Trying to connect an old, dial-up–compatible computer to modern-day broadband internet can be a chore. The new tutorial by Doge Microsystems walks you through the process of using a Raspberry Pi to bridge the gap.
I was bored so I wanted to see if I could get free dial up internet so I found that NetZero still has free service so I put in the number and heard the glorious sound of the Dial-up. Remind me of years gone. Unfortunately I was not able to make a connection.
Dial-up internet
Ah, there really is nothing quite like it: listen to the sweet sound of dial-up internet in the video above and reminisce about the days of yore that you spent waiting for your computer to connect and trying to convince other members of your household to not use the landline for a few hours.
But older computers have fallen behind these times of ever faster broadband and ever more powerful processors, and getting your beloved vintage computer online isn’t as easy as it once was.
For one thing, does anyone even have a landline anymore?
Enter Doge Microsystems, who save the day with their Linux-based dial-up server, the perfect tool for connecting computers of yesteryear to today’s broadband using a Raspberry Pi.
Disclaimer: I’m going to pre-empt a specific topic of conversation in the comment section by declaring that, no, I don’t like the words ‘vintage’, ‘retro’, and yesteryear’ any more than you do. But we all need to accept that the times, they are a-changing, OK? We’re all in this together. Let’s continue.
Building a Raspberry Pi dial-in server
For the build, you’ll need a hardware modem — any model should work, as long as it presents as a serial device to the operating system. You’ll also need a Linux device such as a Raspberry Pi, a client device with a modem, and ‘some form of telephony connection to link the two modems’, described by Doge Microsystems as one of the following:
We need a way to connect our ISP modem to clients. There are many ways to approach this:
Use the actual PSTN (i.e. real phone lines)
Use a PBX to provide local connectivity
Build your own circuity (not covered here, as it would require extra configuration)
Build a fake PSTN using VoIP ATAs and a software PBX
I’ve gone with the fourth option. Here’s the breakdown:
Asterisk — a VoIP PBX — is configured on the dial-in server to accept connections from two SIP client accounts and route calls between them
A Linksys PAP2T ATA — which supports two phone lines — is set up as both of those SIP clients connected to the PBX
The ISP-side modem is connected to the first line, and the client device to the second line
Doge Microsystems explains how to set up everything, including the Linux device, on the wiki for the project. Have a look for yourself if you want to try out the dial-up server first-hand.
The sound of dial-up
For funsies, I asked our Twitter followers how they would write down the sound of a dial-up internet connection. Check them out.
Earlier this month we launched the C5 Instances with Local NVMe Storage and I told you that we would be doing the same for additional instance types in the near future!
Today we are introducing M5 instances equipped with local NVMe storage. Available for immediate use in 5 regions, these instances are a great fit for workloads that require a balance of compute and memory resources. Here are the specs:
Instance Name
vCPUs
RAM
Local Storage
EBS-Optimized Bandwidth
Network Bandwidth
m5d.large
2
8 GiB
1 x 75 GB NVMe SSD
Up to 2.120 Gbps
Up to 10 Gbps
m5d.xlarge
4
16 GiB
1 x 150 GB NVMe SSD
Up to 2.120 Gbps
Up to 10 Gbps
m5d.2xlarge
8
32 GiB
1 x 300 GB NVMe SSD
Up to 2.120 Gbps
Up to 10 Gbps
m5d.4xlarge
16
64 GiB
1 x 600 GB NVMe SSD
2.210 Gbps
Up to 10 Gbps
m5d.12xlarge
48
192 GiB
2 x 900 GB NVMe SSD
5.0 Gbps
10 Gbps
m5d.24xlarge
96
384 GiB
4 x 900 GB NVMe SSD
10.0 Gbps
25 Gbps
The M5d instances are powered by Custom Intel® Xeon® Platinum 8175M series processors running at 2.5 GHz, including support for AVX-512.
You can use any AMI that includes drivers for the Elastic Network Adapter (ENA) and NVMe; this includes the latest Amazon Linux, Microsoft Windows (Server 2008 R2, Server 2012, Server 2012 R2 and Server 2016), Ubuntu, RHEL, SUSE, and CentOS AMIs.
Here are a couple of things to keep in mind about the local NVMe storage on the M5d instances:
Naming – You don’t have to specify a block device mapping in your AMI or during the instance launch; the local storage will show up as one or more devices (/dev/nvme*1 on Linux) after the guest operating system has booted.
Encryption – Each local NVMe device is hardware encrypted using the XTS-AES-256 block cipher and a unique key. Each key is destroyed when the instance is stopped or terminated.
Lifetime – Local NVMe devices have the same lifetime as the instance they are attached to, and do not stick around after the instance has been stopped or terminated.
Available Now M5d instances are available in On-Demand, Reserved Instance, and Spot form in the US East (N. Virginia), US West (Oregon), EU (Ireland), US East (Ohio), and Canada (Central) Regions. Prices vary by Region, and are just a bit higher than for the equivalent M5 instances.
Join us this month to learn about AWS services and solutions. New this month, we have a fireside chat with the GM of Amazon WorkSpaces and our 2nd episode of the “How to re:Invent” series. We’ll also cover best practices, deep dives, use cases and more! Join us and register today!
AWS re:Invent June 13, 2018 | 05:00 PM – 05:30 PM PT – Episode 2: AWS re:Invent Breakout Content Secret Sauce – Hear from one of our own AWS content experts as we dive deep into the re:Invent content strategy and how we maintain a high bar. Compute
Containers June 25, 2018 | 09:00 AM – 09:45 AM PT – Running Kubernetes on AWS – Learn about the basics of running Kubernetes on AWS including how setup masters, networking, security, and add auto-scaling to your cluster.
June 19, 2018 | 11:00 AM – 11:45 AM PT – Launch AWS Faster using Automated Landing Zones – Learn how the AWS Landing Zone can automate the set up of best practice baselines when setting up new
June 21, 2018 | 01:00 PM – 01:45 PM PT – Enabling New Retail Customer Experiences with Big Data – Learn how AWS can help retailers realize actual value from their big data and deliver on differentiated retail customer experiences.
June 28, 2018 | 01:00 PM – 01:45 PM PT – Fireside Chat: End User Collaboration on AWS – Learn how End User Compute services can help you deliver access to desktops and applications anywhere, anytime, using any device. IoT
June 27, 2018 | 11:00 AM – 11:45 AM PT – AWS IoT in the Connected Home – Learn how to use AWS IoT to build innovative Connected Home products.
Mobile June 25, 2018 | 11:00 AM – 11:45 AM PT – Drive User Engagement with Amazon Pinpoint – Learn how Amazon Pinpoint simplifies and streamlines effective user engagement.
June 26, 2018 | 11:00 AM – 11:45 AM PT – Deep Dive: Hybrid Cloud Storage with AWS Storage Gateway – Learn how you can reduce your on-premises infrastructure by using the AWS Storage Gateway to connecting your applications to the scalable and reliable AWS storage services. June 27, 2018 | 01:00 PM – 01:45 PM PT – Changing the Game: Extending Compute Capabilities to the Edge – Discover how to change the game for IIoT and edge analytics applications with AWS Snowball Edge plus enhanced Compute instances. June 28, 2018 | 11:00 AM – 11:45 AM PT – Big Data and Analytics Workloads on Amazon EFS – Get best practices and deployment advice for running big data and analytics workloads on Amazon EFS.
Strasbourg Observers традиционно обявяват най-добро и най-лошо решение на ЕСПЧ всяка година. За най-лошо решение от 2017 г. е обявено особеното мнение по делото Bayev v. Russiaотносно закона за анти-гей-пропагандата в Русия: “Хомофобският характер на несъгласието на съдията от Русия относно така наречения гей пропаганден закон беше толкова шокиращ за нашите читатели, че спечели наградата за най-лошото решение, въпреки че технически не е самостоятелно решение, а само особено мнение”.
Делото се отнася до молбите на руски активисти за правата на хомосексуалните, всеки от които е признат за виновен за административното нарушение на “обществени дейности, насочени към насърчаване на хомосексуалността сред малолетните и непълнолетните”. Първият жалбоподател е провел демонстрация пред средно училище с две знамена, на които пише “Хомосексуализмът е нормален” и “Гордея се с моята хомосексуалност”. Вторият и третият кандидат демонстрират пред детска библиотека с банери, на които е написано, че “Русия има най-високата степен на тийнейджърско самоубийство в света, вкл. хомосексуалисти предприемат тази стъпка поради липсата на информация. Депутатите са убийци на деца. Хомосексуализмът е добър! ” и “Децата имат право да знаят. Големите хора също са понякога хомосексуални. Хомосексуалните също стават страхотни. Хомосексуалността е естествена и нормална “.
Жалбоподателите твърдят пред ЕСПЧ, че руското законодателство нарушава член 10 от ЕКПЧ и е дискриминационно, тъй като не се прилагат подобни ограничения по отношение на хетеросексуалното мнозинство.
Решението
Намеса в свободата на изразяване съществува, чл.10.2 ЕКПЧ предвижда възможност за намеса поради причини, свързани с морала и здравето, ЕСПЧ прави оценка дали в случая намесата има легитимна цел.
ЕСПЧ не вижда причина социалното приемане на хомосексуалността да е несъвместимо с поддържането на семейни ценности. Както е посочено в решението по делото Kozak v Полша, няма приет правилен начин за лицата да водят личния си семеен или личен живот.
Неприемливи са опитите да се правят паралели между хомосексуалността и педофилията. Дори мнозинството от руснаците да имат отрицателно мнение за хомосексуалността, би било несъвместимо с основните ценности на Конвенцията, ако упражняването на права от малцинствена група е обусловено от приемането й от мнозинството.
