Tag Archives: AWS CDK

Cross-account and cross-region deployment using GitHub actions and AWS CDK

Post Syndicated from DAMODAR SHENVI WAGLE original https://aws.amazon.com/blogs/devops/cross-account-and-cross-region-deployment-using-github-actions-and-aws-cdk/

GitHub Actions is a feature on GitHub’s popular development platform that helps you automate your software development workflows in the same place you store code and collaborate on pull requests and issues. You can write individual tasks called actions, and combine them to create a custom workflow. Workflows are custom automated processes that you can set up in your repository to build, test, package, release, or deploy any code project on GitHub.

A cross-account deployment strategy is a CI/CD pattern or model in AWS. In this pattern, you have a designated AWS account called tools, where all CI/CD pipelines reside. Deployment is carried out by these pipelines across other AWS accounts, which may correspond to dev, staging, or prod. For more information about a cross-account strategy in reference to CI/CD pipelines on AWS, see Building a Secure Cross-Account Continuous Delivery Pipeline.

In this post, we show you how to use GitHub Actions to deploy an AWS Lambda-based API to an AWS account and Region using the cross-account deployment strategy.

Using GitHub Actions may have associated costs in addition to the cost associated with the AWS resources you create. For more information, see About billing for GitHub Actions.


Before proceeding any further, you need to identify and designate two AWS accounts required for the solution to work:

  • Tools – Where you create an AWS Identity and Access Management (IAM) user for GitHub Actions to use to carry out deployment.
  • Target – Where deployment occurs. You can call this as your dev/stage/prod environment.

You also need to create two AWS account profiles in ~/.aws/credentials for the tools and target accounts, if you don’t already have them. These profiles need to have sufficient permissions to run an AWS Cloud Development Kit (AWS CDK) stack. They should be your private profiles and only be used during the course of this use case. So, it should be fine if you want to use admin privileges. Don’t share the profile details, especially if it has admin privileges. I recommend removing the profile when you’re finished with this walkthrough. For more information about creating an AWS account profile, see Configuring the AWS CLI.

Solution overview

You start by building the necessary resources in the tools account (an IAM user with permissions to assume a specific IAM role from the target account to carry out deployment). For simplicity, we refer to this IAM role as the cross-account role, as specified in the architecture diagram.

You also create the cross-account role in the target account that trusts the IAM user in the tools account and provides the required permissions for AWS CDK to bootstrap and initiate creating an AWS CloudFormation deployment stack in the target account. GitHub Actions uses the tools account IAM user credentials to the assume the cross-account role to carry out deployment.

In addition, you create an AWS CloudFormation execution role in the target account, which AWS CloudFormation service assumes in the target account. This role has permissions to create your API resources, such as a Lambda function and Amazon API Gateway, in the target account. This role is passed to AWS CloudFormation service via AWS CDK.

You then configure your tools account IAM user credentials in your Git secrets and define the GitHub Actions workflow, which triggers upon pushing code to a specific branch of the repo. The workflow then assumes the cross-account role and initiates deployment.

The following diagram illustrates the solution architecture and shows AWS resources across the tools and target accounts.

Architecture diagram

Creating an IAM user

You start by creating an IAM user called git-action-deployment-user in the tools account. The user needs to have only programmatic access.

  1. Clone the GitHub repo aws-cross-account-cicd-git-actions-prereq and navigate to folder tools-account. Here you find the JSON parameter file src/cdk-stack-param.json, which contains the parameter CROSS_ACCOUNT_ROLE_ARN, which represents the ARN for the cross-account role we create in the next step in the target account. In the ARN, replace <target-account-id> with the actual account ID for your designated AWS target account.                                             Replace <target-account-id> with designated AWS account id
  2. Run deploy.sh by passing the name of the tools AWS account profile you created earlier. The script compiles the code, builds a package, and uses the AWS CDK CLI to bootstrap and deploy the stack. See the following code:
cd aws-cross-account-cicd-git-actions-prereq/tools-account/

You should now see two stacks in the tools account: CDKToolkit and cf-GitActionDeploymentUserStack. AWS CDK creates the CDKToolkit stack when we bootstrap the AWS CDK app. This creates an Amazon Simple Storage Service (Amazon S3) bucket needed to hold deployment assets such as a CloudFormation template and Lambda code package. cf-GitActionDeploymentUserStack creates the IAM user with permission to assume git-action-cross-account-role (which you create in the next step). On the Outputs tab of the stack, you can find the user access key and the AWS Secrets Manager ARN that holds the user secret. To retrieve the secret, you need to go to Secrets Manager. Record the secret to use later.

Stack that creates IAM user with its secret stored in secrets manager

Creating a cross-account IAM role

In this step, you create two IAM roles in the target account: git-action-cross-account-role and git-action-cf-execution-role.

git-action-cross-account-role provides required deployment-specific permissions to the IAM user you created in the last step. The IAM user in the tools account can assume this role and perform the following tasks:

  • Upload deployment assets such as the CloudFormation template and Lambda code package to a designated S3 bucket via AWS CDK
  • Create a CloudFormation stack that deploys API Gateway and Lambda using AWS CDK

AWS CDK passes git-action-cf-execution-role to AWS CloudFormation to create, update, and delete the CloudFormation stack. It has permissions to create API Gateway and Lambda resources in the target account.

To deploy these two roles using AWS CDK, complete the following steps:

  1. In the already cloned repo from the previous step, navigate to the folder target-account. This folder contains the JSON parameter file cdk-stack-param.json, which contains the parameter TOOLS_ACCOUNT_USER_ARN, which represents the ARN for the IAM user you previously created in the tools account. In the ARN, replace <tools-account-id> with the actual account ID for your designated AWS tools account.                                             Replace <tools-account-id> with designated AWS account id
  2. Run deploy.sh by passing the name of the target AWS account profile you created earlier. The script compiles the code, builds the package, and uses the AWS CDK CLI to bootstrap and deploy the stack. See the following code:
cd ../target-account/

You should now see two stacks in your target account: CDKToolkit and cf-CrossAccountRolesStack. AWS CDK creates the CDKToolkit stack when we bootstrap the AWS CDK app. This creates an S3 bucket to hold deployment assets such as the CloudFormation template and Lambda code package. The cf-CrossAccountRolesStack creates the two IAM roles we discussed at the beginning of this step. The IAM role git-action-cross-account-role now has the IAM user added to its trust policy. On the Outputs tab of the stack, you can find these roles’ ARNs. Record these ARNs as you conclude this step.

Stack that creates IAM roles to carry out cross account deployment

Configuring secrets

One of the GitHub actions we use is aws-actions/[email protected]. This action configures AWS credentials and Region environment variables for use in the GitHub Actions workflow. The AWS CDK CLI detects the environment variables to determine the credentials and Region to use for deployment.

For our cross-account deployment use case, aws-actions/[email protected] takes three pieces of sensitive information besides the Region: AWS_ACCESS_KEY_ID, AWS_ACCESS_KEY_SECRET, and CROSS_ACCOUNT_ROLE_TO_ASSUME. Secrets are recommended for storing sensitive pieces of information in the GitHub repo. It keeps the information in an encrypted format. For more information about referencing secrets in the workflow, see Creating and storing encrypted secrets.

Before we continue, you need your own empty GitHub repo to complete this step. Use an existing repo if you have one, or create a new repo. You configure secrets in this repo. In the next section, you check in the code provided by the post to deploy a Lambda-based API CDK stack into this repo.

  1. On the GitHub console, navigate to your repo settings and choose the Secrets tab.
  2. Add a new secret with name as TOOLS_ACCOUNT_ACCESS_KEY_ID.
  3. Copy the access key ID from the output OutGitActionDeploymentUserAccessKey of the stack GitActionDeploymentUserStack in tools account.
  4. Enter the ID in the Value field.                                                                                                                                                                Create secret
  5. Repeat this step to add two more secrets:
    • TOOLS_ACCOUNT_SECRET_ACCESS_KEY (value retrieved from the AWS Secrets Manager in tools account)
    • CROSS_ACCOUNT_ROLE (value copied from the output OutCrossAccountRoleArn of the stack cf-CrossAccountRolesStack in target account)

You should now have three secrets as shown below.

All required git secrets

Deploying with GitHub Actions

As the final step, first clone your empty repo where you set up your secrets. Download and copy the code from the GitHub repo into your empty repo. The folder structure of your repo should mimic the folder structure of source repo. See the following screenshot.

Folder structure of the Lambda API code

We can take a detailed look at the code base. First and foremost, we use Typescript to deploy our Lambda API, so we need an AWS CDK app and AWS CDK stack. The app is defined in app.ts under the repo root folder location. The stack definition is located under the stack-specific folder src/git-action-demo-api-stack. The Lambda code is located under the Lambda-specific folder src/git-action-demo-api-stack/lambda/ git-action-demo-lambda.

We also have a deployment script deploy.sh, which compiles the app and Lambda code, packages the Lambda code into a .zip file, bootstraps the app by copying the assets to an S3 bucket, and deploys the stack. To deploy the stack, AWS CDK has to pass CFN_EXECUTION_ROLE to AWS CloudFormation; this role is configured in src/params/cdk-stack-param.json. Replace <target-account-id> with your own designated AWS target account ID.

Update cdk-stack-param.json in git-actions-cross-account-cicd repo with TARGET account id

Finally, we define the Git Actions workflow under the .github/workflows/ folder per the specifications defined by GitHub Actions. GitHub Actions automatically identifies the workflow in this location and triggers it if conditions match. Our workflow .yml file is named in the format cicd-workflow-<region>.yml, where <region> in the file name identifies the deployment Region in the target account. In our use case, we use us-east-1 and us-west-2, which is also defined as an environment variable in the workflow.

The GitHub Actions workflow has a standard hierarchy. The workflow is a collection of jobs, which are collections of one or more steps. Each job runs on a virtual machine called a runner, which can either be GitHub-hosted or self-hosted. We use the GitHub-hosted runner ubuntu-latest because it works well for our use case. For more information about GitHub-hosted runners, see Virtual environments for GitHub-hosted runners. For more information about the software preinstalled on GitHub-hosted runners, see Software installed on GitHub-hosted runners.

