Tag Archives: disclosure

Zoom Vulnerability

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/07/zoom_vulnerabil.html

The Zoom conferencing app has a vulnerability that allows someone to remotely take over the computer’s camera.

It’s a bad vulnerability, made worse by the fact that it remains even if you uninstall the Zoom app:

This vulnerability allows any website to forcibly join a user to a Zoom call, with their video camera activated, without the user’s permission.

On top of this, this vulnerability would have allowed any webpage to DOS (Denial of Service) a Mac by repeatedly joining a user to an invalid call.

Additionally, if you’ve ever installed the Zoom client and then uninstalled it, you still have a localhost web server on your machine that will happily re-install the Zoom client for you, without requiring any user interaction on your behalf besides visiting a webpage. This re-install ‘feature’ continues to work to this day.

Zoom didn’t take the vulnerability seriously:

This vulnerability was originally responsibly disclosed on March 26, 2019. This initial report included a proposed description of a ‘quick fix’ Zoom could have implemented by simply changing their server logic. It took Zoom 10 days to confirm the vulnerability. The first actual meeting about how the vulnerability would be patched occurred on June 11th, 2019, only 18 days before the end of the 90-day public disclosure deadline. During this meeting, the details of the vulnerability were confirmed and Zoom’s planned solution was discussed. However, I was very easily able to spot and describe bypasses in their planned fix. At this point, Zoom was left with 18 days to resolve the vulnerability. On June 24th after 90 days of waiting, the last day before the public disclosure deadline, I discovered that Zoom had only implemented the ‘quick fix’ solution originally suggested.

This is why we disclose vulnerabilities. Now, finally, Zoom is taking this seriously and fixing it for real.

The Importance of Protecting Cybersecurity Whistleblowers

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/06/the_importance_3.html

Interesting essay arguing that we need better legislation to protect cybersecurity whistleblowers.

Congress should act to protect cybersecurity whistleblowers because information security has never been so important, or so challenging. In the wake of a barrage of shocking revelations about data breaches and companies mishandling of customer data, a bipartisan consensus has emerged in support of legislation to give consumers more control over their personal information, require companies to disclose how they collect and use consumer data, and impose penalties for data breaches and misuse of consumer data. The Federal Trade Commission (“FTC”) has been held out as the best agency to implement this new regulation. But for any such legislation to be effective, it must protect the courageous whistleblowers who risk their careers to expose data breaches and unauthorized use of consumers’ private data.

Whistleblowers strengthen regulatory regimes, and cybersecurity regulation would be no exception. Republican and Democratic leaders from the executive and legislative branches have extolled the virtues of whistleblowers. High-profile cases abound. Recently, Christopher Wylie exposed Cambridge Analytica’s misuse of Facebook user data to manipulate voters, including its apparent theft of data from 50 million Facebook users as part of a psychological profiling campaign. Though additional research is needed, the existing empirical data reinforces the consensus that whistleblowers help prevent, detect, and remedy misconduct. Therefore it is reasonable to conclude that protecting and incentivizing whistleblowers could help the government address the many complex challenges facing our nation’s information systems.

Leaked NSA Hacking Tools

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/05/leaked_nsa_hack.html

In 2016, a hacker group calling itself the Shadow Brokers released a trove of 2013 NSA hacking tools and related documents. Most people believe it is a front for the Russian government. Since, then the vulnerabilities and tools have been used by both government and criminals, and put the NSA’s ability to secure its own cyberweapons seriously into question.

Now we have learned that the Chinese used the tools fourteen months before the Shadow Brokers released them.

Does this mean that both the Chinese and the Russians stole the same set of NSA tools? Did the Russians steal them from the Chinese, who stole them from us? Did it work the other way? I don’t think anyone has any idea. But this certainly illustrates how dangerous it is for the NSA — or US Cyber Command — to hoard zero-day vulnerabilities.

Oracle and "Responsible Disclosure"

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/11/oracle_and_resp.html

I’ve been writing about “responsible disclosure” for over a decade; here’s an essay from 2007. Basically, it’s a tacit agreement between researchers and software vendors. Researchers agree to withhold their work until software companies fix the vulnerabilities, and software vendors agree not to harass researchers and fix the vulnerabilities quickly.

When that agreement breaks down, things go bad quickly. This story is about a researcher who published an Oracle zero-day because Oracle has a history of harassing researchers and ignoring vulnerabilities.

Software vendors might not like responsible disclosure, but it’s the best solution we have. Making it illegal to publish vulnerabilities without the vendor’s consent means that they won’t get fixed quickly — and everyone will be less secure. It also means less security research.

This will become even more critical with software that affects the world in a direct physical manner, like cars and airplanes. Responsible disclosure makes us safer, but it only works if software vendors take the vulnerabilities seriously and fix them quickly. Without any regulations that enforce that, the threat of disclosure is the only incentive we can impose on software vendors.

The Effects of GDPR’s 72-Hour Notification Rule

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/10/the_effects_of_5.html

The EU’s GDPR regulation requires companies to report a breach within 72 hours. Alex Stamos, former Facebook CISO now at Stanford University, points out how this can be a problem:

Interesting impact of the GDPR 72-hour deadline: companies announcing breaches before investigations are complete.

1) Announce & cop to max possible impacted users.
2) Everybody is confused on actual impact, lots of rumors.
3) A month later truth is included in official filing.

Last week’s Facebook hack is his example.

The Twitter conversation continues as various people try to figure out if the European law allows a delay in order to work with law enforcement to catch the hackers, or if a company can report the breach privately with some assurance that it won’t accidentally leak to the public.

