Tag Archives: risk assessment

New SEC Rules around Cybersecurity Incident Disclosures

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2023/08/new-sec-rules-around-cybersecurity-incident-disclosures.html

The US Securities and Exchange Commission adopted final rules around the disclosure of cybersecurity incidents. There are two basic rules:

  1. Public companies must “disclose any cybersecurity incident they determine to be material” within four days, with potential delays if there is a national security risk.
  2. Public companies must “describe their processes, if any, for assessing, identifying, and managing material risks from cybersecurity threats” in their annual filings.

The rules go into effect this December.

In an email newsletter, Melissa Hathaway wrote:

Now that the rule is final, companies have approximately six months to one year to document and operationalize the policies and procedures for the identification and management of cybersecurity (information security/privacy) risks. Continuous assessment of the risk reduction activities should be elevated within an enterprise risk management framework and process. Good governance mechanisms delineate the accountability and responsibility for ensuring successful execution, while actionable, repeatable, meaningful, and time-dependent metrics or key performance indicators (KPI) should be used to reinforce realistic objectives and timelines. Management should assess the competency of the personnel responsible for implementing these policies and be ready to identify these people (by name) in their annual filing.

News article.

On the Catastrophic Risk of AI

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2023/06/on-the-catastrophic-risk-of-ai.html

Earlier this week, I signed on to a short group statement, coordinated by the Center for AI Safety:

Mitigating the risk of extinction from AI should be a global priority alongside other societal-scale risks such as pandemics and nuclear war.

The press coverage has been extensive, and surprising to me. The New York Times headline is “A.I. Poses ‘Risk of Extinction,’ Industry Leaders Warn.” BBC: “Artificial intelligence could lead to extinction, experts warn.” Other headlines are similar.

I actually don’t think that AI poses a risk to human extinction. I think it poses a similar risk to pandemics and nuclear war—which is to say, a risk worth taking seriously, but not something to panic over. Which is what I thought the statement said.

In my talk at the RSA Conference last month, I talked about the power level of our species becoming too great for our systems of governance. Talking about those systems, I said:

Now, add into this mix the risks that arise from new and dangerous technologies such as the internet or AI or synthetic biology. Or molecular nanotechnology, or nuclear weapons. Here, misaligned incentives and hacking can have catastrophic consequences for society.

That was what I was thinking about when I agreed to sign on to the statement: “Pandemics, nuclear weapons, AI—yeah, I would put those three in the same bucket. Surely we can spend the same effort on AI risk as we do on future pandemics. That’s a really low bar.” Clearly I should have focused on the word “extinction,” and not the relative comparisons.

Seth Lazar, Jeremy Howard, and Arvind Narayanan wrote:

We think that, in fact, most signatories to the statement believe that runaway AI is a way off yet, and that it will take a significant scientific advance to get there­—ne that we cannot anticipate, even if we are confident that it will someday occur. If this is so, then at least two things follow.

I agree with that, and with their follow up:

First, we should give more weight to serious risks from AI that are more urgent. Even if existing AI systems and their plausible extensions won’t wipe us out, they are already causing much more concentrated harm, they are sure to exacerbate inequality and, in the hands of power-hungry governments and unscrupulous corporations, will undermine individual and collective freedom.

This is what I wrote in Click Here to Kill Everybody (2018):

I am less worried about AI; I regard fear of AI more as a mirror of our own society than as a harbinger of the future. AI and intelligent robotics are the culmination of several precursor technologies, like machine learning algorithms, automation, and autonomy. The security risks from those precursor technologies are already with us, and they’re increasing as the technologies become more powerful and more prevalent. So, while I am worried about intelligent and even driverless cars, most of the risks arealready prevalent in Internet-connected drivered cars. And while I am worried about robot soldiers, most of the risks are already prevalent in autonomous weapons systems.

Also, as roboticist Rodney Brooks pointed out, “Long before we see such machines arising there will be the somewhat less intelligent and belligerent machines. Before that there will be the really grumpy machines. Before that the quite annoying machines. And before them the arrogant unpleasant machines.” I think we’ll see any new security risks coming long before they get here.

I do think we should worry about catastrophic AI and robotics risk. It’s the fact that they affect the world in a direct, physical manner—and that they’re vulnerable to class breaks.

(Other things to read: David Chapman is good on scary AI. And Kieran Healy is good on the statement.)

Okay, enough. I should also learn not to sign on to group statements.

