Tag Archives: surveillance

US Senators Ask Apple Why VPN Apps Were Removed in China

Post Syndicated from Andy original https://torrentfreak.com/us-senators-ask-apple-why-vpn-apps-were-removed-in-china-171020/

As part of what is now clearly a crackdown on Great Firewall-evading tools and services, during the summer Chinese government pressure reached technology giant Apple.

On or around July 29, Apple removed many of the most-used VPN applications from its Chinese app store. In a short email from the company, VPN providers were informed that VPN applications are considered illegal in China.

“We are writing to notify you that your application will be removed from the China App Store because it includes content that is illegal in China, which is not in compliance with the App Store Review Guidelines,” Apple informed the affected VPNs.

Apple’s email to VPN providers

Now, in a letter sent to Apple CEO Tim Cook, US senators Ted Cruz and Patrick Leahy express concern at the move by Apple, noting that if reports of the software removals are true, the company could be assisting China’s restrictive approach to the Internet.

“VPNs allow users to access the uncensored Internet in China and other countries that restrict Internet freedom. If these reports are true, we are concerned that Apple may be enabling the Chines government’s censorship and surveillance of the Internet.”

Describing China as a country with “an abysmal human rights record, including with respect to the rights of free expression and free access to information, both online and offline”, the senators cite Reporters Without Borders who previously labeled the country as “the enemy of the Internet”.

While senators Cruz and Leahy go on to praise Apple for its contribution to the spread of information, they criticize the company for going along with the wishes of the Chinese government as it seeks to suppress knowledge and communication.

“While Apple’s many contributions to the global exchange of information are admirable, removing VPN apps that allow individuals in China to evade the Great Firewall and access the Internet privately does not enable people in China to ‘speak up’,” the senators write.

“To the contrary, if Apple complies with such demands from the Chinese government it inhibits free expression for users across China, particularly in light of the Cyberspace Administration of China’s new regulations targeting online anonymity.”

In January, a notice published by China’s Ministry of Industry and Information Technology said that the government had indeed launched a 14-month campaign to crack down on local ‘unauthorized’ Internet platforms.

This means that all VPN services have to be pre-approved by the Government if they want to operate in China. And the aggression against VPNs and their providers didn’t stop there.

In September, a Chinese man who sold Great Firewall-evading VPN software via a website was sentenced to nine months in prison by a Chinese court. Just weeks later, a software developer who set up a VPN for his own use but later sold access to the service was arrested and detained for three days.

This emerging pattern is clearly a concern for the senators who are now demanding that Tim Cook responds to ten questions (pdf), including whether Apple raised concerns about China’s VPN removal demands and details of how many apps were removed from its store. The senators also want to see copies of any pro-free speech statements Apple has made in China.

Whether the letter will make any difference on the ground in China remains to be seen, but the public involvement of the senators and technology giant Apple is certain to thrust censorship and privacy further into the public eye.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

PureVPN Explains How it Helped the FBI Catch a Cyberstalker

Post Syndicated from Andy original https://torrentfreak.com/purevpn-explains-how-it-helped-the-fbi-catch-a-cyberstalker-171016/

Early October, Ryan S. Lin, 24, of Newton, Massachusetts, was arrested on suspicion of conducting “an extensive cyberstalking campaign” against a 24-year-old Massachusetts woman, as well as her family members and friends.

The Department of Justice described Lin’s offenses as a “multi-faceted” computer hacking and cyberstalking campaign. Launched in April 2016 when he began hacking into the victim’s online accounts, Lin allegedly obtained personal photographs and sensitive information about her medical and sexual histories and distributed that information to hundreds of other people.

Details of what information the FBI compiled on Lin can be found in our earlier report but aside from his alleged crimes (which are both significant and repugnant), it was PureVPN’s involvement in the case that caused the most controversy.

In a report compiled by an FBI special agent, it was revealed that the Hong Kong-based company’s logs helped the authorities net the alleged criminal.

“Significantly, PureVPN was able to determine that their service was accessed by the same customer from two originating IP addresses: the RCN IP address from the home Lin was living in at the time, and the software company where Lin was employed at the time,” the agent’s affidavit reads.

Among many in the privacy community, this revelation was met with disappointment. On the PureVPN website the company claims to carry no logs and on a general basis, it’s expected that so-called “no-logging” VPN providers should provide people with some anonymity, at least as far as their service goes. Now, several days after the furor, the company has responded to its critics.

In a fairly lengthy statement, the company begins by confirming that it definitely doesn’t log what websites a user views or what content he or she downloads.

“PureVPN did not breach its Privacy Policy and certainly did not breach your trust. NO browsing logs, browsing habits or anything else was, or ever will be shared,” the company writes.

However, that’s only half the problem. While it doesn’t log user activity (what sites people visit or content they download), it does log the IP addresses that customers use to access the PureVPN service. These, given the right circumstances, can be matched to external activities thanks to logs carried by other web companies.

PureVPN talks about logs held by Google’s Gmail service to illustrate its point.

“A network log is automatically generated every time a user visits a website. For the sake of this example, let’s say a user logged into their Gmail account. Every time they accessed Gmail, the email provider created a network log,” the company explains.

“If you are using a VPN, Gmail’s network log would contain the IP provided by PureVPN. This is one half of the picture. Now, if someone asks Google who accessed the user’s account, Google would state that whoever was using this IP, accessed the account.

“If the user was connected to PureVPN, it would be a PureVPN IP. The inquirer [in the Lin case, the FBI] would then share timestamps and network logs acquired from Google and ask them to be compared with the network logs maintained by the VPN provider.”

Now, if PureVPN carried no logs – literally no logs – it would not be able to help with this kind of inquiry. That was the case last year when the FBI approached Private Internet Access for information and the company was unable to assist.

However, as is made pretty clear by PureVPN’s explanation, the company does log user IP addresses and timestamps which reveal when a user was logged on to the service. It doesn’t matter that PureVPN doesn’t log what the user allegedly did online, since the third-party service already knows that information to the precise second.

Following the example, GMail knows that a user sent an email at 10:22am on Monday October 16 from a PureVPN IP address. So, if PureVPN is approached by the FBI, the company can confirm that User X was using the same IP address at exactly the same time, and his home IP address was XXX.XX.XXX.XX. Effectively, the combined logs link one IP address to the other and the user is revealed. It’s that simple.

It is for this reason that in TorrentFreak’s annual summary of no-logging VPN providers, the very first question we ask every single company reads as follows:

Do you keep ANY logs which would allow you to match an IP-address and a time stamp to a user/users of your service? If so, what information do you hold and for how long?

Clearly, if a company says “yes we log incoming IP addresses and associated timestamps”, any claim to total user anonymity is ended right there and then.

While not completely useless (a logging service will still stop the prying eyes of ISPs and similar surveillance, while also defeating throttling and site-blocking), if you’re a whistle-blower with a job or even your life to protect, this level of protection is entirely inadequate.

The take-home points from this controversy are numerous, but perhaps the most important is for people to read and understand VPN provider logging policies.

Secondly, and just as importantly, VPN providers need to be extremely clear about the information they log. Not tracking browsing or downloading activities is all well and good, but if home IP addresses and timestamps are stored, this needs to be made clear to the customer.

Finally, VPN users should not be evil. There are plenty of good reasons to stay anonymous online but cyberstalking, death threats and ruining people’s lives are not included. Fortunately, the FBI have offline methods for catching this type of offender, and long may that continue.

PureVPN’s blog post is available here.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

My Blogging

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/10/my_blogging.html

Blog regulars will notice that I haven’t been posting as much lately as I have in the past. There are two reasons. One, it feels harder to find things to write about. So often it’s the same stories over and over. I don’t like repeating myself. Two, I am busy writing a book. The title is still: Click Here to Kill Everybody: Peril and Promise in a Hyper-Connected World. The book is a year late, and as a very different table of contents than it had in 2016. I have been writing steadily since mid-August. The book is due to the publisher at the end of March 2018, and will be published in the beginning of September.

This is the current table of contents:

  • Introduction: Everything is Becoming a Computer
  • Part 1: The Trends
    • 1. Capitalism Continues to Drive the Internet
    • 2. Customer/User Control is Next
    • 3. Government Surveillance and Control is Also Increasing
    • 4. Cybercrime is More Profitable Than Ever
    • 5. Cyberwar is the New Normal
    • 6. Algorithms, Automation, and Autonomy Bring New Dangers
    • 7. What We Know About Computer Security
    • 8. Agile is Failing as a Security Paradigm
    • 9. Authentication and Identification are Getting Harder
    • 10. Risks are Becoming Catastrophic
  • Part 2: The Solutions
    • 11. We Need to Regulate the Internet of Things
    • 12. We Need to Defend Critical Infrastructure
    • 13. We Need to Prioritize Defense Over Offence
    • 14. We Need to Make Smarter Decisions About Connecting
    • 15. What’s Likely to Happen, and What We Can Do in Response
    • 16. Where Policy Can Go Wrong
  • Conclusion: Technology and Policy, Together

So that’s what’s been happening.