The workflow also has a trigger condition specified at the top. You can schedule the trigger based on the cron settings or trigger it upon code pushed to a specific branch in the repo. See the following code:

name: Lambda API CICD Workflow
# This workflow is triggered on pushes to the repository branch master.
      - master

# Initializes environment variables for the workflow
  REGION: us-east-1 # Deployment Region

    name: Build And Deploy
    # This job runs on Linux
    runs-on: ubuntu-latest
      # Checkout code from git repo branch configured above, under folder $GITHUB_WORKSPACE.
      - name: Checkout
        uses: actions/[email protected]
      # Sets up AWS profile.
      - name: Configure AWS credentials
        uses: aws-actions/[email protected]
          aws-access-key-id: ${{ secrets.TOOLS_ACCOUNT_ACCESS_KEY_ID }}
          aws-secret-access-key: ${{ secrets.TOOLS_ACCOUNT_SECRET_ACCESS_KEY }}
          aws-region: ${{ env.REGION }}
          role-to-assume: ${{ secrets.CROSS_ACCOUNT_ROLE }}
          role-duration-seconds: 1200
          role-session-name: GitActionDeploymentSession
      # Installs CDK and other prerequisites
      - name: Prerequisite Installation
        run: |
          sudo npm install -g [email protected]
          cdk --version
          aws s3 ls
      # Build and Deploy CDK application
      - name: Build & Deploy
        run: |
          cd $GITHUB_WORKSPACE
          ls -a
          chmod 700 deploy.sh

For more information about triggering workflows, see Triggering a workflow with events.

We have configured a single job workflow for our use case that runs on ubuntu-latest and is triggered upon a code push to the master branch. When you create an empty repo, master branch becomes the default branch. The workflow has four steps:

  1. Check out the code from the repo, for which we use a standard Git action actions/[email protected]. The code is checked out into a folder defined by the variable $GITHUB_WORKSPACE, so it becomes the root location of our code.
  2. Configure AWS credentials using aws-actions/[email protected]. This action is configured as explained in the previous section.
  3. Install your prerequisites. In our use case, the only prerequisite we need is AWS CDK. Upon installing AWS CDK, we can do a quick test using the AWS Command Line Interface (AWS CLI) command aws s3 ls. If cross-account access was successfully established in the previous step of the workflow, this command should return a list of buckets in the target account.
  4. Navigate to root location of the code $GITHUB_WORKSPACE and run the deploy.sh script.

You can check in the code into the master branch of your repo. This should trigger the workflow, which you can monitor on the Actions tab of your repo. The commit message you provide is displayed for the respective run of the workflow.

Workflow for region us-east-1 Workflow for region us-west-2

You can choose the workflow link and monitor the log for each individual step of the workflow.

Git action workflow steps

In the target account, you should now see the CloudFormation stack cf-GitActionDemoApiStack in us-east-1 and us-west-2.

Lambda API stack in us-east-1 Lambda API stack in us-west-2

The API resource URL DocUploadRestApiResourceUrl is located on the Outputs tab of the stack. You can invoke your API by choosing this URL on the browser.

API Invocation Output

Clean up

To remove all the resources from the target and tools accounts, complete the following steps in their given order:

  1. Delete the CloudFormation stack cf-GitActionDemoApiStack from the target account. This step removes the Lambda and API Gateway resources and their associated IAM roles.
  2. Delete the CloudFormation stack cf-CrossAccountRolesStack from the target account. This removes the cross-account role and CloudFormation execution role you created.
  3. Go to the CDKToolkit stack in the target account and note the BucketName on the Output tab. Empty that bucket and then delete the stack.
  4. Delete the CloudFormation stack cf-GitActionDeploymentUserStack from tools account. This removes cross-account-deploy-user IAM user.
  5. Go to the CDKToolkit stack in the tools account and note the BucketName on the Output tab. Empty that bucket and then delete the stack.

Security considerations

Cross-account IAM roles are very powerful and need to be handled carefully. For this post, we strictly limited the cross-account IAM role to specific Amazon S3 and CloudFormation permissions. This makes sure that the cross-account role can only do those things. The actual creation of Lambda, API Gateway, and Amazon DynamoDB resources happens via the AWS CloudFormation IAM role, which AWS  CloudFormation assumes in the target AWS account.

Make sure that you use secrets to store your sensitive workflow configurations, as specified in the section Configuring secrets.


In this post we showed how you can leverage GitHub’s popular software development platform to securely deploy to AWS accounts and Regions using GitHub actions and AWS CDK.

Build your own GitHub Actions CI/CD workflow as shown in this post.

About the author


Damodar Shenvi Wagle is a Cloud Application Architect at AWS Professional Services. His areas of expertise include architecting serverless solutions, ci/cd and automation.

Scalable agile development practices based on AWS CodeCommit

Post Syndicated from Mengxin Zhu original https://aws.amazon.com/blogs/devops/scalable-agile-development-practices-based-on-aws-codecommit/

Development teams use agile development processes based on Git services extensively. AWS provides AWS CodeCommit, a managed, Git protocol-based, secure, and highly available code service. The capabilities of CodeCommit combined with other developer tools, like AWS CodeBuild and AWS CodePipeline, make it easy to manage collaborative, scalable development process with fine-grained permissions and on-demand resources.

You can manage user roles with different AWS Identity and Access Management (IAM) policies in the code repository of CodeCommit. You can build your collaborative development process with pull requests and approval rules. The process described in this post only requires you to manage the developers’ role, without forking the source repository for individual developers. CodeCommit pull requests can integrate numerous code analysis services as approvers to improve code quality and mitigate security vulnerabilities, such as SonarQube static scanning and the ML-based code analysis service Amazon CodeGuru Reviewer.

The CodeCommit-based agile development process described in this post has the following characteristics:

  • Control permissions of the CodeCommit repository via IAM.
    • Any code repository has at least two user roles:
      • Development collaborator – Participates in the development of the project.
      • Repository owner – Has code review permission and partial management permissions of the repository. The repository owner is also the collaborator of the repository.
    • Both development collaborator and owner have read permissions of the repository and can pull code to local disk via the Git-supported protocols.
    • The development collaborator can push new code to branches with a specific prefix, for example, features/ or bugs/. Multiple collaborators can work on a particular branch for one pull request. Collaborators can create new pull requests to request merging code into the main branch, such as the mainline branch.
    • The repository owner has permission to review pull requests with approval voting and merge pull requests.
    • Directly pushing code to the main branch of repository is denied.
  • Development workflow. This includes the following:
    • Creating an approval template rule of CodeCommit that requires at least two approvals from the sanity checking build of the pull request and repository owner. The workflow also applies the approval rule to require mandatory approvals for pull requests of the repository.
    • The creation and update of source branch events of pull requests via Amazon EventBridge triggers a sanity checking build of CodeBuild to compile, test, and analyze the pull request code. If all checks pass, the pull request gets an approval voting from the sanity checking build.
    • Watching the main branch of the repository triggers a continuous integration for any commit. You can continuously publish artifacts of your project to the artifact repository or integrate the latest version of the service to your business system.

This agile development process can use AWS CloudFormation and AWS Cloud Development Kit (AWS CDK) to orchestrate AWS resources with the best practice of infrastructure as code. You can manage hundreds of repositories in your organization and automatically provision new repositories and related DevOps resources from AWS after the pull request of your IaC as a new application is approved. This makes sure that you’re managing the code repository and DevOps resources in a secure and compliant way. You can use it as a reference solution for your organization to manage large-scale R&D resources.

Solution overview

In the following use case, you’re working on a Java-based project AWS Toolkit for JetBrains. This application has developers that can submit code via pull requests. Each pull request is automatically checked and validated by CodeBuild builds. The owners of the project can review the pull request and merge it to the main branch. The code submitted to the main branch triggers the continuous integration to build the project artifacts.

The following diagram illustrates the components built in this post and their role in the DevOps process.

architecture diagram


For this walkthrough, you should meet the following prerequisites:

Preparing the code

Clone the sample code from the Github repo with your preferred Git client or IDE and view branch aws-toolkit-jetbrains, or download the sample code directly and unzip it into an empty folder.

Initializing the environment

Open the terminal or command prompt of your operating system, enter the directory where the sample code is located, enter the following code to initialize the environment, and install the dependency packages:

npm run init

Deploying application

After successfully initializing the AWS CDK environment and installing the dependencies of the sample application, enter the following code to deploy the application:

npm run deploy

Because the application creates the IAM roles and policies, AWS CDK requires you to confirm security-related changes before deploying it. You see the following outputs from the command line.

deploy stack

Enter y to confirm the security changes, and AWS CDK begins to deploy the application. After a few minutes, you see output similar to the following code, indicating that the application stack has been successfully deployed in your AWS account:

✅  CodecommitDevopsModelStack

CodecommitDevopsModelStack.Repo1AdminRoleOutput = arn:aws:iam::012345678912:role/codecommitmodel/CodecommitDevopsModelStack-Repo1AdminRole0648F018-OQGKZPM6T0HP
CodecommitDevopsModelStack.Repo1CollaboratorRoleOutput = arn:aws:iam::012345678912:role/codecommitmodel/CodecommitDevopsModelStac-Repo1CollaboratorRole1EB-15KURO7Z9VNOY

Stack ARN:

As shown in the preceding code, the output of successful deployment indicates that the ARN of two IAM roles were created on behalf of the owner and development collaborator of the source code repository.

Checking deployment results

After successfully deploying the app, you can sign in to the CodeCommit console and browse repositories. The following screenshot shows three repositories.

created repos

For this post, we use three repositories to demonstrate configuring the different access permissions for different teams in your organization. As shown in the following screenshot, the repository CodeCommitDevopsModelStack-MyApp1 is tagged to grant permissions to the specific team abc.

repository tags

The IAM roles for the owner and development collaborator only have access to the code repository with the following tags combination:

 'app': 'my-app-1',
 'team': 'abc',

Configuring CodeCommit repository access on behalf of owner and collaborator

Next, you configure the current user to simulate the owner and development collaborator via IAM’s AssumeRole.

Edit the AWS CLI profile file with your preferred text editor and add the following configuration lines:

[profile codecommit-repo1-owner]

role_arn = <the ARN of owner role after successfully deploying sample app>

source_profile = default

region = ap-southeast-1


[profile codecommit-repo1-collaborator]

role_arn = <the ARN of collaborator role after successfully deploying sample app>

source_profile = default

region = ap-southeast-1


Replace the role_arn in the owner and collaborator sections with the corresponding output after successfully deploying the sample app.

If the AWS CLI isn’t using the default profile, replace the value of source_profile with the profile name you’re currently using.

Make the region consistent with the value configured in source_profile. For example, this post uses ap-southeast-1.

