Tag Archives: windows

MagPi 67: back to the future with retro computing on your Pi

Post Syndicated from Rob Zwetsloot original https://www.raspberrypi.org/blog/magpi-67/

Hey folks, Rob from The MagPi here! While we do love modern computers here at The MagPi, we also have a soft spot for the classic machines of yesteryear, which is why we have a huge feature on emulating and upcycling retro computers in The MagPi issue 67, out right now.

The MagPi 67 Retro Gaming Privacy Security

Retro computing and security in the latest issue of The MagPi

Retro computing

Noted retro computing enthusiast K.G. Orphanides takes you through using the Raspberry Pi to emulate these classic machines, listing the best emulators out there and some of the homebrew software people have created for them. There’s even a guide on how to put a Pi in a Speccy!

The MagPi 67 Retro Gaming Privacy Security

Retro fun for all

While I’m a bit too young to have had a Commodore 64 or a Spectrum, there are plenty of folks who read the mag with nostalgia for that age of computing. And it’s also important for us young’uns to know the history of our hobby. So get ready to dive in!

Security and more

We also have an in-depth article about improving your security and privacy online and on your Raspberry Pi, and about using your Pi to increase your network security. It’s an important topic, and one that I’m pretty passionate about, so hopefully you’ll find the piece useful!

The new issue also includes our usual selection of inspiring projects, informative guides, and definitive reviews, as well as a free DVD with the latest version of the Raspberry Pi Desktop for Windows and Apple PCs!

Get The MagPi 67

Issue 67 is available today from WHSmith, Tesco, Sainsbury’s, and Asda. If you live in the US, head over to your local Barnes & Noble or Micro Center in the next few days for a print copy. You can also get the new issue online from our store, or digitally via our Android and iOS apps. And don’t forget, there’s always the free PDF as well.

New subscription offer!

Want to support the Raspberry Pi Foundation and the magazine? We’ve launched a new way to subscribe to the print version of The MagPi: you can now take out a monthly £4 subscription to the magazine, effectively creating a rolling pre-order system that saves you money on each issue.

You can also take out a twelve-month print subscription and get a Pi Zero W, Pi Zero case, and adapter cables absolutely free! This offer does not currently have an end date.

We hope you enjoy this issue! See you next time…

The post MagPi 67: back to the future with retro computing on your Pi appeared first on Raspberry Pi.

Flight Sim Company Embeds Malware to Steal Pirates’ Passwords

Post Syndicated from Andy original https://torrentfreak.com/flight-sim-company-embeds-malware-to-steal-pirates-passwords-180219/

Anti-piracy systems and DRM come in all shapes and sizes, none of them particularly popular, but one deployed by flight sim company FlightSimLabs is likely to go down in history as one of the most outrageous.

It all started yesterday on Reddit when Flight Sim user ‘crankyrecursion’ reported a little extra something in his download of FlightSimLabs’ A320X module.

“Using file ‘FSLabs_A320X_P3D_v2.0.1.231.exe’ there seems to be a file called ‘test.exe’ included,” crankyrecursion wrote.

“This .exe file is from http://securityxploded.com and is touted as a ‘Chrome Password Dump’ tool, which seems to work – particularly as the installer would typically run with Administrative rights (UAC prompts) on Windows Vista and above. Can anyone shed light on why this tool is included in a supposedly trusted installer?”

The existence of a Chrome password dumping tool is certainly cause for alarm, especially if the software had been obtained from a less-than-official source, such as a torrent or similar site, given the potential for third-party pollution.

However, with the possibility of a nefarious third-party dumping something nasty in a pirate release still lurking on the horizon, things took an unexpected turn. FlightSimLabs chief Lefteris Kalamaras made a statement basically admitting that his company was behind the malware installation.

“We were made aware there is a Reddit thread started tonight regarding our latest installer and how a tool is included in it, that indiscriminately dumps Chrome passwords. That is not correct information – in fact, the Reddit thread was posted by a person who is not our customer and has somehow obtained our installer without purchasing,” Kalamaras wrote.

“[T]here are no tools used to reveal any sensitive information of any customer who has legitimately purchased our products. We all realize that you put a lot of trust in our products and this would be contrary to what we believe.

“There is a specific method used against specific serial numbers that have been identified as pirate copies and have been making the rounds on ThePirateBay, RuTracker and other such malicious sites,” he added.

In a nutshell, FlightSimLabs installed a password dumper onto ALL users’ machines, whether they were pirates or not, but then only activated the password-stealing module when it determined that specific ‘pirate’ serial numbers had been used which matched those on FlightSimLabs’ servers.

“Test.exe is part of the DRM and is only targeted against specific pirate copies of copyrighted software obtained illegally. That program is only extracted temporarily and is never under any circumstances used in legitimate copies of the product,” Kalamaras added.

That didn’t impress Luke Gorman, who published an analysis slamming the flight sim company for knowingly installing password-stealing malware on users machines, even those who purchased the title legitimately.

Password stealer in action (credit: Luke Gorman)

Making matters even worse, the FlightSimLabs chief went on to say that information being obtained from pirates’ machines in this manner is likely to be used in court or other legal processes.

“This method has already successfully provided information that we’re going to use in our ongoing legal battles against such criminals,” Kalamaras revealed.

While the use of the extracted passwords and usernames elsewhere will remain to be seen, it appears that FlightSimLabs has had a change of heart. With immediate effect, the company is pointing customers to a new installer that doesn’t include code for stealing their most sensitive data.

“I want to reiterate and reaffirm that we as a company and as flight simmers would never do anything to knowingly violate the trust that you have placed in us by not only buying our products but supporting them and FlightSimLabs,” Kalamaras said in an update.

“While the majority of our customers understand that the fight against piracy is a difficult and ongoing battle that sometimes requires drastic measures, we realize that a few of you were uncomfortable with this particular method which might be considered to be a bit heavy handed on our part. It is for this reason we have uploaded an updated installer that does not include the DRM check file in question.”

To be continued………

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Pirates Crack Microsoft’s UWP Protection, Five Layers of DRM Defeated

Post Syndicated from Andy original https://torrentfreak.com/pirates-crack-microsofts-uwp-protection-five-layers-of-drm-defeated-180215/

As the image on the right shows, Microsoft’s Universal Windows Platform (UWP) is a system that enables software developers to create applications that can run across many devices.

“The Universal Windows Platform (UWP) is the app platform for Windows 10. You can develop apps for UWP with just one API set, one app package, and one store to reach all Windows 10 devices – PC, tablet, phone, Xbox, HoloLens, Surface Hub and more,” Microsoft explains.

While the benefits of such a system are immediately apparent, critics say that UWP gives Microsoft an awful lot of control, not least since UWP software must be distributed via the Windows Store with Microsoft taking a cut.

Or that was the plan, at least.

Last evening it became clear that the UWP system, previously believed to be uncrackable, had fallen to pirates. After being released on October 31, 2017, the somewhat underwhelming Zoo Tycoon Ultimate Animal Collection became the first victim at the hands of popular scene group, CODEX.

“This is the first scene release of a UWP (Universal Windows Platform) game. Therefore we would like to point out that it will of course only work on Windows 10. This particular game requires Windows 10 version 1607 or newer,” the group said in its release notes.

CODEX release notes

CODEX says it’s important that the game isn’t allowed to communicate with the Internet so the group advises users to block the game’s executable in their firewall.

While that’s not a particularly unusual instruction, CODEX did reveal that various layers of protection had to be bypassed to make the game work. They’re listed by the group as MSStore, UWP, EAppX, XBLive, and Arxan, the latter being an anti-tamper system.

“It’s the equivalent of Denuvo (without the DRM License part),” cracker Voksi previously explained. “It’s still bloats the executable with useless virtual machines that only slow down your game.”

Arxan features

Arxan’s marketing comes off as extremely confident but may need amending in light of yesterday’s developments.

“Arxan uses code protection against reverse-engineering, key and data protection to secure servers and fortification of game logic to stop the bad guys from tampering. Sorry hackers, game over,” the company’s marketing reads.

What is unclear at this stage is whether Zoo Tycoon Ultimate Animal Collection represents a typical UWP release or if some particular flaw allowed CODEX to take it apart. The possibility of additional releases is certainly a tantalizing one for pirates but how long they will have to wait is unknown.

Whatever the outcome, Arxan calling “game over” is perhaps a little premature under the circumstances but in this continuing arms race, they probably have another version of their anti-tamper tech up their sleeves…..

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

How to Patch Linux Workloads on AWS

Post Syndicated from Koen van Blijderveen original https://aws.amazon.com/blogs/security/how-to-patch-linux-workloads-on-aws/

Most malware tries to compromise your systems by using a known vulnerability that the operating system maker has already patched. As best practices to help prevent malware from affecting your systems, you should apply all operating system patches and actively monitor your systems for missing patches.

In this blog post, I show you how to patch Linux workloads using AWS Systems Manager. To accomplish this, I will show you how to use the AWS Command Line Interface (AWS CLI) to:

  1. Launch an Amazon EC2 instance for use with Systems Manager.
  2. Configure Systems Manager to patch your Amazon EC2 Linux instances.

In two previous blog posts (Part 1 and Part 2), I showed how to use the AWS Management Console to perform the necessary steps to patch, inspect, and protect Microsoft Windows workloads. You can implement those same processes for your Linux instances running in AWS by changing the instance tags and types shown in the previous blog posts.

Because most Linux system administrators are more familiar with using a command line, I show how to patch Linux workloads by using the AWS CLI in this blog post. The steps to use the Amazon EBS Snapshot Scheduler and Amazon Inspector are identical for both Microsoft Windows and Linux.

What you should know first

To follow along with the solution in this post, you need one or more Amazon EC2 instances. You may use existing instances or create new instances. For this post, I assume this is an Amazon EC2 for Amazon Linux instance installed from Amazon Machine Images (AMIs).

Systems Manager is a collection of capabilities that helps you automate management tasks for AWS-hosted instances on Amazon EC2 and your on-premises servers. In this post, I use Systems Manager for two purposes: to run remote commands and apply operating system patches. To learn about the full capabilities of Systems Manager, see What Is AWS Systems Manager?