"Responsible encryption" fallacies

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/10/responsible-encryption-fallacies.html

Deputy Attorney General Rod Rosenstein gave a speech recently calling for “Responsible Encryption” (aka. “Crypto Backdoors”). It’s full of dangerous ideas that need to be debunked.

The importance of law enforcement

The first third of the speech talks about the importance of law enforcement, as if it’s the only thing standing between us and chaos. It cites the 2016 Mirai attacks as an example of the chaos that will only get worse without stricter law enforcement.

But the Mira case demonstrated the opposite, how law enforcement is not needed. They made no arrests in the case. A year later, they still haven’t a clue who did it.

Conversely, we technologists have fixed the major infrastructure issues. Specifically, those affected by the DNS outage have moved to multiple DNS providers, including a high-capacity DNS provider like Google and Amazon who can handle such large attacks easily.

In other words, we the people fixed the major Mirai problem, and law-enforcement didn’t.

Moreover, instead being a solution to cyber threats, law enforcement has become a threat itself. The DNC didn’t have the FBI investigate the attacks from Russia likely because they didn’t want the FBI reading all their files, finding wrongdoing by the DNC. It’s not that they did anything actually wrong, but it’s more like that famous quote from Richelieu “Give me six words written by the most honest of men and I’ll find something to hang him by”. Give all your internal emails over to the FBI and I’m certain they’ll find something to hang you by, if they want.
Or consider the case of Andrew Auernheimer. He found AT&T’s website made public user accounts of the first iPad, so he copied some down and posted them to a news site. AT&T had denied the problem, so making the problem public was the only way to force them to fix it. Such access to the website was legal, because AT&T had made the data public. However, prosecutors disagreed. In order to protect the powerful, they twisted and perverted the law to put Auernheimer in jail.

It’s not that law enforcement is bad, it’s that it’s not the unalloyed good Rosenstein imagines. When law enforcement becomes the thing Rosenstein describes, it means we live in a police state.

Where law enforcement can’t go

Rosenstein repeats the frequent claim in the encryption debate:

Our society has never had a system where evidence of criminal wrongdoing was totally impervious to detection

Of course our society has places “impervious to detection”, protected by both legal and natural barriers.

An example of a legal barrier is how spouses can’t be forced to testify against each other. This barrier is impervious.

A better example, though, is how so much of government, intelligence, the military, and law enforcement itself is impervious. If prosecutors could gather evidence everywhere, then why isn’t Rosenstein prosecuting those guilty of CIA torture?

Oh, you say, government is a special exception. If that were the case, then why did Rosenstein dedicate a precious third of his speech discussing the “rule of law” and how it applies to everyone, “protecting people from abuse by the government”. It obviously doesn’t, there’s one rule of government and a different rule for the people, and the rule for government means there’s lots of places law enforcement can’t go to gather evidence.

Likewise, the crypto backdoor Rosenstein is demanding for citizens doesn’t apply to the President, Congress, the NSA, the Army, or Rosenstein himself.

Then there are the natural barriers. The police can’t read your mind. They can only get the evidence that is there, like partial fingerprints, which are far less reliable than full fingerprints. They can’t go backwards in time.

I mention this because encryption is a natural barrier. It’s their job to overcome this barrier if they can, to crack crypto and so forth. It’s not our job to do it for them.

It’s like the camera that increasingly comes with TVs for video conferencing, or the microphone on Alexa-style devices that are always recording. This suddenly creates evidence that the police want our help in gathering, such as having the camera turned on all the time, recording to disk, in case the police later gets a warrant, to peer backward in time what happened in our living rooms. The “nothing is impervious” argument applies here as well. And it’s equally bogus here. By not helping police by not recording our activities, we aren’t somehow breaking some long standing tradit

And this is the scary part. It’s not that we are breaking some ancient tradition that there’s no place the police can’t go (with a warrant). Instead, crypto backdoors breaking the tradition that never before have I been forced to help them eavesdrop on me, even before I’m a suspect, even before any crime has been committed. Sure, laws like CALEA force the phone companies to help the police against wrongdoers — but here Rosenstein is insisting I help the police against myself.

Balance between privacy and public safety

Rosenstein repeats the frequent claim that encryption upsets the balance between privacy/safety:

Warrant-proof encryption defeats the constitutional balance by elevating privacy above public safety.

This is laughable, because technology has swung the balance alarmingly in favor of law enforcement. Far from “Going Dark” as his side claims, the problem we are confronted with is “Going Light”, where the police state monitors our every action.

You are surrounded by recording devices. If you walk down the street in town, outdoor surveillance cameras feed police facial recognition systems. If you drive, automated license plate readers can track your route. If you make a phone call or use a credit card, the police get a record of the transaction. If you stay in a hotel, they demand your ID, for law enforcement purposes.

And that’s their stuff, which is nothing compared to your stuff. You are never far from a recording device you own, such as your mobile phone, TV, Alexa/Siri/OkGoogle device, laptop. Modern cars from the last few years increasingly have always-on cell connections and data recorders that record your every action (and location).

Even if you hike out into the country, when you get back, the FBI can subpoena your GPS device to track down your hidden weapon’s cache, or grab the photos from your camera.

And this is all offline. So much of what we do is now online. Of the photographs you own, fewer than 1% are printed out, the rest are on your computer or backed up to the cloud.

Your phone is also a GPS recorder of your exact position all the time, which if the government wins the Carpenter case, they police can grab without a warrant. Tagging all citizens with a recording device of their position is not “balance” but the premise for a novel more dystopic than 1984.

If suspected of a crime, which would you rather the police searched? Your person, houses, papers, and physical effects? Or your mobile phone, computer, email, and online/cloud accounts?

The balance of privacy and safety has swung so far in favor of law enforcement that rather than debating whether they should have crypto backdoors, we should be debating how to add more privacy protections.

“But it’s not conclusive”

Rosenstein defends the “going light” (“Golden Age of Surveillance”) by pointing out it’s not always enough for conviction. Nothing gives a conviction better than a person’s own words admitting to the crime that were captured by surveillance. This other data, while copious, often fails to convince a jury beyond a reasonable doubt.
This is nonsense. Police got along well enough before the digital age, before such widespread messaging. They solved terrorist and child abduction cases just fine in the 1980s. Sure, somebody’s GPS location isn’t by itself enough — until you go there and find all the buried bodies, which leads to a conviction. “Going dark” imagines that somehow, the evidence they’ve been gathering for centuries is going away. It isn’t. It’s still here, and matches up with even more digital evidence.
Conversely, a person’s own words are not as conclusive as you think. There’s always missing context. We quickly get back to the Richelieu “six words” problem, where captured communications are twisted to convict people, with defense lawyers trying to untwist them.

Rosenstein’s claim may be true, that a lot of criminals will go free because the other electronic data isn’t convincing enough. But I’d need to see that claim backed up with hard studies, not thrown out for emotional impact.

Terrorists and child molesters

You can always tell the lack of seriousness of law enforcement when they bring up terrorists and child molesters.
To be fair, sometimes we do need to talk about terrorists. There are things unique to terrorism where me may need to give government explicit powers to address those unique concerns. For example, the NSA buys mobile phone 0day exploits in order to hack terrorist leaders in tribal areas. This is a good thing.
But when terrorists use encryption the same way everyone else does, then it’s not a unique reason to sacrifice our freedoms to give the police extra powers. Either it’s a good idea for all crimes or no crimes — there’s nothing particular about terrorism that makes it an exceptional crime. Dead people are dead. Any rational view of the problem relegates terrorism to be a minor problem. More citizens have died since September 8, 2001 from their own furniture than from terrorism. According to studies, the hot water from the tap is more of a threat to you than terrorists.
Yes, government should do what they can to protect us from terrorists, but no, it’s not so bad of a threat that requires the imposition of a military/police state. When people use terrorism to justify their actions, it’s because they trying to form a military/police state.
A similar argument works with child porn. Here’s the thing: the pervs aren’t exchanging child porn using the services Rosenstein wants to backdoor, like Apple’s Facetime or Facebook’s WhatsApp. Instead, they are exchanging child porn using custom services they build themselves.
Again, I’m (mostly) on the side of the FBI. I support their idea of buying 0day exploits in order to hack the web browsers of visitors to the secret “PlayPen” site. This is something that’s narrow to this problem and doesn’t endanger the innocent. On the other hand, their calls for crypto backdoors endangers the innocent while doing effectively nothing to address child porn.
Terrorists and child molesters are a clichéd, non-serious excuse to appeal to our emotions to give up our rights. We should not give in to such emotions.

