS X-Ray

By using the AWS X-Ray SDK to patch boto3 in your Lambda function code, each invocation of the function creates traces in X-Ray. In this example, you can use these traces to validate the performance impact of your design decision to only load configuration from Parameter Store on the first invocation of the function in a new execution environment.

From the Lambda function details page where you tested the function earlier, under the function name, choose Monitoring. Choose View traces in X-Ray.

This opens the X-Ray console in a new window filtered to your function. Be aware of the time range field next to the search bar if you don’t see any search results.
In this screenshot, I’ve invoked the Lambda function twice, one time 10.3 minutes ago with a response time of 1.1 seconds and again 9.8 minutes ago with a response time of 8 milliseconds.

Looking at the details of the longer running trace by clicking the trace ID, you can see that the Lambda function spent the first ~350 ms of the full 1.1 sec routing the request through Lambda and creating a new execution environment for this function, as this was the first invocation with this code. This is the portion of time before the initialization subsegment.

Next, it took 725 ms to initialize the function, which includes executing the code at the global scope (including creating the boto3 client). This is also a one-time cost for a fresh execution environment.

Finally, the function executed for 65 ms, of which 63.5 ms was the GetParametersByPath call to Parameter Store.

Looking at the trace for the second, much faster function invocation, you see that the majority of the 8 ms execution time was Lambda routing the request to the function and returning the response. Only 1 ms of the overall execution time was attributed to the execution of the function, which makes sense given that after the first invocation you’re simply returning the config stored in MyApp.

While the Traces screen allows you to view the details of individual traces, the X-Ray Service Map screen allows you to view aggregate performance data for all traced services over a period of time.

In the X-Ray console navigation pane, choose Service map. Selecting a service node shows the metrics for node-specific requests. Selecting an edge between two nodes shows the metrics for requests that traveled that connection. Again, be aware of the time range field next to the search bar if you don’t see any search results.

After invoking your Lambda function several more times by testing it from the Lambda console, you can view some aggregate performance metrics. Look at the following:

  • From the client perspective, requests to the Lambda service for the function are taking an average of 50 ms to respond. The function is generating ~1 trace per minute.
  • The function itself is responding in an average of 3 ms. In the following screenshot, I’ve clicked on this node, which reveals a latency histogram of the traced requests showing that over 95% of requests return in under 5 ms.
  • Parameter Store is responding to requests in an average of 64 ms, but note the much lower trace rate in the node. This is because you only fetch data from Parameter Store on the initialization of the Lambda execution environment.


Deduplication, encryption, and restricted access to shared configuration and secrets is a key component to any mature architecture. Serverless architectures designed using event-driven, on-demand, compute services like Lambda are no different.

In this post, I walked you through a sample application accessing unencrypted and encrypted values in Parameter Store. These values were created in a hierarchy by application environment and component name, with the permissions to decrypt secret values restricted to only the function needing access. The techniques used here can become the foundation of secure, robust configuration management in your enterprise serverless applications.

Now Available: Encryption at Rest for Amazon DynamoDB

Post Syndicated from Nitin Sagar original https://aws.amazon.com/blogs/security/now-available-encryption-at-rest-for-amazon-dynamodb/

Today, AWS announced Amazon DynamoDB encryption at rest, a new DynamoDB feature that gives you enhanced security of your data at rest by encrypting it using your associated AWS Key Management Service encryption keys. Encryption at rest can help you meet your security requirements for regulatory compliance.

You now can create an encrypted DynamoDB table anytime with a single click in the AWS Management Console or a single API call. Encrypting DynamoDB data has no impact on table performance. DynamoDB encryption at rest is available starting today in the US East (N. Virginia), US East (Ohio), US West (Oregon), and Europe (Ireland) Regions for no additional fees.

For more information, see the full AWS Blog post.

– Nitin

Give Your WordPress Blog a Voice With Our New Amazon Polly Plugin

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/give-your-wordpress-blog-a-voice-with-our-new-amazon-polly-plugin/

I first told you about Polly in late 2016 in my post Amazon Polly – Text to Speech in 47 Voices and 24 Languages. After that AWS re:Invent launch, we added support for Korean, five new voices, and made Polly available in all Regions in the aws partition. We also added whispering, speech marks, a timbre effect, and dynamic range compression.

New WordPress Plugin
Today we are launching a WordPress plugin that uses Polly to create high-quality audio versions of your blog posts. You can access the audio from within the post or in podcast form using a feature that we call Amazon Pollycast! Both options make your content more accessible and can help you to reach a wider audience. This plugin was a joint effort between the AWS team our friends at AWS Advanced Technology Partner WP Engine.

As you will see, the plugin is easy to install and configure. You can use it with installations of WordPress that you run on your own infrastructure or on AWS. Either way, you have access to all of Polly’s voices along with a wide variety of configuration options. The generated audio (an MP3 file for each post) can be stored alongside your WordPress content, or in Amazon Simple Storage Service (S3), with optional support for content distribution via Amazon CloudFront.

Installing the Plugin
I did not have an existing WordPress-powered blog, so I begin by launching a Lightsail instance using the WordPress 4.8.1 blueprint:

Then I follow these directions to access my login credentials:

Credentials in hand, I log in to the WordPress Dashboard:

The plugin makes calls to AWS, and needs to have credentials in order to do so. I hop over to the IAM Console and created a new policy. The policy allows the plugin to access a carefully selected set of S3 and Polly functions (find the full policy in the README):

Then I create an IAM user (wp-polly-user). I enter the name and indicate that it will be used for Programmatic Access:

Then I attach the policy that I just created, and click on Review:

I review my settings (not shown) and then click on Create User. Then I copy the two values (Access Key ID and Secret Access Key) into a secure location. Possession of these keys allows the bearer to make calls to AWS so I take care not to leave them lying around.