As of Amazon Linux 2017.09, the AMI comes preinstalled with the Systems Manager agent. Systems Manager Patch Manager also supports Red Hat and Ubuntu. To install the agent on these Linux distributions or an older version of Amazon Linux, see Installing and Configuring SSM Agent on Linux Instances.

If you are not familiar with how to launch an Amazon EC2 instance, see Launching an Instance. I also assume you launched or will launch your instance in a private subnet. You must make sure that the Amazon EC2 instance can connect to the internet using a network address translation (NAT) instance or NAT gateway to communicate with Systems Manager. The following diagram shows how you should structure your VPC.

Diagram showing how to structure your VPC

Later in this post, you will assign tasks to a maintenance window to patch your instances with Systems Manager. To do this, the IAM user you are using for this post must have the iam:PassRole permission. This permission allows the IAM user assigning tasks to pass his own IAM permissions to the AWS service. In this example, when you assign a task to a maintenance window, IAM passes your credentials to Systems Manager. You also should authorize your IAM user to use Amazon EC2 and Systems Manager. As mentioned before, you will be using the AWS CLI for most of the steps in this blog post. Our documentation shows you how to get started with the AWS CLI. Make sure you have the AWS CLI installed and configured with an AWS access key and secret access key that belong to an IAM user that have the following AWS managed policies attached to the IAM user you are using for this example: AmazonEC2FullAccess and AmazonSSMFullAccess.

Step 1: Launch an Amazon EC2 Linux instance

In this section, I show you how to launch an Amazon EC2 instance so that you can use Systems Manager with the instance. This step requires you to do three things:

  1. Create an IAM role for Systems Manager before launching your Amazon EC2 instance.
  2. Launch your Amazon EC2 instance with Amazon EBS and the IAM role for Systems Manager.
  3. Add tags to the instances so that you can add your instances to a Systems Manager maintenance window based on tags.

A. Create an IAM role for Systems Manager

Before launching an Amazon EC2 instance, I recommend that you first create an IAM role for Systems Manager, which you will use to update the Amazon EC2 instance. AWS already provides a preconfigured policy that you can use for the new role and it is called AmazonEC2RoleforSSM.

  1. Create a JSON file named trustpolicy-ec2ssm.json that contains the following trust policy. This policy describes which principal (an entity that can take action on an AWS resource) is allowed to assume the role we are going to create. In this example, the principal is the Amazon EC2 service.
    {
      "Version": "2012-10-17",
      "Statement": {
        "Effect": "Allow",
        "Principal": {"Service": "ec2.amazonaws.com"},
        "Action": "sts:AssumeRole"
      }
    }

  1. Use the following command to create a role named EC2SSM that has the AWS managed policy AmazonEC2RoleforSSM attached to it. This generates JSON-based output that describes the role and its parameters, if the command is successful.
    $ aws iam create-role --role-name EC2SSM --assume-role-policy-document file://trustpolicy-ec2ssm.json

  1. Use the following command to attach the AWS managed IAM policy (AmazonEC2RoleforSSM) to your newly created role.
    $ aws iam attach-role-policy --role-name EC2SSM --policy-arn arn:aws:iam::aws:policy/service-role/AmazonEC2RoleforSSM

  1. Use the following commands to create the IAM instance profile and add the role to the instance profile. The instance profile is needed to attach the role we created earlier to your Amazon EC2 instance.
    $ aws iam create-instance-profile --instance-profile-name EC2SSM-IP
    $ aws iam add-role-to-instance-profile --instance-profile-name EC2SSM-IP --role-name EC2SSM

B. Launch your Amazon EC2 instance

To follow along, you need an Amazon EC2 instance that is running Amazon Linux. You can use any existing instance you may have or create a new instance.

When launching a new Amazon EC2 instance, be sure that:

  1. Use the following command to launch a new Amazon EC2 instance using an Amazon Linux AMI available in the US East (N. Virginia) Region (also known as us-east-1). Replace YourKeyPair and YourSubnetId with your information. For more information about creating a key pair, see the create-key-pair documentation. Write down the InstanceId that is in the output because you will need it later in this post.
    $ aws ec2 run-instances --image-id ami-cb9ec1b1 --instance-type t2.micro --key-name YourKeyPair --subnet-id YourSubnetId --iam-instance-profile Name=EC2SSM-IP

  1. If you are using an existing Amazon EC2 instance, you can use the following command to attach the instance profile you created earlier to your instance.
    $ aws ec2 associate-iam-instance-profile --instance-id YourInstanceId --iam-instance-profile Name=EC2SSM-IP

C. Add tags

The final step of configuring your Amazon EC2 instances is to add tags. You will use these tags to configure Systems Manager in Step 2 of this post. For this example, I add a tag named Patch Group and set the value to Linux Servers. I could have other groups of Amazon EC2 instances that I treat differently by having the same tag name but a different tag value. For example, I might have a collection of other servers with the tag name Patch Group with a value of Web Servers.

  • Use the following command to add the Patch Group tag to your Amazon EC2 instance.
    $ aws ec2 create-tags --resources YourInstanceId --tags --tags Key="Patch Group",Value="Linux Servers"

Note: You must wait a few minutes until the Amazon EC2 instance is available before you can proceed to the next section. To make sure your Amazon EC2 instance is online and ready, you can use the following AWS CLI command:

$ aws ec2 describe-instance-status --instance-ids YourInstanceId

At this point, you now have at least one Amazon EC2 instance you can use to configure Systems Manager.

Step 2: Configure Systems Manager

In this section, I show you how to configure and use Systems Manager to apply operating system patches to your Amazon EC2 instances, and how to manage patch compliance.

To start, I provide some background information about Systems Manager. Then, I cover how to:

  1. Create the Systems Manager IAM role so that Systems Manager is able to perform patch operations.
  2. Create a Systems Manager patch baseline and associate it with your instance to define which patches Systems Manager should apply.
  3. Define a maintenance window to make sure Systems Manager patches your instance when you tell it to.
  4. Monitor patch compliance to verify the patch state of your instances.

You must meet two prerequisites to use Systems Manager to apply operating system patches. First, you must attach the IAM role you created in the previous section, EC2SSM, to your Amazon EC2 instance. Second, you must install the Systems Manager agent on your Amazon EC2 instance. If you have used a recent Amazon Linux AMI, Amazon has already installed the Systems Manager agent on your Amazon EC2 instance. You can confirm this by logging in to an Amazon EC2 instance and checking the Systems Manager agent log files that are located at /var/log/amazon/ssm/.

To install the Systems Manager agent on an instance that does not have the agent preinstalled or if you want to use the Systems Manager agent on your on-premises servers, see Installing and Configuring the Systems Manager Agent on Linux Instances. If you forgot to attach the newly created role when launching your Amazon EC2 instance or if you want to attach the role to already running Amazon EC2 instances, see Attach an AWS IAM Role to an Existing Amazon EC2 Instance by Using the AWS CLI or use the AWS Management Console.

A. Create the Systems Manager IAM role

For a maintenance window to be able to run any tasks, you must create a new role for Systems Manager. This role is a different kind of role than the one you created earlier: this role will be used by Systems Manager instead of Amazon EC2. Earlier, you created the role, EC2SSM, with the policy, AmazonEC2RoleforSSM, which allowed the Systems Manager agent on your instance to communicate with Systems Manager. In this section, you need a new role with the policy, AmazonSSMMaintenanceWindowRole, so that the Systems Manager service can execute commands on your instance.

To create the new IAM role for Systems Manager:

  1. Create a JSON file named trustpolicy-maintenancewindowrole.json that contains the following trust policy. This policy describes which principal is allowed to assume the role you are going to create. This trust policy allows not only Amazon EC2 to assume this role, but also Systems Manager.
    {
       "Version":"2012-10-17",
       "Statement":[
          {
             "Sid":"",
             "Effect":"Allow",
             "Principal":{
                "Service":[
                   "ec2.amazonaws.com",
                   "ssm.amazonaws.com"
               ]
             },
             "Action":"sts:AssumeRole"
          }
       ]
    }

  1. Use the following command to create a role named MaintenanceWindowRole that has the AWS managed policy, AmazonSSMMaintenanceWindowRole, attached to it. This command generates JSON-based output that describes the role and its parameters, if the command is successful.
    $ aws iam create-role --role-name MaintenanceWindowRole --assume-role-policy-document file://trustpolicy-maintenancewindowrole.json

  1. Use the following command to attach the AWS managed IAM policy (AmazonEC2RoleforSSM) to your newly created role.
    $ aws iam attach-role-policy --role-name MaintenanceWindowRole --policy-arn arn:aws:iam::aws:policy/service-role/AmazonSSMMaintenanceWindowRole

B. Create a Systems Manager patch baseline and associate it with your instance

Next, you will create a Systems Manager patch baseline and associate it with your Amazon EC2 instance. A patch baseline defines which patches Systems Manager should apply to your instance. Before you can associate the patch baseline with your instance, though, you must determine if Systems Manager recognizes your Amazon EC2 instance. Use the following command to list all instances managed by Systems Manager. The --filters option ensures you look only for your newly created Amazon EC2 instance.

$ aws ssm describe-instance-information --filters Key=InstanceIds,Values= YourInstanceId

{
    "InstanceInformationList": [
        {
            "IsLatestVersion": true,
            "ComputerName": "ip-10-50-2-245",
            "PingStatus": "Online",
            "InstanceId": "YourInstanceId",
            "IPAddress": "10.50.2.245",
            "ResourceType": "EC2Instance",
            "AgentVersion": "2.2.120.0",
            "PlatformVersion": "2017.09",
            "PlatformName": "Amazon Linux AMI",
            "PlatformType": "Linux",
            "LastPingDateTime": 1515759143.826
        }
    ]
}

If your instance is missing from the list, verify that:

  1. Your instance is running.
  2. You attached the Systems Manager IAM role, EC2SSM.
  3. You deployed a NAT gateway in your public subnet to ensure your VPC reflects the diagram shown earlier in this post so that the Systems Manager agent can connect to the Systems Manager internet endpoint.
  4. The Systems Manager agent logs don’t include any unaddressed errors.