Definition of “backdoor”

Rosenstein claims that we shouldn’t call backdoors “backdoors”:

No one calls any of those functions [like key recovery] a “back door.”  In fact, those capabilities are marketed and sought out by many users.

He’s partly right in that we rarely refer to PGP’s key escrow feature as a “backdoor”.

But that’s because the term “backdoor” refers less to how it’s done and more to who is doing it. If I set up a recovery password with Apple, I’m the one doing it to myself, so we don’t call it a backdoor. If it’s the police, spies, hackers, or criminals, then we call it a “backdoor” — even it’s identical technology.

Wikipedia uses the key escrow feature of the 1990s Clipper Chip as a prime example of what everyone means by “backdoor“. By “no one”, Rosenstein is including Wikipedia, which is obviously incorrect.

Though in truth, it’s not going to be the same technology. The needs of law enforcement are different than my personal key escrow/backup needs. In particular, there are unsolvable problems, such as a backdoor that works for the “legitimate” law enforcement in the United States but not for the “illegitimate” police states like Russia and China.

I feel for Rosenstein, because the term “backdoor” does have a pejorative connotation, which can be considered unfair. But that’s like saying the word “murder” is a pejorative term for killing people, or “torture” is a pejorative term for torture. The bad connotation exists because we don’t like government surveillance. I mean, honestly calling this feature “government surveillance feature” is likewise pejorative, and likewise exactly what it is that we are talking about.

Providers

Rosenstein focuses his arguments on “providers”, like Snapchat or Apple. But this isn’t the question.

The question is whether a “provider” like Telegram, a Russian company beyond US law, provides this feature. Or, by extension, whether individuals should be free to install whatever software they want, regardless of provider.

Telegram is a Russian company that provides end-to-end encryption. Anybody can download their software in order to communicate so that American law enforcement can’t eavesdrop. They aren’t going to put in a backdoor for the U.S. If we succeed in putting backdoors in Apple and WhatsApp, all this means is that criminals are going to install Telegram.

If the, for some reason, the US is able to convince all such providers (including Telegram) to install a backdoor, then it still doesn’t solve the problem, as uses can just build their own end-to-end encryption app that has no provider. It’s like email: some use the major providers like GMail, others setup their own email server.

Ultimately, this means that any law mandating “crypto backdoors” is going to target users not providers. Rosenstein tries to make a comparison with what plain-old telephone companies have to do under old laws like CALEA, but that’s not what’s happening here. Instead, for such rules to have any effect, they have to punish users for what they install, not providers.

This continues the argument I made above. Government backdoors is not something that forces Internet services to eavesdrop on us — it forces us to help the government spy on ourselves.
Rosenstein tries to address this by pointing out that it’s still a win if major providers like Apple and Facetime are forced to add backdoors, because they are the most popular, and some terrorists/criminals won’t move to alternate platforms. This is false. People with good intentions, who are unfairly targeted by a police state, the ones where police abuse is rampant, are the ones who use the backdoored products. Those with bad intentions, who know they are guilty, will move to the safe products. Indeed, Telegram is already popular among terrorists because they believe American services are already all backdoored. 
Rosenstein is essentially demanding the innocent get backdoored while the guilty don’t. This seems backwards. This is backwards.

Apple is morally weak

The reason I’m writing this post is because Rosenstein makes a few claims that cannot be ignored. One of them is how he describes Apple’s response to government insistence on weakening encryption doing the opposite, strengthening encryption. He reasons this happens because:

Of course they [Apple] do. They are in the business of selling products and making money. 

We [the DoJ] use a different measure of success. We are in the business of preventing crime and saving lives. 

He swells in importance. His condescending tone ennobles himself while debasing others. But this isn’t how things work. He’s not some white knight above the peasantry, protecting us. He’s a beat cop, a civil servant, who serves us.

A better phrasing would have been:

They are in the business of giving customers what they want.

We are in the business of giving voters what they want.

Both sides are doing the same, giving people what they want. Yes, voters want safety, but they also want privacy. Rosenstein imagines that he’s free to ignore our demands for privacy as long has he’s fulfilling his duty to protect us. He has explicitly rejected what people want, “we use a different measure of success”. He imagines it’s his job to tell us where the balance between privacy and safety lies. That’s not his job, that’s our job. We, the people (and our representatives), make that decision, and it’s his job is to do what he’s told. His measure of success is how well he fulfills our wishes, not how well he satisfies his imagined criteria.

That’s why those of us on this side of the debate doubt the good intentions of those like Rosenstein. He criticizes Apple for wanting to protect our rights/freedoms, and declare they measure success differently.

They are willing to be vile

Rosenstein makes this argument:

Companies are willing to make accommodations when required by the government. Recent media reports suggest that a major American technology company developed a tool to suppress online posts in certain geographic areas in order to embrace a foreign government’s censorship policies. 

Let me translate this for you:

Companies are willing to acquiesce to vile requests made by police-states. Therefore, they should acquiesce to our vile police-state requests.

It’s Rosenstein who is admitting here is that his requests are those of a police-state.

Constitutional Rights

Rosenstein says:

There is no constitutional right to sell warrant-proof encryption.

Maybe. It’s something the courts will have to decide. There are many 1st, 2nd, 3rd, 4th, and 5th Amendment issues here.
The reason we have the Bill of Rights is because of the abuses of the British Government. For example, they quartered troops in our homes, as a way of punishing us, and as a way of forcing us to help in our own oppression. The troops weren’t there to defend us against the French, but to defend us against ourselves, to shoot us if we got out of line.

And that’s what crypto backdoors do. We are forced to be agents of our own oppression. The principles enumerated by Rosenstein apply to a wide range of even additional surveillance. With little change to his speech, it can equally argue why the constant TV video surveillance from 1984 should be made law.

Let’s go back and look at Apple. It is not some base company exploiting consumers for profit. Apple doesn’t have guns, they cannot make people buy their product. If Apple doesn’t provide customers what they want, then customers vote with their feet, and go buy an Android phone. Apple isn’t providing encryption/security in order to make a profit — it’s giving customers what they want in order to stay in business.
Conversely, if we citizens don’t like what the government does, tough luck, they’ve got the guns to enforce their edicts. We can’t easily vote with our feet and walk to another country. A “democracy” is far less democratic than capitalism. Apple is a minority, selling phones to 45% of the population, and that’s fine, the minority get the phones they want. In a Democracy, where citizens vote on the issue, those 45% are screwed, as the 55% impose their will unwanted onto the remainder.

That’s why we have the Bill of Rights, to protect the 49% against abuse by the 51%. Regardless whether the Supreme Court agrees the current Constitution, it is the sort right that might exist regardless of what the Constitution says. 

Obliged to speak the truth

Here is the another part of his speech that I feel cannot be ignored. We have to discuss this:

Those of us who swear to protect the rule of law have a different motivation.  We are obliged to speak the truth.

The truth is that “going dark” threatens to disable law enforcement and enable criminals and terrorists to operate with impunity.

This is not true. Sure, he’s obliged to say the absolute truth, in court. He’s also obliged to be truthful in general about facts in his personal life, such as not lying on his tax return (the sort of thing that can get lawyers disbarred).

But he’s not obliged to tell his spouse his honest opinion whether that new outfit makes them look fat. Likewise, Rosenstein knows his opinion on public policy doesn’t fall into this category. He can say with impunity that either global warming doesn’t exist, or that it’ll cause a biblical deluge within 5 years. Both are factually untrue, but it’s not going to get him fired.

And this particular claim is also exaggerated bunk. While everyone agrees encryption makes law enforcement’s job harder than with backdoors, nobody honestly believes it can “disable” law enforcement. While everyone agrees that encryption helps terrorists, nobody believes it can enable them to act with “impunity”.

I feel bad here. It’s a terrible thing to question your opponent’s character this way. But Rosenstein made this unavoidable when he clearly, with no ambiguity, put his integrity as Deputy Attorney General on the line behind the statement that “going dark threatens to disable law enforcement and enable criminals and terrorists to operate with impunity”. I feel it’s a bald face lie, but you don’t need to take my word for it. Read his own words yourself and judge his integrity.

Conclusion

Rosenstein’s speech includes repeated references to ideas like “oath”, “honor”, and “duty”. It reminds me of Col. Jessup’s speech in the movie “A Few Good Men”.

If you’ll recall, it was rousing speech, “you want me on that wall” and “you use words like honor as a punchline”. Of course, since he was violating his oath and sending two privates to death row in order to avoid being held accountable, it was Jessup himself who was crapping on the concepts of “honor”, “oath”, and “duty”.