Now I am ready to install the plugin! I go back to the WordPress Dashboard and click on Add New in the Plugins menu:

Then I click on Upload Plugin and locate the ZIP file that I downloaded from the WordPress Plugins site. After I find it I click on Install Now to proceed:

WordPress uploads and installs the plugin. Now I click on Activate Plugin to move ahead:

With the plugin installed, I click on Settings to set it up:

I enter my keys and click on Save Changes:

The General settings let me control the sample rate, voice, player position, the default setting for new posts, and the autoplay option. I can leave all of the settings as-is to get started:

The Cloud Storage settings let me store audio in S3 and to use CloudFront to distribute the audio:

The Amazon Pollycast settings give me control over the iTunes parameters that are included in the generated RSS feed:

Finally, the Bulk Update button lets me regenerate all of the audio files after I change any of the other settings:

With the plugin installed and configured, I can create a new post. As you can see, the plugin can be enabled and customized for each post:

I can see how much it will cost to convert to audio with a click:

When I click on Publish, the plugin breaks the text into multiple blocks on sentence boundaries, calls the Polly SynthesizeSpeech API for each block, and accumulates the resulting audio in a single MP3 file. The published blog post references the file using the <audio> tag. Here’s the post:

I can’t seem to use an <audio> tag in this post, but you can download and play the MP3 file yourself if you’d like.

The Pollycast feature generates an RSS file with links to an MP3 file for each post:

The plugin will make calls to Amazon Polly each time the post is saved or updated. Pricing is based on the number of characters in the speech requests, as described on the Polly Pricing page. Also, the AWS Free Tier lets you process up to 5 million characters per month at no charge, for a period of one year that starts when you make your first call to Polly.

Going Further
The plugin is available on GitHub in source code form and we are looking forward to your pull requests! Here are a couple of ideas to get you started:

Voice Per Author – Allow selection of a distinct Polly voice for each author.

Quoted Text – For blogs that make frequent use of embedded quotes, use a distinct voice for the quotes.

Translation – Use Amazon Translate to translate the texts into another language, and then use Polly to generate audio in that language.

Other Blogging Engines – Build a similar plugin for your favorite blogging engine.

SSML Support – Figure out an interesting way to use Polly’s SSML tags to add additional character to the audio.

Let me know what you come up with!



Cabinet of Secret Documents from Australia

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/02/cabinet_of_secr.html

This story of leaked Australian government secrets is unlike any other I’ve heard:

It begins at a second-hand shop in Canberra, where ex-government furniture is sold off cheaply.

The deals can be even cheaper when the items in question are two heavy filing cabinets to which no-one can find the keys.

They were purchased for small change and sat unopened for some months until the locks were attacked with a drill.

Inside was the trove of documents now known as The Cabinet Files.

The thousands of pages reveal the inner workings of five separate governments and span nearly a decade.

Nearly all the files are classified, some as “top secret” or “AUSTEO”, which means they are to be seen by Australian eyes only.

Yes, that really happened. The person who bought and opened the file cabinets contacted the Australian Broadcasting Corp, who is now publishing a bunch of it.

There’s lots of interesting (and embarassing) stuff in the documents, although most of it is local politics. I am more interested in the government’s reaction to the incident: they’re pushing for a law making it illegal for the press to publish government secrets it received through unofficial channels.

“The one thing I would point out about the legislation that does concern me particularly is that classified information is an element of the offence,” he said.

“That is to say, if you’ve got a filing cabinet that is full of classified information … that means all the Crown has to prove if they’re prosecuting you is that it is classified ­ nothing else.

“They don’t have to prove that you knew it was classified, so knowledge is beside the point.”


Many groups have raised concerns, including media organisations who say they unfairly target journalists trying to do their job.

But really anyone could be prosecuted just for possessing classified information, regardless of whether they know about it.

That might include, for instance, if you stumbled across a folder of secret files in a regular skip bin while walking home and handed it over to a journalist.

This illustrates a fundamental misunderstanding of the threat. The Australian Broadcasting Corp gets their funding from the government, and was very restrained in what they published. They waited months before publishing as they coordinated with the Australian government. They allowed the government to secure the files, and then returned them. From the government’s perspective, they were the best possible media outlet to receive this information. If the government makes it illegal for the Australian press to publish this sort of material, the next time it will be sent to the BBC, the Guardian, the New York Times, or Wikileaks. And since people no longer read their news from newspapers sold in stores but on the Internet, the result will be just as many people reading the stories with far fewer redactions.

The proposed law is older than this leak, but the leak is giving it new life. The Australian opposition party is being cagey on whether they will support the law. They don’t want to appear weak on national security, so I’m not optimistic.

EDITED TO ADD (2/8): The Australian government backed down on that new security law.

EDITED TO ADD (2/13): Excellent political cartoon.

SUPER game night 3: GAMES MADE QUICK??? 2.0

Post Syndicated from Eevee original https://eev.ee/blog/2018/01/23/super-game-night-3-games-made-quick-2-0/

Game night continues with a smorgasbord of games from my recent game jam, GAMES MADE QUICK??? 2.0!

The idea was to make a game in only a week while watching AGDQ, as an alternative to doing absolutely nothing for a week while watching AGDQ. (I didn’t submit a game myself; I was chugging along on my Anise game, which isn’t finished yet.)

I can’t very well run a game jam and not play any of the games, so here’s some of them in no particular order! Enjoy!

These are impressions, not reviews. I try to avoid major/ending spoilers, but big plot points do tend to leave impressions.

Weather Quest, by timlmul

short · rpg · jan 2017 · (lin)/mac/win · free on itch · jam entry

Weather Quest is its author’s first shipped game, written completely from scratch (the only vendored code is a micro OO base). It’s very short, but as someone who has also written LÖVE games completely from scratch, I can attest that producing something this game-like in a week is a fucking miracle. Bravo!

For reference, a week into my first foray, I think I was probably still writing my own Tiled importer like an idiot.