Правителството твърди, че насърчаването на взаимоотношения между лица от един и същ пол трябва да бъде забранено, тъй като отношенията между тях са риск за общественото здраве и демографското развитие. ЕСПЧ не вижда как подобен закон би могъл да помогне за постигането на желаните демографски цели или как липсата на такъв закон би ги засегнала неблагоприятно.
Правителството не е доказало и как педофилията и порнографията сред малолетните и непълнолетните (независимо от сексуалната ориентация на засегнатите лица) са свързани с хомосексуалността и с този закон.
Въпросните правни разпоредби не служат за постигане на легитимната цел на защитата на морала, защита на здравето и защита на правата на другите. Чрез приемането на такива закони властите засилват стигмата и предразсъдъците и насърчават хомофобията, която е несъвместима с понятията за равенство, плурализъм и толерантност, присъщи на едно демократично общество. Нарушение на член 10 от ЕКПЧ.
Особеното мнение може да се прочете на сайта на ЕСПЧ. Според него децата трябва да се консултират предимно с родителите си или близки членове на семейството, вместо да получават информация за секса от плакати на улицата, а също се твърди, че ЕСПЧ не е взел сериозно предвид факта, че личният живот на децата е по-важен от свободата на изразяване на хомосексуалистите.
Last year, we released Amazon Connect, a cloud-based contact center service that enables any business to deliver better customer service at low cost. This service is built based on the same technology that empowers Amazon customer service associates. Using this system, associates have millions of conversations with customers when they inquire about their shipping or order information. Because we made it available as an AWS service, you can now enable your contact center agents to make or receive calls in a matter of minutes. You can do this without having to provision any kind of hardware. 2
There are several advantages of building your contact center in the AWS Cloud, as described in our documentation. In addition, customers can extend Amazon Connect capabilities by using AWS products and the breadth of AWS services. In this blog post, we focus on how to get analytics out of the rich set of data published by Amazon Connect. We make use of an Amazon Connect data stream and create an end-to-end workflow to offer an analytical solution that can be customized based on need.
Solution overview
The following diagram illustrates the solution.
In this solution, Amazon Connect exports its contact trace records (CTRs) using Amazon Kinesis. CTRs are data streams in JSON format, and each has information about individual contacts. For example, this information might include the start and end time of a call, which agent handled the call, which queue the user chose, queue wait times, number of holds, and so on. You can enable this feature by reviewing our documentation.
In this architecture, we use Kinesis Firehose to capture Amazon Connect CTRs as raw data in an Amazon S3 bucket. We don’t use the recent feature added by Kinesis Firehose to save the data in S3 as Apache Parquet format. We use AWS Glue functionality to automatically detect the schema on the fly from an Amazon Connect data stream.
The primary reason for this approach is that it allows us to use attributes and enables an Amazon Connect administrator to dynamically add more fields as needed. Also by converting data to parquet in batch (every couple of hours) compression can be higher. However, if your requirement is to ingest the data in Parquet format on realtime, we recoment using Kinesis Firehose recently launched feature. You can review this blog post for further information.
By default, Firehose puts these records in time-series format. To make it easy for AWS Glue crawlers to capture information from new records, we use AWS Lambda to move all new records to a single S3 prefix called flatfiles. Our Lambda function is configured using S3 event notification. To comply with AWS Glue and Athena best practices, the Lambda function also converts all column names to lowercase. Finally, we also use the Lambda function to start AWS Glue crawlers. AWS Glue crawlers identify the data schema and update the AWS Glue Data Catalog, which is used by extract, transform, load (ETL) jobs in AWS Glue in the latter half of the workflow.
You can see our approach in the Lambda code following.
from __future__ import print_function
import json
import urllib
import boto3
import os
import re
s3 = boto3.resource('s3')
client = boto3.client('s3')
def convertColumntoLowwerCaps(obj):
for key in obj.keys():
new_key = re.sub(r'[\W]+', '', key.lower())
v = obj[key]
if isinstance(v, dict):
if len(v) > 0:
convertColumntoLowwerCaps(v)
if new_key != key:
obj[new_key] = obj[key]
del obj[key]
return obj
def lambda_handler(event, context):
bucket = event['Records'][0]['s3']['bucket']['name']
key = urllib.unquote_plus(event['Records'][0]['s3']['object']['key'].encode('utf8'))
try:
client.download_file(bucket, key, '/tmp/file.json')
with open('/tmp/out.json', 'w') as output, open('/tmp/file.json', 'rb') as file:
i = 0
for line in file:
for object in line.replace("}{","}\n{").split("\n"):
record = json.loads(object,object_hook=convertColumntoLowwerCaps)
if i != 0:
output.write("\n")
output.write(json.dumps(record))
i += 1
newkey = 'flatfiles/' + key.replace("/", "")
client.upload_file('/tmp/out.json', bucket,newkey)
s3.Object(bucket,key).delete()
return "success"
except Exception as e:
print(e)
print('Error coping object {} from bucket {}'.format(key, bucket))
raise e
We trigger AWS Glue crawlers based on events because this approach lets us capture any new data frame that we want to be dynamic in nature. CTR attributes are designed to offer multiple custom options based on a particular call flow. Attributes are essentially key-value pairs in nested JSON format. With the help of event-based AWS Glue crawlers, you can easily identify newer attributes automatically.
We recommend setting up an S3 lifecycle policy on the flatfiles folder that keeps records only for 24 hours. Doing this optimizes AWS Glue ETL jobs to process a subset of files rather than the entire set of records.
After we have data in the flatfiles folder, we use AWS Glue to catalog the data and transform it into Parquet format inside a folder called parquet/ctr/. The AWS Glue job performs the ETL that transforms the data from JSON to Parquet format. We use AWS Glue crawlers to capture any new data frame inside the JSON code that we want to be dynamic in nature. What this means is that when you add new attributes to an Amazon Connect instance, the solution automatically recognizes them and incorporates them in the schema of the results.
After AWS Glue stores the results in Parquet format, you can perform analytics using Amazon Redshift Spectrum, Amazon Athena, or any third-party data warehouse platform. To keep this solution simple, we have used Amazon Athena for analytics. Amazon Athena allows us to query data without having to set up and manage any servers or data warehouse platforms. Additionally, we only pay for the queries that are executed.
Try it out!
You can get started with our sample AWS CloudFormation template. This template creates the components starting from the Kinesis stream and finishes up with S3 buckets, the AWS Glue job, and crawlers. To deploy the template, open the AWS Management Console by clicking the following link.
In the console, specify the following parameters:
BucketName: The name for the bucket to store all the solution files. This name must be unique; if it’s not, template creation fails.
etlJobSchedule: The schedule in cron format indicating how often the AWS Glue job runs. The default value is every hour.
KinesisStreamName: The name of the Kinesis stream to receive data from Amazon Connect. This name must be different from any other Kinesis stream created in your AWS account.
s3interval: The interval in seconds for Kinesis Firehose to save data inside the flatfiles folder on S3. The value must between 60 and 900 seconds.
sampledata: When this parameter is set to true, sample CTR records are used. Doing this lets you try this solution without setting up an Amazon Connect instance. All examples in this walkthrough use this sample data.
Select the “I acknowledge that AWS CloudFormation might create IAM resources.” check box, and then choose Create. After the template finishes creating resources, you can see the stream name on the stack Outputs tab.
If you haven’t created your Amazon Connect instance, you can do so by following the Getting Started Guide. When you are done creating, choose your Amazon Connect instance in the console, which takes you to instance settings. Choose Data streaming to enable streaming for CTR records. Here, you can choose the Kinesis stream (defined in the KinesisStreamName parameter) that was created by the CloudFormation template.
Now it’s time to generate the data by making or receiving calls by using Amazon Connect. You can go to Amazon Connect Cloud Control Panel (CCP) to make or receive calls using a software phone or desktop phone. After a few minutes, we should see data inside the flatfiles folder. To make it easier to try this solution, we provide sample data that you can enable by setting the sampledata parameter to true in your CloudFormation template.
You can navigate to the AWS Glue console by choosing Jobs on the left navigation pane of the console. We can select our job here. In my case, the job created by CloudFormation is called glueJob-i3TULzVtP1W0; yours should be similar. You run the job by choosing Run job for Action.
After that, we wait for the AWS Glue job to run and to finish successfully. We can track the status of the job by checking the History tab.
When the job finishes running, we can check the Database section. There should be a new table created called ctr in Parquet format.
To query the data with Athena, we can select the ctr table, and for Action choose View data.
Doing this takes us to the Athena console. If you run a query, Athena shows a preview of the data.
When we can query the data using Athena, we can visualize it using Amazon QuickSight. Before connecting Amazon QuickSight to Athena, we must make sure to grant Amazon QuickSight access to Athena and the associated S3 buckets in the account. For more information on doing this, see Managing Amazon QuickSight Permissions to AWS Resources in the Amazon QuickSight User Guide. We can then create a new data set in Amazon QuickSight based on the Athena table that was created.
After setting up permissions, we can create a new analysis in Amazon QuickSight by choosing New analysis.
Then we add a new data set.
We choose Athena as the source and give the data source a name (in this case, I named it connectctr).
Choose the name of the database and the table referencing the Parquet results.
Then choose Visualize.
After that, we should see the following screen.
Now we can create some visualizations. First, search for the agent.username column, and drag it to the AutoGraph section.
We can see the agents and the number of calls for each, so we can easily see which agents have taken the largest amount of calls. If we want to see from what queues the calls came for each agent, we can add the queue.arn column to the visual.
After following all these steps, you can use Amazon QuickSight to add different columns from the call records and perform different types of visualizations. You can build dashboards that continuously monitor your connect instance. You can share those dashboards with others in your organization who might need to see this data.