And so is Rosenstein. He imagines himself on that wall, doing albeit terrible things, justified by his duty to protect citizens. He imagines that it’s he who is honorable, while the rest of us not, even has he utters bald faced lies to further his own power and authority.

We activists oppose crypto backdoors not because we lack honor, or because we are criminals, or because we support terrorists and child molesters. It’s because we value privacy and government officials who get corrupted by power. It’s not that we fear Trump becoming a dictator, it’s that we fear bureaucrats at Rosenstein’s level becoming drunk on authority — which Rosenstein demonstrably has. His speech is a long train of corrupt ideas pursuing the same object of despotism — a despotism we oppose.

In other words, we oppose crypto backdoors because it’s not a tool of law enforcement, but a tool of despotism.

The Data Tinder Collects, Saves, and Uses

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/09/the_data_tinder.html

Under European law, service providers like Tinder are required to show users what information they have on them when requested. This author requested, and this is what she received:

Some 800 pages came back containing information such as my Facebook “likes,” my photos from Instagram (even after I deleted the associated account), my education, the age-rank of men I was interested in, how many times I connected, when and where every online conversation with every single one of my matches happened…the list goes on.

“I am horrified but absolutely not surprised by this amount of data,” said Olivier Keyes, a data scientist at the University of Washington. “Every app you use regularly on your phone owns the same [kinds of information]. Facebook has thousands of pages about you!”

As I flicked through page after page of my data I felt guilty. I was amazed by how much information I was voluntarily disclosing: from locations, interests and jobs, to pictures, music tastes and what I liked to eat. But I quickly realised I wasn’t the only one. A July 2017 study revealed Tinder users are excessively willing to disclose information without realising it.

“You are lured into giving away all this information,” says Luke Stark, a digital technology sociologist at Dartmouth University. “Apps such as Tinder are taking advantage of a simple emotional phenomenon; we can’t feel data. This is why seeing everything printed strikes you. We are physical creatures. We need materiality.”

Reading through the 1,700 Tinder messages I’ve sent since 2013, I took a trip into my hopes, fears, sexual preferences and deepest secrets. Tinder knows me so well. It knows the real, inglorious version of me who copy-pasted the same joke to match 567, 568, and 569; who exchanged compulsively with 16 different people simultaneously one New Year’s Day, and then ghosted 16 of them.

“What you are describing is called secondary implicit disclosed information,” explains Alessandro Acquisti, professor of information technology at Carnegie Mellon University. “Tinder knows much more about you when studying your behaviour on the app. It knows how often you connect and at which times; the percentage of white men, black men, Asian men you have matched; which kinds of people are interested in you; which words you use the most; how much time people spend on your picture before swiping you, and so on. Personal data is the fuel of the economy. Consumers’ data is being traded and transacted for the purpose of advertising.”

Tinder’s privacy policy clearly states your data may be used to deliver “targeted advertising.”

It’s not Tinder. Surveillance is the business model of the Internet. Everyone does this.

ISO Rejects NSA Encryption Algorithms

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/09/iso_rejects_nsa.html

The ISO has decided not to approve two NSA-designed block encryption algorithms: Speck and Simon. It’s because the NSA is not trusted to put security ahead of surveillance:

A number of them voiced their distrust in emails to one another, seen by Reuters, and in written comments that are part of the process. The suspicions stem largely from internal NSA documents disclosed by Snowden that showed the agency had previously plotted to manipulate standards and promote technology it could penetrate. Budget documents, for example, sought funding to “insert vulnerabilities into commercial encryption systems.”

More than a dozen of the experts involved in the approval process for Simon and Speck feared that if the NSA was able to crack the encryption techniques, it would gain a “back door” into coded transmissions, according to the interviews and emails and other documents seen by Reuters.

“I don’t trust the designers,” Israeli delegate Orr Dunkelman, a computer science professor at the University of Haifa, told Reuters, citing Snowden’s papers. “There are quite a lot of people in NSA who think their job is to subvert standards. My job is to secure standards.”

I don’t trust the NSA, either.

What the NSA Collects via 702

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/09/what_the_nsa_co.html

New York Times reporter Charlie Savage writes about some bad statistics we’re all using:

Among surveillance legal policy specialists, it is common to cite a set of statistics from an October 2011 opinion by Judge John Bates, then of the FISA Court, about the volume of internet communications the National Security Agency was collecting under the FISA Amendments Act (“Section 702”) warrantless surveillance program. In his opinion, declassified in August 2013, Judge Bates wrote that the NSA was collecting more than 250 million internet communications a year, of which 91 percent came from its Prism system (which collects stored e-mails from providers like Gmail) and 9 percent came from its upstream system (which collects transmitted messages from network operators like AT&T).

These numbers are wrong. This blog post will address, first, the widespread nature of this misunderstanding; second, how I came to FOIA certain documents trying to figure out whether the numbers really added up; third, what those documents show; and fourth, what I further learned in talking to an intelligence official. This is far too dense and weedy for a New York Times article, but should hopefully be of some interest to specialists.

Worth reading for the details.

Laser Cookies: a YouTube collaboration

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/laser-cookies/

Lasers! Cookies! Raspberry Pi! We’re buzzing with excitement about sharing our latest YouTube video with you, which comes directly from the kitchen of maker Estefannie Explains It All!

Laser-guarded cookies feat. Estefannie Explains It All

Uploaded by Raspberry Pi on 2017-09-18.

Estefannie Explains It All + Raspberry Pi

When Estefannie visited Pi Towers earlier this year, we introduced her to the Raspberry Pi Digital Curriculum and the free resources on our website. We’d already chatted to her via email about the idea of creating a collab video for the Raspberry Pi channel. Once she’d met members of the Raspberry Pi Foundation team and listened to them wax lyrical about the work we do here, she was even more keen to collaborate with us.

Estefannie on Twitter

Ahhhh!!! I still can’t believe I got to hang out and make stuff at the @Raspberry_Pi towers!! Thank you thank you!!

Estefannie returned to the US filled with inspiration for a video for our channel, and we’re so pleased with how awesome her final result is. The video is a super addition to our Raspberry Pi YouTube channel, it shows what our resources can help you achieve, and it’s great fun. You might also have noticed that the project fits in perfectly with this season’s Pioneers challenge. A win all around!

So yeah, we’re really chuffed about this video, and we hope you all like it too!

Estefannie’s Laser Cookies guide

For those of you wanting to try your hand at building your own Cookie Jar Laser Surveillance Security System, Estefannie has provided a complete guide to talk you through it. Here she goes:

First off, you’ll need:

  • 10 lasers
  • 10 photoresistors
  • 10 capacitors
  • 1 Raspberry Pi Zero W
  • 1 buzzer
  • 1 Raspberry Pi Camera Module
  • 12 ft PVC pipes + 4 corners
  • 1 acrylic panel
  • 1 battery pack
  • 8 zip ties
  • tons of cookies

I used the Raspberry Pi Foundation’s Laser trip wire and the Tweeting Babbage resources to get one laser working and to set up the camera and Twitter API. This took me less than an hour, and it was easy, breezy, beautiful, Raspberry Pi.


I soldered ten lasers in parallel and connected ten photoresistors to their own GPIO pins. I didn’t wire them up in series because of sensitivity reasons and to make debugging easier.

Building the frame took a few tries: I actually started with a wood frame, then tried a clear case, and finally realized the best and cleaner solution would be pipes. All the wires go inside the pipes and come out in a small window on the top to wire up to the Zero W.



Using pipes also made the build cheaper, since they were about $3 for 12 ft. Wiring inside the pipes was tricky, and to finish the circuit, I soldered some of the wires after they were already in the pipes.

I tried glueing the lasers to the frame, but the lasers melted the glue and became decalibrated. Next I tried tape, and then I found picture mounting putty. The putty worked perfectly — it was easy to mold a putty base for the lasers and to calibrate and re-calibrate them if needed. Moreover, the lasers stayed in place no matter how hot they got.

Estefannie Explains It All Raspberry Pi Cookie Jar

Although the lasers were not very strong, I still strained my eyes after long hours of calibrating — hence the sunglasses! Working indoors with lasers, sunglasses, and code was weird. But now I can say I’ve done that…in my kitchen.

Using all the knowledge I have shared, this project should take a couple of hours. The code you need lives on my GitHub!

Estefannie Explains It All Raspberry Pi Cookie Jar

“The cookie recipe is my grandma’s, and I am not allowed to share it.”

Estefannie on YouTube

Estefannie made this video for us as a gift, and we’re so grateful for the time and effort she put into it! If you enjoyed it and would like to also show your gratitude, subscribe to her channel on YouTube and follow her on Instagram and Twitter. And if you make something similar, or build anything with our free resources, make sure to share it with us in the comments below or via our social media channels.

