Tag Archives: microsoft

Connect Veeam to the B2 Cloud: Episode 2 — Using StarWind VTL

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/hybrid-cloud-example-veem-vtl-cloud/

Connect Veeam to the B2 Cloud

View all posts in the Veeam series.

In the first post in this series, we discussed how to connect Veeam to the B2 cloud using Synology. In this post, we continue our Veeam/B2 series with a discussion of how to back up Veeam to the Backblaze B2 Cloud using StarWind VTL.

StarWind provides “VTL” (Virtual Tape Library) technology that enables users to back up their “VMs” (virtual machines) from Veeam to on-premise or cloud storage. StarWind does this using standard “LTO” (Linear Tape-Open) protocols. This appeals to organizations that have LTO in place since it allows adoption of more scalable, cost efficient cloud storage without having to update the internal backup infrastructure.

Why An Additional Backup in the Cloud?

Common backup strategy, known as 3-2-1, dictates having three copies at a minimum of active data. Two copies are stored locally and one copy is in another location.

Relying solely on on-site redundancy does not guarantee data protection after a catastrophic or temporary loss of service affecting the primary data center. To reach maximum data security, an on-premises private cloud backup combined with an off-site public cloud backup, known as hybrid cloud, provides the best combination of security and rapid recovery when required.

Why Consider a Hybrid Cloud Solution?

The Hybrid Cloud Provides Superior Disaster Recovery and Business Continuity

Having a backup strategy that combines on-premise storage with public cloud storage in a single or multi-cloud configuration is becoming the solution of choice for organizations that wish to eliminate dependence on vulnerable on-premises storage. It also provides reliable and rapidly deployed recovery when needed.

If an organization requires restoration of service as quickly as possible after an outage or disaster, it needs to have a backup that isn’t dependent on the same network. That means a backup stored in the cloud that can be restored to another location or cloud-based compute service and put into service immediately after an outage.

Hybrid Cloud Example: VTL and the Cloud

Some organizations will already have made a significant investment in software and hardware that supports LTO protocols. Specifically, they are using Veeam to back up their VMs onto physical tape. Using StarWind to act as a VTL with Veeam enables users to save time and money by connecting their on-premises Veeam Backup & Replication archives to Backblaze B2 Cloud Storage.

Why Veeam, StarWind VTL, and Backblaze B2?

What are the primary reasons that an organization would want to adopt Veeam + StarWind VTL + B2 as a hybrid cloud backup solution?

  1. You are already invested in Veeam along with LTO software and hardware.

Using Veeam plus StarWind VTL with already-existing LTO infrastructure enables organizations to quickly and cost-effectively benefit from cloud storage.

  1. You require rapid and reliable recovery of service should anything disrupt your primary data center.

Having a backup in the cloud with B2 provides an economical primary or secondary cloud storage solution and enables fast restoration to a current or alternate location, as well as providing the option to quickly bring online a cloud-based compute service, thereby minimizing any loss of service and ensuring business continuity. Backblaze’s B2 is an ideal solution for backing up Veeam’s backup repository due to B2’s combination of low-cost and high availability compared to other cloud solutions such as Microsoft Azure or Amazon AWS.

Using Veeam, StarWind VTL, and Backblaze B2 cloud storage is a superior alternative to tape as B2 offers better economics, instant access, and faster recovery.

 

Workflow for how to connect Veeam to the Backblaze B2 Cloud using StarWind VTL

Connect Veeam to the Backblaze B2 Cloud using StarWind VTL (graphic courtesy of StarWind)

View all posts in the Veeam series.

The post Connect Veeam to the B2 Cloud: Episode 2 — Using StarWind VTL appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Pirates Crack Microsoft’s UWP Protection, Five Layers of DRM Defeated

Post Syndicated from Andy original https://torrentfreak.com/pirates-crack-microsofts-uwp-protection-five-layers-of-drm-defeated-180215/

As the image on the right shows, Microsoft’s Universal Windows Platform (UWP) is a system that enables software developers to create applications that can run across many devices.