Only Mac and Windows builds are on itch, but it’s a LÖVE game, so Linux folks can just grab a zip from GitHub and throw that at love.


Pancake Numbers Simulator, by AnorakThePrimordial

short · sim · jan 2017 · lin/mac/win · free on itch · jam entry

Given a stack of N pancakes (of all different sizes and in no particular order), the Nth pancake number is the most flips you could possibly need to sort the pancakes in order with the smallest on top. A “flip” is sticking a spatula under one of the pancakes and flipping the whole sub-stack over. There’s, ah, a video embedded on the game page with some visuals.

Anyway, this game lets you simulate sorting a stack via pancake flipping, which is surprisingly satisfying! I enjoy cleaning up little simulated messes, such as… incorrectly-sorted pancakes, I guess?

This probably doesn’t work too well as a simulator for solving the general problem — you’d have to find an optimal solution for every permutation of N pancakes to be sure you were right. But it’s a nice interactive illustration of the problem, and if you know the pancake number for your stack size of choice (which I wish the game told you — for seven pancakes, it’s 8), then trying to restore a stack in that many moves makes for a nice quick puzzle.

FINAL SCORE: \(\frac{18}{11}\)

Framed Animals, by chridd

short · metroidvania · jan 2017 · web/win · free on itch · jam entry

The concept here was to kill the frames, save the animals, which is a delightfully literal riff on a long-running AGDQ/SGDQ donation incentive — people vote with their dollars to decide whether Super Metroid speedrunners go out of their way to free the critters who show you how to walljump and shinespark. Super Metroid didn’t have a showing at this year’s AGDQ, and so we have this game instead.

It’s rough, but clever, and I got really into it pretty quickly — each animal you save gives you a new ability (in true Metroid style), and you get to test that ability out by playing as the animal, with only that ability and no others, to get yourself back to the most recent save point.

I did, tragically, manage to get myself stuck near what I think was about to be the end of the game, so some of the animals will remain framed forever. What an unsatisfying conclusion.

Gravity feels a little high given the size of the screen, and like most tile-less platformers, there’s not really any way to gauge how high or long your jump is before you leap. But I’m only even nitpicking because I think this is a great idea and I hope the author really does keep working on it.

FINAL SCORE: $136,596.69

Battle 4 Glory, by Storyteller Games

short · fighter · jan 2017 · win · free on itch · jam entry

This is a Smash Bros-style brawler, complete with the four players, the 2D play area in a 3D world, and the random stage obstacles showing up. I do like the Smash style, despite not otherwise being a fan of fighting games, so it’s nice to see another game chase that aesthetic.

Alas, that’s about as far as it got — which is pretty far for a week of work! I don’t know what more to say, though. The environments are neat, but unless I’m missing something, the only actions at your disposal are jumping and very weak melee attacks. I did have a good few minutes of fun fruitlessly mashing myself against the bumbling bots, as you can see.


Icnaluferu Guild, Year Sixteen, by CHz

short · adventure · jan 2017 · web · free on itch · jam entry

Here we have the first of several games made with bitsy, a micro game making tool that basically only supports walking around, talking to people, and picking up items.

I tell you this because I think half of my appreciation for this game is in the ways it wriggled against those limits to emulate a Zelda-like dungeon crawler. Everything in here is totally fake, and you can’t really understand just how fake unless you’ve tried to make something complicated with bitsy.

It’s pretty good. The dialogue is entertaining (the rest of your party develops distinct personalities solely through oneliners, somehow), the riffs on standard dungeon fare are charming, and the Link’s Awakening-esque perspective walls around the edges of each room are fucking glorious.


The Lonely Tapes, by JTHomeslice

short · rpg · jan 2017 · web · free on itch · jam entry

Another bitsy entry, this one sees you play as a Wal— sorry, a JogDawg, which has lost its cassette tapes and needs to go recover them!

(A cassette tape is like a VHS, but for music.)

(A VHS is—)

I have the sneaking suspicion that I missed out on some musical in-jokes, due to being uncultured swine. I still enjoyed the game — it’s always clear when someone is passionate about the thing they’re writing about, and I could tell I was awash in that aura even if some of it went over my head. You know you’ve done good if someone from way outside your sphere shows up and still has a good time.

FINAL SCORE: Nine… Inch Nails? They’re a band, right? God I don’t know write your own damn joke

Pirate Kitty-Quest, by TheKoolestKid

short · adventure · jan 2017 · win · free on itch · jam entry

I completely forgot I’d even given “my birthday” and “my cat” as mostly-joking jam themes until I stumbled upon this incredible gem. I don’t think — let me just check here and — yeah no this person doesn’t even follow me on Twitter. I have no idea who they are?




This game wins the jam, hands down. 🏆

FINAL SCORE: Yarr, eight pieces o’ eight

CHIPS Mario, by NovaSquirrel

short · platformer · jan 2017 · (lin/mac)/win · free on itch · jam entry

You see this? This is fucking witchcraft.

This game is made with MegaZeux. MegaZeux games look like THIS. Text-mode, bound to a grid, with two colors per cell. That’s all you get.

Until now, apparently?? The game is a tech demo of “unbound” sprites, which can be drawn on top of the character grid without being aligned to it. And apparently have looser color restrictions.

The collision is a little glitchy, which isn’t surprising for a MegaZeux platformer; I had some fun interactions with platforms a couple times. But hey, goddamn, it’s free-moving Mario, in MegaZeux, what the hell.

(I’m looking at the most recently added games on DigitalMZX now, and I notice that not only is this game in the first slot, but NovaSquirrel’s MegaZeux entry for Strawberry Jam last February is still in the seventh slot. RIP, MegaZeux. I’m surprised a major feature like this was even added if the community has largely evaporated?)