Conclusion
In this post, you see how you can use services like AWS Lambda, AWS Glue, and Amazon Athena to process Amazon Connect call records. The post also demonstrates how to use AWS Lambda to preprocess files in Amazon S3 and transform them into a format that recognized by AWS Glue crawlers. Finally, the post shows how to used Amazon QuickSight to perform visualizations.
You can use the provided template to analyze your own contact center instance. Or you can take the CloudFormation template and modify it to process other data streams that can be ingested using Amazon Kinesis or stored on Amazon S3.
Luis Caro is a Big Data Consultant for AWS Professional Services. He works with our customers to provide guidance and technical assistance on big data projects, helping them improving the value of their solutions when using AWS.
Peter Dalbhanjan is a Solutions Architect for AWS based in Herndon, VA. Peter has a keen interest in evangelizing AWS solutions and has written multiple blog posts that focus on simplifying complex use cases. At AWS, Peter helps with designing and architecting variety of customer workloads.
The Mozilla blog has an article describing the addition of DNS over HTTPS (DoH) as an optional feature in the Firefox browser. “DoH support has been added to Firefox 62 to improve the way Firefox interacts with DNS. DoH uses encrypted networking to obtain DNS information from a server that is configured within Firefox. This means that DNS requests sent to the DoH cloud server are encrypted while old style DNS requests are not protected.” The configured server is hosted by Cloudflare, which has posted this privacy agreement about the service.
The German charity Save Nemo works to protect coral reefs, and they are developing Nemo-Pi, an underwater “weather station” that monitors ocean conditions. Right now, you can vote for Save Nemo in the Google.org Impact Challenge.
Save Nemo
The organisation says there are two major threats to coral reefs: divers, and climate change. To make diving saver for reefs, Save Nemo installs buoy anchor points where diving tour boats can anchor without damaging corals in the process.
In addition, they provide dos and don’ts for how to behave on a reef dive.
The Nemo-Pi
To monitor the effects of climate change, and to help divers decide whether conditions are right at a reef while they’re still on shore, Save Nemo is also in the process of perfecting Nemo-Pi.
This Raspberry Pi-powered device is made up of a buoy, a solar panel, a GPS device, a Pi, and an array of sensors. Nemo-Pi measures water conditions such as current, visibility, temperature, carbon dioxide and nitrogen oxide concentrations, and pH. It also uploads its readings live to a public webserver.
The Save Nemo team is currently doing long-term tests of Nemo-Pi off the coast of Thailand and Indonesia. They are also working on improving the device’s power consumption and durability, and testing prototypes with the Raspberry Pi Zero W.
The web dashboard showing live Nemo-Pi data
Long-term goals
Save Nemo aims to install a network of Nemo-Pis at shallow reefs (up to 60 metres deep) in South East Asia. Then diving tour companies can check the live data online and decide day-to-day whether tours are feasible. This will lower the impact of humans on reefs and help the local flora and fauna survive.
A healthy coral reef
Nemo-Pi data may also be useful for groups lobbying for reef conservation, and for scientists and activists who want to shine a spotlight on the awful effects of climate change on sea life, such as coral bleaching caused by rising water temperatures.
A bleached coral reef
Vote now for Save Nemo
If you want to help Save Nemo in their mission today, vote for them to win the Google.org Impact Challenge:
Click “Abstimmen” in the footer of the page to vote
Click “JA” in the footer to confirm
Voting is open until 6 June. You can also follow Save Nemo on Facebook or Twitter. We think this organisation is doing valuable work, and that their projects could be expanded to reefs across the globe. It’s fantastic to see the Raspberry Pi being used to help protect ocean life.
Amazon QuickSight is a fully managed cloud business intelligence system that gives you Fast & Easy to Use Business Analytics for Big Data. QuickSight makes business analytics available to organizations of all shapes and sizes, with the ability to access data that is stored in your Amazon Redshift data warehouse, your Amazon Relational Database Service (RDS) relational databases, flat files in S3, and (via connectors) data stored in on-premises MySQL, PostgreSQL, and SQL Server databases. QuickSight scales to accommodate tens, hundreds, or thousands of users per organization.
Today we are launching a new, session-based pricing option for QuickSight, along with additional region support and other important new features. Let’s take a look at each one:
Pay-per-Session Pricing Our customers are making great use of QuickSight and take full advantage of the power it gives them to connect to data sources, create reports, and and explore visualizations.
However, not everyone in an organization needs or wants such powerful authoring capabilities. Having access to curated data in dashboards and being able to interact with the data by drilling down, filtering, or slicing-and-dicing is more than adequate for their needs. Subscribing them to a monthly or annual plan can be seen as an unwarranted expense, so a lot of such casual users end up not having access to interactive data or BI.
In order to allow customers to provide all of their users with interactive dashboards and reports, the Enterprise Edition of Amazon QuickSight now allows Reader access to dashboards on a Pay-per-Session basis. QuickSight users are now classified as Admins, Authors, or Readers, with distinct capabilities and prices:
Authors have access to the full power of QuickSight; they can establish database connections, upload new data, create ad hoc visualizations, and publish dashboards, all for $9 per month (Standard Edition) or $18 per month (Enterprise Edition).
Readers can view dashboards, slice and dice data using drill downs, filters and on-screen controls, and download data in CSV format, all within the secure QuickSight environment. Readers pay $0.30 for 30 minutes of access, with a monthly maximum of $5 per reader.
Admins have all authoring capabilities, and can manage users and purchase SPICE capacity in the account. The QuickSight admin now has the ability to set the desired option (Author or Reader) when they invite members of their organization to use QuickSight. They can extend Reader invites to their entire user base without incurring any up-front or monthly costs, paying only for the actual usage.
A New Region QuickSight is now available in the Asia Pacific (Tokyo) Region:
The UI is in English, with a localized version in the works.
Hourly Data Refresh Enterprise Edition SPICE data sets can now be set to refresh as frequently as every hour. In the past, each data set could be refreshed up to 5 times a day. To learn more, read Refreshing Imported Data.
Access to Data in Private VPCs This feature was launched in preview form late last year, and is now available in production form to users of the Enterprise Edition. As I noted at the time, you can use it to implement secure, private communication with data sources that do not have public connectivity, including on-premises data in Teradata or SQL Server, accessed over an AWS Direct Connect link. To learn more, read Working with AWS VPC.
Parameters with On-Screen Controls QuickSight dashboards can now include parameters that are set using on-screen dropdown, text box, numeric slider or date picker controls. The default value for each parameter can be set based on the user name (QuickSight calls this a dynamic default). You could, for example, set an appropriate default based on each user’s office location, department, or sales territory. Here’s an example:
URL Actions for Linked Dashboards You can now connect your QuickSight dashboards to external applications by defining URL actions on visuals. The actions can include parameters, and become available in the Details menu for the visual. URL actions are defined like this:
You can use this feature to link QuickSight dashboards to third party applications (e.g. Salesforce) or to your own internal applications. Read Custom URL Actions to learn how to use this feature.
Dashboard Sharing You can now share QuickSight dashboards across every user in an account.
Larger SPICE Tables The per-data set limit for SPICE tables has been raised from 10 GB to 25 GB.
Upgrade to Enterprise Edition The QuickSight administrator can now upgrade an account from Standard Edition to Enterprise Edition with a click. This enables provisioning of Readers with pay-per-session pricing, private VPC access, row-level security for dashboards and data sets, and hourly refresh of data sets. Enterprise Edition pricing applies after the upgrade.
Available Now Everything I listed above is available now and you can start using it today!
Security updates have been issued by CentOS (389-ds-base, corosync, firefox, java-1.7.0-openjdk, java-1.8.0-openjdk, kernel, librelp, libvirt, libvncserver, libvorbis, PackageKit, patch, pcs, and qemu-kvm), Fedora (asterisk, ca-certificates, gifsicle, ncurses, nodejs-base64-url, nodejs-mixin-deep, and wireshark), Mageia (thunderbird), Red Hat (procps), SUSE (curl, kvm, and libvirt), and Ubuntu (apport, haproxy, and tomcat7, tomcat8).
This post is courtesy of Alan Protasio, Software Development Engineer, Amazon Web Services
Just like compute and storage, messaging is a fundamental building block of enterprise applications. Message brokers (aka “message-oriented middleware”) enable different software systems, often written in different languages, on different platforms, running in different locations, to communicate and exchange information. Mission-critical applications, such as CRM and ERP, rely on message brokers to work.
A common performance consideration for customers deploying a message broker in a production environment is the throughput of the system, measured as messages per second. This is important to know so that application environments (hosts, threads, memory, etc.) can be configured correctly.
In this post, we demonstrate how to measure the throughput for Amazon MQ, a new managed message broker service for ActiveMQ, using JMS Benchmark. It should take between 15–20 minutes to set up the environment and an hour to run the benchmark. We also provide some tips on how to configure Amazon MQ for optimal throughput.
Benchmarking throughput for Amazon MQ
ActiveMQ can be used for a number of use cases. These use cases can range from simple fire and forget tasks (that is, asynchronous processing), low-latency request-reply patterns, to buffering requests before they are persisted to a database.
The throughput of Amazon MQ is largely dependent on the use case. For example, if you have non-critical workloads such as gathering click events for a non-business-critical portal, you can use ActiveMQ in a non-persistent mode and get extremely high throughput with Amazon MQ.
On the flip side, if you have a critical workload where durability is extremely important (meaning that you can’t lose a message), then you are bound by the I/O capacity of your underlying persistence store. We recommend using mq.m4.large for the best results. The mq.t2.micro instance type is intended for product evaluation. Performance is limited, due to the lower memory and burstable CPU performance.