Now that you have checked that Systems Manager can manage your Amazon EC2 instance, it is time to create a patch baseline. With a patch baseline, you define which patches are approved to be installed on all Amazon EC2 instances associated with the patch baseline. The Patch Group resource tag you defined earlier will determine to which patch group an instance belongs. If you do not specifically define a patch baseline, the default AWS-managed patch baseline is used.

To create a patch baseline:

  1. Use the following command to create a patch baseline named AmazonLinuxServers. With approval rules, you can determine the approved patches that will be included in your patch baseline. In this example, you add all Critical severity patches to the patch baseline as soon as they are released, by setting the Auto approval delay to 0 days. By setting the Auto approval delay to 2 days, you add to this patch baseline the Important, Medium, and Low severity patches two days after they are released.
    $ aws ssm create-patch-baseline --name "AmazonLinuxServers" --description "Baseline containing all updates for Amazon Linux" --operating-system AMAZON_LINUX --approval-rules "PatchRules=[{PatchFilterGroup={PatchFilters=[{Values=[Critical],Key=SEVERITY}]},ApproveAfterDays=0,ComplianceLevel=CRITICAL},{PatchFilterGroup={PatchFilters=[{Values=[Important,Medium,Low],Key=SEVERITY}]},ApproveAfterDays=2,ComplianceLevel=HIGH}]"
    
    {
        "BaselineId": "YourBaselineId"
    }

  1. Use the following command to register the patch baseline you created with your instance. To do so, you use the Patch Group tag that you added to your Amazon EC2 instance.
    $ aws ssm register-patch-baseline-for-patch-group --baseline-id YourPatchBaselineId --patch-group "Linux Servers"
    
    {
        "PatchGroup": "Linux Servers",
        "BaselineId": "YourBaselineId"
    }

C.  Define a maintenance window

Now that you have successfully set up a role, created a patch baseline, and registered your Amazon EC2 instance with your patch baseline, you will define a maintenance window so that you can control when your Amazon EC2 instances will receive patches. By creating multiple maintenance windows and assigning them to different patch groups, you can make sure your Amazon EC2 instances do not all reboot at the same time.

To define a maintenance window:

  1. Use the following command to define a maintenance window. In this example command, the maintenance window will start every Saturday at 10:00 P.M. UTC. It will have a duration of 4 hours and will not start any new tasks 1 hour before the end of the maintenance window.
    $ aws ssm create-maintenance-window --name SaturdayNight --schedule "cron(0 0 22 ? * SAT *)" --duration 4 --cutoff 1 --allow-unassociated-targets
    
    {
        "WindowId": "YourMaintenanceWindowId"
    }

For more information about defining a cron-based schedule for maintenance windows, see Cron and Rate Expressions for Maintenance Windows.

  1. After defining the maintenance window, you must register the Amazon EC2 instance with the maintenance window so that Systems Manager knows which Amazon EC2 instance it should patch in this maintenance window. You can register the instance by using the same Patch Group tag you used to associate the Amazon EC2 instance with the AWS-provided patch baseline, as shown in the following command.
    $ aws ssm register-target-with-maintenance-window --window-id YourMaintenanceWindowId --resource-type INSTANCE --targets "Key=tag:Patch Group,Values=Linux Servers"
    
    {
        "WindowTargetId": "YourWindowTargetId"
    }

  1. Assign a task to the maintenance window that will install the operating system patches on your Amazon EC2 instance. The following command includes the following options.
    1. name is the name of your task and is optional. I named mine Patching.
    2. task-arn is the name of the task document you want to run.
    3. max-concurrency allows you to specify how many of your Amazon EC2 instances Systems Manager should patch at the same time. max-errors determines when Systems Manager should abort the task. For patching, this number should not be too low, because you do not want your entire patch task to stop on all instances if one instance fails. You can set this, for example, to 20%.
    4. service-role-arn is the Amazon Resource Name (ARN) of the AmazonSSMMaintenanceWindowRole role you created earlier in this blog post.
    5. task-invocation-parameters defines the parameters that are specific to the AWS-RunPatchBaseline task document and tells Systems Manager that you want to install patches with a timeout of 600 seconds (10 minutes).
      $ aws ssm register-task-with-maintenance-window --name "Patching" --window-id "YourMaintenanceWindowId" --targets "Key=WindowTargetIds,Values=YourWindowTargetId" --task-arn AWS-RunPatchBaseline --service-role-arn "arn:aws:iam::123456789012:role/MaintenanceWindowRole" --task-type "RUN_COMMAND" --task-invocation-parameters "RunCommand={Comment=,TimeoutSeconds=600,Parameters={SnapshotId=[''],Operation=[Install]}}" --max-concurrency "500" --max-errors "20%"
      
      {
          "WindowTaskId": "YourWindowTaskId"
      }

Now, you must wait for the maintenance window to run at least once according to the schedule you defined earlier. If your maintenance window has expired, you can check the status of any maintenance tasks Systems Manager has performed by using the following command.

$ aws ssm describe-maintenance-window-executions --window-id "YourMaintenanceWindowId"

{
    "WindowExecutions": [
        {
            "Status": "SUCCESS",
            "WindowId": "YourMaintenanceWindowId",
            "WindowExecutionId": "b594984b-430e-4ffa-a44c-a2e171de9dd3",
            "EndTime": 1515766467.487,
            "StartTime": 1515766457.691
        }
    ]
}

D.  Monitor patch compliance

You also can see the overall patch compliance of all Amazon EC2 instances using the following command in the AWS CLI.

$ aws ssm list-compliance-summaries

This command shows you the number of instances that are compliant with each category and the number of instances that are not in JSON format.

You also can see overall patch compliance by choosing Compliance under Insights in the navigation pane of the Systems Manager console. You will see a visual representation of how many Amazon EC2 instances are up to date, how many Amazon EC2 instances are noncompliant, and how many Amazon EC2 instances are compliant in relation to the earlier defined patch baseline.

Screenshot of the Compliance page of the Systems Manager console

In this section, you have set everything up for patch management on your instance. Now you know how to patch your Amazon EC2 instance in a controlled manner and how to check if your Amazon EC2 instance is compliant with the patch baseline you have defined. Of course, I recommend that you apply these steps to all Amazon EC2 instances you manage.

Summary

In this blog post, I showed how to use Systems Manager to create a patch baseline and maintenance window to keep your Amazon EC2 Linux instances up to date with the latest security patches. Remember that by creating multiple maintenance windows and assigning them to different patch groups, you can make sure your Amazon EC2 instances do not all reboot at the same time.

If you have comments about this post, submit them in the “Comments” section below. If you have questions about or issues implementing any part of this solution, start a new thread on the Amazon EC2 forum or contact AWS Support.

– Koen

[$] Two FOSDEM talks on Samba 4

Post Syndicated from jake original https://lwn.net/Articles/747098/rss

Much as some of us would love never to have to deal with Windows,
it exists. It wants to authenticate its users and share
resources like files and printers over the network. Although many
enterprises use Microsoft tools to do this, there is a free alternative,
in the form of Samba. While Samba 3 has been happily providing
authentication along with file and print sharing to Windows clients for
many years,
the Microsoft world has been slowly moving toward Active Directory (AD).
Meanwhile, Samba 4, which adds a free reimplementation of AD on Linux, has
been increasingly ready for deployment. Three short talks at FOSDEM 2018
provided three different views of Samba 4, also known as Samba-AD,
and left behind a pretty clear picture that Samba 4 is truly
ready for use.

Subscribers can read on for a report from guest author Tom Yates on the first two of those talks; stay tuned for another on the third soon.

Amazon Relational Database Service – Looking Back at 2017

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/amazon-relational-database-service-looking-back-at-2017/

The Amazon RDS team launched nearly 80 features in 2017. Some of them were covered in this blog, others on the AWS Database Blog, and the rest in What’s New or Forum posts. To wrap up my week, I thought it would be worthwhile to give you an organized recap. So here we go!

Certification & Security

Features

Engine Versions & Features

Regional Support

Instance Support

Price Reductions

And That’s a Wrap
I’m pretty sure that’s everything. As you can see, 2017 was quite the year! I can’t wait to see what the team delivers in 2018.

Jeff;

 

The Early Days of Mass Internet Piracy Were Awesome Yet Awful

Post Syndicated from Andy original https://torrentfreak.com/the-early-days-of-mass-internet-piracy-were-awesome-yet-awful-180211/

While Napster certainly put the digital cats among the pigeons in 1999, the organized chaos of mass Internet file-sharing couldn’t be truly appreciated until the advent of decentralized P2P networks a year or so later.

In the blink of an eye, everyone with a “shared folder” client became both a consumer and publisher, sucking in files from strangers and sharing them with like-minded individuals all around the planet. While today’s piracy narrative is all about theft and danger, in the early 2000s the sharing community felt more like distant friends who hadn’t met, quietly trading cards together.

Satisfying to millions, those who really engaged found shared folder sharing a real adrenaline buzz, as English comedian Seann Walsh noted on Conan this week.

“Click. 20th Century Fox comes up. No pixels. No shaky cam. No silhouettes of heads at the bottom of the screen, people coming in five minutes late. None of that,” Walsh said, recalling his experience of downloading X-Men 2 (X2) from LimeWire.

“We thought: ‘We’ve done it!!’ This was incredible! We were going to have to go to the cinema. We weren’t going to have to wait for the film to come out on video. We weren’t going to have to WALK to blockbuster!”

But while the nostalgia has an air of magic about it, Walsh’s take on the piracy experience is bittersweet. While obtaining X2 without having to trudge to a video store was a revelation, there were plenty of drawbacks too.

Downloading the pirate copy took a week, which pre-BitTorrent wasn’t a completely bad result but still a considerable commitment. There were also serious problems with quality control.

“20th Century fades, X Men 2 comes up. We’ve done it! We’re not taking it for granted – we’re actually hugging. Yes! Yes! We’ve done it! This is the future! We look at the screen, Wolverine turns round…,” …..and Walsh launches into a broadside of pseudo-German babble, mimicking the unexpectedly-dubbed superhero.

After a week of downloading and getting a quality picture on launch, that is a punch in the gut, to say the least. Arguably no less than a pirate deserves, some will argue, but a fat lip nonetheless, and one many a pirate has suffered over the years. Nevertheless, as Walsh notes, it’s a pain that kids in 2018 simply cannot comprehend.