The other interesting impact is the foreclosing of any possible coordination with law enforcement. I once ran response for a breach of a financial institution, which wasn’t disclosed for months as the company was working with the USSS to lure the attackers into a trap. It worked.

[…]

The assumption that anything you share with an EU DPA stays confidential in the current media environment has been disproven by my personal experience.

This is a perennial problem: we can get information quickly, or we can get accurate information. It’s hard to get both at the same time.

E-Mail Vulnerabilities and Disclosure

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/06/e-mail_vulnerab.html

Last week, researchers disclosed vulnerabilities in a large number of encrypted e-mail clients: specifically, those that use OpenPGP and S/MIME, including Thunderbird and AppleMail. These are serious vulnerabilities: An attacker who can alter mail sent to a vulnerable client can trick that client into sending a copy of the plaintext to a web server controlled by that attacker. The story of these vulnerabilities and the tale of how they were disclosed illustrate some important lessons about security vulnerabilities in general and e-mail security in particular.

But first, if you use PGP or S/MIME to encrypt e-mail, you need to check the list on this page and see if you are vulnerable. If you are, check with the vendor to see if they’ve fixed the vulnerability. (Note that some early patches turned out not to fix the vulnerability.) If not, stop using the encrypted e-mail program entirely until it’s fixed. Or, if you know how to do it, turn off your e-mail client’s ability to process HTML e-mail or — even better — stop decrypting e-mails from within the client. There’s even more complex advice for more sophisticated users, but if you’re one of those, you don’t need me to explain this to you.

Consider your encrypted e-mail insecure until this is fixed.

All software contains security vulnerabilities, and one of the primary ways we all improve our security is by researchers discovering those vulnerabilities and vendors patching them. It’s a weird system: Corporate researchers are motivated by publicity, academic researchers by publication credentials, and just about everyone by individual fame and the small bug-bounties paid by some vendors.

Software vendors, on the other hand, are motivated to fix vulnerabilities by the threat of public disclosure. Without the threat of eventual publication, vendors are likely to ignore researchers and delay patching. This happened a lot in the 1990s, and even today, vendors often use legal tactics to try to block publication. It makes sense; they look bad when their products are pronounced insecure.

Over the past few years, researchers have started to choreograph vulnerability announcements to make a big press splash. Clever names — the e-mail vulnerability is called “Efail” — websites, and cute logos are now common. Key reporters are given advance information about the vulnerabilities. Sometimes advance teasers are released. Vendors are now part of this process, trying to announce their patches at the same time the vulnerabilities are announced.

This simultaneous announcement is best for security. While it’s always possible that some organization — either government or criminal — has independently discovered and is using the vulnerability before the researchers go public, use of the vulnerability is essentially guaranteed after the announcement. The time period between announcement and patching is the most dangerous, and everyone except would-be attackers wants to minimize it.

Things get much more complicated when multiple vendors are involved. In this case, Efail isn’t a vulnerability in a particular product; it’s a vulnerability in a standard that is used in dozens of different products. As such, the researchers had to ensure both that everyone knew about the vulnerability in time to fix it and that no one leaked the vulnerability to the public during that time. As you can imagine, that’s close to impossible.

Efail was discovered sometime last year, and the researchers alerted dozens of different companies between last October and March. Some companies took the news more seriously than others. Most patched. Amazingly, news about the vulnerability didn’t leak until the day before the scheduled announcement date. Two days before the scheduled release, the researchers unveiled a teaser — honestly, a really bad idea — which resulted in details leaking.

After the leak, the Electronic Frontier Foundation posted a notice about the vulnerability without details. The organization has been criticized for its announcement, but I am hard-pressed to find fault with its advice. (Note: I am a board member at EFF.) Then, the researchers published — and lots of press followed.

All of this speaks to the difficulty of coordinating vulnerability disclosure when it involves a large number of companies or — even more problematic — communities without clear ownership. And that’s what we have with OpenPGP. It’s even worse when the bug involves the interaction between different parts of a system. In this case, there’s nothing wrong with PGP or S/MIME in and of themselves. Rather, the vulnerability occurs because of the way many e-mail programs handle encrypted e-mail. GnuPG, an implementation of OpenPGP, decided that the bug wasn’t its fault and did nothing about it. This is arguably true, but irrelevant. They should fix it.

Expect more of these kinds of problems in the future. The Internet is shifting from a set of systems we deliberately use — our phones and computers — to a fully immersive Internet-of-things world that we live in 24/7. And like this e-mail vulnerability, vulnerabilities will emerge through the interactions of different systems. Sometimes it will be obvious who should fix the problem. Sometimes it won’t be. Sometimes it’ll be two secure systems that, when they interact in a particular way, cause an insecurity. In April, I wrote about a vulnerability that arose because Google and Netflix make different assumptions about e-mail addresses. I don’t even know who to blame for that one.

It gets even worse. Our system of disclosure and patching assumes that vendors have the expertise and ability to patch their systems, but that simply isn’t true for many of the embedded and low-cost Internet of things software packages. They’re designed at a much lower cost, often by offshore teams that come together, create the software, and then disband; as a result, there simply isn’t anyone left around to receive vulnerability alerts from researchers and write patches. Even worse, many of these devices aren’t patchable at all. Right now, if you own a digital video recorder that’s vulnerable to being recruited for a botnet — remember Mirai from 2016? — the only way to patch it is to throw it away and buy a new one.