Presidential Cybersecurity and Pelotons

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2021/02/presidential-cybersecurity-and-pelotons.html

President Biden wants his Peloton in the White House. For those who have missed the hype, it’s an Internet-connected stationary bicycle. It has a screen, a camera, and a microphone. You can take live classes online, work out with your friends, or join the exercise social network. And all of that is a security risk, especially if you are the president of the United States.

Any computer brings with it the risk of hacking. This is true of our computers and phones, and it’s also true about all of the Internet-of-Things devices that are increasingly part of our lives. These large and small appliances, cars, medical devices, toys and — yes — exercise machines are all computers at their core, and they’re all just as vulnerable. Presidents face special risks when it comes to the IoT, but Biden has the NSA to help him handle them.

Not everyone is so lucky, and the rest of us need something more structural.

US presidents have long tussled with their security advisers over tech. The NSA often customizes devices, but that means eliminating features. In 2010, President Barack Obama complained that his presidential BlackBerry device was “no fun” because only ten people were allowed to contact him on it. In 2013, security prevented him from getting an iPhone. When he finally got an upgrade to his BlackBerry in 2016, he complained that his new “secure” phone couldn’t take pictures, send texts, or play music. His “hardened” iPad to read daily intelligence briefings was presumably similarly handicapped. We don’t know what the NSA did to these devices, but they certainly modified the software and physically removed the cameras and microphones — and possibly the wireless Internet connection.

President Donald Trump resisted efforts to secure his phones. We don’t know the details, only that they were regularly replaced, with the government effectively treating them as burner phones.

The risks are serious. We know that the Russians and the Chinese were eavesdropping on Trump’s phones. Hackers can remotely turn on microphones and cameras, listening in on conversations. They can grab copies of any documents on the device. They can also use those devices to further infiltrate government networks, maybe even jumping onto classified networks that the devices connect to. If the devices have physical capabilities, those can be hacked as well. In 2007, the wireless features of Vice President Richard B. Cheney’s pacemaker were disabled out of fears that it could be hacked to assassinate him. In 1999, the NSA banned Furbies from its offices, mistakenly believing that they could listen and learn.

Physically removing features and components works, but the results are increasingly unacceptable. The NSA could take Biden’s Peloton and rip out the camera, microphone, and Internet connection, and that would make it secure — but then it would just be a normal (albeit expensive) stationary bike. Maybe Biden wouldn’t accept that, and he’d demand that the NSA do even more work to customize and secure the Peloton part of the bicycle. Maybe Biden’s security agents could isolate his Peloton in a specially shielded room where it couldn’t infect other computers, and warn him not to discuss national security in its presence.

This might work, but it certainly doesn’t scale. As president, Biden can direct substantial resources to solving his cybersecurity problems. The real issue is what everyone else should do. The president of the United States is a singular espionage target, but so are members of his staff and other administration officials.

Members of Congress are targets, as are governors and mayors, police officers and judges, CEOs and directors of human rights organizations, nuclear power plant operators, and election officials. All of these people have smartphones, tablets, and laptops. Many have Internet-connected cars and appliances, vacuums, bikes, and doorbells. Every one of those devices is a potential security risk, and all of those people are potential national security targets. But none of those people will get their Internet-connected devices customized by the NSA.

That is the real cybersecurity issue. Internet connectivity brings with it features we like. In our cars, it means real-time navigation, entertainment options, automatic diagnostics, and more. In a Peloton, it means everything that makes it more than a stationary bike. In a pacemaker, it means continuous monitoring by your doctor — and possibly your life saved as a result. In an iPhone or iPad, it means…well, everything. We can search for older, non-networked versions of some of these devices, or the NSA can disable connectivity for the privileged few of us. But the result is the same: in Obama’s words, “no fun.”

And unconnected options are increasingly hard to find. In 2016, I tried to find a new car that didn’t come with Internet connectivity, but I had to give up: there were no options to omit that in the class of car I wanted. Similarly, it’s getting harder to find major appliances without a wireless connection. As the price of connectivity continues to drop, more and more things will only be available Internet-enabled.

Internet security is national security — not because the president is personally vulnerable but because we are all part of a single network. Depending on who we are and what we do, we will make different trade-offs between security and fun. But we all deserve better options.

Regulations that force manufacturers to provide better security for all of us are the only way to do that. We need minimum security standards for computers of all kinds. We need transparency laws that give all of us, from the president on down, sufficient information to make our own security trade-offs. And we need liability laws that hold companies liable when they misrepresent the security of their products and services.