“Children today are living the childhood I dreamed of. If they want to hear a song – touch – they stream it. They’ve got it now. Bang. Instantly. They don’t know the pain of LimeWire.

“Start downloading a song, go to school, come back. HOPE that it’d finished! That download bar messing with you. Four minutes left…..nine HOURS and 28 minutes left? Thirty seconds left…..52 hours and 38 minutes left? JUST TELL ME THE TRUTH!!!!!” Walsh pleaded.

While this might sound comical now, this was the reality of people downloading from clients such as LimeWire and Kazaa. While X2 in German would’ve been torture for a non-German speaker, the misery of watching an English language copy of 28 Days Later somehow crammed into a 30Mb file is right up there too.

Mislabeled music with microscopic bitrates? That was pretty much standard.

But against the odds, these frankly second-rate experiences still managed to capture the hearts and minds of the digitally minded. People were prepared to put up with nonsense and regular disappointment in order to consume content in a way fit for the 21st century. Yet somehow the combined might of the entertainment industries couldn’t come up with anything substantially better for a number of years.

Of course, broadband availability and penetration played its part but looking back, something could have been done. Not only didn’t the Internet’s popularity come as a surprise, people’s expectations were dramatically lower than they are today too. In any event, beating the pirates should have been child’s play. After all, it was just regular people sharing files in a Windows folder.

Any fool could do it – and millions did. Surprisingly, they have proven unstoppable.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Server vs Endpoint Backup — Which is Best?

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/endpoint-backup-for-distributed-computing/

server and computer backup to the cloud

How common are these statements in your organization?

  • I know I saved that file. The application must have put it somewhere outside of my documents folder.” — Mike in Marketing
  • I was on the road and couldn’t get a reliable VPN connection. I guess that’s why my laptop wasn’t backed up.” — Sally in Sales
  • I try to follow file policies, but I had a deadline this week and didn’t have time to copy my files to the server.” — Felicia in Finance
  • I just did a commit of my code changes and that was when the coffee mug was knocked over onto the laptop.” — Erin in Engineering
  • If you need a file restored from backup, contact the help desk at [email protected] The IT department will get back to you.” — XYZ corporate intranet
  • Why don’t employees save files on the network drive like they’re supposed to?” — Isaac in IT

If these statements are familiar, most likely you rely on file server backups to safeguard your valuable endpoint data.

The problem is, the workplace has changed. Where server backups might have fit how offices worked at one time in the past, relying solely on server backups today means you could be missing valuable endpoint data from your backups. On top of that, you likely are unnecessarily expending valuable user and IT time in attempting to secure and restore endpoint data.

Times Have Changed, and so have Effective Enterprise Backup Strategies

The ways we use computers and handle files today are vastly different from just five or ten years ago. Employees are mobile, and we no longer are limited to monolithic PC and Mac-based office suites. Cloud applications are everywhere. Company-mandated network drive policies are difficult to enforce as office practices change, devices proliferate, and organizational culture evolves. Besides, your IT staff has other things to do than babysit your employees to make sure they follow your organization’s policies for managing files.

Server Backup has its Place, but Does it Support How People Work Today?

Many organizations still rely on server backup. If your organization works primarily in centralized offices with all endpoints — likely desktops — connected directly to your network, and you maintain tight control of how employees manage their files, it still might work for you.

Your IT department probably has set network drive policies that require employees to save files in standard places that are regularly backed up to your file server. Turns out, though, that even standard applications don’t always save files where IT would like them to be. They could be in a directory or folder that’s not regularly backed up.

As employees have become more mobile, they have adopted practices that enable them to access files from different places, but these practices might not fit in with your organization’s server policies. An employee saving a file to Dropbox might be planning to copy it to an “official” location later, but whether that ever happens could be doubtful. Often people don’t realize until it’s too late that accidentally deleting a file in one sync service directory means that all copies in all locations — even the cloud — are also deleted.

Employees are under increasing demands to produce, which means that network drive policies aren’t always followed; time constraints and deadlines can cause best practices to go out the window. Users will attempt to comply with policies as best they can — and you might get 70% or even 75% effective compliance — but getting even to that level requires training, monitoring, and repeatedly reminding employees of policies they need to follow — none of which leads to a good work environment.

Even if you get to 75% compliance with network file policies, what happens if the critical file needed to close out an end-of-year financial summary isn’t one of the files backed up? The effort required for IT to get from 70% to 80% or 90% of an endpoint’s files effectively backed up could require multiple hours from your IT department, and you still might not have backed up the one critical file you need later.

Your Organization Operates on its Data — And Today That Data Exists in Multiple Locations

Users are no longer tied to one endpoint, and may use different computers in the office, at home, or traveling. The greater the number of endpoints used, the greater the chance of an accidental or malicious device loss or data corruption. The loss of the Sales VP’s laptop at the airport on her way back from meeting with major customers can affect an entire organization and require weeks to resolve.

Even with the best intentions and efforts, following policies when out of the office can be difficult or impossible. Connecting to your private network when remote most likely requires a VPN, and VPN connectivity can be challenging from the lobby Wi-Fi at the Radisson. Server restores require time from the IT staff, which can mean taking resources away from other IT priorities and a growing backlog of requests from users to need their files as soon as possible. When users are dependent on IT to get back files critical to their work, employee productivity and often deadlines are affected.

Managing Finite Server Storage Is an Ongoing Challenge

Network drive backup usually requires on-premises data storage for endpoint backups. Since it is a finite resource, allocating that storage is another burden on your IT staff. To make sure that storage isn’t exceeded, IT departments often ration storage by department and/or user — another oversight duty for IT, and even more choices required by your IT department and department heads who have to decide which files to prioritize for backing up.

Adding Backblaze Endpoint Backup Improves Business Continuity and Productivity

Having an endpoint backup strategy in place can mitigate these problems and improve user productivity, as well. A good endpoint backup service, such as Backblaze Cloud Backup, will ensure that all devices are backed up securely, automatically, without requiring any action by the user or by your IT department.

For 99% of users, no configuration is required for Backblaze Backup. Everything on the endpoint is encrypted and securely backed up to the cloud, including program configuration files and files outside of standard document folders. Even temp files are backed up, which can prove invaluable when recovering a file after a crash or other program interruption. Cloud storage is unlimited with Backblaze Backup, so there are no worries about running out of storage or rationing file backups.

The Backblaze client can be silently and remotely installed to both Macintosh and Windows clients with no user interaction. And, with Backblaze Groups, your IT staff has complete visibility into when files were last backed up. IT staff can recover any backed up file, folder, or entire computer from the admin panel, and even give file restore capability to the user, if desired, which reduces dependency on IT and time spent waiting for restores.

With over 500 petabytes of customer data stored and one million files restored every hour of every day by Backblaze customers, you know that Backblaze Backup works for its users.

You Need Data Security That Matches the Way People Work Today

Both file server and endpoint backup have their places in an organization’s data security plan, but their use and value differ. If you already are using file server backup, adding endpoint backup will make a valuable contribution to your organization by reducing workload, improving productivity, and increasing confidence that all critical files are backed up.

By guaranteeing fast and automatic backup of all endpoint data, and matching the current way organizations and people work with data, Backblaze Backup will enable you to effectively and affordably meet the data security demands of your organization.

The post Server vs Endpoint Backup — Which is Best? appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Build a Multi-Tenant Amazon EMR Cluster with Kerberos, Microsoft Active Directory Integration and EMRFS Authorization

Post Syndicated from Songzhi Liu original https://aws.amazon.com/blogs/big-data/build-a-multi-tenant-amazon-emr-cluster-with-kerberos-microsoft-active-directory-integration-and-emrfs-authorization/

One of the challenges faced by our customers—especially those in highly regulated industries—is balancing the need for security with flexibility. In this post, we cover how to enable multi-tenancy and increase security by using EMRFS (EMR File System) authorization, the Amazon S3 storage-level authorization on Amazon EMR.

Amazon EMR is an easy, fast, and scalable analytics platform enabling large-scale data processing. EMRFS authorization provides Amazon S3 storage-level authorization by configuring EMRFS with multiple IAM roles. With this functionality enabled, different users and groups can share the same cluster and assume their own IAM roles respectively.

Simply put, on Amazon EMR, we can now have an Amazon EC2 role per user assumed at run time instead of one general EC2 role at the cluster level. When the user is trying to access Amazon S3 resources, Amazon EMR evaluates against a predefined mappings list in EMRFS configurations and picks up the right role for the user.

In this post, we will discuss what EMRFS authorization is (Amazon S3 storage-level access control) and show how to configure the role mappings with detailed examples. You will then have the desired permissions in a multi-tenant environment. We also demo Amazon S3 access from HDFS command line, Apache Hive on Hue, and Apache Spark.

EMRFS authorization for Amazon S3

There are two prerequisites for using this feature:

  1. Users must be authenticated, because EMRFS needs to map the current user/group/prefix to a predefined user/group/prefix. There are several authentication options. In this post, we launch a Kerberos-enabled cluster that manages the Key Distribution Center (KDC) on the master node, and enable a one-way trust from the KDC to a Microsoft Active Directory domain.
  2. The application must support accessing Amazon S3 via Applications that have their own S3FileSystem APIs (for example, Presto) are not supported at this time.

EMRFS supports three types of mapping entries: user, group, and Amazon S3 prefix. Let’s use an example to show how this works.

Assume that you have the following three identities in your organization, and they are defined in the Active Directory:

To enable all these groups and users to share the EMR cluster, you need to define the following IAM roles:

In this case, you create a separate Amazon EC2 role that doesn’t give any permission to Amazon S3. Let’s call the role the base role (the EC2 role attached to the EMR cluster), which in this example is named EMR_EC2_RestrictedRole. Then, you define all the Amazon S3 permissions for each specific user or group in their own roles. The restricted role serves as the fallback role when the user doesn’t belong to any user/group, nor does the user try to access any listed Amazon S3 prefixes defined on the list.