Patching is starting to fail, which means that we’re losing the best mechanism we have for improving software security at exactly the same time that software is gaining autonomy and physical agency. Many researchers and organizations, including myself, have proposed government regulations enforcing minimal security standards for Internet-of-things devices, including standards around vulnerability disclosure and patching. This would be expensive, but it’s hard to see any other viable alternative.

Getting back to e-mail, the truth is that it’s incredibly difficult to secure well. Not because the cryptography is hard, but because we expect e-mail to do so many things. We use it for correspondence, for conversations, for scheduling, and for record-keeping. I regularly search my 20-year e-mail archive. The PGP and S/MIME security protocols are outdated, needlessly complicated and have been difficult to properly use the whole time. If we could start again, we would design something better and more user friendly­but the huge number of legacy applications that use the existing standards mean that we can’t. I tell people that if they want to communicate securely with someone, to use one of the secure messaging systems: Signal, Off-the-Record, or — if having one of those two on your system is itself suspicious — WhatsApp. Of course they’re not perfect, as last week’s announcement of a vulnerability (patched within hours) in Signal illustrates. And they’re not as flexible as e-mail, but that makes them easier to secure.

This essay previously appeared on Lawfare.com.

Police Arrest Suspected Member of TheDarkOverlord Hacking Group

Post Syndicated from Andy original https://torrentfreak.com/police-arrest-suspected-member-of-the-dark-overlord-hacking-group-180517/

In April 2017, the first episode of the brand new season of Netflix’s Orange is the New Black was uploaded to The Pirate Bay, months ahead of its official release date.

The leak was the work of a hacking entity calling itself TheDarkOverlord (TDO). One of its members had contacted TorrentFreak months earlier claiming that the content was in its hands but until the public upload, nothing could be confirmed.

TDO told us it had obtained the episodes after hacking the systems of Hollywood-based Larson Studios, an ADR (additional dialogue recorded) studio, back in 2016. TDO had attempted to blackmail the company into paying a bitcoin ransom but when it wasn’t forthcoming, TDO pressed the nuclear button.

Netflix responded by issuing a wave of takedown notices but soon TDO moved onto a new target. In June 2017, TDO followed up on an earlier threat to leak content owned by ABC.

But while TDO was perhaps best known for its video-leaking exploits, the group’s core ‘business’ was hacking what many perceived to be softer targets. TDO ruthlessly slurped confidential data from weakly protected computer systems at medical facilities, private practices, and businesses large and small.

In each case, the group demanded ransoms in exchange for silence and leaked sensitive data to the public if none were paid. With dozens of known targets, TDO found itself at the center of an international investigation, led by the FBI. That now appears to have borne some fruit, with the arrest of an individual in Serbia.

Serbian police say that members of its Ministry of Internal Affairs, Criminal Police Directorate (UCC), in coordination with the Special Prosecution for High-Tech Crime, have taken action against a suspected member of TheDarkOverlord group.

Police say they tracked down a Belgrade resident, who was arrested and taken into custody. Identified only by the initials “S.S”, police say the individual was born in 1980 but have released no further personal details. A search of his apartment and other locations led to the seizure of items of digital equipment.

“According to the order of the Special Prosecutor’s Office for High-Tech Crime, criminal charges will be brought against him because of the suspicion that he committed the criminal offense of unauthorized access to a protected computer, computer networks and electronic processing, and the criminal offense of extortion,” a police statement reads.

In earlier correspondence with TF, the TDO member always gave the impression of working as part of a team but we only had a single contact point which appeared to be the same person. However, Serbian authorities say the larger investigation is aimed at uncovering “a large number of people” who operate under the banner of “TheDarkOverlord”.

Since June 2016, the group is said to have targeted at least 50 victims while demanding bitcoin ransoms to avoid disclosure of their content. Serbian authorities say that on the basis of available data, TDO received payments of more than $275,000.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

Serious vulnerabilities with OpenPGP and S/MIME

Post Syndicated from corbet original https://lwn.net/Articles/754370/rss

The efail.de site describes a set of
vulnerabilities in the implementation of PGP and MIME that can cause the
disclosure of encrypted communications, including old messages. “In a
nutshell, EFAIL abuses active content of HTML emails, for example
externally loaded images or styles, to exfiltrate plaintext through
requested URLs.

The EFF recommends
uninstalling email-encryption tools that automatically
decrypt email entirely. “Until the flaws
described in the paper are more widely understood and fixed, users should
arrange for the use of alternative end-to-end secure channels, such as
Signal, and temporarily stop sending and especially reading PGP-encrypted
email.

ISPs Win Landmark Case to Protect Privacy of Alleged Pirates

Post Syndicated from Andy original https://torrentfreak.com/isps-win-landmark-case-protect-privacy-alleged-pirates-180508/

With waves of piracy settlement letters being sent out across the world, the last line of defense for many accused Internet users has been their ISPs.

In a number of regions, notably the United States, Europe, and the UK, most ISPs have given up the fight, handing subscriber details over to copyright trolls with a minimum of resistance. However, there are companies out there prepared to stand up for their customers’ rights, if eventually.

Over in Denmark, Telenor grew tired of tens of thousands of requests for subscriber details filed by a local law firm on behalf of international copyright troll groups. It previously complied with demands to hand over the details of individuals behind 22,000 IP addresses, around 11% of the 200,000 total handled by ISPs in Denmark. But with no end in sight, the ISP dug in its heels.

“We think there is a fundamental legal problem because the courts do not really decide what is most important: the legal security of the public or the law firms’ commercial interests,” Telenor’s Legal Director Mette Eistrøm Krüger said last year.