The post Laser Cookies: a YouTube collaboration appeared first on Raspberry Pi.

On the Equifax Data Breach

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/09/on_the_equifax_.html

Last Thursday, Equifax reported a data breach that affects 143 million US customers, about 44% of the population. It’s an extremely serious breach; hackers got access to full names, Social Security numbers, birth dates, addresses, driver’s license numbers — exactly the sort of information criminals can use to impersonate victims to banks, credit card companies, insurance companies, and other businesses vulnerable to fraud.

Many sites posted guides to protecting yourself now that it’s happened. But if you want to prevent this kind of thing from happening again, your only solution is government regulation (as unlikely as that may be at the moment).

The market can’t fix this. Markets work because buyers choose between sellers, and sellers compete for buyers. In case you didn’t notice, you’re not Equifax’s customer. You’re its product.

This happened because your personal information is valuable, and Equifax is in the business of selling it. The company is much more than a credit reporting agency. It’s a data broker. It collects information about all of us, analyzes it all, and then sells those insights.

Its customers are people and organizations who want to buy information: banks looking to lend you money, landlords deciding whether to rent you an apartment, employers deciding whether to hire you, companies trying to figure out whether you’d be a profitable customer — everyone who wants to sell you something, even governments.

It’s not just Equifax. It might be one of the biggest, but there are 2,500 to 4,000 other data brokers that are collecting, storing, and selling information about you — almost all of them companies you’ve never heard of and have no business relationship with.

Surveillance capitalism fuels the Internet, and sometimes it seems that everyone is spying on you. You’re secretly tracked on pretty much every commercial website you visit. Facebook is the largest surveillance organization mankind has created; collecting data on you is its business model. I don’t have a Facebook account, but Facebook still keeps a surprisingly complete dossier on me and my associations — just in case I ever decide to join.

I also don’t have a Gmail account, because I don’t want Google storing my e-mail. But my guess is that it has about half of my e-mail anyway, because so many people I correspond with have accounts. I can’t even avoid it by choosing not to write to gmail.com addresses, because I have no way of knowing if [email protected] is hosted at Gmail.

And again, many companies that track us do so in secret, without our knowledge and consent. And most of the time we can’t opt out. Sometimes it’s a company like Equifax that doesn’t answer to us in any way. Sometimes it’s a company like Facebook, which is effectively a monopoly because of its sheer size. And sometimes it’s our cell phone provider. All of them have decided to track us and not compete by offering consumers privacy. Sure, you can tell people not to have an e-mail account or cell phone, but that’s not a realistic option for most people living in 21st-century America.

The companies that collect and sell our data don’t need to keep it secure in order to maintain their market share. They don’t have to answer to us, their products. They know it’s more profitable to save money on security and weather the occasional bout of bad press after a data loss. Yes, we are the ones who suffer when criminals get our data, or when our private information is exposed to the public, but ultimately why should Equifax care?

Yes, it’s a huge black eye for the company — this week. Soon, another company will have suffered a massive data breach and few will remember Equifax’s problem. Does anyone remember last year when Yahoo admitted that it exposed personal information of a billion users in 2013 and another half billion in 2014?

This market failure isn’t unique to data security. There is little improvement in safety and security in any industry until government steps in. Think of food, pharmaceuticals, cars, airplanes, restaurants, workplace conditions, and flame-retardant pajamas.

Market failures like this can only be solved through government intervention. By regulating the security practices of companies that store our data, and fining companies that fail to comply, governments can raise the cost of insecurity high enough that security becomes a cheaper alternative. They can do the same thing by giving individuals affected by these breaches the ability to sue successfully, citing the exposure of personal data itself as a harm.

By all means, take the recommended steps to protect yourself from identity theft in the wake of Equifax’s data breach, but recognize that these steps are only effective on the margins, and that most data security is out of your hands. Perhaps the Federal Trade Commission will get involved, but without evidence of “unfair and deceptive trade practices,” there’s nothing it can do. Perhaps there will be a class-action lawsuit, but because it’s hard to draw a line between any of the many data breaches you’re subjected to and a specific harm, courts are not likely to side with you.

If you don’t like how careless Equifax was with your data, don’t waste your breath complaining to Equifax. Complain to your government.

This essay previously appeared on CNN.com.

EDITED TO ADD: In the early hours of this breach, I did a radio interview where I minimized the ramifications of this. I didn’t know the full extent of the breach, and thought it was just another in an endless string of breaches. I wondered why the press was covering this one and not many of the others. I don’t remember which radio show interviewed me. I kind of hope it didn’t air.

A Hardware Privacy Monitor for iPhones

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/09/a_hardware_priv.html

Andrew “bunnie” Huang and Edward Snowden have designed a hardware device that attaches to an iPhone and monitors it for malicious surveillance activities, even in instances where the phone’s operating system has been compromised. They call it an Introspection Engine, and their use model is a journalist who is concerned about government surveillance:

Our introspection engine is designed with the following goals in mind:

  1. Completely open source and user-inspectable (“You don’t have to trust us”)
  2. Introspection operations are performed by an execution domain completely separated from the phone”s CPU (“don’t rely on those with impaired judgment to fairly judge their state”)

  3. Proper operation of introspection system can be field-verified (guard against “evil maid” attacks and hardware failures)

  4. Difficult to trigger a false positive (users ignore or disable security alerts when there are too many positives)

  5. Difficult to induce a false negative, even with signed firmware updates (“don’t trust the system vendor” — state-level adversaries with full cooperation of system vendors should not be able to craft signed firmware updates that spoof or bypass the introspection engine)

  6. As much as possible, the introspection system should be passive and difficult to detect by the phone’s operating system (prevent black-listing/targeting of users based on introspection engine signatures)

  7. Simple, intuitive user interface requiring no specialized knowledge to interpret or operate (avoid user error leading to false negatives; “journalists shouldn’t have to be cryptographers to be safe”)

  8. Final solution should be usable on a daily basis, with minimal impact on workflow (avoid forcing field reporters into the choice between their personal security and being an effective journalist)

This looks like fantastic work, and they have a working prototype.

Of course, this does nothing to stop all the legitimate surveillance that happens over a cell phone: location tracking, records of who you talk to, and so on.

BoingBoing post.

Russian Hacking Tools Codenamed WhiteBear Exposed

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/09/russian_hacking.html

Kaspersky Labs exposed a highly sophisticated set of hacking tools from Russia called WhiteBear.

From February to September 2016, WhiteBear activity was narrowly focused on embassies and consular operations around the world. All of these early WhiteBear targets were related to embassies and diplomatic/foreign affair organizations. Continued WhiteBear activity later shifted to include defense-related organizations into June 2017. When compared to WhiteAtlas infections, WhiteBear deployments are relatively rare and represent a departure from the broader Skipper Turla target set. Additionally, a comparison of the WhiteAtlas framework to WhiteBear components indicates that the malware is the product of separate development efforts. WhiteBear infections appear to be preceded by a condensed spearphishing dropper, lack Firefox extension installer payloads, and contain several new components signed with a new code signing digital certificate, unlike WhiteAtlas incidents and modules.

The exact delivery vector for WhiteBear components is unknown to us, although we have very strong suspicion the group spearphished targets with malicious pdf files. The decoy pdf document above was likely stolen from a target or partner. And, although WhiteBear components have been consistently identified on a subset of systems previously targeted with the WhiteAtlas framework, and maintain components within the same filepaths and can maintain identical filenames, we were unable to firmly tie delivery to any specific WhiteAtlas component. WhiteBear focused on various embassies and diplomatic entities around the world in early 2016 — tellingly, attempts were made to drop and display decoy pdf’s with full diplomatic headers and content alongside executable droppers on target systems.

One of the clever things the tool does is use hijacked satellite connections for command and control, helping it evade detection by broad surveillance capabilities like what what NSA uses. We’ve seen Russian attack tools that do this before. More details are in the Kaspersky blog post.

Given all the trouble Kaspersky is having because of its association with Russia, it’s interesting to speculate on this disclosure. Either they are independent, and have burned a valuable Russian hacking toolset. Or the Russians decided that the toolset was already burned — maybe the NSA knows all about it and has neutered it somehow — and allowed Kaspersky to publish. Or maybe it’s something in between. That’s the problem with this kind of speculation: without any facts, your theories just amplify whatever opinion you had previously.

Oddly, there hasn’t been much press about this. I have only found one story.

EDITED TO ADD: A colleague pointed out to me that Kaspersky announcements like this often get ignored by the press. There was very little written about ProjectSauron, for example.

EDITED TO ADD: The text I originally wrote said that Kaspersky released the attacks tools, like what Shadow Brokers is doing. They did not. They just exposed the existence of them. Apologies for that error — it was sloppy wording.