After saving the modification of the profile, you can test this configuration from the command line. See the following code:

export AWS_DEFAULT_PROFILE=codecommit-repo1-owner # assume owner role of repository

aws sts get-caller-identity # get current user identity, you should see output like below,
    "UserId": "AROAQP3VLCVWYYTPJL2GW:botocore-session-1587717914",
    "Account": "0123456789xx",
    "Arn": "arn:aws:sts::0123456789xx:assumed-role/CodecommitDevopsModelStack-Repo1AdminRole0648F018-1SNXR23P4XVYZ/botocore-session-1587717914"

aws codecommit list-repositories # list of all repositories of AWS CodeCommit in configured region
    "repositories": [
            "repositoryName": "CodecommitDevopsModelStack-MyApp1",
            "repositoryId": "208dd6d1-ade4-4633-a2a3-fe1a9a8f3d1c "
            "repositoryName": "CodecommitDevopsModelStack-MyApp2",
            "repositoryId": "44421652-d12e-413e-85e3-e0db894ab018"
            "repositoryName": "CodecommitDevopsModelStack-MyApp3",
            "repositoryId": "8d146b34-f659-4b17-98d8-85ebaa07283c"

aws codecommit get-repository --repository-name CodecommitDevopsModelStack-MyApp1 # get detail information of repository name ends with MyApp1
    "repositoryMetadata": {
        "accountId": "0123456789xx",
        "repositoryId": "208dd6d1-ade4-4633-a2a3-fe1a9a8f3d1c",
        "repositoryName": "CodecommitDevopsModelStack-MyApp1",
        "repositoryDescription": "Repo for App1.",
        "lastModifiedDate": "2020-06-24T00:06:24.734000+08:00",
        "creationDate": "2020-06-24T00:06:24.734000+08:00",
        "cloneUrlHttp": "https://git-codecommit.ap-southeast-1.amazonaws.com/v1/repos/CodecommitDevopsModelStack-MyApp1",
        "cloneUrlSsh": "ssh://git-codecommit.ap-southeast-1.amazonaws.com/v1/repos/CodecommitDevopsModelStack-MyApp1",
        "Arn": "arn:aws:codecommit:ap-southeast-1:0123456789xx:CodecommitDevopsModelStack-MyApp1"

aws codecommit get-repository --repository-name CodecommitDevopsModelStack-MyApp2 # try to get detail information of repository MyApp2 that does not have accessing permission by the role

An error occurred (AccessDeniedException) when calling the GetRepository operation: User: arn:aws:sts::0123456789xx:assumed-role/CodecommitDevopsModelStack-Repo1AdminRole0648F018-OQGKZPM6T0HP/botocore-session-1593325146 is not authorized to perform: codecommit:GetRepository on resource: arn:aws:codecommit:ap-southeast-1:0123456789xx:CodecommitDevopsModelStack-MyApp2

You can also grant IAM policies starting with CodecommitDevopsmodelStack-CodecommitCollaborationModel to existing IAM users for the corresponding owner or collaborator permissions.

Initializing the repository

The new code repository CodecommitdevopsmodelStack-MyApp1 is an empty Git repository without any commit. You can use the AWS Toolkit for JetBrains project as the existing local codebase and push the code to the repository hosted by CodeCommit.

Enter the following code from the command line:

export AWS_DEFAULT_PROFILE=codecommit-repo1-owner # assume owner role of repository

git clone https://github.com/aws/aws-toolkit-jetbrains.git # clone aws-toolkit-jetbrains to local as existing codebase

cd aws-toolkit-jetbrains

git remote add codecommit codecommit::ap-southeast-1://CodecommitDevopsModelStack-MyApp1 # add CodeCommit hosted repo as new remote named as codecommit. Follow the doc set up AWS CodeCommit with git-remote-codecommit, or use remote url of repository via https/ssh protocol

git push codecommit master:init  # push existing codebase to a temporary branch named 'init'

aws codecommit create-branch --repository-name CodecommitDevopsModelStack-MyApp1 --branch-name master --commit-id `git rev-parse master` # create new branch 'master'

aws codecommit update-default-branch --repository-name CodecommitDevopsModelStack-MyApp1 --default-branch-name master # set branch 'master' as main branch of repository

aws codecommit delete-branch --repository-name CodecommitDevopsModelStack-MyApp1 --branch-name init # clean up 'init' branch

Agile development practices

For this use case, you act as the collaborator of the repository implementing a new feature for aws-toolkit-jetbrains, then follow the development process to submit your code changes to the main branch.

Enter the following code from the command line:

export AWS_DEFAULT_PROFILE=codecommit-repo1-collaborator # assume collaborator role of repository

# add/modify/delete source files for your new feature

git commit -m 'This is my new feature.' -a

git push codecommit HEAD:refs/heads/features/my-feature # push code to new branch with prefix /features/

aws codecommit create-pull-request --title 'My feature "Short Description".' --description 'Detail description of feature request'  --targets repositoryName=CodecommitDevopsModelStack-MyApp1,sourceReference=features/my-feature,destinationReference=master # create pull request for new feature

The preceding code submits the changes of the new feature to a branch with the prefix features/ and creates a pull request to merge the change into the main branch.

On the CodeCommit console, you can see that a pull request called My feature "Short Description". created by the development collaborator has passed the sanity checking build of the pull request and gets an approval voting (it takes about 15 minutes to complete the checking build in this project).

PR build result


The owner of the repository also needs to review the pull request with one approval at least, then they can merge the repository to the main branch. The pull request on the CodeCommit console supports several code review features, such as change comparison, in-line comments, and code discussions. For more information, see Using AWS CodeCommit Pull Requests to request code reviews and discuss code. The following screenshot shows the review tool on the CodeCommit console, on the Changes tab.

CodeReview Tool


The following screenshot shows the approval details of the pull request, on the Approvals tab.

Approvals tab

When browsing the continuous integration deployment project after merging the pull request, you can see that a new continuous integration build has been triggered by the event of merging the pull request to the main branch.

Deployment build

Cleaning up

When you’re finished exploring this use case and discovering the deployed resources, the last step is to clean up your account. The following code deletes all the resources you created:

npm run cleanup


This post discussed agile development practices based on CodeCommit, including implementation mechanisms and practice processes, and demonstrated how to collaborate in development under those processes. AWS powers the code that manages the code repository itself and the DevOps processes built around it in the example application. You can use the IaC capability of AWS and apply those practices in your organization to build compliant and secure R&D processes.

Introducing the CDK construct library for the serverless LAMP stack

Post Syndicated from Benjamin Smith original https://aws.amazon.com/blogs/compute/introducing-the-cdk-construct-library-for-the-serverless-lamp-stack/

In this post, you learn how the new CDK construct library for the serverless LAMP stack is helping developers build serverless PHP applications.

The AWS Cloud Development Kit (AWS CDK) is an open source software development framework for defining cloud application resources in code. It allows developers to define their infrastructure in familiar programming languages such as TypeScript, Python, C# or Java. Developers benefit from the features those languages provide such as Interfaces, Generics, Inheritance, and Method Access Modifiers. The AWS Construct Library provides a broad set of modules that expose APIs for defining AWS resources in CDK applications.

The “Serverless LAMP stack” blog series provides best practices, code examples and deep dives into many serverless concepts and demonstrates how these are applied to PHP applications. It also highlights valuable contributions from the community to help spark inspiration for PHP developers.

Each component of this serverless LAMP stack is explained in detail in the blog post series:

The CDK construct library for the serverless LAMP stack is an abstraction created by AWS Developer Advocate, Pahud Hsieh. It offers a single high-level component for defining all resources that make up the serverless LAMP stack.

CDK construct for Serverless LAMP stack

CDK construct for Serverless LAMP stack

  1. Amazon API Gateway HTTP API.
  2. AWS Lambda with Bref-FPM runtime.
  3. Amazon Aurora for MySQL database cluster with Amazon RDS Proxy enabled.

Why build PHP applications with AWS CDK constructs?

Building complex web applications from scratch is a time-consuming process. PHP frameworks such as Laravel and Symfony provide a structured and standardized way to build web applications. Using templates and generic components helps reduce overall development effort. Using a serverless approach helps to address some of the traditional LAMP stack challenges of scalability and infrastructure management. Defining these resources with the AWS CDK construct library allows developers to apply the same framework principles to infrastructure as code.

The AWS CDK enables fast and easy onboarding for new developers. In addition to improved readability through reduced codebase size, PHP developers can use their existing skills and tools to build cloud infrastructure. Familiar concepts such as objects, loops, and conditions help to reduce cognitive overhead. Defining the LAMP stack infrastructure for your PHP application within the same codebase reduces context switching and streamlines the provisioning process. Connect CDK constructs to deploy a serverless LAMP infrastructure quickly with minimal code.

Code is a liability and with the AWS CDK you are applying the serverless first mindset to infra code by allowing others to create abstractions they maintain so you don’t need to. I always love deleting code

Says Matt Coulter, creator of CDK patterns – An open source resource for CDK based architecture patterns.

Building a serverless Laravel application with the ServerlessLaravel construct

The cdk-serverless-lamp construct library is built with aws/jsii and published as npm and Python modules. The stack is deployed in either TypeScript or Python and includes the ServerlessLaravel construct. This makes it easier for PHP developers to deploy a serverless Laravel application.

First, follow the “Working with the AWS CDK with in TypeScript“ steps to prepare the AWS CDK environment for TypeScript.

Deploy the serverless LAMP stack with the following steps:

  1. Confirm the CDK CLI instillation:
    $ cdk –version
  2. Create a new Laravel project with AWS CDK:
    $ mkdir serverless-lamp && cd serverless-lamp
  3. Create directories for AWS CDK and Laravel project:
    $ mkdir cdk codebase
  4. Create the new Laravel project with docker
    $ docker run --rm -ti \
    --volume $PWD:/app \
    composer create-project --prefer-dist laravel/laravel ./codebase

The cdk-serverless-lamp construct library uses the bref-FPM custom runtime to run PHP code in a Lambda function. The bref runtime performs similar functionality to Apache or NGINX by forwarding HTTP requests through the FastCGI protocol. This process is explained in detail in “The Serverless LAMP stack part 3: Replacing the web server”. In addition to this, a bref package named larval-bridge automatically configures Laravel to work on Lambda. This saves the developer from having to manually implement some of the configurations detailed in “The serverless LAMP stack part 4: Building a serverless Laravel application

  1. Install bref/bref and bref/laravel-bridge packages in the vendor directories:
    $ cd codebase
    $ docker run --rm -ti \
    --volume $PWD:/app \
    composer require bref/bref bref/laravel-bridge
  2. Initialize the AWS CDK project with typescript.
    $ cd ../cdk
    $ cdk init -l typescript
  3. Install the cdk-severless-lamp npm module
    $ yarn add cdk-serverless-lamp

This creates the following directory structure:

├── cdk
└── codebase

The cdk directory contains the AWS CDK resource definitions. The codebase directory contains the Laravel project.