Tip: To improve your throughput with Amazon MQ, make sure that you have consumers processing messaging as fast as (or faster than) your producers are pushing messages.
Because it’s impossible to talk about how the broker (ActiveMQ) behaves for each and every use case, we walk through how to set up your own benchmark for Amazon MQ using our favorite open-source benchmarking tool: JMS Benchmark. We are fans of the JMS Benchmark suite because it’s easy to set up and deploy, and comes with a built-in visualizer of the results.
Non-Persistent Scenarios – Queue latency as you scale producer throughput
Getting started
At the time of publication, you can create an mq.m4.large single-instance broker for testing for $0.30 per hour (US pricing).
Step 2 – Create an EC2 instance to run your benchmark Launch the EC2 instance using Step 1: Launch an Instance. We recommend choosing the m5.large instance type.
Step 3 – Configure the security groups Make sure that all the security groups are correctly configured to let the traffic flow between the EC2 instance and your broker.
From the broker list, choose the name of your broker (for example, MyBroker)
In the Details section, under Security and network, choose the name of your security group or choose the expand icon ( ).
From the security group list, choose your security group.
At the bottom of the page, choose Inbound, Edit.
In the Edit inbound rules dialog box, add a role to allow traffic between your instance and the broker: • Choose Add Rule. • For Type, choose Custom TCP. • For Port Range, type the ActiveMQ SSL port (61617). • For Source, leave Custom selected and then type the security group of your EC2 instance. • Choose Save.
Your broker can now accept the connection from your EC2 instance.
Step 4 – Run the benchmark Connect to your EC2 instance using SSH and run the following commands:
After the benchmark finishes, you can find the results in the ~/reports directory. As you may notice, the performance of ActiveMQ varies based on the number of consumers, producers, destinations, and message size.
Amazon MQ architecture
The last bit that’s important to know so that you can better understand the results of the benchmark is how Amazon MQ is architected.
Amazon MQ is architected to be highly available (HA) and durable. For HA, we recommend using the multi-AZ option. After a message is sent to Amazon MQ in persistent mode, the message is written to the highly durable message store that replicates the data across multiple nodes in multiple Availability Zones. Because of this replication, for some use cases you may see a reduction in throughput as you migrate to Amazon MQ. Customers have told us they appreciate the benefits of message replication as it helps protect durability even in the face of the loss of an Availability Zone.
Conclusion
We hope this gives you an idea of how Amazon MQ performs. We encourage you to run tests to simulate your own use cases.
To learn more, see the Amazon MQ website. You can try Amazon MQ for free with the AWS Free Tier, which includes up to 750 hours of a single-instance mq.t2.micro broker and up to 1 GB of storage per month for one year.
The adoption of Apache Spark has increased significantly over the past few years, and running Spark-based application pipelines is the new normal. Spark jobs that are in an ETL (extract, transform, and load) pipeline have different requirements—you must handle dependencies in the jobs, maintain order during executions, and run multiple jobs in parallel. In most of these cases, you can use workflow scheduler tools like Apache Oozie, Apache Airflow, and even Cron to fulfill these requirements.
Apache Oozie is a widely used workflow scheduler system for Hadoop-based jobs. However, its limited UI capabilities, lack of integration with other services, and heavy XML dependency might not be suitable for some users. On the other hand, Apache Airflow comes with a lot of neat features, along with powerful UI and monitoring capabilities and integration with several AWS and third-party services. However, with Airflow, you do need to provision and manage the Airflow server. The Cron utility is a powerful job scheduler. But it doesn’t give you much visibility into the job details, and creating a workflow using Cron jobs can be challenging.
What if you have a simple use case, in which you want to run a few Spark jobs in a specific order, but you don’t want to spend time orchestrating those jobs or maintaining a separate application? You can do that today in a serverless fashion using AWS Step Functions. You can create the entire workflow in AWS Step Functions and interact with Spark on Amazon EMR through Apache Livy.
In this post, I walk you through a list of steps to orchestrate a serverless Spark-based ETL pipeline using AWS Step Functions and Apache Livy.
Input data
For the source data for this post, I use the New York City Taxi and Limousine Commission (TLC) trip record data. For a description of the data, see this detailed dictionary of the taxi data. In this example, we’ll work mainly with the following three columns for the Spark jobs.
Column name
Column description
RateCodeID
Represents the rate code in effect at the end of the trip (for example, 1 for standard rate, 2 for JFK airport, 3 for Newark airport, and so on).
FareAmount
Represents the time-and-distance fare calculated by the meter.
TripDistance
Represents the elapsed trip distance in miles reported by the taxi meter.
The trip data is in comma-separated values (CSV) format with the first row as a header. To shorten the Spark execution time, I trimmed the large input data to only 20,000 rows. During the deployment phase, the input file tripdata.csv is stored in Amazon S3 in the <<your-bucket>>/emr-step-functions/input/ folder.
The following image shows a sample of the trip data:
Solution overview
The next few sections describe how Spark jobs are created for this solution, how you can interact with Spark using Apache Livy, and how you can use AWS Step Functions to create orchestrations for these Spark applications.
At a high level, the solution includes the following steps:
Trigger the AWS Step Function state machine by passing the input file path.
The first stage in the state machine triggers an AWS Lambda
The Lambda function interacts with Apache Spark running on Amazon EMR using Apache Livy, and submits a Spark job.
The state machine waits a few seconds before checking the Spark job status.
Based on the job status, the state machine moves to the success or failure state.
Subsequent Spark jobs are submitted using the same approach.
The state machine waits a few seconds for the job to finish.
The job finishes, and the state machine updates with its final status.
Let’s take a look at the Spark application that is used for this solution.
Spark jobs
For this example, I built a Spark jar named spark-taxi.jar. It has two different Spark applications:
MilesPerRateCode – The first job that runs on the Amazon EMR cluster. This job reads the trip data from an input source and computes the total trip distance for each rate code. The output of this job consists of two columns and is stored in Apache Parquet format in the output path.
The following are the expected output columns:
rate_code – Represents the rate code for the trip.
total_distance – Represents the total trip distance for that rate code (for example, sum(trip_distance)).
RateCodeStatus – The second job that runs on the EMR cluster, but only if the first job finishes successfully. This job depends on two different input sets:
csv – The same trip data that is used for the first Spark job.
miles-per-rate – The output of the first job.
This job first reads the tripdata.csv file and aggregates the fare_amount by the rate_code. After this point, you have two different datasets, both aggregated by rate_code. Finally, the job uses the rate_code field to join two datasets and output the entire rate code status in a single CSV file.
The output columns are as follows:
rate_code_id – Represents the rate code type.
total_distance – Derived from first Spark job and represents the total trip distance.
total_fare_amount – A new field that is generated during the second Spark application, representing the total fare amount by the rate code type.
Note that in this case, you don’t need to run two different Spark jobs to generate that output. The goal of setting up the jobs in this way is just to create a dependency between the two jobs and use them within AWS Step Functions.
Both Spark applications take one input argument called rootPath. It’s the S3 location where the Spark job is stored along with input and output data. Here is a sample of the final output:
The next section discusses how you can use Apache Livy to interact with Spark applications that are running on Amazon EMR.
Using Apache Livy to interact with Apache Spark
Apache Livy provides a REST interface to interact with Spark running on an EMR cluster. Livy is included in Amazon EMR release version 5.9.0 and later. In this post, I use Livy to submit Spark jobs and retrieve job status. When Amazon EMR is launched with Livy installed, the EMR master node becomes the endpoint for Livy, and it starts listening on port 8998 by default. Livy provides APIs to interact with Spark.
Let’s look at a couple of examples how you can interact with Spark running on Amazon EMR using Livy.
To list active running jobs, you can execute the following from the EMR master node:
curl localhost:8998/sessions
If you want to do the same from a remote instance, just change localhost to the EMR hostname, as in the following (port 8998 must be open to that remote instance through the security group):
Through Spark submit, you can pass multiple arguments for the Spark job and Spark configuration settings. You can also do that using Livy, by passing the S3 path through the args parameter, as shown following:
curl -X POST – data '{"file": "s3://<<bucket-location>>/spark.jar", "className": "com.example.SparkApp", “args”: [“s3://bucket-path”]}' -H "Content-Type: application/json" http://ec2-xx-xx-xx-xx.compute-1.amazonaws.com:8998/batches
All Apache Livy REST calls return a response as JSON, as shown in the following image:
If you want to pretty-print that JSON response, you can pipe command with Python’s JSON tool as follows:
For a detailed list of Livy APIs, see the Apache Livy REST API page. This post uses GET /batches and POST /batches.
In the next section, you create a state machine and orchestrate Spark applications using AWS Step Functions.
Using AWS Step Functions to create a Spark job workflow
AWS Step Functions automatically triggers and tracks each step and retries when it encounters errors. So your application executes in order and as expected every time. To create a Spark job workflow using AWS Step Functions, you first create a Lambda state machine using different types of states to create the entire workflow.
First, you use the Task state—a simple state in AWS Step Functions that performs a single unit of work. You also use the Wait state to delay the state machine from continuing for a specified time. Later, you use the Choice state to add branching logic to a state machine.
The following is a quick summary of how to use different states in the state machine to create the Spark ETL pipeline:
Task state – Invokes a Lambda function. The first Task state submits the Spark job on Amazon EMR, and the next Task state is used to retrieve the previous Spark job status.
Wait state – Pauses the state machine until a job completes execution.
Choice state – Each Spark job execution can return a failure, an error, or a success state So, in the state machine, you use the Choice state to create a rule that specifies the next action or step based on the success or failure of the previous step.