Important: For all other roles, like emrfs_auth_group_role_data_eng, you need to add the base role (EMR_EC2_RestrictedRole) as the trusted entity so that it can assume other roles. See the following example:

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "ec2.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    },
    {
      "Effect": "Allow",
      "Principal": {
        "AWS": "arn:aws:iam::511586466501:role/EMR_EC2_RestrictedRole"
      },
      "Action": "sts:AssumeRole"
    }
  ]
}

The following is an example policy for the admin user role (emrfs_auth_user_role_admin_user):

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": "s3:*",
            "Resource": "*"
        }
    ]
}

We are assuming the admin user has access to all buckets in this example.

The following is an example policy for the data science group role (emrfs_auth_group_role_data_sci):

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Resource": [
                "arn:aws:s3:::emrfs-auth-data-science-bucket-demo/*",
                "arn:aws:s3:::emrfs-auth-data-science-bucket-demo"
            ],
            "Action": [
                "s3:*"
            ]
        }
    ]
}

This role grants all Amazon S3 permissions to the emrfs-auth-data-science-bucket-demo bucket and all the objects in it. Similarly, the policy for the role emrfs_auth_group_role_data_eng is shown below:

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Resource": [
                "arn:aws:s3:::emrfs-auth-data-engineering-bucket-demo/*",
                "arn:aws:s3:::emrfs-auth-data-engineering-bucket-demo"
            ],
            "Action": [
                "s3:*"
            ]
        }
    ]
}

Example role mappings configuration

To configure EMRFS authorization, you use EMR security configuration. Here is the configuration we use in this post

Consider the following scenario.

First, the admin user admin1 tries to log in and run a command to access Amazon S3 data through EMRFS. The first role emrfs_auth_user_role_admin_user on the mapping list, which is a user role, is mapped and picked up. Then admin1 has access to the Amazon S3 locations that are defined in this role.

Then a user from the data engineer group (grp_data_engineering) tries to access a data bucket to run some jobs. When EMRFS sees that the user is a member of the grp_data_engineering group, the group role emrfs_auth_group_role_data_eng is assumed, and the user has proper access to Amazon S3 that is defined in the emrfs_auth_group_role_data_eng role.

Next, the third user comes, who is not an admin and doesn’t belong to any of the groups. After failing evaluation of the top three entries, EMRFS evaluates whether the user is trying to access a certain Amazon S3 prefix defined in the last mapping entry. This type of mapping entry is called the prefix type. If the user is trying to access s3://emrfs-auth-default-bucket-demo/, then the prefix mapping is in effect, and the prefix role emrfs_auth_prefix_role_default_s3_prefix is assumed.

If the user is not trying to access any of the Amazon S3 paths that are defined on the list—which means it failed the evaluation of all the entries—it only has the permissions defined in the EMR_EC2RestrictedRole. This role is assumed by the EC2 instances in the cluster.

In this process, all the mappings defined are evaluated in the defined order, and the first role that is mapped is assumed, and the rest of the list is skipped.

Setting up an EMR cluster and mapping Active Directory users and groups

Now that we know how EMRFS authorization role mapping works, the next thing we need to think about is how we can use this feature in an easy and manageable way.

Active Directory setup

Many customers manage their users and groups using Microsoft Active Directory or other tools like OpenLDAP. In this post, we create the Active Directory on an Amazon EC2 instance running Windows Server and create the users and groups we will be using in the example below. After setting up Active Directory, we use the Amazon EMR Kerberos auto-join capability to establish a one-way trust from the KDC running on the EMR master node to the Active Directory domain on the EC2 instance. You can use your own directory services as long as it talks to the LDAP (Lightweight Directory Access Protocol).

To create and join Active Directory to Amazon EMR, follow the steps in the blog post Use Kerberos Authentication to Integrate Amazon EMR with Microsoft Active Directory.

After configuring Active Directory, you can create all the users and groups using the Active Directory tools and add users to appropriate groups. In this example, we created users like admin1, dataeng1, datascientist1, grp_data_engineering, and grp_data_science, and then add the users to the right groups.

Join the EMR cluster to an Active Directory domain

For clusters with Kerberos, Amazon EMR now supports automated Active Directory domain joins. You can use the security configuration to configure the one-way trust from the KDC to the Active Directory domain. You also configure the EMRFS role mappings in the same security configuration.

The following is an example of the EMR security configuration with a trusted Active Directory domain EMRKRB.TEST.COM and the EMRFS role mappings as we discussed earlier:

The EMRFS role mapping configuration is shown in this example:

We will also provide an example AWS CLI command that you can run.

Launching the EMR cluster and running the tests

Now you have configured Kerberos and EMRFS authorization for Amazon S3.

Additionally, you need to configure Hue with Active Directory using the Amazon EMR configuration API in order to log in using the AD users created before. The following is an example of Hue AD configuration.

[
  {
    "Classification":"hue-ini",
    "Properties":{

    },
    "Configurations":[
      {
        "Classification":"desktop",
        "Properties":{

        },
        "Configurations":[
          {
            "Classification":"ldap",
            "Properties":{

            },
            "Configurations":[
              {
                "Classification":"ldap_servers",
                "Properties":{

                },
                "Configurations":[
                  {
                    "Classification":"AWS",
                    "Properties":{
                      "base_dn":"DC=emrkrb,DC=test,DC=com",
                      "ldap_url":"ldap://emrkrb.test.com",
                      "search_bind_authentication":"false",
                      "bind_dn":"CN=adjoiner,CN=users,DC=emrkrb,DC=test,DC=com",
                      "bind_password":"Abc123456",
                      "create_users_on_login":"true",
                      "nt_domain":"emrkrb.test.com"
                    },
                    "Configurations":[

                    ]
                  }
                ]
              }
            ]
          },
          {
            "Classification":"auth",
            "Properties":{
              "backend":"desktop.auth.backend.LdapBackend"
            },
            "Configurations":[

            ]
          }
        ]
      }
    ]
  }

Note: In the preceding configuration JSON file, change the values as required before pasting it into the software setting section in the Amazon EMR console.

Now let’s use this configuration and the security configuration you created before to launch the cluster.

In the Amazon EMR console, choose Create cluster. Then choose Go to advanced options. On the Step1: Software and Steps page, under Edit software settings (optional), paste the configuration in the box.

The rest of the setup is the same as an ordinary cluster setup, except in the Security Options section. In Step 4: Security, under Permissions, choose Custom, and then choose the RestrictedRole that you created before.

Choose the appropriate subnets (these should meet the base requirement in order for a successful Active Directory join—see the Amazon EMR Management Guide for more details), and choose the appropriate security groups to make sure it talks to the Active Directory. Choose a key so that you can log in and configure the cluster.

Most importantly, choose the security configuration that you created earlier to enable Kerberos and EMRFS authorization for Amazon S3.

You can use the following AWS CLI command to create a cluster.

aws emr create-cluster --name "TestEMRFSAuthorization" \ 
--release-label emr-5.10.0 \ --instance-type m3.xlarge \ 
--instance-count 3 \ 
--ec2-attributes InstanceProfile=EMR_EC2_DefaultRole,KeyName=MyEC2KeyPair \ --service-role EMR_DefaultRole \ 
--security-configuration MyKerberosConfig \ 
--configurations file://hue-config.json \
--applications Name=Hadoop Name=Hive Name=Hue Name=Spark \ 
--kerberos-attributes Realm=EC2.INTERNAL, \ KdcAdminPassword=<YourClusterKDCAdminPassword>, \ ADDomainJoinUser=<YourADUserLogonName>,ADDomainJoinPassword=<YourADUserPassword>, \ 
CrossRealmTrustPrincipalPassword=<MatchADTrustPwd>

Note: If you create the cluster using CLI, you need to save the JSON configuration for Hue into a file named hue-config.json and place it on the server where you run the CLI command.

After the cluster gets into the Waiting state, try to connect by using SSH into the cluster using the Active Directory user name and password.

ssh -l [email protected] <EMR IP or DNS name>

Quickly run two commands to show that the Active Directory join is successful:

  1. id [user name] shows the mapped AD users and groups in Linux.
  2. hdfs groups [user name] shows the mapped group in Hadoop.

Both should return the current Active Directory user and group information if the setup is correct.

Now, you can test the user mapping first. Log in with the admin1 user, and run a Hadoop list directory command:

hadoop fs -ls s3://emrfs-auth-data-science-bucket-demo/

Now switch to a user from the data engineer group.

Retry the previous command to access the admin’s bucket. It should throw an Amazon S3 Access Denied exception.

When you try listing the Amazon S3 bucket that a data engineer group member has accessed, it triggers the group mapping.

hadoop fs -ls s3://emrfs-auth-data-engineering-bucket-demo/

It successfully returns the listing results. Next we will test Apache Hive and then Apache Spark.

 

To run jobs successfully, you need to create a home directory for every user in HDFS for staging data under /user/<username>. Users can configure a step to create a home directory at cluster launch time for every user who has access to the cluster. In this example, you use Hue since Hue will create the home directory in HDFS for the user at the first login. Here Hue also needs to be integrated with the same Active Directory as explained in the example configuration described earlier.

First, log in to Hue as a data engineer user, and open a Hive Notebook in Hue. Then run a query to create a new table pointing to the data engineer bucket, s3://emrfs-auth-data-engineering-bucket-demo/table1_data_eng/.

You can see that the table was created successfully. Now try to create another table pointing to the data science group’s bucket, where the data engineer group doesn’t have access.

It failed and threw an Amazon S3 Access Denied error.

Now insert one line of data into the successfully create table.

Next, log out, switch to a data science group user, and create another table, test2_datasci_tb.

The creation is successful.

The last task is to test Spark (it requires the user directory, but Hue created one in the previous step).

Now let’s come back to the command line and run some Spark commands.

Login to the master node using the datascientist1 user:

Start the SparkSQL interactive shell by typing spark-sql, and run the show tables command. It should list the tables that you created using Hive.

As a data science group user, try select on both tables. You will find that you can only select the table defined in the location that your group has access to.

Conclusion

EMRFS authorization for Amazon S3 enables you to have multiple roles on the same cluster, providing flexibility to configure a shared cluster for different teams to achieve better efficiency. The Active Directory integration and group mapping make it much easier for you to manage your users and groups, and provides better auditability in a multi-tenant environment.