FINAL SCORE: n/a, disqualified for being probably summoned from the depths of Hell

d!¢< pic, by 573 Games

short · story · jan 2017 · web · free on itch · jam entry

This is a short story about not sending dick pics. It’s very short, so I can’t say much without spoiling it, but: you are generally prompted to either text something reasonable, or send a dick pic. You should not send a dick pic.

It’s a fascinating artifact, not because of the work itself, but because it’s so terse that I genuinely can’t tell what the author was even going for. And this is the kind of subject where the author was, surely, going for something. Right? But was it genuinely intended to be educational, or was it tongue-in-cheek about how some dudes still don’t get it? Or is it side-eying the player who clicks the obviously wrong option just for kicks, which is the same reason people do it for real? Or is it commentary on how “send a dick pic” is a literal option for every response in a real conversation, too, and it’s not that hard to just not do it — unless you are one of the kinds of people who just feels a compulsion to try everything, anything, just because you can? Or is it just a quick Twine and I am way too deep in this? God, just play the thing, it’s shorter than this paragraph.

I’m also left wondering when it is appropriate to send a dick pic. Presumably there is a correct time? Hopefully the author will enter Strawberry Jam 2 to expound upon this.


Marble maze, by Shtille

short · arcade · jan 2017 · win · free on itch · jam entry

Ah, hm. So this is a maze navigated by rolling a marble around. You use WASD to move the marble, and you can also turn the camera with the arrow keys.

The trouble is… the marble’s movement is always relative to the world, not the camera. That means if you turn the camera 30° and then try to move the marble, it’ll move at a 30° angle from your point of view.

That makes navigating a maze, er, difficult.

Camera-relative movement is the kind of thing I take so much for granted that I wouldn’t even think to do otherwise, and I think it’s valuable to look at surprising choices that violate fundamental conventions, so I’m trying to take this as a nudge out of my comfort zone. What could you design in an interesting way that used world-relative movement? Probably not the player, but maybe something else in the world, as long as you had strong landmarks? Hmm.


Refactor: flight, by fluffy

short · arcade · jan 2017 · lin/mac/win · free on itch · jam entry

Refactor is a game album, which is rather a lot what it sounds like, and Flight is one of the tracks. Which makes this a single, I suppose.

It’s one of those games where you move down an oddly-shaped tunnel trying not to hit the walls, but with some cute twists. Coins and gems hop up from the bottom of the screen in time with the music, and collecting them gives you points. Hitting a wall costs you some points and kills your momentum, but I don’t think outright losing is possible, which is great for me!

Also, the monk cycles through several animal faces. I don’t know why, and it’s very good. One of those odd but memorable details that sits squarely on the intersection of abstract, mysterious, and a bit weird, and refuses to budge from that spot.

The music is great too? Really chill all around.


The Adventures of Klyde

short · adventure · jan 2017 · web · free on itch · jam entry

Another bitsy game, this one starring a pig (humorously symbolized by a giant pig nose with ears) who must collect fruit and solve some puzzles.

This is charmingly nostalgic for me — it reminds me of some standard fare in engines like MegaZeux, where the obvious things to do when presented with tiles and pickups were to make mazes. I don’t mean that in a bad way; the maze is the fundamental environmental obstacle.

A couple places in here felt like invisible teleport mazes I had to brute-force, but I might have been missing a hint somewhere. I did make it through with only a little trouble, but alas — I stepped in a bad warp somewhere and got sent to the upper left corner of the starting screen, which is surrounded by walls. So Klyde’s new life is being trapped eternally in a nowhere space.

FINAL SCORE: 19/20 apples

And more

That was only a third of the games, and I don’t think even half of the ones I’ve played. I’ll have to do a second post covering the rest of them? Maybe a third?

Or maybe this is a ludicrous format for commenting on several dozen games and I should try to narrow it down to the ones that resonated the most for Strawberry Jam 2? Maybe??

Fighting Ransomware

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/01/fighting_ransom.html

No More Ransom is a central repository of keys and applications for ransomware, so people can recover their data without paying. It’s not complete, of course, but is pretty good against older strains of ransomware. The site is a joint effort by Europol, the Dutch police, Kaspersky, and McAfee.

Create SLUG! It’s just like Snake, but with a slug

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/slug-snake/

Recreate Snake, the favourite mobile phone game from the late nineties, using a slug*, a Raspberry Pi, a Sense HAT, and our free resource!

Raspberry Pi Sense HAT Slug free resource

*A virtual slug. Not a real slug. Please leave the real slugs out in nature.

Snake SLUG!

Move aside, Angry Birds! On your bike, Pokémon Go! When it comes to the cream of the crop of mobile phone games, Snake holds the top spot.

Snake Nokia Game

I could while away the hours…

You may still have an old Nokia 3310 lost in the depths of a drawer somewhere — the drawer that won’t open all the way because something inside is jammed at an odd angle. So it will be far easier to grab your Pi and Sense HAT, or use the free Sense HAT emulator (online or on Raspbian), and code Snake SLUG yourself. In doing so, you can introduce the smaller residents of your household to the best reptile-focused game ever made…now with added mollusc.

The resource

To try out the game for yourself, head to our resource page, where you’ll find the online Sense HAT emulator embedded and ready to roll.

Raspberry Pi Sense HAT Slug free resource

It’ll look just like this, and you can use your computer’s arrow keys to direct your slug toward her tasty treats.

From there, you’ll be taken on a step-by-step journey from zero to SLUG glory while coding your own versionof the game in Python. On the way, you’ll learn to work with two-dimensional lists and to use the Sense HAT’s pixel display and joystick input. And by completing the resource, you’ll expand your understanding of applying abstraction and decomposition to solve more complex problems, in line with our Digital Making Curriculum.

The Sense HAT

The Raspberry Pi Sense HAT was originally designed and made as part of the Astro Pi mission in December 2015. With an 8×8 RGB LED matrix, a joystick, and a plethora of on-board sensors including an accelerometer, gyroscope, and magnetometer, it’s a great add-on for your digital making toolkit, and excellent for projects involving data collection and evaluation.