Here is one of my Task states, MilesPerRateCode, which simply submits a Spark job:
"MilesPerRate Job": {
"Type": "Task",
"Resource":"arn:aws:lambda:us-east-1:xxxxxx:function:blog-miles-per-rate-job-submit-function",
"ResultPath": "$.jobId",
"Next": "Wait for MilesPerRate job to complete"
}
This Task state configuration specifies the Lambda function to execute. Inside the Lambda function, it submits a Spark job through Livy using Livy’s POST API. Using ResultPath, it tells the state machine where to place the result of the executing task. As discussed in the previous section, Spark submit returns the session ID, which is captured with $.jobId and used in a later state.
The following code section shows the Lambda function, which is used to submit the MilesPerRateCode job. It uses the Python request library to submit a POST against the Livy endpoint hosted on Amazon EMR and passes the required parameters in JSON format through payload. It then parses the response, grabs id from the response, and returns it. The Next field tells the state machine which state to go to next.
Just like in the MilesPerRate job, another state submits the RateCodeStatus job, but it executes only when all previous jobs have completed successfully.
Here is the Task state in the state machine that checks the Spark job status:
Just like other states, the preceding Task executes a Lambda function, captures the result (represented by jobStatus), and passes it to the next state. The following is the Lambda function that checks the Spark job status based on a given session ID:
In the Choice state, it checks the Spark job status value, compares it with a predefined state status, and transitions the state based on the result. For example, if the status is success, move to the next state (RateCodeJobStatus job), and if it is dead, move to the MilesPerRate job failed state.
To set up this entire solution, you need to create a few AWS resources. To make it easier, I have created an AWS CloudFormation template. This template creates all the required AWS resources and configures all the resources that are needed to create a Spark-based ETL pipeline on AWS Step Functions.
This CloudFormation template requires you to pass the following four parameters during initiation.
Parameter
Description
ClusterSubnetID
The subnet where the Amazon EMR cluster is deployed and Lambda is configured to talk to this subnet.
KeyName
The name of the existing EC2 key pair to access the Amazon EMR cluster.
VPCID
The ID of the virtual private cloud (VPC) where the EMR cluster is deployed and Lambda is configured to talk to this VPC.
S3RootPath
The Amazon S3 path where all required files (input file, Spark job, and so on) are stored and the resulting data is written.
IMPORTANT: These templates are designed only to show how you can create a Spark-based ETL pipeline on AWS Step Functions using Apache Livy. They are not intended for production use without modification. And if you try this solution outside of the us-east-1 Region, download the necessary files from s3://aws-data-analytics-blog/emr-step-functions, upload the files to the buckets in your Region, edit the script as appropriate, and then run it.
To launch the CloudFormation stack, choose Launch Stack:
Launching this stack creates the following list of AWS resources.
Logical ID
Resource Type
Description
StepFunctionsStateExecutionRole
IAM role
IAM role to execute the state machine and have a trust relationship with the states service.
SparkETLStateMachine
AWS Step Functions state machine
State machine in AWS Step Functions for the Spark ETL workflow.
LambdaSecurityGroup
Amazon EC2 security group
Security group that is used for the Lambda function to call the Livy API.
RateCodeStatusJobSubmitFunction
AWS Lambda function
Lambda function to submit the RateCodeStatus job.
MilesPerRateJobSubmitFunction
AWS Lambda function
Lambda function to submit the MilesPerRate job.
SparkJobStatusFunction
AWS Lambda function
Lambda function to check the Spark job status.
LambdaStateMachineRole
IAM role
IAM role for all Lambda functions to use the lambda trust relationship.
EMRCluster
Amazon EMR cluster
EMR cluster where Livy is running and where the job is placed.
During the AWS CloudFormation deployment phase, it sets up S3 paths for input and output. Input files are stored in the <<s3-root-path>>/emr-step-functions/input/ path, whereas spark-taxi.jar is copied under <<s3-root-path>>/emr-step-functions/.
The following screenshot shows how the S3 paths are configured after deployment. In this example, I passed a bucket that I created in the AWS account s3://tm-app-demos for the S3 root path.
If the CloudFormation template completed successfully, you will see Spark-ETL-State-Machine in the AWS Step Functions dashboard, as follows:
Choose the Spark-ETL-State-Machine state machine to take a look at this implementation. The AWS CloudFormation template built the entire state machine along with its dependent Lambda functions, which are now ready to be executed.
On the dashboard, choose the newly created state machine, and then choose New execution to initiate the state machine. It asks you to pass input in JSON format. This input goes to the first state MilesPerRate Job, which eventually executes the Lambda function blog-miles-per-rate-job-submit-function.
Pass the S3 root path as input:
{
“rootPath”: “s3://tm-app-demos”
}
Then choose Start Execution:
The rootPath value is the same value that was passed when creating the CloudFormation stack. It can be an S3 bucket location or a bucket with prefixes, but it should be the same value that is used for AWS CloudFormation. This value tells the state machine where it can find the Spark jar and input file, and where it will write output files. After the state machine starts, each state/task is executed based on its definition in the state machine.
At a high level, the following represents the flow of events:
Execute the first Spark job, MilesPerRate.
The Spark job reads the input file from the location <<rootPath>>/emr-step-functions/input/tripdata.csv. If the job finishes successfully, it writes the output data to <<rootPath>>/emr-step-functions/miles-per-rate.
If the Spark job fails, it transitions to the error state MilesPerRate job failed, and the state machine stops. If the Spark job finishes successfully, it transitions to the RateCodeStatus Job state, and the second Spark job is executed.
If the second Spark job fails, it transitions to the error state RateCodeStatus job failed, and the state machine stops with the Failed status.
If this Spark job completes successfully, it writes the final output data to the <<rootPath>>/emr-step-functions/rate-code-status/ It also transitions the RateCodeStatus job finished state, and the state machine ends its execution with the Success status.
This following screenshot shows a successfully completed Spark ETL state machine:
The right side of the state machine diagram shows the details of individual states with their input and output.
When you execute the state machine for the second time, it fails because the S3 path already exists. The state machine turns red and stops at MilePerRate job failed. The following image represents that failed execution of the state machine:
You can also check your Spark application status and logs by going to the Amazon EMR console and viewing the Application history tab:
I hope this walkthrough paints a picture of how you can create a serverless solution for orchestrating Spark jobs on Amazon EMR using AWS Step Functions and Apache Livy. In the next section, I share some ideas for making this solution even more elegant.
Next steps
The goal of this post is to show a simple example that uses AWS Step Functions to create an orchestration for Spark-based jobs in a serverless fashion. To make this solution robust and production ready, you can explore the following options:
In this example, I manually initiated the state machine by passing the rootPath as input. You can instead trigger the state machine automatically. To run the ETL pipeline as soon as the files arrive in your S3 bucket, you can pass the new file path to the state machine. Because CloudWatch Events supports AWS Step Functions as a target, you can create a CloudWatch rule for an S3 event. You can then set AWS Step Functions as a target and pass the new file path to your state machine. You’re all set!
You can also improve this solution by adding an alerting mechanism in case of failures. To do this, create a Lambda function that sends an alert email and assigns that Lambda function to a Fail That way, when any part of your state fails, it triggers an email and notifies the user.
If you want to submit multiple Spark jobs in parallel, you can use the Parallel state type in AWS Step Functions. The Parallel state is used to create parallel branches of execution in your state machine.
With Lambda and AWS Step Functions, you can create a very robust serverless orchestration for your big data workload.
Cleaning up
When you’ve finished testing this solution, remember to clean up all those AWS resources that you created using AWS CloudFormation. Use the AWS CloudFormation console or AWS CLI to delete the stack named Blog-Spark-ETL-Step-Functions.
Summary
In this post, I showed you how to use AWS Step Functions to orchestrate your Spark jobs that are running on Amazon EMR. You used Apache Livy to submit jobs to Spark from a Lambda function and created a workflow for your Spark jobs, maintaining a specific order for job execution and triggering different AWS events based on your job’s outcome. Go ahead—give this solution a try, and share your experience with us!
Tanzir Musabbir is an EMR Specialist Solutions Architect with AWS. He is an early adopter of open source Big Data technologies. At AWS, he works with our customers to provide them architectural guidance for running analytics solutions on Amazon EMR, Amazon Athena & AWS Glue. Tanzir is a big Real Madrid fan and he loves to travel in his free time.
Thanks to Greg Eppel, Sr. Solutions Architect, Microsoft Platform for this great blog that describes how to create a custom CodeBuild build environment for the .NET Framework. — AWS CodeBuild is a fully managed build service that compiles source code, runs tests, and produces software packages that are ready to deploy. CodeBuild provides curated build environments for programming languages and runtimes such as Android, Go, Java, Node.js, PHP, Python, Ruby, and Docker. CodeBuild now supports builds for the Microsoft Windows Server platform, including a prepackaged build environment for .NET Core on Windows. If your application uses the .NET Framework, you will need to use a custom Docker image to create a custom build environment that includes the Microsoft proprietary Framework Class Libraries. For information about why this step is required, see our FAQs. In this post, I’ll show you how to create a custom build environment for .NET Framework applications and walk you through the steps to configure CodeBuild to use this environment.
Build environments are Docker images that include a complete file system with everything required to build and test your project. To use a custom build environment in a CodeBuild project, you build a container image for your platform that contains your build tools, push it to a Docker container registry such as Amazon Elastic Container Registry (Amazon ECR), and reference it in the project configuration. When it builds your application, CodeBuild retrieves the Docker image from the container registry specified in the project configuration and uses the environment to compile your source code, run your tests, and package your application.