Building a Laravel Project with the AWS CDK

Replace the contents of ./lib/cdk-stack.ts with:

import * as cdk from '@aws-cdk/core';
import * as path from 'path';
import { ServerlessLaravel } from 'cdk-serverless-lamp';

export class CdkStack extends cdk.Stack {
  constructor(scope: cdk.Construct, id: string, props?: cdk.StackProps) {
    super(scope, id, props);

    new ServerlessLaravel(this, 'ServerlessLaravel', {
      brefLayerVersion: 'arn:aws:lambda:us-east-1:209497400698:layer:php-74-fpm:12',
      laravelPath: path.join(__dirname, '../../codebase'),

The brefLayerVersion argument refers to the AWS Lambda layer version ARN of the Bref PHP runtime. Select the correct ARN and corresponding Region from the bref website. This example deploys the stack into the us-east-1 Region with the corresponding Lambda layer version ARN for the Region.

  1. Deploy the stack:
    cdk deploy

Once the deployment is complete, an Amazon API Gateway HTTP API endpoint is returned in the CDK output. This URL serves the Laravel application.

CDK construct output for Serverless LAMP stack

The application is running PHP on Lambda using bref’s FPM custom runtime. This entire stack is deployed by a single instantiation of the ServerlessLaravel construct class with required properties.

Adding an Amazon Aurora database

The ServerlessLaravel stack is extended with the DatabaseCluster construct class to provision an Amazon Aurora database. Pass a Amazon RDS Proxy instance for this cluster to the ServerlessLaravel construct:

  1. Edit the ./lib/cdk-stack.ts :
 import * as cdk from '@aws-cdk/core';
 import { InstanceType, Vpc } from '@aws-cdk/aws-ec2';
 import * as path from 'path';
 import { ServerlessLaravel, DatabaseCluster } from 'cdk-serverless-lamp';

 export class CdkStack extends cdk.Stack {
  constructor(scope: cdk.Construct, id: string, props?: cdk.StackProps) {
    super(scope, id, props);
 const vpc = new Vpc(this, 'Vpc',{ maxAzs: 3, natGateways: 1 } )
    // the DatabaseCluster sharing the same vpc with the ServerlessLaravel
    const db = new DatabaseCluster(this, 'DatabaseCluster', { vpc, instanceType: new InstanceType('t3.small'), rdsProxy: true, })
    // the ServerlessLaravel
    new ServerlessLaravel(this, 'ServerlessLaravel', {
      brefLayerVersion: 'arn:aws:lambda:us-east-1:209497400698:layer:php-74-fpm:12',
      laravelPath: path.join(__dirname, '../composer/laravel-bref'),
      databaseConfig: { writerEndpoint: db.rdsProxy!.endpoint, },
  1. Run cdk diff to check the difference :
    $ cdk diff

The output shows that a shared VPC is created for the ServerlessLaravel stack and the DatabaseCluster stack. An Amazon Aurora DB cluster with a single DB instance and a default secret from AWS Secrets Manager is also created. The cdk-serverless-lamp construct library configures Amazon RDS proxy automatically with the required AWS IAM policies and connection rules.

  1. Deploy the stack.
    $ cdk deploy

The ServerlessLaravel stack is running with DatabaseCluster in a single VPC. A single Lambda function is automatically configured with the RDS Proxy DB_WRITER and DB_READER stored as Lambda environment variables.

Database authentication

The Lambda function authenticates to RDS Proxy with the execution IAM role. RDS Proxy authenticates to the Aurora DB cluster using the credentials stored in the AWS Secrets Manager. This is a more secure alternative to embedding database credentials in the application code base. Read “Introducing the serverless LAMP stack – part 2 relational databases” for more information on connecting to an Aurora DB cluster with Lambda using RDS Proxy.

Clean up

To remove the stack, run:
$ cdk destroy

The video below demonstrates a deployment with the CDK construct for the serverless LAMP stack.


This post introduces the new CDK construct library for the serverless LAMP stack. It explains how to use it to deploy a serverless Laravel application. Combining this with other CDK constructs such as DatabaseCluster gives PHP developers the building blocks to create scalable, repeatable patterns at speed with minimal coding.

With the CDK construct library for the serverless LAMP stack, PHP development teams can focus on shipping code without changing the way they build.

Start building serverless applications with PHP.

Automating cross-account actions with an AWS CDK credential plugin

Post Syndicated from Cory Hall original https://aws.amazon.com/blogs/devops/cdk-credential-plugin/

The AWS Cloud Development Kit (AWS CDK) is an open-source software development framework to model and provision your cloud application resources using familiar programming languages. You can automate release pipelines for your infrastructure defined by the AWS CDK by using tools such as AWS CodePipeline. As the architecture for your application becomes more complex, so too can your release pipelines.

When you first create an AWS CDK application, you define a top-level AWS CDK app. Within the app, you typically define one or more stacks, which are the unit of deployment, analogous to AWS CloudFormation stacks. Each stack instance in your AWS CDK app is explicitly or implicitly associated with an environment (env). An environment is the target AWS account and Region into which you intend to deploy the stack. When you attempt to deploy an AWS CDK app that contains multiple environments, managing the credentials for each environment can become difficult and usually involves using custom scripts.

This post shows how to use an AWS CDK credential plugin to simplify and streamline deploying AWS CDK apps that contain multiple stacks to deploy to multiple environments. This post assumes that you are explicitly associating your stacks with an environment and may not work with environment-agnostic stacks.

AWS CDK credential plugin overview

AWS CDK allows the use of plugins during the credential process. By default, it looks for default credentials in a few different places. For more information, see Prerequisites. When you run an AWS CDK command such as synth or deploy, the AWS CDK CLI needs to perform actions against the AWS account that is defined for the stack. It attempts to use your default credentials, but what happens if you need credentials for multiple accounts? This is where credential plugins come into play. The basic flow that the AWS CDK CLI takes when obtaining credentials is as follows:

  1. Determine the environment for the stack.
  2. Look for credentials to use against that environment.
  3. If the default credentials match, the environment uses those.
  4. If the default credentials don’t match the environment, it loads any credential plugins and attempts to fetch credentials for the environment using those credential plugins.

Walkthrough overview

In this walkthrough, you use the cdk-assume-role-credential plugin to read information from multiple AWS accounts as part of the synthesis process. This post assumes you have the following three accounts:

  • Shared services – Where you run the AWS CDK commands from. It has access to assume the role in the other two accounts. This is where you can also deploy a pipeline to automate the deployment of your AWS CDK app.
  • Development application – The development environment (dev) for the application.
  • Production application – The production environment (prod) for the application.

However, you can still follow the walkthrough if you only have access to the shared services and either the development or production accounts.

The walkthrough follows this high-level process:

  1. Download and install the plugin
  2. Create the required resources
  3. Use the plugin to synthesize CloudFormation templates for the dev and prod account.

The sample project used for this walkthrough is located on GitHub.


For this walkthrough, you should have the following prerequisites:

  • Access to at least the shared services and either the development or production account.
  • AWS CDK installed with its prerequisites
  • Familiarity with running AWS commands from the AWS CLI

Downloading and installing the plugin

The cdk-assume-role-credential plugin and sample code used in this post are on the GitHub repo. You need to first clone this repo locally and install the plugin as a global package.

  1. Download the GitHub project with the following code:

$ git clone https://github.com/aws-samples/cdk-assume-role-credential-plugin.git

  1. Install the plugin globally with the following code:

$ npm install -g git+https://github.com/aws-samples/cdk-assume-role-credential-plugin.git

Creating the required resources

Because this plugin uses pre-provisioned roles in the target account, you need to first create those roles. For this post, you create two AWS Identity and Access Management (IAM) roles with the default names that the plugin looks for:

Both roles also are configured to trust the shared services account.

Before completing the following steps, make sure you have the account IDs for the three accounts and can obtain AWS CLI credentials for each account.

  1. Move to the sample-app folder:

$ cd cdk-assume-role-credential-plugin/aws-samples

  1. Install dependencies:

$ npm install

  1. Edit the bin/required-resources.ts file and fill in the account numbers where indicated:
new RequiredResourcesStack(app, 'dev', {
  env: {

new RequiredResourcesStack (app, 'prod', {
  env: {
  1. Build the AWS CDK app:

$ npm run build

  1. Using the AWS CLI credentials for the dev account, run cdk deploy to create the resources:

$ cdk deploy dev

  1. Using the AWS CLI credentials for the prod account, run cdk deploy to create the resources:

$ cdk deploy prod

Now you should have the required roles created in both the dev and prod accounts.

Synthesizing the AWS CDK app

Take a look at the sample app to see what it’s comprised of. When you open the bin/sample-app.ts file, you can see that the AWS CDK app is comprised of two SampleApp stacks: one deployed to the dev account in the us-east-2 region, and the other deployed to the prod account in the us-east-1 region. To synthesize the application, complete the following steps:

  1. Edit the bin/sample-app.ts file (fill in the account numbers where indicated):
const dev = { account: 'REPLACE_WITH_DEV_ACCOUNT_ID', region: 'us-east-2' }
const prod = { account: 'REPLACE_WITH_PROD_ACCOUNT_ID', region: 'us-east-1' }

new SampleApp(app, 'devSampleApp', { env: dev });
new SampleApp(app, 'prodSampleApp', { env: prod });
  1. Build the AWS CDK app:

$ npm run build

  1. Using the AWS CLI credentials for the shared services account, try to synthesize the app:

$ cdk synth –-app "npx ts-node bin/sample-app.ts"

You should receive an error message similar to the following code, which indicates that you don’t have credentials for the accounts specified:

[Error at /devSampleApp] Need to perform AWS calls for account 11111111111, but the current credentials are for 222222222222.
[Error at /prodSampleApp] Need to perform AWS calls for account 333333333333, but the current credentials are for 222222222222.
  1. Enter the code again, but this time tell it to use cdk-assume-role-credential-plugin:

$ cdk synth –-app "npx ts-node bin/sample-app.ts" –-plugin cdk-assume-role-credential-plugin

You should see the command succeed:

Successfully synthesized to /cdk.out
Supply a stack id (devSampleApp, prodSampleApp) to display its template.

Cleaning up

To avoid incurring future charges, delete the resources. Make sure you’re in the cdk-assume-role-credential-plugin/sample-app/.

  1. Using the AWS CLI credentials for the dev account, run cdk destroy to destroy the resources:

$ cdk destroy dev

  1. Using the AWS CLI credentials for the prod account, run cdk destroy to destroy the resources:

$ cdk destroy prod



You can simplify deploying stacks to multiple accounts by using a credential process plugin cdk-assume-role-credential-plugin.