Entire Kim Dotcom Spying Operation Was Illegal, High Court Rules

Post Syndicated from Andy original https://torrentfreak.com/entire-kim-dotcom-spying-operation-was-illegal-high-court-rules-170825/

In the months that preceded the January 2012 raid on file-storage site Megaupload, authorities in New Zealand used the Government Communications Security Bureau (GCSB) spy agency to monitor Kim and Mona Dotcom, plus Megaupload co-defendant Bram van der Kolk.

When this fact was revealed it developed into a crisis. The GCSB was forbidden by law from conducting surveillance on its own citizens or permanent residents in the country, which led to former Prime Minister John Key later apologizing for the error.

With Dotcom determined to uncover the truth, the entrepreneur launched legal action in pursuit of the information illegally obtained by GCSB and to obtain compensation. In July, the High Court determined that Dotcom wouldn’t get access to the information but it also revealed that the scope of the spying went on much longer than previously admitted, a fact later confirmed by the police.

This raised the specter that not only did the GCSB continue to spy on Dotcom after it knew it was acting illegally, but that an earlier affidavit from a GCSB staff member was suspect.

With the saga continuing to drag on, revelations published in New Zealand this morning indicate that not only was the spying on Dotcom illegal, the entire spying operation – which included his Megaupload co-defendants – was too.

The reports are based on documents released by Lawyer Peter Spring, who is acting for Bram van der Kolk and Mathias Ortmann. Spring says that the High Court decision, which dates back to December but has only just been made available, shows that “the whole surveillance operation fell outside the authorization of the GCSB legislation as it was at the relevant time”.

Since Dotcom is a permanent resident of New Zealand, it’s long been established that the GCSB acted illegally when it spied on him. As foreigners, however, Megaupload co-defendants Finn Batato and Mathias Ortmann were previously considered valid surveillance targets.

It now transpires that the GCSB wasn’t prepared to mount a defense or reveal its methods concerning their surveillance, something which boosted the case against it.

“The circumstances of the interceptions of Messrs Ortmann and Batato’s communications are Top Secret and it has not proved possible to plead to the allegations the plaintiffs have made without revealing information which would jeopardize the national security of New Zealand,” the Court documents read.

“As a result the GCSB is deemed to have admitted the allegations in the statement of claim which relate to the manner in which the interceptions were effected.”

Speaking with RadioNZ, Grant Illingworth, a lawyer representing Ortmann and van der Kolk, said the decision calls the entire GCSB operation into doubt.

“The GCSB has now admitted that the unlawfulness was not just dependent upon residency issues, it went further. The reason it went further was because it didn’t have authorization to carry out the kind of surveillance that it was carrying out under the legislation, as it was at that time,” Illingworth said.

In comments to NZHerald, Illingworth added that the decision meant that the damages case for Ortmann and van der Kolk had come to an end. He refused to respond to questions of whether damages had been paid or a settlement reached.

He did indicate, however, that there could be implications for the battle underway to have Dotcom, Batato, Ortmann and van der Kolk extradited to the United States.

“If there was illegality in the arrest and search phase and that illegality has not previously been made known in the extradition context then it could be relevant to the extradition,” Illingworth said.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Your Personal Bodycam

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/08/your_personal_b.html

Shonin is a personal bodycam up on Kickstarter.

There are a lot of complicated issues surrounding bodycams — for example, it’s obvious that police bodycams reduce violence — but the one thing everyone is certain about is that they will proliferate. I’m not sure society is fully ready for the ramifications of this level of recording.

More on the Vulnerabilities Equities Process

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/08/more_on_the_vul_1.html

Richard Ledgett — a former Deputy Director of the NSA — argues against the US government disclosing all vulnerabilities:

Proponents argue that this would allow patches to be developed, which in turn would help ensure that networks are secure. On its face, this argument might seem to make sense — but it is a gross oversimplification of the problem, one that not only would not have the desired effect but that also would be dangerous.

Actually, he doesn’t make that argument at all. He basically says that security is a lot more complicated than finding and disclosing vulnerabilities — something I don’t think anyone disagrees with. His conclusion:

Malicious software like WannaCry and Petya is a scourge in our digital lives, and we need to take concerted action to protect ourselves. That action must be grounded in an accurate understanding of how the vulnerability ecosystem works. Software vendors need to continue working to build better software and to provide patching support for software deployed in critical infrastructure. Customers need to budget and plan for upgrades as part of the going-in cost of IT, or for compensatory measures when upgrades are impossible. Those who discover vulnerabilities need to responsibly disclose them or, if they are retained for national security purposes, adequately safeguard them. And the partnership of intelligence, law enforcement and industry needs to work together to identify and disrupt actors who use these vulnerabilities for their criminal and destructive ends. No single set of actions will solve the problem; we must work together to protect ourselves. As for blame, we should place it where it really lies: on the criminals who intentionally and maliciously assembled this destructive ransomware and released it on the world.

I don’t think anyone would argue with any of that, either. The question is whether the US government should prioritize attack over defense, and security over surveillance. Disclosing, especially in a world where the secrecy of zero-day vulnerabilities is so fragile, greatly improves the security of our critical systems.

Detecting Stingrays

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/08/detecting_sting.html

Researchers are developing technologies that can detect IMSI-catchers: those fake cell phone towers that can be used to surveil people in the area.

This is good work, but it’s unclear to me whether these devices can detect all the newer IMSI-catchers that are being sold to governments worldwide.

News article.

Awesome Raspberry Pi cases to 3D print at home

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/3d-printed-raspberry-pi-cases/

Unless you’re planning to fit your Raspberry Pi inside a build, you may find yourself in need of a case to protect it from dust, damage and/or the occasional pet attack. Here are some of our favourite 3D-printed cases, for which files are available online so you can recreate them at home.

TARDIS

TARDIS Raspberry PI 3 case – 3D Printing Time lapse

Every Tuesday we’ll 3D print designs from the community and showcase slicer settings, use cases and of course, Time-lapses! This week: TARDIS Raspberry PI 3 case By: https://www.thingiverse.com/Jason3030 https://www.thingiverse.com/thing:2430122/ BCN3D Sigma Blue PLA 3hrs 20min X:73 Y:73 Z:165mm .4mm layer / .6mm nozzle 0% Infill / 4mm retract 230C / 0C 114G 60mm/s —————————————– Shop for parts for your own DIY projects http://adafru.it/3dprinting Download Autodesk Fusion 360 – 1 Year Free License (renew it after that for more free use!)

Since I am an avid Whovian, it’s not surprising that this case made its way onto the list. Its outside is aesthetically pleasing to the aspiring Time Lord, and it snugly fits your treasured Pi.



Pop this case on your desk and chuckle with glee every time someone asks what’s inside it:

Person: What’s that?
You: My Raspberry Pi.
Person: What’s a Raspberry Pi?
You: It’s a computer!
Person: There’s a whole computer in that tiny case?
You: Yes…it’s BIGGER ON THE INSIDE!

I’ll get my coat.

Pi crust

Yes, we all wish we’d thought of it first. What better case for a Raspberry Pi than a pie crust?

3D-printed Raspberry Pi cases

While the case is designed to fit the Raspberry Pi Model B, you will be able to upgrade the build to accommodate newer models with a few tweaks.



Just make sure that if you do, you credit Marco Valenzuela, its original baker.

Consoles

Since many people use the Raspberry Pi to run RetroPie, there is a growing trend of 3D-printed console-style Pi cases.

3D-printed Raspberry Pi cases

So why not pop your Raspberry Pi into a case made to look like your favourite vintage console, such as the Nintendo NES or N64?



You could also use an adapter to fit a Raspberry Pi Zero within an actual Atari cartridge, or go modern and print a PlayStation 4 case!

Functional

Maybe you’re looking to use your Raspberry Pi as a component of a larger project, such as a home automation system, learning suite, or makerspace. In that case you may need to attach it to a wall, under a desk, or behind a monitor.

3D-printed Raspberry Pi cases

Coo! Coo!

The Pidgeon, shown above, allows you to turn your Zero W into a surveillance camera, while the piPad lets you keep a breadboard attached for easy access to your Pi’s GPIO pins.



Functional cases with added brackets are great for incorporating your Pi on the sly. The VESA mount case will allow you to attach your Pi to any VESA-compatible monitor, and the Fallout 4 Terminal is just really cool.

Cute

You might want your case to just look cute, especially if it’s going to sit in full view on your desk or shelf.

3D-printed Raspberry Pi cases

The tired cube above is the only one of our featured 3D prints for which you have to buy the files ($1.30), but its adorable face begged to be shared anyway.



If you’d rather save your money for another day, you may want to check out this adorable monster from Adafruit. Be aware that this case will also need some altering to fit newer versions of the Pi.