Additional Reading

If you found this post useful, be sure to check out Use Kerberos Authentication to Integrate Amazon EMR with Microsoft Active Directory and Launching and Running an Amazon EMR Cluster inside a VPC.


About the Authors

Songzhi Liu is a Big Data Consultant with AWS Professional Services. He works closely with AWS customers to provide them Big Data & Machine Learning solutions and best practices on the Amazon cloud.

 

 

 

 

Nextcloud 13 is out

Post Syndicated from ris original https://lwn.net/Articles/746710/rss

Nextcloud 13 has been released. “This release brings improvements to the core File Sync and Share like easier moving of files and a tech preview of our end-to-end encryption for the ultimate protection of your data. It also introduces collaboration and communication capabilities, like auto-complete of comments and integrated real-time chat and video communication. Last but not least, Nextcloud was optimized and tuned to deliver up to 80% faster LDAP, much faster object storage and Windows Network Drive performance and a smoother user interface.

Google Won’t Take Down ‘Pirate’ VLC With Five Million Downloads

Post Syndicated from Andy original https://torrentfreak.com/google-wont-take-down-pirate-vlc-with-five-million-downloads-180206/

VLC is the media player of choice for Internet users around the globe. Downloaded for desktop at least 2,493,000,000 times since February 2005, VLC is an absolute giant. And those figures don’t even include GNU/Linux, iOS, Android, Chrome OS or Windows Phone downloads either.

Aside from its incredible functionality, VLC (operated by the VideoLAN non-profit) has won the hearts of Internet users for other key reasons, not least its commitment to being free and open source software. While it’s true to say that VLC doesn’t cost a penny, the term ‘free’ actually relates to the General Public License (GPL) under which it’s distributed.

The GPL aims to guarantee that software under it remains ‘free’ for all current and future users. To benefit from these protections, the GPL requires people who modify and redistribute software to afford others the same freedoms by informing them of the requirement to make source code available.

Since VLC is extremely popular and just about as ‘free’ as software can get, people get extremely defensive when they perceive that a third-party is benefiting from the software without adhering to the terms of the generous GPL license. That was the case beginning a few hours ago when veteran Reddit user MartinVanBallin pointed out a piece of software on the Google Play Store.

“They took VLC, put in ads, didn’t attribute VLC or follow the open source license, and they’re using Media Player Classics icon,” MartinVanBallin wrote.

The software is called 321 Media Player and has an impressive 4.5 score from more than 101,000 reviews. Despite not mentioning VLC or the GPL, it is based completely on VLC, as the image below (and other proof) shows.

VLC Media Player 321 Media Player

TorrentFreak spoke with VideoLAN President Jean-Baptiste Kempf who confirmed that the clone is in breach of the GPL.

“The Android version of VLC is under the license GPLv3, which requires everything inside the application to be open source and sharing the source,” Kempf says.

“This clone seems to use a closed-source advertisement component (are there any that are open source?), which is a clear violation of our copyleft. Moreover, they don’t seem to share the source at all, which is also a violation.”

Perhaps the most amazing thing is the popularity of the software. According to stats provided by Google, 321 Media Player has amassed between five and ten million downloads. That’s not an insignificant amount when one considers that unlike VLC, 321 Media Player contains revenue-generating ads.

Using GPL-licensed software for commercial purposes is allowed providing the license terms are strictly adhered to. Kempf informs TF that VideoLAN doesn’t mind if this happens but in this case, the GPL is not being respected.

“A fork application which changes some things is an interesting thing, because they maybe have something to give back to our community. The application here, is just a parasite, and I think they are useless and dangerous,” Kempf says.

All that being said, turning VLC itself into adware is something the VideoLAN team is opposed to. In fact, according to questions answered by Kempf last September, the team turned down “several tens of millions of euros” to turn their media player into an ad-supported platform.

“Integrating crap, adware and spyware with VLC is not OK,” Kempf informs TF.

TorrentFreak contacted the developer of 321 Media Player for comment but at the time of publication, we were yet to receive a response. We also asked for a copy of the source code for 321 Media Player as the GPL requires, but that wasn’t forthcoming either.

In the meantime, it appears that a small army of Reddit users are trying to get something done about the ‘rogue’ app by reporting it as an “inappropriate copycat” to Google. Whether this will have any effect remains to be seen but according to Kempf, tackling these clone versions has proven extremely difficult in the past.

“We reported this application already more than three times and Google refuses to take it down,” he says.

“Our experience is that it is very difficult to take these kinds of apps down, even if they embed spyware or malware. Maybe it is because it makes money for Google.”

Finally, Kempf also points to the obviously named “Indian VLC Player” on Google Play. Another VLC clone with up to 500,000 downloads, this one appears to breach both copyright and trademark law.

“We remove applications that violate our policies, such as apps that are illegal,” a Google spokesperson informs TorrentFreak.

“We don’t comment on individual applications; you can check out our policies for more information.”

Update: The app has now been removed from Google Play

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Virgin Media Store Caught Running Movie & TV Show Piracy Software (Updated)

Post Syndicated from Andy original https://torrentfreak.com/virgin-media-store-caught-running-movie-tv-show-piracy-software-180205/

While other providers in the UK and Ireland aim to compete, those requiring the absolute fastest fibre optic broadband coupled with a comprehensive TV package will probably find themselves considering Virgin Media.

Despite sporting Richard Branson’s Virgin brand, the company has been owned by US-based Liberty Global since 2013. It previously earned the title of first quad-play media company in the United Kingdom, offering broadband, TV, fixed-line and mobile telecoms packages.

Today, however, the company has a small piracy-related embarrassment to address.

Like several of the large telecoms companies in the region, Virgin Media operates a number of bricks-and-mortar stores which are used to drum up sales for Internet, TV and phone packages while offering support to new and existing customers. They typically look like the one in the image below.

Virgin Media store (credit: Virgin)

The outside windows of Virgin stores are usually covered with advertising for the company’s products and regularly carry digital displays which present the latest deals. However, one such display spotted by a passer-by carried a little extra.

In a now-deleted post on Reddit, a user explained that when out and about he’d passed a Virgin Media store which sported a digital display advertising the company’s impressive “Full House” package. However, intruding at the top of the screen was a notification from one of the most impressive piracy apps available, Terrarium TV.

Busted: Terrarium TV notification top and center (credit)

For those out of the loop, Terrarium TV is one of the most feature-rich Android-based applications available today. For reasons that aren’t exactly clear, it hasn’t received the attention of ‘rivals’ such as Popcorn Time and Showbox but its abilities are extremely impressive.

As the image shows, the notification is letting the user know that two new movies – The Star and The Stray – have been added to Terrarium’s repertoire. In other words, they’ve just been listed in the Terrarium app for streaming directly to the user’s installation (in this case one of Virgin’s own displays) for free, without permission from copyright holders.

Of course, Virgin Media definitely won’t have authorized the installation of Terrarium TV on any of its units, so it’s most likely down to someone in the store with access to the display, perhaps a staff member but possibly a mischievous customer. Whoever it was should probably uninstall it now though, if they’re able to. Virgin will not be happy about this.

The person who took the photo didn’t respond to TorrentFreak’s request for comment on where it was taken but from the information available in the image, it seems likely that it’s in Ireland. Virgin Media ads elsewhere in the region are priced in pounds – not in euros – so a retail outlet in the country is the most likely location. The same 99 euro “Full House” deal is also advertised on Virgin’s .ie website.

Terrarium TV

Terrarium TV

While a display running a piracy application over the top of an advert trying to sell premium access to movies and TV shows is embarrassing enough, Virgin and other ISPs including Eircom, Sky Ireland, and Vodafone Ireland are currently subject to a court order which compels them to block several pirate sites in Ireland.

The sources used by Terrarium to supply illicit copies of movies are not part of that order but since ISPs in the region don’t contest blocking orders when rightsholders apply for them, it’s reasonable to presume they’re broadly in favor of blocking pirate sites.

Of course, that makes perfect sense if you’re a company trying to make money from selling premium access to content.

Update: We have a lengthy statement from Virgin Media:

“Virgin Media takes copyright very seriously and does not condone illegal streaming.

Our new Tallaght Store is due to officially open later this month and currently does not currently have Virgin Media network connectivity.

Over the weekend, an advertising screen display in this Store was being set up by a contractor.

The contractor took it on themselves to use their own 4G device to set up the screen, ahead of the store being connected to our fibre services this week.

At some stage, it seems an unwanted pop-up appeared on the screen from an illegal streaming site. To be clear, this was not on the Virgin Media network.

Other than as outlined above, this occurrence has no connection whatsoever with Virgin Media. We have notified the contractor regarding this incident.”

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

0-Day Flash Vulnerability Exploited In The Wild

Post Syndicated from Darknet original https://www.darknet.org.uk/2018/02/0-day-flash-vulnerability-exploited-in-the-wild/?utm_source=rss&utm_medium=social&utm_campaign=darknetfeed

0-Day Flash Vulnerability Exploited In The Wild

So another 0-Day Flash Vulnerability is being exploited in the Wild, a previously unknown flaw which has been labelled CVE-2018-4878 and it affects 28.0.0.137 and earlier versions for both Windows and Mac (the desktop runtime) and for basically everything in the Chrome Flash Player (Windows, Mac, Linux and Chrome OS).

The full Adobe Security Advisory can be found here:

– Security Advisory for Flash Player | APSA18-01

Adobe warned on Thursday that attackers are exploiting a previously unknown security hole in its Flash Player software to break into Microsoft Windows computers.

Read the rest of 0-Day Flash Vulnerability Exploited In The Wild now! Only available at Darknet.

The Floodgates Are Open – Increased Network Bandwidth for EC2 Instances

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/the-floodgates-are-open-increased-network-bandwidth-for-ec2-instances/

I hope that you have configured your AMIs and your current-generation EC2 instances to use the Elastic Network Adapter (ENA) that I told you about back in mid-2016. The ENA gives you high throughput and low latency, while minimizing the load on the host processor. It is designed to work well in the presence of multiple vCPUs, with intelligent packet routing backed up by multiple transmit and receive queues.