Assisted by rival ISP Telia, Telenor subsequently began preparing a case to protect the interests of their customers, refusing in the meantime to comply with disclosure requests in copyright cases. But last October, the District Court ruled against the telecoms companies, ordering them to provide identities to the copyright trolls.

Undeterred, the companies took their case to the Østre Landsret, one of Denmark’s two High Courts. Yesterday their determination paid off with a resounding victory for the ISPs and security for the individuals behind approximately 4,000 IP addresses targeted by Copyright Collection Ltd via law firm Njord Law.

“In its order based on telecommunications legislation, the Court has weighed subscribers’ rights to confidentiality of information regarding their use of the Internet against the interests of rightsholders to obtain information for the purpose of prosecuting claims against the subscribers,” the Court said in a statement.

Noting that the case raised important questions of European Union law and the European Convention on Human Rights, the High Court said that after due consideration it would overrule the decision of the District Court. The rights of the copyright holders do not trump the individuals right to privacy, it said.

“The telecommunications companies are therefore not required to disclose the names and addresses of their subscribers,” the Court ruled.

Telenor welcomed the decision, noting that it had received countless requests from law firms to disclose the identities of thousands of subscribers but had declined to hand them over, a decision that has now been endorsed by the High Court.

“This is an important victory for our right to protect our customers’ data,” said Telenor Denmark’s Legal Director, Mette Eistrøm Krüger.

“At Telenor we protect our customers’ data and trust – therefore it has been our conviction that we cannot be forced into almost automatically submitting personal data on our customers simply to support some private actors who are driven by commercial interests.”

Noting that it’s been putting up a fight since 2016 against handing over customers’ data for purposes other than investigating serious crime, Telenor said that the clarity provided by the decision is most welcome.

“We and other Danish telecom companies are required to log customer data for the police to fight serious crime and terrorism – but the legislation has just been insufficient in relation to the use of logged data,” Krüger said.

“Therefore I am pleased that with this judgment the High Court has stated that customers’ legal certainty is most important in these cases.”

The decision was also welcomed by Telia Denmark, with Legal Director Lasse Andersen describing the company as being “really really happy” with “a big win.”

“It is a victory for our customers and for all telecom companies’ customers,” Andersen said.

“They can now feel confident that the data that we collect about them cannot be disclosed for purposes other than the terms under which they are collected as determined by the jurisdiction.

“Therefore, anyone and everybody cannot claim our data. We are pleased that throughout the process we have determined that we will not hand over our data to anyone other than the police with a court order,” Andersen added.

But as the ISPs celebrate, the opposite is true for Njord Law and its copyright troll partners.

“It is a sad message to the Danish film and television industry that the possibilities for self-investigating illegal file sharing are complicated and that the work must be left to the police’s scarce resources,” said Jeppe Brogaard Clausen of Njord Law.

While the ISPs finally stood up for users in these cases, Telenor in particular wishes to emphasize that supporting the activities of pirates is not its aim. The company says it does not support illegal file-sharing “in any way” and is actively working with anti-piracy outfit Rights Alliance to prevent unauthorized downloading of movies and other content.

The full decision of the Østre Landsret can be found here (Danish, pdf)

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

Yahoo! Fined 35 Million USD For Late Disclosure Of Hack

Post Syndicated from Darknet original https://www.darknet.org.uk/2018/05/yahoo-fined-35-million-usd-for-late-disclosure-of-hack/?utm_source=rss&utm_medium=social&utm_campaign=darknetfeed

Yahoo! Fined 35 Million USD For Late Disclosure Of Hack

Ah Yahoo! in trouble again, this time the news is Yahoo! fined for 35 million USD by the SEC for the 2 years delayed disclosure of the massive hack, we actually reported on the incident in 2016 when it became public – Massive Yahoo Hack – 500 Million Accounts Compromised.

Yahoo! has been having a rocky time for quite a few years now and just recently has sold Flickr to SmugMug for an undisclosed amount, I hope that at least helps pay off some of the fine.

Read the rest of Yahoo! Fined 35 Million USD For Late Disclosure Of Hack now! Only available at Darknet.

Israeli Security Attacks AMD by Publishing Zero-Day Exploits

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/03/israeli_securit.html

Last week, the Israeli security company CTS Labs published a series of exploits against AMD chips. The publication came with the flashy website, detailed whitepaper, cool vulnerability names — RYZENFALL, MASTERKEY, FALLOUT, and CHIMERA — and logos we’ve come to expect from these sorts of things. What’s new is that the company only gave AMD a day’s notice, which breaks with every norm about responsible disclosure. CTS Labs didn’t release details of the exploits, only high-level descriptions of the vulnerabilities, but it is probably still enough for others to reproduce their results. This is incredibly irresponsible of the company.

Moreover, the vulnerabilities are kind of meh. Nicholas Weaver explains:

In order to use any of the four vulnerabilities, an attacker must already have almost complete control over the machine. For most purposes, if the attacker already has this access, we would generally say they’ve already won. But these days, modern computers at least attempt to protect against a rogue operating system by having separate secure subprocessors. CTS Labs discovered the vulnerabilities when they looked at AMD’s implementation of the secure subprocessor to see if an attacker, having already taken control of the host operating system, could bypass these last lines of defense.

In a “Clarification,” CTS Labs kind of agrees:

The vulnerabilities described in amdflaws.com could give an attacker that has already gained initial foothold into one or more computers in the enterprise a significant advantage against IT and security teams.