This post provided a straightforward example of using the plugin while deploying an AWS CDK app manually.

Deploying a serverless application using AWS CDK

Post Syndicated from Georges Leschener original https://aws.amazon.com/blogs/devops/deploying-a-serverless-application-using-aws-cdk/

There are multiple ways to deploy API endpoints, such as this example, in which you could use an application running on Amazon EC2 to demonstrate how to integrate Amazon ElastiCache with Amazon DocumentDB (with MongoDB capability). While the approach in this example help achieve great performance and reliability through the elasticity and the ability to scale up or down the number of EC2 instances in order to accommodate the load on the application, there is still however some operational overhead you still have to manage the EC2 instances yourself. One way of addressing the operational overhead issue and related costs could be to transform the application into a serverless architecture.

The example in this blog post uses an application that provides a similar use case, leveraging a serverless architecture showcasing some of the tools that are being leveraged by customers transitioning from lift-and-shift to building cloud-native applications. It uses Amazon API Gateway to provide the REST API endpoint connected to an AWS Lambda function to provide the business logic to read and write from an Amazon Aurora Serverless database. It also showcases the deployment of most of the infrastructure with the AWS Cloud Development Kit, known as the CDK. By moving your applications to cloud native architecture like the example showcased in this blog post, you will be able to realize a number of benefits including:

  • Fast and clean deployment of your application thereby achieving fast time to market
  • Reduce operational costs by serverless and managed services

Architecture Diagram

At the end of this blog, you have an AWS Cloud9 instance environment containing a CDK project which deploys an API Gateway and Lambda function. This Lambda function leverages a secret stored in your AWS Secrets Manager to read and write from your Aurora Serverless database through the data API, as shown in the following diagram.


Architecture diagram for deploying a serverless application using AWS CDK

This above architecture diagram showcases the resources to be deployed in your AWS Account

Through the blog post you will be creating the following resources:

  1. Deploy an Amazon Aurora Serverless database cluster
  2. Secure the cluster credentials in AWS Secrets Manager
  3. Create and populate your database in the AWS Console
  4. Deploy an AWS Cloud9 instance used as a development environment
  5. Initialize and configure an AWS Cloud Development Kit project including the definition of your Amazon API Gateway endpoint and AWS Lambda function
  6. Deploy an AWS CloudFormation template through the AWS Cloud Development Kit


In order to deploy the CDK application, there are a few prerequisites that need to be met:

  1. Create an AWS account or use an existing account.
  2. Install Postman for testing purposes

Amazon Aurora serverless cluster creation

To begin, navigate to the AWS console to create a new Amazon RDS database.

  1. Select Create Database from the Amazon RDS service.
  2. Select Standard Create under Choose a database creation method.
  3. Select Serverless under Database features.
  4. Select Amazon Aurora as the engine type under Engine options.
  5. Enter db-blog for your DB Cluster Identifier.
  6. Expand the Additional Connectivity section and select the Data API option. This functionality enables you to access Aurora Serverless with web services-based applications. It also allows you to use the query editor feature for Aurora Serverless in order to run SQL queries against your database instance.
  7. Leave the default selection for everything else and choose Create Database.

Your database instance is created in a single availability zone (AZ), but an Aurora Serverless database cluster has a capability known as automatic multi-AZ failover, which enables Aurora to recreate the database instance in a different AZ should the current database instance or the AZ become unavailable. The storage volume for the cluster is spread across multiple AZs, since Aurora separates computation capacity and storage. This allows for data to remain available even if the database instance or the associated AZ is affected by an outage.

Securing database credentials with AWS Secrets Manager

After creating the database instance, the next step is to store your secrets for your database in AWS Secrets Manager.

  • Navigate to AWS Secrets Manager, and select Store a New Secret.
  • Leave the default selection (Credentials for RDS database) for the secret type. Enter your database username and password and then select the radio button for the database you created in the previous step (in this example, db-blog), as shown in the following screenshot.

database search in aws secrets manager

  •  Choose Next.
  • Enter a name and optionally a description. For the name, make sure to add the prefix rds-db-credentials/ as shown in the following screenshot.

AWS Secrets Manager Store a new secret window

  • Choose Next and leave the default selection.
  • Review your settings on the last page and choose Store to have your secrets created and stored in AWS Secrets Manager, which you can now use to connect to your database.

Creating and populating your Amazon Aurora Serverless database

After creating the DB cluster, create the database instance; create your tables and populate them; and finally, test a connection to ensure that you can query your database.

  • Navigate to the Amazon RDS service from the AWS console, and select your db-blog database cluster.
  • Select Query under Actions to open the Connect to database window as shown in the screenshot below . Enter your database connection details. You can copy your secret manager ARN from the Secrets Manager service and paste it into the corresponding field in the database connection window.

Amazon RDS connect to database window

  • To create the DB instance run the following SQL query: CREATE DATABASE recordstore;from the Query editor shown in the screenshot below:


Amazon RDS Query editor

  • Before you can run the following commands, make sure you are using the Recordstore database you just created by running the command:
USE recordstore;
  • Create a records table using the following command:
CREATE TABLE IF NOT EXISTS records (recordid INT PRIMARY KEY, title VARCHAR(255) NOT NULL, release_date DATE);
  • Create a singers table using the following command:
  • Add a record to your records table and a singer to your singers table.
INSERT INTO records(recordid,title,release_date) VALUES(001,'Liberian Girl','2012-05-03');
INSERT INTO singers(id,name,nationality,recordid) VALUES(100,'Michael Jackson','American',001);

If you have the AWS CLI set up on your computer, you can connect to your database and retrieve records.

To test it, use the rds-data execute-statement API within the AWS CLI to connect to your database via the data API web service and query the singers table, as shown below:

aws rds-data execute-statement —secret-arn "arn:aws:secretsmanager:REGION:xxxxxxxxxxx:secret:rds-db-credentials/xxxxxxxxxxxxxxx" —resource-arn "arn:aws:rds:us-east-1:xxxxxxxxxx:cluster:db-blog" —database demodb —sql "select * from singers" —output json

You should see the following result:

    "numberOfRecordsUpdated": 0,
    "records": [
                "longValue": 100
                "stringValue": "Michael Jackson"
                "stringValue": "American"
                "longValue": 1

Creating a Cloud9 instance

To create a Cloud9 instance:

  1. Navigate to the Cloud9 console and select Create Environment.
  2. Name your environment AuroraServerlessBlog.
  3. Keep the default values under the Environment Settings.

Once your instance is launched, you see the screen shown in the following screenshot:

AWS Cloud9


You can now install the CDK in your environment. Run the following command inside your bash terminal on the blue section at the bottom of your screen:

npm install -g [email protected]

For the next section of this example, you mostly work on the command line of your Cloud9 terminal and on your file explorer.

Creating the CDK deployment

The AWS Cloud Development Kit (AWS CDK) is an open-source software development framework to model and provision your cloud application resources using familiar programming languages. If you would like to familiarize yourself the CDKWorkshop is a great place to start.

First, create a working directory called RecordsApp and initialize a CDK project from a template.

Run the following commands:

mkdir RecordsApp
cd RecordsApp
cdk init app --language typescript
mkdir resources
npm install @aws-cdk/[email protected] @aws-cdk/[email protected] @aws-cdk/[email protected]

Now your instance should look like the example shown in the following screenshot:

AWS Cloud9 shell


You are mainly working in two directories:

  • Resources
  • Lib

Your initial set up is ready, and you can move into creating specific services and deploying them to your account.

Creating AWS resources using the CDK

  1. Follow these steps to create AWS resources using the CDK:
  2. Under the /lib folder,  create a new file called records_service.ts.
    • Inside of your new file, paste the following code with these changes:
    • Replace the dbARN with the ARN of your AuroraServerless DB ARN from the previous steps.

Replace the dbSecretARN with the ARN of your Secrets Manager secret ARN from the previous steps.

import core = require("@aws-cdk/core");
import apigateway = require("@aws-cdk/aws-apigateway");
import lambda = require("@aws-cdk/aws-lambda");
import iam = require("@aws-cdk/aws-iam");

const dbARN = "arn:aws:rds:XXXX:XXXX:cluster:aurora-serverless-blog";
const dbSecretARN = "arn:aws:secretsmanager:XXXXX:XXXXX:secret:rds-db-credentials/XXXXX";

export class RecordsService extends core.Construct {
  constructor(scope: core.Construct, id: string) {
    super(scope, id);

    const lambdaRole = new iam.Role(this, 'AuroraServerlessBlogLambdaRole', {
      assumedBy: new iam.ServicePrincipal('lambda.amazonaws.com'),
      managedPolicies: [

    const handler = new lambda.Function(this, "RecordsHandler", {
     role: lambdaRole,
     runtime: lambda.Runtime.NODEJS_12_X, // So we can use async in widget.js
     code: lambda.Code.asset("resources"),
     handler: "records.main",
     environment: {
       TABLE: dbARN,
       TABLESECRET: dbSecretARN,
       DATABASE: "recordstore"

    const api = new apigateway.RestApi(this, "records-api", {
      restApiName: "Records Service",
      description: "This service serves records."

    const getRecordsIntegration = new apigateway.LambdaIntegration(handler, {
      requestTemplates: { "application/json": '{ "statusCode": 200 }' }

    api.root.addMethod("GET", getRecordsIntegration); // GET /

    const record = api.root.addResource("{id}");
    const postRecordIntegration = new apigateway.LambdaIntegration(handler);
    const getRecordIntegration = new apigateway.LambdaIntegration(handler);

    record.addMethod("POST", postRecordIntegration); // POST /{id}
    record.addMethod("GET", getRecordIntegration); // GET/{id}

This snippet of code will instruct the AWS CDK to create the following resources:

  • IAM role: AuroraServerlessBlogLambdaRole containing the following managed policies:
    • AmazonRDSDataFullAccess
    • service-role/AWSLambdaBasicExecutionRole
  • Lambda function: RecordsHandler, which has a Node.js 8.10 runtime and three environmental variables
  • API Gateway: Records Service, which has the following characteristics:
    • GET Method
      • GET /
    • { id } Resource
      • GET method
        • GET /{id}
      • POST method
        • POST /{id}

Now that you have a service, you need to add it to your stack under the /lib directory.