You can find more of our free Sense HAT tutorials here, including for making Flappy Bird Astronaut, a marble maze, and Pong.

The post Create SLUG! It’s just like Snake, but with a slug appeared first on Raspberry Pi.

Yet Another FBI Proposal for Insecure Communications

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/01/yet_another_fbi.html

Deputy Attorney General Rosenstein has given talks where he proposes that tech companies decrease their communications and device security for the benefit of the FBI. In a recent talk, his idea is that tech companies just save a copy of the plaintext:

Law enforcement can also partner with private industry to address a problem we call “Going Dark.” Technology increasingly frustrates traditional law enforcement efforts to collect evidence needed to protect public safety and solve crime. For example, many instant-messaging services now encrypt messages by default. The prevent the police from reading those messages, even if an impartial judge approves their interception.

The problem is especially critical because electronic evidence is necessary for both the investigation of a cyber incident and the prosecution of the perpetrator. If we cannot access data even with lawful process, we are unable to do our job. Our ability to secure systems and prosecute criminals depends on our ability to gather evidence.

I encourage you to carefully consider your company’s interests and how you can work cooperatively with us. Although encryption can help secure your data, it may also prevent law enforcement agencies from protecting your data.

Encryption serves a valuable purpose. It is a foundational element of data security and essential to safeguarding data against cyber-attacks. It is critical to the growth and flourishing of the digital economy, and we support it. I support strong and responsible encryption.

I simply maintain that companies should retain the capability to provide the government unencrypted copies of communications and data stored on devices, when a court orders them to do so.

Responsible encryption is effective secure encryption, coupled with access capabilities. We know encryption can include safeguards. For example, there are systems that include central management of security keys and operating system updates; scanning of content, like your e-mails, for advertising purposes; simulcast of messages to multiple destinations at once; and key recovery when a user forgets the password to decrypt a laptop. No one calls any of those functions a “backdoor.” In fact, those very capabilities are marketed and sought out.

I do not believe that the government should mandate a specific means of ensuring access. The government does not need to micromanage the engineering.

The question is whether to require a particular goal: When a court issues a search warrant or wiretap order to collect evidence of crime, the company should be able to help. The government does not need to hold the key.

Rosenstein is right that many services like Gmail naturally keep plaintext in the cloud. This is something we pointed out in our 2016 paper: “Don’t Panic.” But forcing companies to build an alternate means to access the plaintext that the user can’t control is an enormous vulnerability.

Combine Transactional and Analytical Data Using Amazon Aurora and Amazon Redshift

Post Syndicated from Re Alvarez-Parmar original https://aws.amazon.com/blogs/big-data/combine-transactional-and-analytical-data-using-amazon-aurora-and-amazon-redshift/

A few months ago, we published a blog post about capturing data changes in an Amazon Aurora database and sending it to Amazon Athena and Amazon QuickSight for fast analysis and visualization. In this post, I want to demonstrate how easy it can be to take the data in Aurora and combine it with data in Amazon Redshift using Amazon Redshift Spectrum.

With Amazon Redshift, you can build petabyte-scale data warehouses that unify data from a variety of internal and external sources. Because Amazon Redshift is optimized for complex queries (often involving multiple joins) across large tables, it can handle large volumes of retail, inventory, and financial data without breaking a sweat.

In this post, we describe how to combine data in Aurora in Amazon Redshift. Here’s an overview of the solution:

  • Use AWS Lambda functions with Amazon Aurora to capture data changes in a table.
  • Save data in an Amazon S3
  • Query data using Amazon Redshift Spectrum.

We use the following services:

Serverless architecture for capturing and analyzing Aurora data changes

Consider a scenario in which an e-commerce web application uses Amazon Aurora for a transactional database layer. The company has a sales table that captures every single sale, along with a few corresponding data items. This information is stored as immutable data in a table. Business users want to monitor the sales data and then analyze and visualize it.

In this example, you take the changes in data in an Aurora database table and save it in Amazon S3. After the data is captured in Amazon S3, you combine it with data in your existing Amazon Redshift cluster for analysis.

By the end of this post, you will understand how to capture data events in an Aurora table and push them out to other AWS services using AWS Lambda.

The following diagram shows the flow of data as it occurs in this tutorial:

The starting point in this architecture is a database insert operation in Amazon Aurora. When the insert statement is executed, a custom trigger calls a Lambda function and forwards the inserted data. Lambda writes the data that it received from Amazon Aurora to a Kinesis data delivery stream. Kinesis Data Firehose writes the data to an Amazon S3 bucket. Once the data is in an Amazon S3 bucket, it is queried in place using Amazon Redshift Spectrum.

Creating an Aurora database

First, create a database by following these steps in the Amazon RDS console:

  1. Sign in to the AWS Management Console, and open the Amazon RDS console.
  2. Choose Launch a DB instance, and choose Next.
  3. For Engine, choose Amazon Aurora.
  4. Choose a DB instance class. This example uses a small, since this is not a production database.
  5. In Multi-AZ deployment, choose No.
  6. Configure DB instance identifier, Master username, and Master password.
  7. Launch the DB instance.

After you create the database, use MySQL Workbench to connect to the database using the CNAME from the console. For information about connecting to an Aurora database, see Connecting to an Amazon Aurora DB Cluster.