Our cases

Finally, there are great options for you if you don’t have access to a 3D printer, or if you would like to help the Raspberry Pi Foundation’s mission. You can buy one of the official Raspberry Pi cases for the Raspberry Pi 3 and Raspberry Pi Zero (and Zero W)!

3D-printed Raspberry Pi cases



As with all official Raspberry Pi accessories (and with the Pi itself), your money goes toward helping the Foundation to put the power of digital making into the hands of people all over the world.

3D-printed Raspberry Pi cases

You could also print a replica of the official Astro Pi cases, in which two Pis are currently orbiting the earth on the International Space Station.

Design your own Raspberry Pi case!

If you’ve built a case for your Raspberry Pi, be it with a 3D printer, laser-cutter, or your bare hands, make sure to share it with us in the comments below, or via our social media channels.

And if you’d like to give 3D printing a go, there are plenty of free online learning resources, and sites that offer tutorials and software to get you started, such as TinkerCAD, Instructables, and Adafruit.

The post Awesome Raspberry Pi cases to 3D print at home appeared first on Raspberry Pi.

Top 10 Most Obvious Hacks of All Time (v0.9)

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/07/top-10-most-obvious-hacks-of-all-time.html

For teaching hacking/cybersecurity, I thought I’d create of the most obvious hacks of all time. Not the best hacks, the most sophisticated hacks, or the hacks with the biggest impact, but the most obvious hacks — ones that even the least knowledgeable among us should be able to understand. Below I propose some hacks that fit this bill, though in no particular order.

The reason I’m writing this is that my niece wants me to teach her some hacking. I thought I’d start with the obvious stuff first.

Shared Passwords

If you use the same password for every website, and one of those websites gets hacked, then the hacker has your password for all your websites. The reason your Facebook account got hacked wasn’t because of anything Facebook did, but because you used the same email-address and password when creating an account on “beagleforums.com”, which got hacked last year.

I’ve heard people say “I’m sure, because I choose a complex password and use it everywhere”. No, this is the very worst thing you can do. Sure, you can the use the same password on all sites you don’t care much about, but for Facebook, your email account, and your bank, you should have a unique password, so that when other sites get hacked, your important sites are secure.

And yes, it’s okay to write down your passwords on paper.

Tools: HaveIBeenPwned.com

PIN encrypted PDFs

My accountant emails PDF statements encrypted with the last 4 digits of my Social Security Number. This is not encryption — a 4 digit number has only 10,000 combinations, and a hacker can guess all of them in seconds.
PIN numbers for ATM cards work because ATM machines are online, and the machine can reject your card after four guesses. PIN numbers don’t work for documents, because they are offline — the hacker has a copy of the document on their own machine, disconnected from the Internet, and can continue making bad guesses with no restrictions.
Passwords protecting documents must be long enough that even trillion upon trillion guesses are insufficient to guess.

Tools: Hashcat, John the Ripper

SQL and other injection

The lazy way of combining websites with databases is to combine user input with an SQL statement. This combines code with data, so the obvious consequence is that hackers can craft data to mess with the code.
No, this isn’t obvious to the general public, but it should be obvious to programmers. The moment you write code that adds unfiltered user-input to an SQL statement, the consequence should be obvious. Yet, “SQL injection” has remained one of the most effective hacks for the last 15 years because somehow programmers don’t understand the consequence.
CGI shell injection is a similar issue. Back in early days, when “CGI scripts” were a thing, it was really important, but these days, not so much, so I just included it with SQL. The consequence of executing shell code should’ve been obvious, but weirdly, it wasn’t. The IT guy at the company I worked for back in the late 1990s came to me and asked “this guy says we have a vulnerability, is he full of shit?”, and I had to answer “no, he’s right — obviously so”.

XSS (“Cross Site Scripting”) [*] is another injection issue, but this time at somebody’s web browser rather than a server. It works because websites will echo back what is sent to them. For example, if you search for Cross Site Scripting with the URL https://www.google.com/search?q=cross+site+scripting, then you’ll get a page back from the server that contains that string. If the string is JavaScript code rather than text, then some servers (thought not Google) send back the code in the page in a way that it’ll be executed. This is most often used to hack somebody’s account: you send them an email or tweet a link, and when they click on it, the JavaScript gives control of the account to the hacker.

Cross site injection issues like this should probably be their own category, but I’m including it here for now.

More: Wikipedia on SQL injection, Wikipedia on cross site scripting.
Tools: Burpsuite, SQLmap

Buffer overflows

In the C programming language, programmers first create a buffer, then read input into it. If input is long than the buffer, then it overflows. The extra bytes overwrite other parts of the program, letting the hacker run code.
Again, it’s not a thing the general public is expected to know about, but is instead something C programmers should be expected to understand. They should know that it’s up to them to check the length and stop reading input before it overflows the buffer, that there’s no language feature that takes care of this for them.
We are three decades after the first major buffer overflow exploits, so there is no excuse for C programmers not to understand this issue.

What makes particular obvious is the way they are wrapped in exploits, like in Metasploit. While the bug itself is obvious that it’s a bug, actually exploiting it can take some very non-obvious skill. However, once that exploit is written, any trained monkey can press a button and run the exploit. That’s where we get the insult “script kiddie” from — referring to wannabe-hackers who never learn enough to write their own exploits, but who spend a lot of time running the exploit scripts written by better hackers than they.

More: Wikipedia on buffer overflow, Wikipedia on script kiddie,  “Smashing The Stack For Fun And Profit” — Phrack (1996)
Tools: bash, Metasploit

SendMail DEBUG command (historical)

The first popular email server in the 1980s was called “SendMail”. It had a feature whereby if you send a “DEBUG” command to it, it would execute any code following the command. The consequence of this was obvious — hackers could (and did) upload code to take control of the server. This was used in the Morris Worm of 1988. Most Internet machines of the day ran SendMail, so the worm spread fast infecting most machines.
This bug was mostly ignored at the time. It was thought of as a theoretical problem, that might only rarely be used to hack a system. Part of the motivation of the Morris Worm was to demonstrate that such problems was to demonstrate the consequences — consequences that should’ve been obvious but somehow were rejected by everyone.

More: Wikipedia on Morris Worm

Email Attachments/Links

I’m conflicted whether I should add this or not, because here’s the deal: you are supposed to click on attachments and links within emails. That’s what they are there for. The difference between good and bad attachments/links is not obvious. Indeed, easy-to-use email systems makes detecting the difference harder.
On the other hand, the consequences of bad attachments/links is obvious. That worms like ILOVEYOU spread so easily is because people trusted attachments coming from their friends, and ran them.
We have no solution to the problem of bad email attachments and links. Viruses and phishing are pervasive problems. Yet, we know why they exist.

Default and backdoor passwords

The Mirai botnet was caused by surveillance-cameras having default and backdoor passwords, and being exposed to the Internet without a firewall. The consequence should be obvious: people will discover the passwords and use them to take control of the bots.
Surveillance-cameras have the problem that they are usually exposed to the public, and can’t be reached without a ladder — often a really tall ladder. Therefore, you don’t want a button consumers can press to reset to factory defaults. You want a remote way to reset them. Therefore, they put backdoor passwords to do the reset. Such passwords are easy for hackers to reverse-engineer, and hence, take control of millions of cameras across the Internet.
The same reasoning applies to “default” passwords. Many users will not change the defaults, leaving a ton of devices hackers can hack.

Masscan and background radiation of the Internet

I’ve written a tool that can easily scan the entire Internet in a short period of time. It surprises people that this possible, but it obvious from the numbers. Internet addresses are only 32-bits long, or roughly 4 billion combinations. A fast Internet link can easily handle 1 million packets-per-second, so the entire Internet can be scanned in 4000 seconds, little more than an hour. It’s basic math.
Because it’s so easy, many people do it. If you monitor your Internet link, you’ll see a steady trickle of packets coming in from all over the Internet, especially Russia and China, from hackers scanning the Internet for things they can hack.
People’s reaction to this scanning is weirdly emotional, taking is personally, such as:
  1. Why are they hacking me? What did I do to them?
  2. Great! They are hacking me! That must mean I’m important!
  3. Grrr! How dare they?! How can I hack them back for some retribution!?

I find this odd, because obviously such scanning isn’t personal, the hackers have no idea who you are.

Tools: masscan, firewalls

Packet-sniffing, sidejacking

If you connect to the Starbucks WiFi, a hacker nearby can easily eavesdrop on your network traffic, because it’s not encrypted. Windows even warns you about this, in case you weren’t sure.

At DefCon, they have a “Wall of Sheep”, where they show passwords from people who logged onto stuff using the insecure “DefCon-Open” network. Calling them “sheep” for not grasping this basic fact that unencrypted traffic is unencrypted.