Today we are opening up the floodgates and giving you access to more bandwidth in all AWS Regions. Here are the specifics (in each case, the actual bandwidth is dependent on the instance type and size):

EC2 to S3 – Traffic to and from Amazon Simple Storage Service (S3) can now take advantage of up to 25 Gbps of bandwidth. Previously, traffic of this type had access to 5 Gbps of bandwidth. This will be of benefit to applications that access large amounts of data in S3 or that make use of S3 for backup and restore.

EC2 to EC2 – Traffic to and from EC2 instances in the same or different Availability Zones within a region can now take advantage of up to 5 Gbps of bandwidth for single-flow traffic, or 25 Gbps of bandwidth for multi-flow traffic (a flow represents a single, point-to-point network connection) by using private IPv4 or IPv6 addresses, as described here.

EC2 to EC2 (Cluster Placement Group) – Traffic to and from EC2 instances within a cluster placement group can continue to take advantage of up to 10 Gbps of lower-latency bandwidth for single-flow traffic, or 25 Gbps of lower-latency bandwidth for multi-flow traffic.

To take advantage of this additional bandwidth, make sure that you are using the latest, ENA-enabled AMIs on current-generation EC2 instances. ENA-enabled AMIs are available for Amazon Linux, Ubuntu 14.04 & 16.04, RHEL 7.4, SLES 12, and Windows Server (2008 R2, 2012, 2012 R2, and 2016). The FreeBSD AMI in AWS Marketplace is also ENA-enabled, as is VMware Cloud on AWS.

Jeff;

The Effects of the Spectre and Meltdown Vulnerabilities

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/01/the_effects_of_3.html

On January 3, the world learned about a series of major security vulnerabilities in modern microprocessors. Called Spectre and Meltdown, these vulnerabilities were discovered by several different researchers last summer, disclosed to the microprocessors’ manufacturers, and patched­ — at least to the extent possible.

This news isn’t really any different from the usual endless stream of security vulnerabilities and patches, but it’s also a harbinger of the sorts of security problems we’re going to be seeing in the coming years. These are vulnerabilities in computer hardware, not software. They affect virtually all high-end microprocessors produced in the last 20 years. Patching them requires large-scale coordination across the industry, and in some cases drastically affects the performance of the computers. And sometimes patching isn’t possible; the vulnerability will remain until the computer is discarded.

Spectre and Meltdown aren’t anomalies. They represent a new area to look for vulnerabilities and a new avenue of attack. They’re the future of security­ — and it doesn’t look good for the defenders.

Modern computers do lots of things at the same time. Your computer and your phone simultaneously run several applications — ­or apps. Your browser has several windows open. A cloud computer runs applications for many different computers. All of those applications need to be isolated from each other. For security, one application isn’t supposed to be able to peek at what another one is doing, except in very controlled circumstances. Otherwise, a malicious advertisement on a website you’re visiting could eavesdrop on your banking details, or the cloud service purchased by some foreign intelligence organization could eavesdrop on every other cloud customer, and so on. The companies that write browsers, operating systems, and cloud infrastructure spend a lot of time making sure this isolation works.

Both Spectre and Meltdown break that isolation, deep down at the microprocessor level, by exploiting performance optimizations that have been implemented for the past decade or so. Basically, microprocessors have become so fast that they spend a lot of time waiting for data to move in and out of memory. To increase performance, these processors guess what data they’re going to receive and execute instructions based on that. If the guess turns out to be correct, it’s a performance win. If it’s wrong, the microprocessors throw away what they’ve done without losing any time. This feature is called speculative execution.

Spectre and Meltdown attack speculative execution in different ways. Meltdown is more of a conventional vulnerability; the designers of the speculative-execution process made a mistake, so they just needed to fix it. Spectre is worse; it’s a flaw in the very concept of speculative execution. There’s no way to patch that vulnerability; the chips need to be redesigned in such a way as to eliminate it.

Since the announcement, manufacturers have been rolling out patches to these vulnerabilities to the extent possible. Operating systems have been patched so that attackers can’t make use of the vulnerabilities. Web browsers have been patched. Chips have been patched. From the user’s perspective, these are routine fixes. But several aspects of these vulnerabilities illustrate the sorts of security problems we’re only going to be seeing more of.

First, attacks against hardware, as opposed to software, will become more common. Last fall, vulnerabilities were discovered in Intel’s Management Engine, a remote-administration feature on its microprocessors. Like Spectre and Meltdown, they affected how the chips operate. Looking for vulnerabilities on computer chips is new. Now that researchers know this is a fruitful area to explore, security researchers, foreign intelligence agencies, and criminals will be on the hunt.

Second, because microprocessors are fundamental parts of computers, patching requires coordination between many companies. Even when manufacturers like Intel and AMD can write a patch for a vulnerability, computer makers and application vendors still have to customize and push the patch out to the users. This makes it much harder to keep vulnerabilities secret while patches are being written. Spectre and Meltdown were announced prematurely because details were leaking and rumors were swirling. Situations like this give malicious actors more opportunity to attack systems before they’re guarded.

Third, these vulnerabilities will affect computers’ functionality. In some cases, the patches for Spectre and Meltdown result in significant reductions in speed. The press initially reported 30%, but that only seems true for certain servers running in the cloud. For your personal computer or phone, the performance hit from the patch is minimal. But as more vulnerabilities are discovered in hardware, patches will affect performance in noticeable ways.

And then there are the unpatchable vulnerabilities. For decades, the computer industry has kept things secure by finding vulnerabilities in fielded products and quickly patching them. Now there are cases where that doesn’t work. Sometimes it’s because computers are in cheap products that don’t have a patch mechanism, like many of the DVRs and webcams that are vulnerable to the Mirai (and other) botnets — ­groups of Internet-connected devices sabotaged for coordinated digital attacks. Sometimes it’s because a computer chip’s functionality is so core to a computer’s design that patching it effectively means turning the computer off. This, too, is becoming more common.

Increasingly, everything is a computer: not just your laptop and phone, but your car, your appliances, your medical devices, and global infrastructure. These computers are and always will be vulnerable, but Spectre and Meltdown represent a new class of vulnerability. Unpatchable vulnerabilities in the deepest recesses of the world’s computer hardware is the new normal. It’s going to leave us all much more vulnerable in the future.

This essay previously appeared on TheAtlantic.com.

Building Blocks of Amazon ECS

Post Syndicated from Tiffany Jernigan original https://aws.amazon.com/blogs/compute/building-blocks-of-amazon-ecs/

So, what’s Amazon Elastic Container Service (ECS)? ECS is a managed service for running containers on AWS, designed to make it easy to run applications in the cloud without worrying about configuring the environment for your code to run in. Using ECS, you can easily deploy containers to host a simple website or run complex distributed microservices using thousands of containers.

Getting started with ECS isn’t too difficult. To fully understand how it works and how you can use it, it helps to understand the basic building blocks of ECS and how they fit together!

Let’s begin with an analogy

Imagine you’re in a virtual reality game with blocks and portals, in which your task is to build kingdoms.

In your spaceship, you pull up a holographic map of your upcoming destination: Nozama, a golden-orange planet. Looking at its various regions, you see that the nearest one is za-southwest-1 (SW Nozama). You set your destination, and use your jump drive to jump to the outer atmosphere of za-southwest-1.

As you approach SW Nozama, you see three portals, 1a, 1b, and 1c. Each portal lets you transport directly to an isolated zone (Availability Zone), where you can start construction on your new kingdom (cluster), Royaume.

With your supply of blocks, you take the portal to 1b, and erect the surrounding walls of your first territory (instance)*.

Before you get ahead of yourself, there are some rules to keep in mind. For your territory to be a part of Royaume, the land ordinance requires construction of a building (container), specifically a castle, from which your territory’s lord (agent)* rules.

You can then create architectural plans (task definitions) to build your developments (tasks), consisting of up to 10 buildings per plan. A development can be built now within this or any territory, or multiple territories.

If you do decide to create more territories, you can either stay here in 1b or take a portal to another location in SW Nozama and start building there.

Amazon EC2 building blocks

We currently provide two launch types: EC2 and Fargate. With Fargate, the Amazon EC2 instances are abstracted away and managed for you. Instead of worrying about ECS container instances, you can just worry about tasks. In this post, the infrastructure components used by ECS that are handled by Fargate are marked with a *.

Instance*

EC2 instances are good ol’ virtual machines (VMs). And yes, don’t worry, you can connect to them (via SSH). Because customers have varying needs in memory, storage, and computing power, many different instance types are offered. Just want to run a small application or try a free trial? Try t2.micro. Want to run memory-optimized workloads? R3 and X1 instances are a couple options. There are many more instance types as well, which cater to various use cases.

AMI*

Sorry if you wanted to immediately march forward, but before you create your instance, you need to choose an AMI. An AMI stands for Amazon Machine Image. What does that mean? Basically, an AMI provides the information required to launch an instance: root volume, launch permissions, and volume-attachment specifications. You can find and choose a Linux or Windows AMI provided by AWS, the user community, the AWS Marketplace (for example, the Amazon ECS-Optimized AMI), or you can create your own.

Region

AWS is divided into regions that are geographic areas around the world (for now it’s just Earth, but maybe someday…). These regions have semi-evocative names such as us-east-1 (N. Virginia), us-west-2 (Oregon), eu-central-1 (Frankfurt), ap-northeast-1 (Tokyo), etc.

Each region is designed to be completely isolated from the others, and consists of multiple, distinct data centers. This creates a “blast radius” for failure so that even if an entire region goes down, the others aren’t affected. Like many AWS services, to start using ECS, you first need to decide the region in which to operate. Typically, this is the region nearest to you or your users.

Availability Zone

AWS regions are subdivided into Availability Zones. A region has at minimum two zones, and up to a handful. Zones are physically isolated from each other, spanning one or more different data centers, but are connected through low-latency, fiber-optic networking, and share some common facilities. EC2 is designed so that the most common failures only affect a single zone to prevent region-wide outages. This means you can achieve high availability in a region by spanning your services across multiple zones and distributing across hosts.

Amazon ECS building blocks

Container

Well, without containers, ECS wouldn’t exist!

Are containers virtual machines?
Nope! Virtual machines virtualize the hardware (benefits), while containers virtualize the operating system (even more benefits!). If you look inside a container, you would see that it is made by processes running on the host, and tied together by kernel constructs like namespaces, cgroups, etc. But you don’t need to bother about that level of detail, at least not in this post!