The following screenshot shows the MySQL Workbench configuration:

Next, create a table in the database by running the following SQL statement:

Create Table
ItemID int NOT NULL,
Category varchar(255),
Price double(10,2), 
Quantity int not NULL,
OrderDate timestamp,
DestinationState varchar(2),
ShippingType varchar(255),
Referral varchar(255),

You can now populate the table with some sample data. To generate sample data in your table, copy and run the following script. Ensure that the highlighted (bold) variables are replaced with appropriate values.

import MySQLdb
import random
import datetime

db = MySQLdb.connect(host="AURORA_CNAME",

states = ("AL","AK","AZ","AR","CA","CO","CT","DE","FL","GA","HI","ID","IL","IN",

shipping_types = ("Free", "3-Day", "2-Day")

product_categories = ("Garden", "Kitchen", "Office", "Household")
referrals = ("Other", "Friend/Colleague", "Repeat Customer", "Online Ad")

for i in range(0,10):
    item_id = random.randint(1,100)
    state = states[random.randint(0,len(states)-1)]
    shipping_type = shipping_types[random.randint(0,len(shipping_types)-1)]
    product_category = product_categories[random.randint(0,len(product_categories)-1)]
    quantity = random.randint(1,4)
    referral = referrals[random.randint(0,len(referrals)-1)]
    price = random.randint(1,100)
    order_date = datetime.date(2016,random.randint(1,12),random.randint(1,30)).isoformat()

    data_order = (item_id, product_category, price, quantity, order_date, state,
    shipping_type, referral)

    add_order = ("INSERT INTO Sales "
                   "(ItemID, Category, Price, Quantity, OrderDate, DestinationState, \
                   ShippingType, Referral) "
                   "VALUES (%s, %s, %s, %s, %s, %s, %s, %s)")

    cursor = db.cursor()
    cursor.execute(add_order, data_order)



The following screenshot shows how the table appears with the sample data:

Sending data from Amazon Aurora to Amazon S3

There are two methods available to send data from Amazon Aurora to Amazon S3:

  • Using a Lambda function

To demonstrate the ease of setting up integration between multiple AWS services, we use a Lambda function to send data to Amazon S3 using Amazon Kinesis Data Firehose.

Alternatively, you can use a SELECT INTO OUTFILE S3 statement to query data from an Amazon Aurora DB cluster and save it directly in text files that are stored in an Amazon S3 bucket. However, with this method, there is a delay between the time that the database transaction occurs and the time that the data is exported to Amazon S3 because the default file size threshold is 6 GB.

Creating a Kinesis data delivery stream

The next step is to create a Kinesis data delivery stream, since it’s a dependency of the Lambda function.

To create a delivery stream:

  1. Open the Kinesis Data Firehose console
  2. Choose Create delivery stream.
  3. For Delivery stream name, type AuroraChangesToS3.
  4. For Source, choose Direct PUT.
  5. For Record transformation, choose Disabled.
  6. For Destination, choose Amazon S3.
  7. In the S3 bucket drop-down list, choose an existing bucket, or create a new one.
  8. Enter a prefix if needed, and choose Next.
  9. For Data compression, choose GZIP.
  10. In IAM role, choose either an existing role that has access to write to Amazon S3, or choose to generate one automatically. Choose Next.
  11. Review all the details on the screen, and choose Create delivery stream when you’re finished.


Creating a Lambda function

Now you can create a Lambda function that is called every time there is a change that needs to be tracked in the database table. This Lambda function passes the data to the Kinesis data delivery stream that you created earlier.

To create the Lambda function:

  1. Open the AWS Lambda console.
  2. Ensure that you are in the AWS Region where your Amazon Aurora database is located.
  3. If you have no Lambda functions yet, choose Get started now. Otherwise, choose Create function.
  4. Choose Author from scratch.
  5. Give your function a name and select Python 3.6 for Runtime
  6. Choose and existing or create a new Role, the role would need to have access to call firehose:PutRecord
  7. Choose Next on the trigger selection screen.
  8. Paste the following code in the code window. Change the stream_name variable to the Kinesis data delivery stream that you created in the previous step.
  9. Choose File -> Save in the code editor and then choose Save.
import boto3
import json

firehose = boto3.client('firehose')
stream_name = ‘AuroraChangesToS3’

def Kinesis_publish_message(event, context):
    firehose_data = (("%s,%s,%s,%s,%s,%s,%s,%s\n") %(event['ItemID'], 
    event['Category'], event['Price'], event['Quantity'],
    event['OrderDate'], event['DestinationState'], event['ShippingType'], 
    firehose_data = {'Data': str(firehose_data)}

Note the Amazon Resource Name (ARN) of this Lambda function.

Giving Aurora permissions to invoke a Lambda function

To give Amazon Aurora permissions to invoke a Lambda function, you must attach an IAM role with appropriate permissions to the cluster. For more information, see Invoking a Lambda Function from an Amazon Aurora DB Cluster.

Once you are finished, the Amazon Aurora database has access to invoke a Lambda function.

Creating a stored procedure and a trigger in Amazon Aurora

Now, go back to MySQL Workbench, and run the following command to create a new stored procedure. When this stored procedure is called, it invokes the Lambda function you created. Change the ARN in the following code to your Lambda function’s ARN.

									IN Category varchar(255), 
									IN Price double(10,2),
                                    IN Quantity int(11),
                                    IN OrderDate timestamp,
                                    IN DestinationState varchar(2),
                                    IN ShippingType varchar(255),
                                    IN Referral  varchar(255)) LANGUAGE SQL 
  CALL mysql.lambda_async('arn:aws:lambda:us-east-1:XXXXXXXXXXXXX:function:CDCFromAuroraToKinesis', 
     CONCAT('{ "ItemID" : "', ItemID, 
            '", "Category" : "', Category,
            '", "Price" : "', Price,
            '", "Quantity" : "', Quantity, 
            '", "OrderDate" : "', OrderDate, 
            '", "DestinationState" : "', DestinationState, 
            '", "ShippingType" : "', ShippingType, 
            '", "Referral" : "', Referral, '"}')

Create a trigger TR_Sales_CDC on the Sales table. When a new record is inserted, this trigger calls the CDC_TO_FIREHOSE stored procedure.