  1. Open the records_app-stack.ts
  2. Replace the contents of this file with the following:
import cdk = require('@aws-cdk/core'); 
import records_service = require('../lib/records_service'); 
export class RecordsAppStack extends cdk.Stack { 
  constructor(scope: cdk.Construct, id: string, props?
: cdk.StackProps) { 
    super(scope, id, props); 
    new records_service.RecordsService(this, 'Records'
  1. Create the Lambda code that is invoked from the API Gateway endpoint. Under the /resources directory, create a file called records.js and paste the following code in this file
const AWS = require('aws-sdk');
var rdsdataservice = new AWS.RDSDataService();

exports.main = async function(event, context) {
  try {
    var method = event.httpMethod;
    var recordName = event.path.startsWith('/') ? event.path.substring(1) : event.path;
// Defining parameters for rdsdataservice
    var params = {
      resourceArn: process.env.TABLE,
      secretArn: process.env.TABLESECRET,
      database: process.env.DATABASE,
   if (method === "GET") {
      if (event.path === "/") {
       //Here is where we are defining the SQL query that will be run at the DATA API
       params['sql'] = 'select * from records';
       const data = await rdsdataservice.executeStatement(params).promise();
       var body = {
           records: data
       return {
         statusCode: 200,
         headers: {},
         body: JSON.stringify(body)
     else if (recordName) {
       params['sql'] = `SELECT singers.id, singers.name, singers.nationality, records.title FROM singers INNER JOIN records on records.recordid = singers.recordid WHERE records.title LIKE '${recordName}%';`
       const data = await rdsdataservice.executeStatement(params).promise();
       var body = {
           singer: data
       return {
         statusCode: 200,
         headers: {},
         body: JSON.stringify(body)
   else if (method === "POST") {
     var payload = JSON.parse(event.body);
     if (!payload) {
       return {
         statusCode: 400,
         headers: {},
         body: "The body is missing"

     //Generating random IDs
     var recordId = uuidv4();
     var singerId = uuidv4();

     //Parsing the payload from body
     var recordTitle = `${payload.recordTitle}`;
     var recordReleaseDate = `${payload.recordReleaseDate}`;
     var singerName = `${payload.singerName}`;
     var singerNationality = `${payload.singerNationality}`;

      //Making 2 calls to the data API to insert the new record and singer
      params['sql'] = `INSERT INTO records(recordid,title,release_date) VALUES(${recordId},"${recordTitle}","${recordReleaseDate}");`;
      const recordsWrite = await rdsdataservice.executeStatement(params).promise();
      params['sql'] = `INSERT INTO singers(recordid,id,name,nationality) VALUES(${recordId},${singerId},"${singerName}","${singerNationality}");`;
      const singersWrite = await rdsdataservice.executeStatement(params).promise();

      return {
        statusCode: 200,
        headers: {},
        body: JSON.stringify("Your record has been saved")

    // We got something besides a GET, POST, or DELETE
    return {
      statusCode: 400,
      headers: {},
      body: "We only accept GET, POST, and DELETE, not " + method
  } catch(error) {
    var body = error.stack || JSON.stringify(error, null, 2);
    return {
      statusCode: 400,
      headers: {},
      body: body
function uuidv4() {
  return 'xxxx'.replace(/[xy]/g, function(c) {
    var r = Math.random() * 16 | 0, v = c == 'x' ? r : (r & 0x3 | 0x8);
    return v;

Take a look at what this Lambda function is doing. You have two functions inside of your Lambda function. The first is the exported handler, which is defined as an asynchronous function. The second is a unique identifier function to generate four-digit random numbers you use as UIDs for your database records. In your handler function, you handle the following actions based on the event you get from API Gateway:

  • Method GETwith empty path /:
    • This calls the data API executeStatement method with the following SQL query:
SELECT * from records
  • Method GET with a record name in the path /{recordName}:
    • This calls the data API executeStatmentmethod with the following SQL query:
SELECT singers.id, singers.name, singers.nationality, records.title FROM singers INNER JOIN records on records.recordid = singers.recordid WHERE records.title LIKE '${recordName}%';
  • Method POST with a payload in the body:
    • This makes two calls to the data API executeStatement with the following SQL queries:
INSERT INTO records(recordid,titel,release_date) VALUES(${recordId},"${recordTitle}",“${recordReleaseDate}”);&lt;br /&gt;INSERT INTO singers(recordid,id,name,nationality) VALUES(${recordId},${singerId},"${singerName}","${singerNationality}");

Now you have all the pieces you need to deploy your endpoint and Lambda function by running the following commands:

npm run build
cdk synth
cdk bootstrap
cdk deploy

If you change the Lambda code or add aditional AWS resources to your CDK deployment, you can redeploy the application by running all four commands in a single line:

npm run build; cdk synth; cdk bootstrap; cdk deploy

Testing with Postman

Once it’s done, you can test it using Postman:

GET = ‘RecordName’ in the path

  • example:
    • ENDPOINT/RecordName

POST = Payload in the body

  • example:
   "recordTitle" : "BlogTest",
   "recordReleaseDate" : "2020-01-01",
   "singerName" : "BlogSinger",
   "singerNationality" : "AWS"

Clean up

To clean up the resources created by the CDK, run the following command in your Cloud9 instance:

cdk destroy

To clean up the resources created manually, run the following commands:

aws rds delete-db-cluster --db-cluster-identifier Serverless-blog --skip-final-snapshot
aws secretsmanager delete-secret --secret-id XXXXX --recovery-window-in-days 7


This blog post demonstrated how to transform an application running on Amazon EC2 from a previous blog into serverless architecture by leveraging services such as Amazon API Gateway, Lambda, Cloud 9, AWS CDK, and Aurora Serverless. The benefit of serverless architecture is that it takes away the overhead of having to manage a server and helps reduce costs, as you only pay for the time in which your code executes.

This example used a record-store application written in Node.js that allows users to find their favorite singer’s record titles, as well as the dates when they were released. This example could be expanded, for instance, by adding a payment gateway and a shopping cart to allow users to shop and pay for their favorite records. You could then incorporate some machine learning into the application to predict user choice based on previous visits, purchases, or information provided through registration profiles.



About the Authors

Luis Lopez Soria is an AI/ML specialist solutions architect working with the AWS machine learning team. He works with AWS customers to help them with the adoption of Machine Learning on a large scale. He enjoys doing sports in addition to traveling around the world, exploring new foods and cultures.




 Georges Leschener is a Partner Solutions Architect in the Global System Integrator (GSI) team at Amazon Web Services. He works with our GSIs partners to help migrate customers’ workloads to AWS cloud, design and architect innovative solutions on AWS by applying AWS recommended best practices.


DevOps at re:Invent 2019!

Post Syndicated from Matt Dwyer original https://aws.amazon.com/blogs/devops/devops-at-reinvent-2019/

re:Invent 2019 is fast approaching (NEXT WEEK!) and we here at the AWS DevOps blog wanted to take a moment to highlight DevOps focused presentations, share some tips from experienced re:Invent pro’s, and highlight a few sessions that still have availability for pre-registration. We’ve broken down the track into one overarching leadership session and four topic areas: (a) architecture, (b) culture, (c) software delivery/operations, and (d) AWS tools, services, and CLI.

In total there will be 145 DevOps track sessions, stretched over 5 days, and divided into four distinct session types:

  • Sessions (34) are one-hour presentations delivered by AWS experts and customer speakers who share their expertise / use cases
  • Workshops (20) are two-hours and fifteen minutes, hands-on sessions where you work in teams to solve problems using AWS services
  • Chalk Talks (41) are interactive white-boarding sessions with a smaller audience. They typically begin with a 10–15-minute presentation delivered by an AWS expert, followed by 45–50-minutes of Q&A
  • Builders Sessions (50) are one-hour, small group sessions with six customers and one AWS expert, who is there to help, answer questions, and provide guidance
  • Select DevOps focused sessions have been highlighted below. If you want to view and/or register for any session, including Keynotes, builders’ fairs, and demo theater sessions, you can access the event catalog using your re:Invent registration credentials.

Reserve your seat for AWS re:Invent activities today >>

re:Invent TIP #1: Identify topics you are interested in before attending re:Invent and reserve a seat. We hold space in sessions, workshops, and chalk talks for walk-ups, however, if you want to get into a popular session be prepared to wait in line!

Please see below for select sessions, workshops, and chalk talks that will be conducted during re:Invent.


[Session] Leadership Session: Developer Tools on AWS (DOP210-L) — SPACE AVAILABLE! REGISTER TODAY!

Speaker 1: Ken Exner – Director, AWS Dev Tools, Amazon Web Services
Speaker 2: Kyle Thomson – SDE3, Amazon Web Services

Join Ken Exner, GM of AWS Developer Tools, as he shares the state of developer tooling on AWS, as well as the future of development on AWS. Ken uses insight from his position managing Amazon’s internal tooling to discuss Amazon’s practices and patterns for releasing software to the cloud. Additionally, Ken provides insight and updates across many areas of developer tooling, including infrastructure as code, authoring and debugging, automation and release, and observability. Throughout this session Ken will recap recent launches and show demos for some of the latest features.

re:Invent TIP #2: Leadership Sessions are a topic area’s State of the Union, where AWS leadership will share the vision and direction for a given topic at AWS.re:Invent.


[Session] Amazon’s approach to failing successfully (DOP208-RDOP208-R1) — SPACE AVAILABLE! REGISTER TODAY!

Speaker: Becky Weiss – Senior Principal Engineer, Amazon Web Services

Welcome to the real world, where things don’t always go your way. Systems can fail despite being designed to be highly available, scalable, and resilient. These failures, if used correctly, can be a powerful lever for gaining a deep understanding of how a system actually works, as well as a tool for learning how to avoid future failures. In this session, we cover Amazon’s favorite techniques for defining and reviewing metrics—watching the systems before they fail—as well as how to do an effective postmortem that drives both learning and meaningful improvement.

[Session] Improving resiliency with chaos engineering (DOP309-RDOP309-R1) — SPACE AVAILABLE! REGISTER TODAY!

Speaker 1: Olga Hall – Senior Manager, Tech Program Management
Speaker 2: Adrian Hornsby – Principal Evangelist, Amazon Web Services

Failures are inevitable. Regardless of the engineering efforts put into building resilient systems and handling edge cases, sometimes a case beyond our reach turns a benign failure into a catastrophic one. Therefore, we should test and continuously improve our system’s resilience to failures to minimize impact on a user’s experience. Chaos engineering is one of the best ways to achieve that. In this session, you learn how Amazon Prime Video has implemented chaos engineering into its regular testing methods, helping it achieve increased resiliency.

[Session] Amazon’s approach to security during development (DOP310-RDOP310-R1) — SPACE AVAILABLE! REGISTER TODAY!