Step 1: Launch EC2 Windows Server 2016 with Containers
In the Amazon EC2 console, in your region, launch an Amazon EC2 instance from a Microsoft Windows Server 2016 Base with Containers AMI.
Increase disk space on the boot volume to at least 50 GB to account for the larger size of containers required to install and run Visual Studio Build Tools.
Run the following command in that directory. This process can take a while. It depends on the size of EC2 instance you launched. In my tests, a t2.2xlarge takes less than 30 minutes to build the image and produces an approximately 15 GB image.
docker build -t buildtools2017:latest -m 2GB .
Run the following command to test the container and start a command shell with all the developer environment variables:
docker run -it buildtools2017
Create a repository in the Amazon ECS console. For the repository name, type buildtools2017. Choose Next step and then complete the remaining steps.
Execute the following command to generate authentication details for our registry to the local Docker engine. Make sure you have permissions to the Amazon ECR registry before you execute the command.
aws ecr get-login
In the same command prompt window, copy and paste the following commands:
In the CodeCommit console, create a repository named DotNetFrameworkSampleApp. On the Configure email notifications page, choose Skip.
Clone a .NET Framework Docker sample application from GitHub. The repository includes a sample ASP.NET Framework that we’ll use to demonstrate our custom build environment.On the EC2 instance, open a command prompt and execute the following commands:
Navigate to the CodeCommit repository and confirm that the files you just pushed are there.
Step 4: Configure build spec
To build your .NET Framework application with CodeBuild you use a build spec, which is a collection of build commands and related settings, in YAML format, that AWS CodeBuild can use to run a build. You can include a build spec as part of the source code or you can define a build spec when you create a build project. In this example, I include a build spec as part of the source code.
In the root directory of your source directory, create a YAML file named buildspec.yml.
At this point, we have a Docker image with Visual Studio Build Tools installed and stored in the Amazon ECR registry. We also have a sample ASP.NET Framework application in a CodeCommit repository. Now we are going to set up CodeBuild to build the ASP.NET Framework application.
In the Amazon ECR console, choose the repository that was pushed earlier with the docker push command. On the Permissions tab, choose Add.
For Source Provider, choose AWS CodeCommit and then choose the called DotNetFrameworkSampleApp repository.
For Environment Image, choose Specify a Docker image.
For Environment type, choose Windows.
For Custom image type, choose Amazon ECR.
For Amazon ECR repository, choose the Docker image with the Visual Studio Build Tools installed, buildtools2017. Your configuration should look like the image below:
Choose Continue and then Save and Build to create your CodeBuild project and start your first build. You can monitor the status of the build in the console. You can also configure notifications that will notify subscribers whenever builds succeed, fail, go from one phase to another, or any combination of these events.
Summary
CodeBuild supports a number of platforms and languages out of the box. By using custom build environments, it can be extended to other runtimes. In this post, I showed you how to build a .NET Framework environment on a Windows container and demonstrated how to use it to build .NET Framework applications in CodeBuild.
We’re excited to see how customers extend and use CodeBuild to enable continuous integration and continuous delivery for their Windows applications. Feel free to share what you’ve learned extending CodeBuild for your own projects. Just leave questions or suggestions in the comments.
Businesses and organizations that rely on macOS server for essential office and data services are facing some decisions about the future of their IT services.
Apple recently announced that it is deprecating a significant portion of essential network services in macOS Server, as they described in a support statement posted on April 24, 2018, “Prepare for changes to macOS Server.” Apple’s note includes:
macOS Server is changing to focus more on management of computers, devices, and storage on your network. As a result, some changes are coming in how Server works. A number of services will be deprecated, and will be hidden on new installations of an update to macOS Server coming in spring 2018.
The note lists the services that will be removed in a future release of macOS Server, including calendar and contact support, Dynamic Host Configuration Protocol (DHCP), Domain Name Services (DNS), mail, instant messages, virtual private networking (VPN), NetInstall, Web server, and the Wiki.
Apple assures users who have already configured any of the listed services that they will be able to use them in the spring 2018 macOS Server update, but the statement ends with links to a number of alternative services, including hosted services, that macOS Server users should consider as viable replacements to the features it is removing. These alternative services are all FOSS (Free and Open-Source Software).
As difficult as this could be for organizations that use macOS server, this is not unexpected. Apple left the server hardware space back in 2010, when Steve Jobs announced the company was ending its line of Xserve rackmount servers, which were introduced in May, 2002. Since then, macOS Server has hardly been a prominent part of Apple’s product lineup. It’s not just the product itself that has lost some luster, but the entire category of SMB office and business servers, which has been undergoing a gradual change in recent years.
Some might wonder how important the news about macOS Server is, given that macOS Server represents a pretty small share of the server market. macOS Server has been important to design shops, agencies, education users, and small businesses that likely have been on Macs for ages, but it’s not a significant part of the IT infrastructure of larger organizations and businesses.
What Comes After macOS Server?
Lovers of macOS Server don’t have to fear having their Mac minis pried from their cold, dead hands quite yet. Installed services will continue to be available. In the fall of 2018, new installations and upgrades of macOS Server will require users to migrate most services to other software. Since many of the services of macOS Server were already open-source, this means that a change in software might not be required. It does mean more configuration and management required from those who continue with macOS Server, however.
Users can continue with macOS Server if they wish, but many will see the writing on the wall and look for a suitable substitute.
The Times They Are A-Changin’
For many people working in organizations, what is significant about this announcement is how it reflects the move away from the once ubiquitous server-based IT infrastructure. Services that used to be centrally managed and office-based, such as storage, file sharing, communications, and computing, have moved to the cloud.
In selecting the next office IT platforms, there’s an opportunity to move to solutions that reflect and support how people are working and the applications they are using both in the office and remotely. For many, this means including cloud-based services in office automation, backup, and business continuity/disaster recovery planning. This includes Software as a Service, Platform as a Service, and Infrastructure as a Service (Saas, PaaS, IaaS) options.
IT solutions that integrate well with the cloud are worth strong consideration for what comes after a macOS Server-based environment.
Synology NAS as a macOS Server Alternative
One solution that is becoming popular is to replace macOS Server with a device that has the ability to provide important office services, but also bridges the office and cloud environments. Using Network-Attached Storage (NAS) to take up the server slack makes a lot of sense. Many customers are already using NAS for file sharing, local data backup, automatic cloud backup, and other uses. In the case of Synology, their operating system, Synology DiskStation Manager (DSM), is Linux based, and integrates the basic functions of file sharing, centralized backup, RAID storage, multimedia streaming, virtual storage, and other common functions.
Synology NAS
Since DSM is based on Linux, there are numerous server applications available, including many of the same ones that are available for macOS Server, which shares conceptual roots with Linux as it comes from BSD Unix.
Synology DiskStation Manager Package Center
According to Ed Lukacs, COO at 2FIFTEEN Systems Management in Salt Lake City, their customers have found the move from macOS Server to Synology NAS not only painless, but positive. DSM works seamlessly with macOS and has been faster for their customers, as well. Many of their customers are running Adobe Creative Suite and Google G Suite applications, so a workflow that combines local storage, remote access, and the cloud, is already well known to them. Remote users are supported by Synology’s QuickConnect or VPN.
Business continuity and backup are simplified by the flexible storage capacity of the NAS. Synology has built-in backup to Backblaze B2 Cloud Storage with Synology’s Cloud Sync, as well as a choice of a number of other B2-compatible applications, such as Cloudberry, Comet, and Arq.
Customers have been able to get up and running quickly, with only initial data transfers requiring some time to complete. After that, management of the NAS can be handled in-house or with the support of a Managed Service Provider (MSP).
Are You Sticking with macOS Server or Moving to Another Platform?
If you’re affected by this change in macOS Server, please let us know in the comments how you’re planning to cope. Are you using Synology NAS for server services? Please tell us how that’s working for you.
If pressed, I will admit to thinking that, if NIS was good enough for Charles Babbage, it’s good enough for me. I am therefore not a huge fan of LDAP; I feel I can detect in it the heavy hand of the ITU, which seems to wish to apply X.500 to everything. Nevertheless, for secure, distributed, multi-platform identity management it’s quite hard to beat. If you decide to run an LDAP server on Unix, one of the major free implementations is slapd, the core engine of the OpenLDAP project. Howard Chu is the chief architect of the project, and spoke at FLOSS 2018 about the upcoming 2.5 release. Any rumors that he might have passed the time while the room filled up by giving a short but nicely rendered fiddle recital are completely true.
I’m in danger of contradicting myself, after previously pointing out that x86 machine code is a high-level language, but this article claiming C is a not a low level language is bunk. C certainly has some problems, but it’s still the closest language to assembly. This is obvious by the fact it’s still the fastest compiled language. What we see is a typical academic out of touch with the real world.
The author makes the (wrong) observation that we’ve been stuck emulating the PDP-11 for the past 40 years. C was written for the PDP-11, and since then CPUs have been designed to make C run faster. The author imagines a different world, such as where CPU designers instead target something like LISP as their preferred language, or Erlang. This misunderstands the state of the market. CPUs do indeed supports lots of different abstractions, and C has evolved to accommodate this.
The author criticizes things like “out-of-order” execution which has lead to the Spectre sidechannel vulnerabilities. Out-of-order execution is necessary to make C run faster. The author claims instead that those resources should be spent on having more slower CPUs, with more threads. This sacrifices single-threaded performance in exchange for a lot more threads executing in parallel. The author cites Sparc Tx CPUs as his ideal processor.
But here’s the thing, the Sparc Tx was a failure. To be fair, it’s mostly a failure because most of the time, people wanted to run old C code instead of new Erlang code. But it was still a failure at running Erlang.