  SELECT  NEW.ItemID , NEW.Category, New.Price, New.Quantity, New.OrderDate
  , New.DestinationState, New.ShippingType, New.Referral
  INTO @ItemID , @Category, @Price, @Quantity, @OrderDate
  , @DestinationState, @ShippingType, @Referral;
  CALL  CDC_TO_FIREHOSE(@ItemID , @Category, @Price, @Quantity, @OrderDate
  , @DestinationState, @ShippingType, @Referral);

If a new row is inserted in the Sales table, the Lambda function that is mentioned in the stored procedure is invoked.

Verify that data is being sent from the Lambda function to Kinesis Data Firehose to Amazon S3 successfully. You might have to insert a few records, depending on the size of your data, before new records appear in Amazon S3. This is due to Kinesis Data Firehose buffering. To learn more about Kinesis Data Firehose buffering, see the “Amazon S3” section in Amazon Kinesis Data Firehose Data Delivery.

Every time a new record is inserted in the sales table, a stored procedure is called, and it updates data in Amazon S3.

Querying data in Amazon Redshift

In this section, you use the data you produced from Amazon Aurora and consume it as-is in Amazon Redshift. In order to allow you to process your data as-is, where it is, while taking advantage of the power and flexibility of Amazon Redshift, you use Amazon Redshift Spectrum. You can use Redshift Spectrum to run complex queries on data stored in Amazon S3, with no need for loading or other data prep.

Just create a data source and issue your queries to your Amazon Redshift cluster as usual. Behind the scenes, Redshift Spectrum scales to thousands of instances on a per-query basis, ensuring that you get fast, consistent performance even as your dataset grows to beyond an exabyte! Being able to query data that is stored in Amazon S3 means that you can scale your compute and your storage independently. You have the full power of the Amazon Redshift query model and all the reporting and business intelligence tools at your disposal. Your queries can reference any combination of data stored in Amazon Redshift tables and in Amazon S3.

Redshift Spectrum supports open, common data types, including CSV/TSV, Apache Parquet, SequenceFile, and RCFile. Files can be compressed using gzip or Snappy, with other data types and compression methods in the works.

First, create an Amazon Redshift cluster. Follow the steps in Launch a Sample Amazon Redshift Cluster.

Next, create an IAM role that has access to Amazon S3 and Athena. By default, Amazon Redshift Spectrum uses the Amazon Athena data catalog. Your cluster needs authorization to access your external data catalog in AWS Glue or Athena and your data files in Amazon S3.

In the demo setup, I attached AmazonS3FullAccess and AmazonAthenaFullAccess. In a production environment, the IAM roles should follow the standard security of granting least privilege. For more information, see IAM Policies for Amazon Redshift Spectrum.

Attach the newly created role to the Amazon Redshift cluster. For more information, see Associate the IAM Role with Your Cluster.

Next, connect to the Amazon Redshift cluster, and create an external schema and database:

create external schema if not exists spectrum_schema
from data catalog 
database 'spectrum_db' 
region 'us-east-1'
IAM_ROLE 'arn:aws:iam::XXXXXXXXXXXX:role/RedshiftSpectrumRole'
create external database if not exists;

Don’t forget to replace the IAM role in the statement.

Then create an external table within the database:

 CREATE EXTERNAL TABLE IF NOT EXISTS spectrum_schema.ecommerce_sales(
  ItemID int,
  Category varchar,
  Quantity int,
  OrderDate TIMESTAMP,
  DestinationState varchar,
  ShippingType varchar,
  Referral varchar)

Query the table, and it should contain data. This is a fact table.

select top 10 * from spectrum_schema.ecommerce_sales


Next, create a dimension table. For this example, we create a date/time dimension table. Create the table:

CREATE TABLE date_dimension (
  d_datekey           integer       not null sortkey,
  d_dayofmonth        integer       not null,
  d_monthnum          integer       not null,
  d_dayofweek                varchar(10)   not null,
  d_prettydate        date       not null,
  d_quarter           integer       not null,
  d_half              integer       not null,
  d_year              integer       not null,
  d_season            varchar(10)   not null,
  d_fiscalyear        integer       not null)
diststyle all;

Populate the table with data:

copy date_dimension from 's3://reparmar-lab/2016dates' 
iam_role 'arn:aws:iam::XXXXXXXXXXXX:role/redshiftspectrum'
dateformat 'auto';

The date dimension table should look like the following:

Querying data in local and external tables using Amazon Redshift

Now that you have the fact and dimension table populated with data, you can combine the two and run analysis. For example, if you want to query the total sales amount by weekday, you can run the following:

select sum(quantity*price) as total_sales, date_dimension.d_season
from spectrum_schema.ecommerce_sales 
join date_dimension on spectrum_schema.ecommerce_sales.orderdate = date_dimension.d_prettydate 
group by date_dimension.d_season

You get the following results:

Similarly, you can replace d_season with d_dayofweek to get sales figures by weekday:

With Amazon Redshift Spectrum, you pay only for the queries you run against the data that you actually scan. We encourage you to use file partitioning, columnar data formats, and data compression to significantly minimize the amount of data scanned in Amazon S3. This is important for data warehousing because it dramatically improves query performance and reduces cost.

Partitioning your data in Amazon S3 by date, time, or any other custom keys enables Amazon Redshift Spectrum to dynamically prune nonrelevant partitions to minimize the amount of data processed. If you store data in a columnar format, such as Parquet, Amazon Redshift Spectrum scans only the columns needed by your query, rather than processing entire rows. Similarly, if you compress your data using one of the supported compression algorithms in Amazon Redshift Spectrum, less data is scanned.

Analyzing and visualizing Amazon Redshift data in Amazon QuickSight

Modify the Amazon Redshift security group to allow an Amazon QuickSight connection. For more information, see Authorizing Connections from Amazon QuickSight to Amazon Redshift Clusters.

After modifying the Amazon Redshift security group, go to Amazon QuickSight. Create a new analysis, and choose Amazon Redshift as the data source.