Speaker: Colm MacCarthaigh – Senior Principal Engineer, Amazon Web Services

At AWS we say that security comes first—and we really mean it. In this session, hear about how AWS teams both minimize security risks in our products and respond to security issues proactively. We talk through how we integrate security reviews, penetration testing, code analysis, and formal verification into the development process. Additionally, we discuss how AWS engineering teams react quickly and decisively to new security risks as they emerge. We also share real-life firefighting examples and the lessons learned in the process.

[Session] Amazon’s approach to building resilient services (DOP342-RDOP342-R1) — SPACE AVAILABLE! REGISTER TODAY!

Speaker: Marc Brooker – Senior Principal Engineer, Amazon Web Services

One of the biggest challenges of building services and systems is predicting the future. Changing load, business requirements, and customer behavior can all change in unexpected ways. In this talk, we look at how AWS builds, monitors, and operates services that handle the unexpected. Learn how to make your own services handle a changing world, from basic design principles to patterns you can apply today.

re:Invent TIP #3: Not sure where to spend your time? Let an AWS Hero give you some pointers. AWS Heroes are prominent AWS advocates who are passionate about sharing AWS knowledge with others. They have written guides to help attendees find relevant activities by providing recommendations based on specific demographics or areas of interest.


[Session] Driving change and building a high-performance DevOps culture (DOP207-R; DOP207-R1)

Speaker: Mark Schwartz – Enterprise Strategist, Amazon Web Services

When it comes to digital transformation, every enterprise is different. There is often a person or group with a vision, knowledge of good practices, a sense of urgency, and the energy to break through impediments. They may be anywhere in the organizational structure: high, low, or—in a typical scenario—somewhere in middle management. Mark Schwartz, an enterprise strategist at AWS and the author of “The Art of Business Value” and “A Seat at the Table: IT Leadership in the Age of Agility,” shares some of his research into building a high-performance culture by driving change from every level of the organization.

[Session] Amazon’s approach to running service-oriented organizations (DOP301-R; DOP301-R1DOP301-R2)

Speaker: Andy Troutman – Director AWS Developer Tools, Amazon Web Services

Amazon’s “two-pizza teams” are famously small teams that support a single service or feature. Each of these teams has the autonomy to build and operate their service in a way that best supports their customers. But how do you coordinate across tens, hundreds, or even thousands of two-pizza teams? In this session, we explain how Amazon coordinates technology development at scale by focusing on strategies that help teams coordinate while maintaining autonomy to drive innovation.

re:Invent TIP #4: The max number of 60-minute sessions you can attend during re:Invent is 24! These sessions (e.g., sessions, chalk talks, builders sessions) will usually make up the bulk of your agenda.


[Session] Strategies for securing code in the cloud and on premises. Speakers: (DOP320-RDOP320-R1) — SPACE AVAILABLE! REGISTER TODAY!

Speaker 1: Craig Smith – Senior Solutions Architect
Speaker 2: Lee Packham – Solutions Architect

Some people prefer to keep their code and tooling on premises, though this can create headaches and slow teams down. Others prefer keeping code off of laptops that can be misplaced. In this session, we walk through the alternatives and recommend best practices for securing your code in cloud and on-premises environments. We demonstrate how to use services such as Amazon WorkSpaces to keep code secure in the cloud. We also show how to connect tools such as Amazon Elastic Container Registry (Amazon ECR) and AWS CodeBuild with your on-premises environments so that your teams can go fast while keeping your data off of the public internet.

[Session] Deploy your code, scale your application, and lower Cloud costs using AWS Elastic Beanstalk (DOP326) — SPACE AVAILABLE! REGISTER TODAY!

Speaker: Prashant Prahlad – Sr. Manager

You can effortlessly convert your code into web applications without having to worry about provisioning and managing AWS infrastructure, applying patches and updates to your platform or using a variety of tools to monitor health of your application. In this session, we show how anyone- not just professional developers – can use AWS Elastic Beanstalk in various scenarios: From an administrator moving a Windows .NET workload into the Cloud, a developer building a containerized enterprise app as a Docker image, to a data scientist being able to deploy a machine learning model, all without the need to understand or manage the infrastructure details.

[Session] Amazon’s approach to high-availability deployment (DOP404-RDOP404-R1) — SPACE AVAILABLE! REGISTER TODAY!

Speaker: Peter Ramensky – Senior Manager

Continuous-delivery failures can lead to reduced service availability and bad customer experiences. To maximize the rate of successful deployments, Amazon’s development teams implement guardrails in the end-to-end release process to minimize deployment errors, with a goal of achieving zero deployment failures. In this session, learn the continuous-delivery practices that we invented that help raise the bar and prevent costly deployment failures.

[Session] Introduction to DevOps on AWS (DOP209-R; DOP209-R1)

Speaker 1: Jonathan Weiss – Senior Manager
Speaker 2: Sebastien Stormacq – Senior Technical Evangelist

How can you accelerate the delivery of new, high-quality services? Are you able to experiment and get feedback quickly from your customers? How do you scale your development team from 1 to 1,000? To answer these questions, it is essential to leverage some key DevOps principles and use CI/CD pipelines so you can iterate on and quickly release features. In this talk, we walk you through the journey of a single developer building a successful product and scaling their team and processes to hundreds or thousands of deployments per day. We also walk you through best practices and using AWS tools to achieve your DevOps goals.

[Workshop] DevOps essentials: Introductory workshop on CI/CD practices (DOP201-R; DOP201-R1; DOP201-R2; DOP201-R3)

Speaker 1: Leo Zhadanovsky – Principal Solutions Architect
Speaker 2: Karthik Thirugnanasambandam – Partner Solutions Architect

In this session, learn how to effectively leverage various AWS services to improve developer productivity and reduce the overall time to market for new product capabilities. We demonstrate a prescriptive approach to incrementally adopt and embrace some of the best practices around continuous integration and delivery using AWS developer tools and third-party solutions, including, AWS CodeCommit, AWS CodeBuild, Jenkins, AWS CodePipeline, AWS CodeDeploy, AWS X-Ray and AWS Cloud9. We also highlight some best practices and productivity tips that can help make your software release process fast, automated, and reliable.

[Workshop] Implementing GitFLow with AWS tools (DOP202-R; DOP202-R1; DOP202-R2)

Speaker 1: Amit Jha – Sr. Solutions Architect
Speaker 2: Ashish Gore – Sr. Technical Account Manager

Utilizing short-lived feature branches is the development method of choice for many teams. In this workshop, you learn how to use AWS tools to automate merge-and-release tasks. We cover high-level frameworks for how to implement GitFlow using AWS CodePipeline, AWS CodeCommit, AWS CodeBuild, and AWS CodeDeploy. You also get an opportunity to walk through a prebuilt example and examine how the framework can be adopted for individual use cases.

[Chalk Talk] Generating dynamic deployment pipelines with AWS CDK (DOP311-R; DOP311-R1; DOP311-R2)

Speaker 1: Flynn Bundy – AppDev Consultant
Speaker 2: Koen van Blijderveen – Senior Security Consultant

In this session we dive deep into dynamically generating deployment pipelines that deploy across multiple AWS accounts and Regions. Using the power of the AWS Cloud Development Kit (AWS CDK), we demonstrate how to simplify and abstract the creation of deployment pipelines to suit a range of scenarios. We highlight how AWS CodePipeline—along with AWS CodeBuild, AWS CodeCommit, and AWS CodeDeploy—can be structured together with the AWS deployment framework to get the most out of your infrastructure and application deployments.

[Chalk Talk] Customize AWS CloudFormation with open-source tools (DOP312-R; DOP312-R1; DOP312-E)

Speaker 1: Luis Colon – Senior Developer Advocate
Speaker 2: Ryan Lohan – Senior Software Engineer

In this session, we showcase some of the best open-source tools available for AWS CloudFormation customers, including conversion and validation utilities. Get a glimpse of the many open-source projects that you can use as you create and maintain your AWS CloudFormation stacks.

[Chalk Talk] Optimizing Java applications for scale on AWS (DOP314-R; DOP314-R1; DOP314-R2)

Speaker 1: Sam Fink – SDE II
Speaker 2: Kyle Thomson – SDE3

Executing at scale in the cloud can require more than the conventional best practices. During this talk, we offer a number of different Java-related tools you can add to your AWS tool belt to help you more efficiently develop Java applications on AWS—as well as strategies for optimizing those applications. We adapt the talk on the fly to cover the topics that interest the group most, including more easily accessing Amazon DynamoDB, handling high-throughput uploads to and downloads from Amazon Simple Storage Service (Amazon S3), troubleshooting Amazon ECS services, working with local AWS Lambda invocations, optimizing the Java SDK, and more.

[Chalk Talk] Securing your CI/CD tools and environments (DOP316-R; DOP316-R1; DOP316-R2)

Speaker: Leo Zhadanovsky – Principal Solutions Architect

In this session, we discuss how to configure security for AWS CodePipeline, deployments in AWS CodeDeploy, builds in AWS CodeBuild, and git access with AWS CodeCommit. We discuss AWS Identity and Access Management (IAM) best practices, to allow you to set up least-privilege access to these services. We also demonstrate how to ensure that your pipelines meet your security and compliance standards with the CodePipeline AWS Config integration, as well as manual approvals. Lastly, we show you best-practice patterns for integrating security testing of your deployment artifacts inside of your CI/CD pipelines.

[Chalk Talk] Amazon’s approach to automated testing (DOP317-R; DOP317-R1; DOP317-R2)

Speaker 1: Carlos Arguelles – Principal Engineer
Speaker 2: Charlie Roberts – Senior SDET

Join us for a session about how Amazon uses testing strategies to build a culture of quality. Learn Amazon’s best practices around load testing, unit testing, integration testing, and UI testing. We also discuss what parts of testing are automated and how we take advantage of tools, and share how we strategize to fail early to ensure minimum impact to end users.

[Chalk Talk] Building and deploying applications on AWS with Python (DOP319-R; DOP319-R1; DOP319-R2)

Speaker 1: James Saryerwinnie – Senior Software Engineer
Speaker 2: Kyle Knapp – Software Development Engineer

In this session, hear from core developers of the AWS SDK for Python (Boto3) as we walk through the design of sample Python applications. We cover best practices in using Boto3 and look at other libraries to help build these applications, including AWS Chalice, a serverless microframework for Python. Additionally, we discuss testing and deployment strategies to manage the lifecycle of your applications.