The only thing the attacker would need after the initial local compromise is local admin privileges and an affected machine. To clarify misunderstandings — there is no need for physical access, no digital signatures, no additional vulnerability to reflash an unsigned BIOS. Buy a computer from the store, run the exploits as admin — and they will work (on the affected models as described on the site).

The weirdest thing about this story is that CTS Labs describes one of the vulnerabilities, Chimera, as a backdoor. Although it doesn’t t come out and say that this was deliberately planted by someone, it does make the point that the chips were designed in Taiwan. This is an incredible accusation, and honestly needs more evidence before we can evaluate it.

The upshot of all of this is that CTS Labs played this for maximum publicity: over-hyping its results and minimizing AMD’s ability to respond. And it may have an ulterior motive:

But CTS’s website touting AMD’s flaws also contained a disclaimer that threw some shadows on the company’s motives: “Although we have a good faith belief in our analysis and believe it to be objective and unbiased, you are advised that we may have, either directly or indirectly, an economic interest in the performance of the securities of the companies whose products are the subject of our reports,” reads one line. WIRED asked in a follow-up email to CTS whether the company holds any financial positions designed to profit from the release of its AMD research specifically. CTS didn’t respond.

We all need to demand better behavior from security researchers. I know that any publicity is good publicity, but I am pleased to see the stories critical of CTS Labs outnumbering the stories praising it.

EDITED TO ADD (3/21): AMD responds:

AMD’s response today agrees that all four bug families are real and are found in the various components identified by CTS. The company says that it is developing firmware updates for the three PSP flaws. These fixes, to be made available in “coming weeks,” will be installed through system firmware updates. The firmware updates will also mitigate, in some unspecified way, the Chimera issue, with AMD saying that it’s working with ASMedia, the third-party hardware company that developed Promontory for AMD, to develop suitable protections. In its report, CTS wrote that, while one CTS attack vector was a firmware bug (and hence in principle correctable), the other was a hardware flaw. If true, there may be no effective way of solving it.

Response here.

Your Hard Drive Crashed — Get Working Again Fast with Backblaze

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/how-to-recover-your-files-with-backblaze/

holding a hard drive and diagnostic tools
The worst thing for a computer user has happened. The hard drive on your computer crashed, or your computer is lost or completely unusable.

Fortunately, you’re a Backblaze customer with a current backup in the cloud. That’s great. The challenge is that you’ve got a presentation to make in just 48 hours and the document and materials you need for the presentation were on the hard drive that crashed.

Relax. Backblaze has your data (and your back). The question is, how do you get what you need to make that presentation deadline?

Here are some strategies you could use.

One — The first approach is to get back the presentation file and materials you need to meet your presentation deadline as quickly as possible. You can use another computer (maybe even your smartphone) to make that presentation.

Two — The second approach is to get your computer (or a new computer, if necessary) working again and restore all the files from your Backblaze backup.

Let’s start with Option One, which gets you back to work with just the files you need now as quickly as possible.

Option One — You’ve Got a Deadline and Just Need Your Files

Getting Back to Work Immediately

You want to get your computer working again as soon as possible, but perhaps your top priority is getting access to the files you need for your presentation. The computer can wait.

Find a Computer to Use

First of all. You’re going to need a computer to use. If you have another computer handy, you’re all set. If you don’t, you’re going to need one. Here are some ideas on where to find one:

  • Family and Friends
  • Work
  • Neighbors
  • Local library
  • Local school
  • Community or religious organization
  • Local computer shop
  • Online store

Laptop computer

If you have a smartphone that you can use to give your presentation or to print materials, that’s great. With the Backblaze app for iOS and Android, you can download files directly from your Backblaze account to your smartphone. You also have the option with your smartphone to email or share files from your Backblaze backup so you can use them elsewhere.

Laptop with smartphone

Download The File(s) You Need

Once you have the computer, you need to connect to your Backblaze backup through a web browser or the Backblaze smartphone app.

Backblaze Web Admin

Sign into your Backblaze account. You can download the files directly or use the share link to share files with yourself or someone else.

If you need step-by-step instructions on retrieving your files, see Restore the Files to the Drive section below. You also can find help at https://help.backblaze.com/hc/en-us/articles/217665888-How-to-Create-a-Restore-from-Your-Backblaze-Backup.

Smartphone App

If you have an iOS or Android smartphone, you can use the Backblaze app and retrieve the files you need. You then could view the file on your phone, use a smartphone app with the file, or email it to yourself or someone else.

Backblaze Smartphone app (iOS)

Backblaze Smartphone app (iOS)

Using one of the approaches above, you got your files back in time for your presentation. Way to go!

Now, the next step is to get the computer with the bad drive running again and restore all your files, or, if that computer is no longer usable, restore your Backblaze backup to a new computer.

Option Two — You Need a Working Computer Again

Getting the Computer with the Failed Drive Running Again (or a New Computer)

If the computer with the failed drive can’t be saved, then you’re going to need a new computer. A new computer likely will come with the operating system installed and ready to boot. If you’ve got a running computer and are ready to restore your files from Backblaze, you can skip forward to Restore the Files to the Drive.

If you need to replace the hard drive in your computer before you restore your files, you can continue reading.

Buy a New Hard Drive to Replace the Failed Drive

The hard drive is gone, so you’re going to need a new drive. If you have a computer or electronics store nearby, you could get one there. Another choice is to order a drive online and pay for one or two-day delivery. You have a few choices:

  1. Buy a hard drive of the same type and size you had
  2. Upgrade to a drive with more capacity
  3. Upgrade to an SSD. SSDs cost more but they are faster, more reliable, and less susceptible to jolts, magnetic fields, and other hazards that can affect a drive. Otherwise, they work the same as a hard disk drive (HDD) and most likely will work with the same connector.