Enter the database connection details, validate the connection, and create the data source.

Choose the schema to be analyzed. In this case, choose spectrum_schema, and then choose the ecommerce_sales table.

Next, we add a custom field for Total Sales = Price*Quantity. In the drop-down list for the ecommerce_sales table, choose Edit analysis data sets.

On the next screen, choose Edit.

In the data prep screen, choose New Field. Add a new calculated field Total Sales $, which is the product of the Price*Quantity fields. Then choose Create. Save and visualize it.

Next, to visualize total sales figures by month, create a graph with Total Sales on the x-axis and Order Data formatted as month on the y-axis.

After you’ve finished, you can use Amazon QuickSight to add different columns from your Amazon Redshift tables and perform different types of visualizations. You can build operational dashboards that continuously monitor your transactional and analytical data. You can publish these dashboards and share them with others.

Final notes

Amazon QuickSight can also read data in Amazon S3 directly. However, with the method demonstrated in this post, you have the option to manipulate, filter, and combine data from multiple sources or Amazon Redshift tables before visualizing it in Amazon QuickSight.

In this example, we dealt with data being inserted, but triggers can be activated in response to an INSERT, UPDATE, or DELETE trigger.

Keep the following in mind:

  • Be careful when invoking a Lambda function from triggers on tables that experience high write traffic. This would result in a large number of calls to your Lambda function. Although calls to the lambda_async procedure are asynchronous, triggers are synchronous.
  • A statement that results in a large number of trigger activations does not wait for the call to the AWS Lambda function to complete. But it does wait for the triggers to complete before returning control to the client.
  • Similarly, you must account for Amazon Kinesis Data Firehose limits. By default, Kinesis Data Firehose is limited to a maximum of 5,000 records/second. For more information, see Monitoring Amazon Kinesis Data Firehose.

In certain cases, it may be optimal to use AWS Database Migration Service (AWS DMS) to capture data changes in Aurora and use Amazon S3 as a target. For example, AWS DMS might be a good option if you don’t need to transform data from Amazon Aurora. The method used in this post gives you the flexibility to transform data from Aurora using Lambda before sending it to Amazon S3. Additionally, the architecture has the benefits of being serverless, whereas AWS DMS requires an Amazon EC2 instance for replication.

For design considerations while using Redshift Spectrum, see Using Amazon Redshift Spectrum to Query External Data.

If you have questions or suggestions, please comment below.

Additional Reading

If you found this post useful, be sure to check out Capturing Data Changes in Amazon Aurora Using AWS Lambda and 10 Best Practices for Amazon Redshift Spectrum

About the Authors

Re Alvarez-Parmar is a solutions architect for Amazon Web Services. He helps enterprises achieve success through technical guidance and thought leadership. In his spare time, he enjoys spending time with his two kids and exploring outdoors.




How to Encrypt Amazon S3 Objects with the AWS SDK for Ruby

Post Syndicated from Doug Schwartz original https://aws.amazon.com/blogs/security/how-to-encrypt-amazon-s3-objects-with-the-aws-sdk-for-ruby/

AWS KMS image

Recently, Amazon announced some new Amazon S3 encryption and security features. The AWS Blog post showed how to use the Amazon S3 console to take advantage of these new features. However, if you have a large number of Amazon S3 buckets, using the console to implement these features could take hours, if not days. As an alternative, I created documentation topics in the AWS SDK for Ruby Developer Guide that include code examples showing you how to use the new Amazon S3 encryption features using the AWS SDK for Ruby.

What are my encryption options?

You can encrypt Amazon S3 bucket objects on a server or on a client:

  • When you encrypt objects on a server, you request that Amazon S3 encrypt the objects before saving them to disk in data centers and decrypt the objects when you download them. The main advantage of this approach is that Amazon S3 manages the entire encryption process.
  • When you encrypt objects on a client, you encrypt the objects before you upload them to Amazon S3. In this case, you manage the encryption process, the encryption keys, and related tools. Use this option when:
    • Company policy and standards require it.
    • You already have a development process in place that meets your needs.

    Encrypting on the client has always been available, but you should know the following points:

    • You must be diligent about protecting your encryption keys, which is analogous to having a burglar-proof lock on your front door. If you leave a key under the mat, your security is compromised.
    • If you lose your encryption keys, you won’t be able to decrypt your data.

    If you encrypt objects on the client, we strongly recommend that you use an AWS Key Management Service (AWS KMS) managed customer master key (CMK)

How to use encryption on a server

You can specify that Amazon S3 automatically encrypts objects as you upload them to a bucket or require that objects uploaded to an Amazon S3 bucket include encryption on a server before they are uploaded to an Amazon S3 bucket.

The advantage of these settings is that when you specify them, you ensure that objects uploaded to Amazon S3 are encrypted. Alternatively, you can have Amazon S3 encrypt individual objects on the server as you upload them to a bucket or encrypt them on the server with your own key as you upload them to a bucket.

The AWS SDK for Ruby Developer Guide now contains the following topics that explain your encryption options on a server:

How to use encryption on a client

You can encrypt objects on a client before you upload them to a bucket and decrypt them after you download them from a bucket by using the Amazon S3 encryption client.

The AWS SDK for Ruby Developer Guide now contains the following topics that explain your encryption options on the client:

Note: The Amazon S3 encryption client in the AWS SDK for Ruby is compatible with other Amazon S3 encryption clients, but it is not compatible with other AWS client-side encryption libraries, including the AWS Encryption SDK and the Amazon DynamoDB encryption client for Java. Each library returns a different ciphertext (“encrypted message”) format, so you can’t use one library to encrypt objects and a different library to decrypt them. For more information, see Protecting Data Using Client-Side Encryption.

If you have comments about this blog post, submit them in the “Comments” section below. If you have questions about encrypting objects on servers and clients, start a new thread on the Amazon S3 forum or contact AWS Support.

– Doug