[Chalk Talk] Deploying AWS CloudFormation StackSets across accounts and Regions (DOP325-R; DOP325-R1)

Speaker 1: Mahesh Gundelly – Software Development Manager
Speaker 2: Prabhu Nakkeeran – Software Development Manager

AWS CloudFormation StackSets can be a critical tool to efficiently manage deployments of resources across multiple accounts and regions. In this session, we cover how AWS CloudFormation StackSets can help you ensure that all of your accounts have the proper resources in place to meet security, governance, and regulation requirements. We also cover how to make the most of the latest functionalities and discuss best practices, including how to plan for safe deployments with minimal blast radius for critical changes.

[Chalk Talk] Monitoring and observability of serverless apps using AWS X-Ray (DOP327-R; DOP327-R1; DOP327-R2)

Speaker 1 (R, R1, R2): Shengxin Li – Software Development Engineer
Speaker 2 (R, R1): Sirirat Kongdee – Solutions Architect
Speaker 3 (R2): Eric Scholz – Solutions Architect, Amazon

Monitoring and observability are essential parts of DevOps best practices. You need monitoring to debug and trace unhandled errors, performance bottlenecks, and customer impact in the distributed nature of a microservices architecture. In this chalk talk, we show you how to integrate the AWS X-Ray SDK to your code to provide observability to your overall application and drill down to each service component. We discuss how X-Ray can be used to analyze, identify, and alert on performance issues and errors and how it can help you troubleshoot application issues faster.

[Chalk Talk] Optimizing deployment strategies for speed & safety (DOP341-R; DOP341-R1; DOP341-R2)

Speaker: Karan Mahant – Software Development Manager, Amazon

Modern application development moves fast and demands continuous delivery. However, the greatest risk to an application’s availability can occur during deployments. Join us in this chalk talk to learn about deployment strategies for web servers and for Amazon EC2, container-based, and serverless architectures. Learn how you can optimize your deployments to increase productivity during development cycles and mitigate common risks when deploying to production by using canary and blue/green deployment strategies. Further, we share our learnings from operating production services at AWS.

[Chalk Talk] Continuous integration using AWS tools (DOP216-R; DOP216-R1; DOP216-R2)

Speaker: Richard Boyd – Sr Developer Advocate, Amazon Web Services

Today, more teams are adopting continuous-integration (CI) techniques to enable collaboration, increase agility, and deliver a high-quality product faster. Cloud-based development tools such as AWS CodeCommit and AWS CodeBuild can enable teams to easily adopt CI practices without the need to manage infrastructure. In this session, we showcase best practices for continuous integration and discuss how to effectively use AWS tools for CI.

re:Invent TIP #5: If you’re traveling to another session across campus, give yourself at least 60 minutes!


[Session] Best practices for authoring AWS CloudFormation (DOP302-R; DOP302-R1)

Speaker 1: Olivier Munn – Sr Product Manager Technical, Amazon Web Services
Speaker 2: Dan Blanco – Developer Advocate, Amazon Web Services

Incorporating infrastructure as code into software development practices can help teams and organizations improve automation and throughput without sacrificing quality and uptime. In this session, we cover multiple best practices for writing, testing, and maintaining AWS CloudFormation template code. You learn about IDE plug-ins, reusability, testing tools, modularizing stacks, and more. During the session, we also review sample code that showcases some of the best practices in a way that lends more context and clarity.

[Chalk Talk] Using AWS tools to author and debug applications (DOP215-RDOP215-R1DOP215-R2) — SPACE AVAILABLE! REGISTER TODAY!

Speaker: Fabian Jakobs – Principal Engineer, Amazon Web Services

Every organization wants its developers to be faster and more productive. AWS Cloud9 lets you create isolated cloud-based development environments for each project and access them from a powerful web-based IDE anywhere, anytime. In this session, we demonstrate how to use AWS Cloud9 and provide an overview of IDE toolkits that can be used to author application code.

[Session] Migrating .Net frameworks to the cloud (DOP321) — SPACE AVAILABLE! REGISTER TODAY!

Speaker: Robert Zhu – Principal Technical Evangelist, Amazon Web Services

Learn how to migrate your .NET application to AWS with minimal steps. In this demo-heavy session, we share best practices for migrating a three-tiered application on ASP.NET and SQL Server to AWS. Throughout the process, you get to see how AWS Toolkit for Visual Studio can enable you to fully leverage AWS services such as AWS Elastic Beanstalk, modernizing your application for more agile and flexible development.

[Session] Deep dive into AWS Cloud Development Kit (DOP402-R; DOP402-R1)

Speaker 1: Elad Ben-Israel – Principal Software Engineer, Amazon Web Services
Speaker 2: Jason Fulghum – Software Development Manager, Amazon Web Services

The AWS Cloud Development Kit (AWS CDK) is a multi-language, open-source framework that enables developers to harness the full power of familiar programming languages to define reusable cloud components and provision applications built from those components using AWS CloudFormation. In this session, you develop an AWS CDK application and learn how to quickly assemble AWS infrastructure. We explore the AWS Construct Library and show you how easy it is to configure your cloud resources, manage permissions, connect event sources, and build and publish your own constructs.

[Session] Introduction to the AWS CLI v2 (DOP406-R; DOP406-R1)

Speaker 1: James Saryerwinnie – Senior Software Engineer, Amazon Web Services
Speaker 2: Kyle Knapp – Software Development Engineer, Amazon Web Services

The AWS Command Line Interface (AWS CLI) is a command-line tool for interacting with AWS services and managing your AWS resources. We’ve taken all of the lessons learned from AWS CLI v1 (launched in 2013), and have been working on AWS CLI v2—the next major version of the AWS CLI—for the past year. AWS CLI v2 includes features such as improved installation mechanisms, a better getting-started experience, interactive workflows for resource management, and new high-level commands. Come hear from the core developers of the AWS CLI about how to upgrade and start using AWS CLI v2 today.

[Session] What’s new in AWS CloudFormation (DOP408-R; DOP408-R1; DOP408-R2)

Speaker 1: Jing Ling – Senior Product Manager, Amazon Web Services
Speaker 2: Luis Colon – Senior Developer Advocate, Amazon Web Services

AWS CloudFormation is one of the most widely used AWS tools, enabling infrastructure as code, deployment automation, repeatability, compliance, and standardization. In this session, we cover the latest improvements and best practices for AWS CloudFormation customers in particular, and for seasoned infrastructure engineers in general. We cover new features and improvements that span many use cases, including programmability options, cross-region and cross-account automation, operational safety, and additional integration with many other AWS services.

[Workshop] Get hands-on with Python/boto3 with no or minimal Python experience (DOP203-R; DOP203-R1; DOP203-R2)

Speaker 1: Herbert-John Kelly – Solutions Architect, Amazon Web Services
Speaker 2: Carl Johnson – Enterprise Solutions Architect, Amazon Web Services

Learning a programming language can seem like a huge investment. However, solving strategic business problems using modern technology approaches, like machine learning and big-data analytics, often requires some understanding. In this workshop, you learn the basics of using Python, one of the most popular programming languages that can be used for small tasks like simple operations automation, or large tasks like analyzing billions of records and training machine-learning models. You also learn about and use the AWS SDK (software development kit) for Python, called boto3, to write a Python program running on and interacting with resources in AWS.

[Workshop] Building reusable AWS CloudFormation templates (DOP304-R; DOP304-R1; DOP304-R2)

Speaker 1: Chelsey Salberg – Front End Engineer, Amazon Web Services
Speaker 2: Dan Blanco – Developer Advocate, Amazon Web Services

AWS CloudFormation gives you an easy way to define your infrastructure as code, but are you using it to its full potential? In this workshop, we take real-world architecture from a sandbox template to production-ready reusable code. We start by reviewing an initial template, which you update throughout the session to incorporate AWS CloudFormation features, like nested stacks and intrinsic functions. By the end of the workshop, expect to have a set of AWS CloudFormation templates that demonstrate the same best practices used in AWS Quick Starts.

[Workshop] Building a scalable serverless application with AWS CDK (DOP306-R; DOP306-R1; DOP306-R2; DOP306-R3)

Speaker 1: David Christiansen – Senior Partner Solutions Architect, Amazon Web Services
Speaker 2: Daniele Stroppa – Solutions Architect, Amazon Web Services

Dive into AWS and build a web application with the AWS Mythical Mysfits tutorial. In this workshop, you build a serverless application using AWS Lambda, Amazon API Gateway, and the AWS Cloud Development Kit (AWS CDK). Through the tutorial, you get hands-on experience using AWS CDK to model and provision a serverless distributed application infrastructure, you connect your application to a backend database, and you capture and analyze data on user behavior. Other AWS services that are utilized include Amazon Kinesis Data Firehose and Amazon DynamoDB.

[Chalk Talk] Assembling an AWS CloudFormation authoring tool chain (DOP313-R; DOP313-R1; DOP313-R2)

Speaker 1: Nathan McCourtney – Sr System Development Engineer, Amazon Web Services
Speaker 2: Dan Blanco – Developer Advocate, Amazon Web Services

In this session, we provide a prescriptive tool chain and methodology to improve your coding productivity as you create and maintain AWS CloudFormation stacks. We cover authoring recommendations from editors and plugins, to setting up a deployment pipeline for your AWS CloudFormation code.

[Chalk Talk] Build using JavaScript with AWS Amplify, AWS Lambda, and AWS Fargate (DOP315-R; DOP315-R1; DOP315-R2)

Speaker 1: Trivikram Kamat – Software Development Engineer, Amazon Web Services
Speaker 2: Vinod Dinakaran – Software Development Manager, Amazon Web Services

Learn how to build applications with AWS Amplify on the front end and AWS Fargate and AWS Lambda on the backend, and protocols (like HTTP/2), using the JavaScript SDKs in the browser and node. Leverage the AWS SDK for JavaScript’s modular NPM packages in resource-constrained environments, and benefit from the built-in async features to run your node and mobile applications, and SPAs, at scale.

[Chalk Talk] Scaling CI/CD adoption using AWS CodePipeline and AWS CloudFormation (DOP318-R; DOP318-R1; DOP318-R2)

Speaker 1: Andrew Baird – Principal Solutions Architect, Amazon Web Services
Speaker 2: Neal Gamradt – Applications Architect, WarnerMedia

Enabling CI/CD across your organization through repeatable patterns and infrastructure-as-code templates can unlock development speed while encouraging best practices. The SEAD Architecture team at WarnerMedia helps encourage CI/CD adoption across their company. They do so by creating and maintaining easily extensible infrastructure-as-code patterns for creating new services and deploying to them automatically using CI/CD. In this session, learn about the patterns they have created and the lessons they have learned.

re:Invent TIP #6: There are lots of extra activities at re:Invent. Expect your evenings to fill up onsite! Check out the peculiar programs including, board games, bingo, arts & crafts or ‘80s sing-alongs…