Hard Disk Drive (HDD)Solid State Drive (SSD)

Hard Disk Drive (HDD)

Solid State Drive (SSD)


Be sure that the drive dimensions are compatible with where you’re going to install the drive in your computer, and the drive connector is compatible with your computer system (SATA, PCIe, etc.) Here’s some help.

Install the Drive

If you’re handy with computers, you can install the drive yourself. It’s not hard, and there are numerous videos on YouTube and elsewhere on how to do this. Just be sure to note how everything was connected so you can get everything connected and put back together correctly. Also, be sure that you discharge any static electricity from your body by touching something metallic before you handle anything inside the computer. If all this sounds like too much to handle, find a friend or a local computer store to help you.

Note:  If the drive that failed is a boot drive for your operating system (either Macintosh or Windows), you need to make sure that the drive is bootable and has the operating system files on it. You may need to reinstall from an operating system source disk or install files.

Restore the Files to the Drive

To start, you will need to sign in to the Backblaze website with your registered email address and password. Visit https://secure.backblaze.com/user_signin.htm to login.

Sign In to Your Backblaze Account

Selecting the Backup

Once logged in, you will be brought to the account Overview page. On this page, all of the computers registered for backup under your account are shown with some basic information about each. Select the backup from which you wish to restore data by using the appropriate “Restore” button.

Screenshot of Admin for Selecting the Type of Restore

Selecting the Type of Restore

Backblaze offers three different ways in which you can receive your restore data: downloadable ZIP file, USB flash drive, or USB hard drive. The downloadable ZIP restore option will create a ZIP file of the files you request that is made available for download for 7 days. ZIP restores do not have any additional cost and are a great option for individual files or small sets of data.

Depending on the speed of your internet connection to the Backblaze data center, downloadable restores may not always be the best option for restoring very large amounts of data. ZIP restores are limited to 500 GB per request and a maximum of 5 active requests can be submitted under a single account at any given time.

USB flash and hard drive restores are built with the data you request and then shipped to an address of your choosing via FedEx Overnight or FedEx Priority International. USB flash restores cost $99 and can contain up to 128 GB (110,000 MB of data) and USB hard drive restores cost $189 and can contain up to 4TB max (3,500,000 MB of data). Both include the cost of shipping.

You can return the ZIP drive within 30 days for a full refund with our Restore Return Refund Program, effectively making the process of restoring free, even with a shipped USB drive.

Screenshot of Admin for Selecting the Backup

Selecting Files for Restore

Using the left hand file viewer, navigate to the location of the files you wish to restore. You can use the disclosure triangles to see subfolders. Clicking on a folder name will display the folder’s files in the right hand file viewer. If you are attempting to restore files that have been deleted or are otherwise missing or files from a failed or disconnected secondary or external hard drive, you may need to change the time frame parameters.

Put checkmarks next to disks, files or folders you’d like to recover. Once you have selected the files and folders you wish to restore, select the “Continue with Restore” button above or below the file viewer. Backblaze will then build the restore via the option you select (ZIP or USB drive). You’ll receive an automated email notifying you when the ZIP restore has been built and is ready for download or when the USB restore drive ships.

If you are using the downloadable ZIP option, and the restore is over 2 GB, we highly recommend using the Backblaze Downloader for better speed and reliability. We have a guide on using the Backblaze Downloader for Mac OS X or for Windows.

For additional assistance, visit our help files at https://help.backblaze.com/hc/en-us/articles/217665888-How-to-Create-a-Restore-from-Your-Backblaze-Backup

Screenshot of Admin for Selecting Files for Restore

Extracting the ZIP

Recent versions of both macOS and Windows have built-in capability to extract files from a ZIP archive. If the built-in capabilities aren’t working for you, you can find additional utilities for Macintosh and Windows.

Reactivating your Backblaze Account

Now that you’ve got a working computer again, you’re going to need to reinstall Backblaze Backup (if it’s not on the system already) and connect with your existing account. Start by downloading and reinstalling Backblaze.

If you’ve restored the files from your Backblaze Backup to your new computer or drive, you don’t want to have to reupload the same files again to your Backblaze backup. To let Backblaze know that this computer is on the same account and has the same files, you need to use “Inherit Backup State.” See https://help.backblaze.com/hc/en-us/articles/217666358-Inherit-Backup-State

Screenshot of Admin for Inherit Backup State

That’s It

You should be all set, either with the files you needed for your presentation, or with a restored computer that is again ready to do productive work.

We hope your presentation wowed ’em.

If you have any additional questions on restoring from a Backblaze backup, please ask away in the comments. Also, be sure to check out our help resources at https://www.backblaze.com/help.html.

The post Your Hard Drive Crashed — Get Working Again Fast with Backblaze appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Intimate Partner Threat

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/03/intimate_partne.html

Princeton’s Karen Levy has a good article computer security and the intimate partner threat:

When you learn that your privacy has been compromised, the common advice is to prevent additional access — delete your insecure account, open a new one, change your password. This advice is such standard protocol for personal security that it’s almost a no-brainer. But in abusive romantic relationships, disconnection can be extremely fraught. For one, it can put the victim at risk of physical harm: If abusers expect digital access and that access is suddenly closed off, it can lead them to become more violent or intrusive in other ways. It may seem cathartic to delete abusive material, like alarming text messages — but if you don’t preserve that kind of evidence, it can make prosecution more difficult. And closing some kinds of accounts, like social networks, to hide from a determined abuser can cut off social support that survivors desperately need. In some cases, maintaining a digital connection to the abuser may even be legally required (for instance, if the abuser and survivor share joint custody of children).