Time after time, engineers keep finding that “out-of-order”, single-threaded performance is still the winner. A good example is ARM processors for both mobile phones and servers. All the theory points to in-order CPUs as being better, but all the products are out-of-order, because this theory is wrong. The custom ARM cores from Apple and Qualcomm used in most high-end phones are so deeply out-of-order they give Intel CPUs competition. The same is true on the server front with the latest Qualcomm Centriq and Cavium ThunderX2 processors, deeply out of order supporting more than 100 instructions in flight.
The Cavium is especially telling. Its ThunderX CPU had 48 simple cores which was replaced with the ThunderX2 having 32 complex, deeply out-of-order cores. The performance increase was massive, even on multithread-friendly workloads. Every competitor to Intel’s dominance in the server space has learned the lesson from Sparc Tx: many wimpy cores is a failure, you need fewer beefy cores. Yes, they don’t need to be as beefy as Intel’s processors, but they need to be close.
Even Intel’s “Xeon Phi” custom chip learned this lesson. This is their GPU-like chip, running 60 cores with 512-bit wide “vector” (sic) instructions, designed for supercomputer applications. Its first version was purely in-order. Its current version is slightly out-of-order. It supports four threads and focuses on basic number crunching, so in-order cores seems to be the right approach, but Intel found in this case that out-of-order processing still provided a benefit. Practice is different than theory.
As an academic, the author of the above article focuses on abstractions. The criticism of C is that it has the wrong abstractions which are hard to optimize, and that if we instead expressed things in the right abstractions, it would be easier to optimize.
This is an intellectually compelling argument, but so far bunk.
The reason is that while the theoretical base language has issues, everyone programs using extensions to the language, like “intrinsics” (C ‘functions’ that map to assembly instructions). Programmers write libraries using these intrinsics, which then the rest of the normal programmers use. In other words, if your criticism is that C is not itself low level enough, it still provides the best access to low level capabilities.
Given that C can access new functionality in CPUs, CPU designers add new paradigms, from SIMD to transaction processing. In other words, while in the 1980s CPUs were designed to optimize C (stacks, scaled pointers), these days CPUs are designed to optimize tasks regardless of language.
The author of that article criticizes the memory/cache hierarchy, claiming it has problems. Yes, it has problems, but only compared to how well it normally works. The author praises the many simple cores/threads idea as hiding memory latency with little caching, but misses the point that caches also dramatically increase memory bandwidth. Intel processors are optimized to read a whopping 256 bits every clock cycle from L1 cache. Main memory bandwidth is orders of magnitude slower.
The author goes onto criticize cache coherency as a problem. C uses it, but other languages like Erlang don’t need it. But that’s largely due to the problems each languages solves. Erlang solves the problem where a large number of threads work on largely independent tasks, needing to send only small messages to each other across threads. The problems C solves is when you need many threads working on a huge, common set of data.
For example, consider the “intrusion prevention system”. Any thread can process any incoming packet that corresponds to any region of memory. There’s no practical way of solving this problem without a huge coherent cache. It doesn’t matter which language or abstractions you use, it’s the fundamental constraint of the problem being solved. RDMA is an important concept that’s moved from supercomputer applications to the data center, such as with memcached. Again, we have the problem of huge quantities (terabytes worth) shared among threads rather than small quantities (kilobytes).
The fundamental issue the author of the the paper is ignoring is decreasing marginal returns. Moore’s Law has gifted us more transistors than we can usefully use. We can’t apply those additional registers to just one thing, because the useful returns we get diminish.
For example, Intel CPUs have two hardware threads per core. That’s because there are good returns by adding a single additional thread. However, the usefulness of adding a third or fourth thread decreases. That’s why many CPUs have only two threads, or sometimes four threads, but no CPU has 16 threads per core.
You can apply the same discussion to any aspect of the CPU, from register count, to SIMD width, to cache size, to out-of-order depth, and so on. Rather than focusing on one of these things and increasing it to the extreme, CPU designers make each a bit larger every process tick that adds more transistors to the chip.
The same applies to cores. It’s why the “more simpler cores” strategy fails, because more cores have their own decreasing marginal returns. Instead of adding cores tied to limited memory bandwidth, it’s better to add more cache. Such cache already increases the size of the cores, so at some point it’s more effective to add a few out-of-order features to each core rather than more cores. And so on.
The question isn’t whether we can change this paradigm and radically redesign CPUs to match some academic’s view of the perfect abstraction. Instead, the goal is to find new uses for those additional transistors. For example, “message passing” is a useful abstraction in languages like Go and Erlang that’s often more useful than sharing memory. It’s implemented with shared memory and atomic instructions, but I can’t help but think it couldn’t better be done with direct hardware support.
Of course, as soon as they do that, it’ll become an intrinsic in C, then added to languages like Go and Erlang.
Summary Academics live in an ideal world of abstractions, the rest of us live in practical reality. The reality is that vast majority of programmers work with the C family of languages (JavaScript, Go, etc.), whereas academics love the epiphanies they learned using other languages, especially function languages. CPUs are only superficially designed to run C and “PDP-11 compatibility”. Instead, they keep adding features to support other abstractions, abstractions available to C. They are driven by decreasing marginal returns — they would love to add new abstractions to the hardware because it’s a cheap way to make use of additional transitions. Academics are wrong believing that the entire system needs to be redesigned from scratch. Instead, they just need to come up with new abstractions CPU designers can add.
Brandon Williams writes about the new Git remote protocol that will debut in the 2.18 release. “We recently rolled out support for protocol version 2 at Google and have seen a performance improvement of 3x for no-op fetches of a single branch on repositories containing 500k references. Protocol v2 has also enabled a reduction of 8x of the overhead bytes (non-packfile) sent from googlesource.com servers. A majority of this improvement is due to filtering references advertised by the server to the refs the client has expressed interest in.”
Well, we actually won’t show you how we create the magic in our big OATH consumer mail factory. But nevertheless we wanted to share how interested developers could leverage some of our unique features we offer for our Yahoo and AOL Mail customers.
To drive experiences like our travel and shopping smart views or message threading, we tag qualified mails with something we call DECOS and THREADID. While we will not indulge in explaining how exactly we use them internally, we wanted to share how they can be used and accessed through IMAP.
So let’s just look at a sample IMAP command chain. We’ll just assume that you are familiar with the IMAP protocol at this point and you know how to properly talk to an IMAP server.
So here’s how you would retrieve DECO and THREADIDs for specific messages:
As you can see from my EC2 Instance History post, we add new instance types on a regular and frequent basis. Driven by increasingly powerful processors and designed to address an ever-widening set of use cases, the size and diversity of this list reflects the equally diverse group of EC2 customers!
Near the bottom of that list you will find the new compute-intensive C5 instances. With a 25% to 50% improvement in price-performance over the C4 instances, the C5 instances are designed for applications like batch and log processing, distributed and or real-time analytics, high-performance computing (HPC), ad serving, highly scalable multiplayer gaming, and video encoding. Some of these applications can benefit from access to high-speed, ultra-low latency local storage. For example, video encoding, image manipulation, and other forms of media processing often necessitates large amounts of I/O to temporary storage. While the input and output files are valuable assets and are typically stored as Amazon Simple Storage Service (S3) objects, the intermediate files are expendable. Similarly, batch and log processing runs in a race-to-idle model, flushing volatile data to disk as fast as possible in order to make full use of compute resources.
New C5d Instances with Local Storage In order to meet this need, we are introducing C5 instances equipped with local NVMe storage. Available for immediate use in 5 regions, these instances are a great fit for the applications that I described above, as well as others that you will undoubtedly dream up! Here are the specs:
Instance Name
vCPUs
RAM
Local Storage
EBS Bandwidth
Network Bandwidth
c5d.large
2
4 GiB
1 x 50 GB NVMe SSD
Up to 2.25 Gbps
Up to 10 Gbps
c5d.xlarge
4
8 GiB
1 x 100 GB NVMe SSD
Up to 2.25 Gbps
Up to 10 Gbps
c5d.2xlarge
8
16 GiB
1 x 225 GB NVMe SSD
Up to 2.25 Gbps
Up to 10 Gbps
c5d.4xlarge
16
32 GiB
1 x 450 GB NVMe SSD
2.25 Gbps
Up to 10 Gbps
c5d.9xlarge
36
72 GiB
1 x 900 GB NVMe SSD
4.5 Gbps
10 Gbps
c5d.18xlarge
72
144 GiB
2 x 900 GB NVMe SSD
9 Gbps
25 Gbps
Other than the addition of local storage, the C5 and C5d share the same specs. Both are powered by 3.0 GHz Intel Xeon Platinum 8000-series processors, optimized for EC2 and with full control over C-states on the two largest sizes, giving you the ability to run two cores at up to 3.5 GHz using Intel Turbo Boost Technology.
You can use any AMI that includes drivers for the Elastic Network Adapter (ENA) and NVMe; this includes the latest Amazon Linux, Microsoft Windows (Server 2008 R2, Server 2012, Server 2012 R2 and Server 2016), Ubuntu, RHEL, SUSE, and CentOS AMIs.
Here are a couple of things to keep in mind about the local NVMe storage:
Naming – You don’t have to specify a block device mapping in your AMI or during the instance launch; the local storage will show up as one or more devices (/dev/nvme*1 on Linux) after the guest operating system has booted.
Encryption – Each local NVMe device is hardware encrypted using the XTS-AES-256 block cipher and a unique key. Each key is destroyed when the instance is stopped or terminated.
Lifetime – Local NVMe devices have the same lifetime as the instance they are attached to, and do not stick around after the instance has been stopped or terminated.