I’m not worried about Biden. He and his staff will figure out how to balance his exercise needs with the national security needs of the country. Sometimes the solutions are weirdly customized, such as the anti-eavesdropping tent that Obama used while traveling. I am much more worried about the political activists, journalists, human rights workers, and oppressed minorities around the world who don’t have the money or expertise to secure their technology, or the information that would give them the ability to make informed decisions on which technologies to choose.

This essay previously appeared in the Washington Post.

The Legal Risks of Security Research

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2020/10/the-legal-risks-of-security-research.html

Sunoo Park and Kendra Albert have published “A Researcher’s Guide to Some Legal Risks of Security Research.”

From a summary:

Such risk extends beyond anti-hacking laws, implicating copyright law and anti-circumvention provisions (DMCA §1201), electronic privacy law (ECPA), and cryptography export controls, as well as broader legal areas such as contract and trade secret law.

Our Guide gives the most comprehensive presentation to date of this landscape of legal risks, with an eye to both legal and technical nuance. Aimed at researchers, the public, and technology lawyers alike, its aims both to provide pragmatic guidance to those navigating today’s uncertain legal landscape, and to provoke public debate towards future reform.

Comprehensive, and well worth reading.

Here’s a Twitter thread by Kendra.

On Risk-Based Authentication

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2020/10/on-risk-based-authentication.html

Interesting usability study: “More Than Just Good Passwords? A Study on Usability and Security Perceptions of Risk-based Authentication“:

Abstract: Risk-based Authentication (RBA) is an adaptive security measure to strengthen password-based authentication. RBA monitors additional features during login, and when observed feature values differ significantly from previously seen ones, users have to provide additional authentication factors such as a verification code. RBA has the potential to offer more usable authentication, but the usability and the security perceptions of RBA are not studied well.

We present the results of a between-group lab study (n=65) to evaluate usability and security perceptions of two RBA variants, one 2FA variant, and password-only authentication. Our study shows with significant results that RBA is considered to be more usable than the studied 2FA variants, while it is perceived as more secure than password-only authentication in general and comparably se-cure to 2FA in a variety of application types. We also observed RBA usability problems and provide recommendations for mitigation.Our contribution provides a first deeper understanding of the users’perception of RBA and helps to improve RBA implementations for a broader user acceptance.

Paper’s website. I’ve blogged about risk-based authentication before.

Negotiating with Ransomware Gangs

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2020/09/negotiating-with-ransomware-gangs.html

Really interesting conversation with someone who negotiates with ransomware gangs:

For now, it seems that paying ransomware, while obviously risky and empowering/encouraging ransomware attackers, can perhaps be comported so as not to break any laws (like anti-terrorist laws, FCPA, conspiracy and others) ­ and even if payment is arguably unlawful, seems unlikely to be prosecuted. Thus, the decision whether to pay or ignore a ransomware demand, seems less of a legal, and more of a practical, determination ­ almost like a cost-benefit analysis.

The arguments for rendering a ransomware payment include:

  • Payment is the least costly option;
  • Payment is in the best interest of stakeholders (e.g. a hospital patient in desperate need of an immediate operation whose records are locked up);
  • Payment can avoid being fined for losing important data;
  • Payment means not losing highly confidential information; and
  • Payment may mean not going public with the data breach.

The arguments against rendering a ransomware payment include:

  • Payment does not guarantee that the right encryption keys with the proper decryption algorithms will be provided;
  • Payment further funds additional criminal pursuits of the attacker, enabling a cycle of ransomware crime;
  • Payment can do damage to a corporate brand;
  • Payment may not stop the ransomware attacker from returning;
  • If victims stopped making ransomware payments, the ransomware revenue stream would stop and ransomware attackers would have to move on to perpetrating another scheme; and
  • Using Bitcoin to pay a ransomware attacker can put organizations at risk. Most victims must buy Bitcoin on entirely unregulated and free-wheeling exchanges that can also be hacked, leaving buyers’ bank account information stored on these exchanges vulnerable.

When confronted with a ransomware attack, the options all seem bleak. Pay the hackers ­ and the victim may not only prompt future attacks, but there is also no guarantee that the hackers will restore a victim’s dataset. Ignore the hackers ­ and the victim may incur significant financial damage or even find themselves out of business. The only guarantees during a ransomware attack are the fear, uncertainty and dread inevitably experienced by the victim.