Threats from intimate partners also change the nature of what it means to be authenticated online. In most contexts, access credentials­ — like passwords and security questions — are intended to insulate your accounts against access from an adversary. But those mechanisms are often completely ineffective for security in intimate contexts: The abuser can compel disclosure of your password through threats of violence and has access to your devices because you’re in the same physical space. In many cases, the abuser might even own your phone — or might have access to your communications data because you share a family plan. Things like security questions are unlikely to be effective tools for protecting your security, because the abuser knows or can guess at intimate details about your life — where you were born, what your first job was, the name of your pet.

Setting up bug bounties for success

Post Syndicated from Michal Zalewski original https://lcamtuf.blogspot.com/2018/03/setting-up-bug-bounties-for-success.html

Bug bounties end up in the news with some regularity, usually for the wrong reasons. I’ve been itching to write
about that for a while – but instead of dwelling on the mistakes of the bygone days, I figured it may be better to
talk about some of the ways to get vulnerability rewards right.

What do you get out of bug bounties?

There’s plenty of differing views, but I like to think of such programs
simply as a bid on researchers’ time. In the most basic sense, you get three benefits:

  • Improved ability to detect bugs in production before they become major incidents.
  • A comparatively unbiased feedback loop to help you prioritize and measure other security work.
  • A robust talent pipeline for when you need to hire.

What bug bounties don’t offer?

You don’t get anything resembling a comprehensive security program or a systematic assessment of your platforms.
Researchers end up looking for bugs that offer favorable effort-to-payoff ratios for their skills and given the
very imperfect information they have about your enterprise. In other words, you may end up with a hundred
people looking for XSS and just one person looking for RCE.

Your reward structure can steer them toward the targets and bugs you care about, but it’s difficult to fully
eliminate this inherent skew. There’s only so far you can jack up your top-tier rewards, and only so far you can
go lowering the bottom-tier ones.

Don’t you have to outcompete the black market to get all the “good” bugs?

There is a free market price discovery component to it all: if you’re not getting the engagement you
were hoping for, you should probably consider paying more.

That said, there are going to be researchers who’d rather hurt you than work for you, no matter how much you pay;
you don’t have to win them over, and you don’t have to outspend every authoritarian government or
every crime syndicate. A bug bounty is effective simply if it attracts enough eyeballs to make bugs statistically
harder to find, and reduces the useful lifespan of any zero-days in black market trade. Plus, most
researchers don’t want their work to be used to crack down on dissidents in Egypt or Vietnam.

Another factor is that you’re paying for different things: a black market buyer probably wants a reliable exploit
capable of delivering payloads, and then demands silence for months or years to come; a vendor-run
bug bounty program is usually perfectly happy with a reproducible crash and doesn’t mind a researcher blogging
about their work.

In fact, while money is important, you will probably find out that it’s not enough to retain your top talent;
many folks want bug bounties to be more than a business transaction, and find a lot of value in having a close
relationship with your security team, comparing notes, and growing together. Fostering that partnership can
be more important than adding another $10,000 to your top reward.

How do I prevent it all from going horribly wrong?

Bug bounties are an unfamiliar beast to most lawyers and PR folks, so it’s a natural to be wary and try to plan
for every eventuality with pages and pages of impenetrable rules and fine-print legalese.

This is generally unnecessary: there is a strong self-selection bias, and almost every participant in a
vulnerability reward program will be coming to you in good faith. The more friendly, forthcoming, and
approachable you seem, and the more you treat them like peers, the more likely it is for your relationship to stay
positive. On the flip side, there is no faster way to make enemies than to make a security researcher feel that they
are now talking to a lawyer or to the PR dept.

Most people have strong opinions on disclosure policies; instead of imposing your own views, strive to patch reported bugs
reasonably quickly, and almost every reporter will play along. Demand researchers to cancel conference appearances,
take down blog posts, or sign NDAs, and you will sooner or later end up in the news.

But what if that’s not enough?

As with any business endeavor, mistakes will happen; total risk avoidance is seldom the answer. Learn to sincerely
apologize for mishaps; it’s not a sign of weakness to say “sorry, we messed up”. And you will almost certainly not end
up in the courtroom for doing so.

It’s good to foster a healthy and productive relationship with the community, so that they come to your defense when
something goes wrong. Encouraging people to disclose bugs and talk about their experiences is one way of accomplishing that.

What about extortion?

You should structure your program to naturally discourage bad behavior and make it stand out like a sore thumb.
Require bona fide reports with complete technical details before any reward decision is made by a panel of named peers;
and make it clear that you never demand non-disclosure as a condition of getting a reward.

To avoid researchers accidentally putting themselves in awkward situations, have clear rules around data exfiltration
and lateral movement: assure them that you will always pay based on the worst-case impact of their findings; in exchange,
ask them to stop as soon as they get a shell and never access any data that isn’t their own.

So… are there any downsides?

Yep. Other than souring up your relationship with the community if you implement your program wrong, the other consideration
is that bug bounties tend to generate a lot of noise from well-meaning but less-skilled researchers.

When this happens, do not get frustrated and do not penalize such participants; instead, help them grow. Consider
publishing educational articles, giving advice on how to investigate and structure reports, or
offering free workshops every now and then.

The other downside is cost; although bug bounties tend to offer far more bang for your buck than your average penetration
test, they are more random. The annual expenses tend to be fairly predictable, but there is always
some possibility of having to pay multiple top-tier rewards in rapid succession. This is the kind of uncertainty that
many mid-level budget planners react badly to.