Available Now C5d instances are available in On-Demand, Reserved Instance, and Spot form in the US East (N. Virginia), US West (Oregon), EU (Ireland), US East (Ohio), and Canada (Central) Regions. Prices vary by Region, and are just a bit higher than for the equivalent C5 instances.
This post courtesy of Jeff Levine Solutions Architect for Amazon Web Services
Amazon Linux 2 is the next generation of Amazon Linux, a Linux server operating system from Amazon Web Services (AWS). Amazon Linux 2 offers a high-performance Linux environment suitable for organizations of all sizes. It supports applications ranging from small websites to enterprise-class, mission-critical platforms.
Amazon Linux 2 includes support for the LAMP (Linux/Apache/MariaDB/PHP) stack, one of the most popular platforms for deploying websites. To secure the transmission of data-in-transit to such websites and prevent eavesdropping, organizations commonly leverage Secure Sockets Layer/Transport Layer Security (SSL/TLS) services which leverage certificates to provide encryption. The LAMP stack provided by Amazon Linux 2 includes a self-signed SSL/TLS certificate. Such certificates may be fine for internal usage but are not acceptable when attestation by a certificate authority is required.
In this post, I discuss how to extend the capabilities of Amazon Linux 2 by installing Let’s Encrypt, a certificate authority provided by the Internet Security Research Group. Let’s Encrypt offers basic SSL/TLS certificates for DNS hosts at no charge that you can use to add encryption-in-transit to a single web server. For commercial or multi-server configurations, you should consider AWS Certificate Manager and Elastic Load Balancing.
Let’s Encrypt also requires the certbot package, which you install from EPEL, the Extra Packaged for Enterprise Linux collection. Although EPEL is not included with Amazon Linux 2, I show how you can install it from the Fedora Project.
Walkthrough
At a high level, you perform the following tasks for this walkthrough:
Provision a VPC, Amazon Linux 2 instance, and LAMP stack.
Install and enable the EPEL repository.
Install and configure Let’s Encrypt.
Validate the installation.
Clean up.
Prerequisites and costs
To follow along with this walkthrough, you need the following:
Accept all other default values including with regard to storage.
Create a new security group and accept the default rule that allows TCP port 22 (SSH) from everywhere (0.0.0.0/0 in IPv4). For the purposes of this walkthrough, permitting access from all IP addresses is reasonable. In a production environment, you may restrict access to different addresses.
Allocate and associate an Elastic IP address to the server when it enters the running state.
Respond “Y” to all requests for approval to install the software.
Step 3: Install and configure Let’s Encrypt
If you are no longer connected to the Amazon Linux 2 instance, connect to it at the Elastic IP address that you just created.
Install certbot, the Let’s Encrypt client to be used to obtain an SSL/TLS certificate and install it into Apache.
sudo yum install python2-certbot-apache.noarch
Respond “Y” to all requests for approval to install the software. If you see a message appear about SELinux, you can safely ignore it. This is a known issue with the latest version of certbot.
Create a DNS “A record” that maps a host name to the Elastic IP address. For this post, assume that the name of the host is lamp.example.com. If you are hosting your DNS in Amazon Route 53, do this by creating the appropriate record set.
After the “A record” has propagated, browse to lamp.example.com. The Apache test page should appear. If the page does not appear, use a tool such as nslookup on your workstation to confirm that the DNS record has been properly configured.
You are now ready to install Let’s Encrypt. Let’s Encrypt does the following:
Confirms that you have control over the DNS domain being used, by having you create a DNS TXT record using the value that it provides.
Obtains an SSL/TLS certificate.
Modifies the Apache-related scripts to use the SSL/TLS certificate and redirects users browsing the site in HTTP mode to HTTPS mode.
Use the following command to install certbot:
sudo certbot -i apache -a manual \
--preferred-challenges dns -d lamp.example.com
The options have the following meanings:
-i apache Use the Apache installer.
-a manual Authenticate domain ownership manually.
--preferred-challenges dns Use DNS TXT records for authentication challenge.
-d lamp.example.com Specify the domain for the SSL/TLS certificate.
You are prompted for the following information: E-mail address for renewals? Enter an email address for certificate renewals. Accept the terms of services? Respond as appropriate. Send your e-mail address to the EFF? Respond as appropriate. Log your current IP address? Respond as appropriate.
You are prompted to deploy a DNS TXT record with the name “_acme-challenge.lamp.example.com” with the supplied value, as shown below.
After you enter the record, wait until the TXT record propagates. To look up the TXT record to confirm the deployment, use the nslookup command in a separate command window, as shown below. Remember to use the set ty=txt command before entering the TXT record. You are prompted to select a virtual host. There is only one, so choose 1. The final prompt asks whether to redirect HTTP traffic to HTTPS. To perform the redirection, choose 2. That completes the configuration of Let’s Encrypt.
Browse to the http:// lamp.example.com site. You are redirected to the SSL/TLS page https://lamp.example.com.
To look at the encryption information, use the appropriate actions within your browser. For example, in Firefox, you can open the padlock and traverse the menus. In the encryption technical details, you can see from the “Connection Encrypted” line that traffic to the website is now encrypted using TLS 1.2.
Security note: As of the time of publication, this website also supports TLS 1.0. I recommend that you disable this protocol because of some known vulnerabilities associated with it. To do this:
Edit the file /etc/letsencrypt/options-ssl-apache.conf.
Look for the line beginning with SSLProtocol and change it to the following:
SSLProtocol all -SSLv2 -SSLv3 -TLSv1
Save the file. After you make changes to this file, Let’s Encrypt no longer automatically updates it. Periodically check your log files for recommended updates to this file.
Restart the httpd server with the following command:
sudo service httpd restart
Step 5: Cleanup
Use the following steps to avoid incurring any further costs.
Terminate the Amazon Linux 2 instance that you created.
Release the Elastic IP address that you allocated.
Revert any DNS changes that you made, including the A and TXT records.
Conclusion
Amazon Linux 2 is an excellent option for hosting websites through the LAMP stack provided by the Amazon-Linux-Extras feature. You can then enhance the security of the Apache web server by installing EPEL and Let’s Encrypt. Let’s Encrypt provisions an SSL/TLS certificate, optionally installs it for you on the Apache server, and enables data-in-transit encryption. You can get started with Amazon Linux 2 in just a few clicks.
The EU’s General Data Protection Regulation (GDPR) describes data processor and data controller roles, and some customers and AWS Partner Network (APN) partners are asking how this affects the long-established AWS Shared Responsibility Model. I wanted to take some time to help folks understand shared responsibilities for us and for our customers in context of the GDPR.
How does the AWS Shared Responsibility Model change under GDPR? The short answer – it doesn’t. AWS is responsible for securing the underlying infrastructure that supports the cloud and the services provided; while customers and APN partners, acting either as data controllers or data processors, are responsible for any personal data they put in the cloud. The shared responsibility model illustrates the various responsibilities of AWS and our customers and APN partners, and the same separation of responsibility applies under the GDPR.
AWS responsibilities as a data processor
The GDPR does introduce specific regulation and responsibilities regarding data controllers and processors. When any AWS customer uses our services to process personal data, the controller is usually the AWS customer (and sometimes it is the AWS customer’s customer). However, in all of these cases, AWS is always the data processor in relation to this activity. This is because the customer is directing the processing of data through its interaction with the AWS service controls, and AWS is only executing customer directions. As a data processor, AWS is responsible for protecting the global infrastructure that runs all of our services. Controllers using AWS maintain control over data hosted on this infrastructure, including the security configuration controls for handling end-user content and personal data. Protecting this infrastructure, is our number one priority, and we invest heavily in third-party auditors to test our security controls and make any issues they find available to our customer base through AWS Artifact. Our ISO 27018 report is a good example, as it tests security controls that focus on protection of personal data in particular.
AWS has an increased responsibility for our managed services. Examples of managed services include Amazon DynamoDB, Amazon RDS, Amazon Redshift, Amazon Elastic MapReduce, and Amazon WorkSpaces. These services provide the scalability and flexibility of cloud-based resources with less operational overhead because we handle basic security tasks like guest operating system (OS) and database patching, firewall configuration, and disaster recovery. For most managed services, you only configure logical access controls and protect account credentials, while maintaining control and responsibility of any personal data.
Customer and APN partner responsibilities as data controllers — and how AWS Services can help
Our customers can act as data controllers or data processors within their AWS environment. As a data controller, the services you use may determine how you configure those services to help meet your GDPR compliance needs. For example, AWS Services that are classified as Infrastructure as a Service (IaaS), such as Amazon EC2, Amazon VPC, and Amazon S3, are under your control and require you to perform all routine security configuration and management that would be necessary no matter where the servers were located. With Amazon EC2 instances, you are responsible for managing: guest OS (including updates and security patches), application software or utilities installed on the instances, and the configuration of the AWS-provided firewall (called a security group).
To help you realize data protection by design principles under the GDPR when using our infrastructure, we recommend you protect AWS account credentials and set up individual user accounts with Amazon Identity and Access Management (IAM) so that each user is only given the permissions necessary to fulfill their job duties. We also recommend using multi-factor authentication (MFA) with each account, requiring the use of SSL/TLS to communicate with AWS resources, setting up API/user activity logging with AWS CloudTrail, and using AWS encryption solutions, along with all default security controls within AWS Services. You can also use advanced managed security services, such as Amazon Macie, which assists in discovering and securing personal data stored in Amazon S3.
For more information, you can download the AWS Security Best Practices whitepaper or visit the AWS Security Resources or GDPR Center webpages. In addition to our solutions and services, AWS APN partners can provide hundreds of tools and features to help you meet your security objectives, ranging from network security and configuration management to access control and data encryption.
The collective thoughts of the interwebz
By continuing to use the site, you agree to the use of cookies. more information
The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.