To be fair, it’s actually non-obvious to many people. Even if the WiFi itself is not encrypted, SSL traffic is. They expect their services to be encrypted, without them having to worry about it. And in fact, most are, especially Google, Facebook, Twitter, Apple, and other major services that won’t allow you to log in anymore without encryption.

But many services (especially old ones) may not be encrypted. Unless users check and verify them carefully, they’ll happily expose passwords.

What’s interesting about this was 10 years ago, when most services which only used SSL to encrypt the passwords, but then used unencrypted connections after that, using “cookies”. This allowed the cookies to be sniffed and stolen, allowing other people to share the login session. I used this on stage at BlackHat to connect to somebody’s GMail session. Google, and other major websites, fixed this soon after. But it should never have been a problem — because the sidejacking of cookies should have been obvious.

Tools: Wireshark, dsniff

Stuxnet LNK vulnerability

Again, this issue isn’t obvious to the public, but it should’ve been obvious to anybody who knew how Windows works.
When Windows loads a .dll, it first calls the function DllMain(). A Windows link file (.lnk) can load icons/graphics from the resources in a .dll file. It does this by loading the .dll file, thus calling DllMain. Thus, a hacker could put on a USB drive a .lnk file pointing to a .dll file, and thus, cause arbitrary code execution as soon as a user inserted a drive.
I say this is obvious because I did this, created .lnks that pointed to .dlls, but without hostile DllMain code. The consequence should’ve been obvious to me, but I totally missed the connection. We all missed the connection, for decades.

Social Engineering and Tech Support [* * *]

After posting this, many people have pointed out “social engineering”, especially of “tech support”. This probably should be up near #1 in terms of obviousness.

The classic example of social engineering is when you call tech support and tell them you’ve lost your password, and they reset it for you with minimum of questions proving who you are. For example, you set the volume on your computer really loud and play the sound of a crying baby in the background and appear to be a bit frazzled and incoherent, which explains why you aren’t answering the questions they are asking. They, understanding your predicament as a new parent, will go the extra mile in helping you, resetting “your” password.

One of the interesting consequences is how it affects domain names (DNS). It’s quite easy in many cases to call up the registrar and convince them to transfer a domain name. This has been used in lots of hacks. It’s really hard to defend against. If a registrar charges only $9/year for a domain name, then it really can’t afford to provide very good tech support — or very secure tech support — to prevent this sort of hack.

Social engineering is such a huge problem, and obvious problem, that it’s outside the scope of this document. Just google it to find example after example.

A related issue that perhaps deserves it’s own section is OSINT [*], or “open-source intelligence”, where you gather public information about a target. For example, on the day the bank manager is out on vacation (which you got from their Facebook post) you show up and claim to be a bank auditor, and are shown into their office where you grab their backup tapes. (We’ve actually done this).

More: Wikipedia on Social Engineering, Wikipedia on OSINT, “How I Won the Defcon Social Engineering CTF” — blogpost (2011), “Questioning 42: Where’s the Engineering in Social Engineering of Namespace Compromises” — BSidesLV talk (2016)

Blue-boxes (historical) [*]

Telephones historically used what we call “in-band signaling”. That’s why when you dial on an old phone, it makes sounds — those sounds are sent no differently than the way your voice is sent. Thus, it was possible to make tone generators to do things other than simply dial calls. Early hackers (in the 1970s) would make tone-generators called “blue-boxes” and “black-boxes” to make free long distance calls, for example.

These days, “signaling” and “voice” are digitized, then sent as separate channels or “bands”. This is call “out-of-band signaling”. You can’t trick the phone system by generating tones. When your iPhone makes sounds when you dial, it’s entirely for you benefit and has nothing to do with how it signals the cell tower to make a call.

Early hackers, like the founders of Apple, are famous for having started their careers making such “boxes” for tricking the phone system. The problem was obvious back in the day, which is why as the phone system moves from analog to digital, the problem was fixed.

More: Wikipedia on blue box, Wikipedia article on Steve Wozniak.

Thumb drives in parking lots [*]

A simple trick is to put a virus on a USB flash drive, and drop it in a parking lot. Somebody is bound to notice it, stick it in their computer, and open the file.

This can be extended with tricks. For example, you can put a file labeled “third-quarter-salaries.xlsx” on the drive that required macros to be run in order to open. It’s irresistible to other employees who want to know what their peers are being paid, so they’ll bypass any warning prompts in order to see the data.

Another example is to go online and get custom USB sticks made printed with the logo of the target company, making them seem more trustworthy.

We also did a trick of taking an Adobe Flash game “Punch the Monkey” and replaced the monkey with a logo of a competitor of our target. They now only played the game (infecting themselves with our virus), but gave to others inside the company to play, infecting others, including the CEO.

Thumb drives like this have been used in many incidents, such as Russians hacking military headquarters in Afghanistan. It’s really hard to defend against.

More: “Computer Virus Hits U.S. Military Base in Afghanistan” — USNews (2008), “The Return of the Worm That Ate The Pentagon” — Wired (2011), DoD Bans Flash Drives — Stripes (2008)

Googling [*]

Search engines like Google will index your website — your entire website. Frequently companies put things on their website without much protection because they are nearly impossible for users to find. But Google finds them, then indexes them, causing them to pop up with innocent searches.
There are books written on “Google hacking” explaining what search terms to look for, like “not for public release”, in order to find such documents.

More: Wikipedia entry on Google Hacking, “Google Hacking” book.

URL editing [*]

At the top of every browser is what’s called the “URL”. You can change it. Thus, if you see a URL that looks like this:

http://www.example.com/documents?id=138493

Then you can edit it to see the next document on the server:

http://www.example.com/documents?id=138494

The owner of the website may think they are secure, because nothing points to this document, so the Google search won’t find it. But that doesn’t stop a user from manually editing the URL.
An example of this is a big Fortune 500 company that posts the quarterly results to the website an hour before the official announcement. Simply editing the URL from previous financial announcements allows hackers to find the document, then buy/sell the stock as appropriate in order to make a lot of money.
Another example is the classic case of Andrew “Weev” Auernheimer who did this trick in order to download the account email addresses of early owners of the iPad, including movie stars and members of the Obama administration. It’s an interesting legal case because on one hand, techies consider this so obvious as to not be “hacking”. On the other hand, non-techies, especially judges and prosecutors, believe this to be obviously “hacking”.

DDoS, spoofing, and amplification [*]

For decades now, online gamers have figured out an easy way to win: just flood the opponent with Internet traffic, slowing their network connection. This is called a DoS, which stands for “Denial of Service”. DoSing game competitors is often a teenager’s first foray into hacking.
A variant of this is when you hack a bunch of other machines on the Internet, then command them to flood your target. (The hacked machines are often called a “botnet”, a network of robot computers). This is called DDoS, or “Distributed DoS”. At this point, it gets quite serious, as instead of competitive gamers hackers can take down entire businesses. Extortion scams, DDoSing websites then demanding payment to stop, is a common way hackers earn money.
Another form of DDoS is “amplification”. Sometimes when you send a packet to a machine on the Internet it’ll respond with a much larger response, either a very large packet or many packets. The hacker can then send a packet to many of these sites, “spoofing” or forging the IP address of the victim. This causes all those sites to then flood the victim with traffic. Thus, with a small amount of outbound traffic, the hacker can flood the inbound traffic of the victim.
This is one of those things that has worked for 20 years, because it’s so obvious teenagers can do it, yet there is no obvious solution. President Trump’s executive order of cyberspace specifically demanded that his government come up with a report on how to address this, but it’s unlikely that they’ll come up with any useful strategy.

More: Wikipedia on DDoS, Wikipedia on Spoofing

Conclusion

Tweet me (@ErrataRob) your obvious hacks, so I can add them to the list.

Me on Restaurant Surveillance Technology

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/07/me_on_restauran.html

I attended the National Restaurant Association exposition in Chicago earlier this year, and looked at all the ways modern restaurant IT is spying on people.

But there’s also a fundamentally creepy aspect to much of this. One of the prime ways to increase value for your brand is to use the Internet to practice surveillance of both your customers and employees. The customer side feels less invasive: Loyalty apps are pretty nice, if in fact you generally go to the same place, as is the ability to place orders electronically or make reservations with a click. The question, Schneier asks, is “who owns the data?” There’s value to collecting data on spending habits, as we’ve seen across e-commerce. Are restaurants fully aware of what they are giving away? Schneier, a critic of data mining, points out that it becomes especially invasive through “secondary uses,” when the “data is correlated with other data and sold to third parties.” For example, perhaps you’ve entered your name, gender, and age into a taco loyalty app (12th taco free!). Later, the vendors of that app sell your data to other merchants who know where and when you eat, whether you are a vegetarian, and lots of other data that you have accidentally shed. Is that what customers really want?