Finally, you need to be able to fix the bugs you receive. It would be nuts to prefer to not know about the
vulnerabilities in the first place – but once you invite the research, the clock starts ticking and you need to
ship fixes reasonably fast.

So… should I try it?

There are folks who enthusiastically advocate for bug bounties in every conceivable situation, and people who dislike them
with fierce passion; both sentiments are usually strongly correlated with the line of business they are in.

In reality, bug bounties are not a cure-all, and there are some ways to make them ineffectual or even dangerous.
But they are not as risky or expensive as most people suspect, and when done right, they can actually be fun for your
team, too. You won’t know for sure until you try.

Security Breaches Don’t Affect Stock Price

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/01/security_breach.html

Interesting research: “Long-term market implications of data breaches, not,” by Russell Lange and Eric W. Burger.

Abstract: This report assesses the impact disclosure of data breaches has on the total returns and volatility of the affected companies’ stock, with a focus on the results relative to the performance of the firms’ peer industries, as represented through selected indices rather than the market as a whole. Financial performance is considered over a range of dates from 3 days post-breach through 6 months post-breach, in order to provide a longer-term perspective on the impact of the breach announcement.

Key findings:

  • While the difference in stock price between the sampled breached companies and their peers was negative (1.13%) in the first 3 days following announcement of a breach, by the 14th day the return difference had rebounded to + 0.05%, and on average remained positive through the period assessed.
  • For the differences in the breached companies’ betas and the beta of their peer sets, the differences in the means of 8 months pre-breach versus post-breach was not meaningful at 90, 180, and 360 day post-breach periods.

  • For the differences in the breached companies’ beta correlations against the peer indices pre- and post-breach, the difference in the means of the rolling 60 day correlation 8 months pre- breach versus post-breach was not meaningful at 90, 180, and 360 day post-breach periods.

  • In regression analysis, use of the number of accessed records, date, data sensitivity, and malicious versus accidental leak as variables failed to yield an R2 greater than 16.15% for response variables of 3, 14, 60, and 90 day return differential, excess beta differential, and rolling beta correlation differential, indicating that the financial impact on breached companies was highly idiosyncratic.

  • Based on returns, the most impacted industries at the 3 day post-breach date were U.S. Financial Services, Transportation, and Global Telecom. At the 90 day post-breach date, the three most impacted industries were U.S. Financial Services, U.S. Healthcare, and Global Telecom.

The market isn’t going to fix this. If we want better security, we need to regulate the market.

Note: The article is behind a paywall. An older version is here. A similar article is here.

[$] Meltdown/Spectre mitigation for 4.15 and beyond

Post Syndicated from corbet original https://lwn.net/Articles/744287/rss

While some aspects of the kernel’s defenses against the Meltdown and
Spectre vulnerabilities were more-or-less in place when the problems were
disclosed on January 3, others were less fully formed. Additionally,
many of the mitigations (especially for the two Spectre variants) had not
been seen in public prior to the disclosure, meaning that there was a lot
of scope for discussion once they came out. Many of those discussions are
slowing down, and the kernel’s initial response has mostly come into
focus. The 4.15 kernel will include a broad set of mitigations, while some
others will have to wait for later; read on
for details on where things stand.

[$] A look at the handling of Meltdown and Spectre

Post Syndicated from jake original https://lwn.net/Articles/743363/rss

The Meltdown/Spectre debacle has,
deservedly, reached the mainstream press
and, likely, most of the public that has even a remote interest in computers
and security. It only took a day or so from the accelerated disclosure
date of January 3—it was originally scheduled for
January 9—before the bugs
were making big headlines. But Spectre has been known for at least six
months and Meltdown for nearly as long—at least to some in the industry.
Others that were affected were completely blindsided by the
announcements and have joined the scramble to mitigate these hardware bugs
before they bite users. Whatever else can be said about Meltdown and Spectre,
the handling (or, in truth, mishandling) of this whole incident has been a
horrific failure.

[$] Is it time for open processors?

Post Syndicated from corbet original https://lwn.net/Articles/743602/rss

The disclosure of the Meltdown and Spectre
vulnerabilities
has brought a
new level of attention to the security bugs that can lurk at the hardware
level. Massive amounts of work have gone into improving the (still poor)
security of our software, but all of that is in vain if the hardware gives
away the game. The CPUs that we run in our systems are highly proprietary
and have been shown to contain unpleasant surprises (the Intel management
engine, for example). It is thus natural to wonder whether it is time to
make a move to open-source hardware, much like we have done with our
software. Such a move may well be possible, and it would certainly offer
some benefits, but it would be no panacea.

The disclosure on the processor bugs

Post Syndicated from corbet original https://lwn.net/Articles/742744/rss

The rumored bugs in Intel (and beyond) processors have now been disclosed:
they are called Meltdown and
Spectre
, and have the requisite cute logos. Stay tuned for more.

See also: this Project
Zero
blog post. “Variants of this issue are known to affect many
modern processors, including certain processors by Intel, AMD and ARM. For
a few Intel and AMD CPU models, we have exploits that work against real
software. We reported this issue to Intel, AMD and ARM on
2017-06-01.

See also: this
Google blog posting
on how it affects users of Google products in
particular. “[Android] devices with the latest security update are
protected. Furthermore, we are unaware of any successful reproduction of
this vulnerability that would allow unauthorized information disclosure on
ARM-based Android devices. Supported Nexus and Pixel devices with the
latest security update are protected.