Why containers?
Containers give you the ability to build, ship, and run your code anywhere!

Before the cloud, you needed to self-host and therefore had to buy machines in addition to setting up and configuring the operating system (OS), and running your code. In the cloud, with virtualization, you can just skip to setting up the OS and running your code. Containers make the process even easier—you can just run your code.

Additionally, all of the dependencies travel in a package with the code, which is called an image. This allows containers to be deployed on any host machine. From the outside, it looks like a host is just holding a bunch of containers. They all look the same, in the sense that they are generic enough to be deployed on any host.

With ECS, you can easily run your containerized code and applications across a managed cluster of EC2 instances.

Are containers a fairly new technology?
The concept of containerization is not new. Its origins date back to 1979 with the creation of chroot. However, it wasn’t until the early 2000s that containers became a major technology. The most significant milestone to date was the release of Docker in 2013, which led to the popularization and widespread adoption of containers.

What does ECS use?
While other container technologies exist (LXC, rkt, etc.), because of its massive adoption and use by our customers, ECS was designed first to work natively with Docker containers.

Container instance*

Yep, you are back to instances. An instance is just slightly more complex in the ECS realm though. Here, it is an ECS container instance that is an EC2 instance running the agent, has a specifically defined IAM policy and role, and has been registered into your cluster.

And as you probably guessed, in these instances, you are running containers. 

AMI*

These container instances can use any AMI as long as it has the following specifications: a modern Linux distribution with the agent and the Docker Daemon with any Docker runtime dependencies running on it.

Want it more simplified? Well, AWS created the Amazon ECS-Optimized AMI for just that. Not only does that AMI come preconfigured with all of the previously mentioned specifications, it’s tested and includes the recommended ecs-init upstart process to run and monitor the agent.

Cluster

An ECS cluster is a grouping of (container) instances* (or tasks in Fargate) that lie within a single region, but can span multiple Availability Zones – it’s even a good idea for redundancy. When launching an instance (or tasks in Fargate), unless specified, it registers with the cluster named “default”. If “default” doesn’t exist, it is created. You can also scale and delete your clusters.

Agent*

The Amazon ECS container agent is a Go program that runs in its own container within each EC2 instance that you use with ECS. (It’s also available open source on GitHub!) The agent is the intermediary component that takes care of the communication between the scheduler and your instances. Want to register your instance into a cluster? (Why wouldn’t you? A cluster is both a logical boundary and provider of pool of resources!) Then you need to run the agent on it.

Task

When you want to start a container, it has to be part of a task. Therefore, you have to create a task first. Succinctly, tasks are a logical grouping of 1 to N containers that run together on the same instance, with N defined by you, up to 10. Let’s say you want to run a custom blog engine. You could put together a web server, an application server, and an in-memory cache, each in their own container. Together, they form a basic frontend unit.

Task definition

Ah, but you cannot create a task directly. You have to create a task definition that tells ECS that “task definition X is composed of this container (and maybe that other container and that other container too!).” It’s kind of like an architectural plan for a city. Some other details it can include are how the containers interact, container CPU and memory constraints, and task permissions using IAM roles.

Then you can tell ECS, “start one task using task definition X.” It might sound like unnecessary planning at first. As soon as you start to deal with multiple tasks, scaling, upgrades, and other “real life” scenarios, you’ll be glad that you have task definitions to keep track of things!

Scheduler*

So, the scheduler schedules… sorry, this should be more helpful, huh? The scheduler is part of the “hosted orchestration layer” provided by ECS. Wait a minute, what do I mean by “hosted orchestration”? Simply put, hosted means that it’s operated by ECS on your behalf, without you having to care about it. Your applications are deployed in containers running on your instances, but the managing of tasks is taken care of by ECS. One less thing to worry about!

Also, the scheduler is the component that decides what (which containers) gets to run where (on which instances), according to a number of constraints. Say that you have a custom blog engine to scale for high availability. You could create a service, which by default, spreads tasks across all zones in the chosen region. And if you want each task to be on a different instance, you can use the distinctInstance task placement constraint. ECS makes sure that not only this happens, but if a task fails, it starts again.

Service

To ensure that you always have your task running without managing it yourself, you can create a service based on the task that you defined and ECS ensures that it stays running. A service is a special construct that says, “at any given time, I want to make sure that N tasks using task definition X1 are running.” If N=1, it just means “make sure that this task is running, and restart it if needed!” And with N>1, you’re basically scaling your application until you hit N, while also ensuring each task is running.

So, what now?

Hopefully you, at the very least, learned a tiny something. All comments are very welcome!

Want to discuss ECS with others? Join the amazon-ecs slack group, which members of the community created and manage.

Also, if you’re interested in learning more about the core concepts of ECS and its relation to EC2, here are some resources:

Pages
Amazon ECS landing page
AWS Fargate landing page
Amazon ECS Getting Started
Nathan Peck’s AWSome ECS

Docs
Amazon EC2
Amazon ECS

Blogs
AWS Compute Blog
AWS Blog

GitHub code
Amazon ECS container agent
Amazon ECS CLI

AWS videos
Learn Amazon ECS
AWS videos
AWS webinars

 

— tiffany

 @tiffanyfayj

 

Съдържа ли вирус Справка по чл. 73 от ЗДДФЛ, версия 6.0?

Post Syndicated from Григор original http://www.gatchev.info/blog/?p=2111

Днес мои клиенти ми звъннаха, че компютърът не им позволявал да си свалят новата версия на една програма от НАП. Когато стигнах на място, установих следното:

1. Въпросната програма е Справка от чл. 73 от ЗДДФЛ, версия 6.0
2. „Не може да бъде свалена“, понеже Windows Defender открива в нея вирус – Trojan:Win32/Azden.A!cl – и я блокира.
3. Сайтът на НАП, към който те се свързват, е истинският. Линкът е http://www.nap.bg/document?id=4311

Липсата на време не ми позволи да седна и да анализирам файловете в пакета ръчно, или дори да ги проверя с друг антивирус. Затова не зная дали реално съдържат вирус, или е фалшив позитив на Windows Defender.

Както едното, така и другото се е случвало преди. Надявам се да е фалшива тревога – поне един друг продукт, Xeoma, бива идентифициран погрешно от WD като този вирус. Ако обаче е реална заплаха, е неприятна. Вирусът е доста „модерен“ – събира и изпраща на стопаните си много подробна информация за компютъра и потребителите му, ъпдейтва се автоматично, сваля от Интернет и инсталира още допълнителни вирусни възможности, и позволява отдалечено командване на компютъра. Затова е разумно в този случай да се заложи на предпазливостта.

Свързах се веднага с НАП и ги предупредих за ситуацията. Единствената реакция (упорито повтаряна всеки път, когато се опитвах да обясня, че е възможно положението да е опасно), беше да им пратя е-майл и принтстрийн на съобщението, което получавам. За всеки случай им пратих описание на проблема – току-виж го прочете и някой, който различава компютър от прахосмукачка.

Моят съвет към всички е – задръжте мъничко с инсталирането на тази версия. Изчакайте, докато се разбере дали наистина съдържа вирус, или е фалшива тревога. НАП вероятно скоро ще обявят нещата и в двата случая – елементарна отговорност е да го направят.

Spiegelbilder Studio’s giant CRT video walls

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/crt-video-walls/

After getting in contact with us to share their latest build with us, we invited Matvey Fridman of Germany-based production company Spiegelbilder Studio to write a guest blog post about their CRT video walls created for the band STRANDKØNZERT.

STRANDKØNZERT – TAGTRAUMER – OFFICIAL VIDEO

GERMAN DJENT RAP / EST. 2017. COMPLETE DIY-PROJECT.

CRT video wall

About a year ago, we had the idea of building a huge video wall out of old TVs to use in a music video. It took some time, but half a year later we found ourselves in a studio actually building this thing using 30 connected computers, 24 of which were Raspberry Pis.

STRANDKØNZERT CRT video wall Raspberry Pi

How we did it

After weeks and months of preproduction and testing, we decided on two consecutive days to build the wall, create the underlying IP network, run a few tests, and then film the artists’ performance in front of it. We actually had 32 Pis (a mixed bag of first, second, and third generation models) and even more TVs ready to go, since we didn’t know what the final build would actually look like. We ended up using 29 separate screens of various sizes hooked up to 24 separate Pis — the remaining five TVs got a daisy-chained video signal out of other monitors for a cool effect. Each Pi had to run a free software called PiWall.

STRANDKØNZERT CRT video wall Raspberry Pi

Since the TVs only had analogue video inputs, we had to get special composite breakout cables and then adapt the RCA connectors to either SCART, S-Video, or BNC.

STRANDKØNZERT CRT video wall Raspberry Pi

As soon as we had all of that running, we connected every Pi to a 48-port network switch that we’d hooked up to a Windows PC acting as a DHCP server to automatically assign IP addresses and handle the multicast addressing. To make remote control of the Raspberry Pis easier, a separate master Linux PC and two MacBook laptops, each with SSH enabled and a Samba server running, joined the network as well.

STRANDKØNZERT CRT video wall Raspberry Pi

The MacBook laptops were used to drop two files containing the settings on each Pi. The .pitile file was unique to every Pi and contained their respective IDs. The .piwall file contained the same info for all Pis: the measurements and positions of every single screen to help the software split up the video signal coming in through the network. After every Pi got the command to start the PiWall software, which specifies the UDP multicast address and settings to be used to receive the video stream, the master Linux PC was tasked with streaming the video file to these UDP addresses. Now every TV was showing its section of the video, and we could begin filming.

STRANDKØNZERT CRT video wall Raspberry Pi

The whole process and the contents of the files and commands are summarised in the infographic below. A lot of trial and error was involved in the making of this project, but it all worked out well in the end. We hope you enjoy the craft behind the music video even though the music is not for everybody 😉

PiWall_Infographic

You can follow Spiegelbilder Studio on Facebook, Twitter, and Instagram. And if you enjoyed the music video, be sure to follow STRANDKØNZERT too.

The post Spiegelbilder Studio’s giant CRT video walls appeared first on Raspberry Pi.