“The Universal Windows Platform (UWP) is the app platform for Windows 10. You can develop apps for UWP with just one API set, one app package, and one store to reach all Windows 10 devices – PC, tablet, phone, Xbox, HoloLens, Surface Hub and more,” Microsoft explains.

While the benefits of such a system are immediately apparent, critics say that UWP gives Microsoft an awful lot of control, not least since UWP software must be distributed via the Windows Store with Microsoft taking a cut.

Or that was the plan, at least.

Last evening it became clear that the UWP system, previously believed to be uncrackable, had fallen to pirates. After being released on October 31, 2017, the somewhat underwhelming Zoo Tycoon Ultimate Animal Collection became the first victim at the hands of popular scene group, CODEX.

“This is the first scene release of a UWP (Universal Windows Platform) game. Therefore we would like to point out that it will of course only work on Windows 10. This particular game requires Windows 10 version 1607 or newer,” the group said in its release notes.

CODEX release notes

CODEX says it’s important that the game isn’t allowed to communicate with the Internet so the group advises users to block the game’s executable in their firewall.

While that’s not a particularly unusual instruction, CODEX did reveal that various layers of protection had to be bypassed to make the game work. They’re listed by the group as MSStore, UWP, EAppX, XBLive, and Arxan, the latter being an anti-tamper system.

“It’s the equivalent of Denuvo (without the DRM License part),” cracker Voksi previously explained. “It’s still bloats the executable with useless virtual machines that only slow down your game.”

Arxan features

Arxan’s marketing comes off as extremely confident but may need amending in light of yesterday’s developments.

“Arxan uses code protection against reverse-engineering, key and data protection to secure servers and fortification of game logic to stop the bad guys from tampering. Sorry hackers, game over,” the company’s marketing reads.

What is unclear at this stage is whether Zoo Tycoon Ultimate Animal Collection represents a typical UWP release or if some particular flaw allowed CODEX to take it apart. The possibility of additional releases is certainly a tantalizing one for pirates but how long they will have to wait is unknown.

Whatever the outcome, Arxan calling “game over” is perhaps a little premature under the circumstances but in this continuing arms race, they probably have another version of their anti-tamper tech up their sleeves…..

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

How to Patch Linux Workloads on AWS

Post Syndicated from Koen van Blijderveen original https://aws.amazon.com/blogs/security/how-to-patch-linux-workloads-on-aws/

Most malware tries to compromise your systems by using a known vulnerability that the operating system maker has already patched. As best practices to help prevent malware from affecting your systems, you should apply all operating system patches and actively monitor your systems for missing patches.

In this blog post, I show you how to patch Linux workloads using AWS Systems Manager. To accomplish this, I will show you how to use the AWS Command Line Interface (AWS CLI) to:

  1. Launch an Amazon EC2 instance for use with Systems Manager.
  2. Configure Systems Manager to patch your Amazon EC2 Linux instances.

In two previous blog posts (Part 1 and Part 2), I showed how to use the AWS Management Console to perform the necessary steps to patch, inspect, and protect Microsoft Windows workloads. You can implement those same processes for your Linux instances running in AWS by changing the instance tags and types shown in the previous blog posts.

Because most Linux system administrators are more familiar with using a command line, I show how to patch Linux workloads by using the AWS CLI in this blog post. The steps to use the Amazon EBS Snapshot Scheduler and Amazon Inspector are identical for both Microsoft Windows and Linux.

What you should know first

To follow along with the solution in this post, you need one or more Amazon EC2 instances. You may use existing instances or create new instances. For this post, I assume this is an Amazon EC2 for Amazon Linux instance installed from Amazon Machine Images (AMIs).

Systems Manager is a collection of capabilities that helps you automate management tasks for AWS-hosted instances on Amazon EC2 and your on-premises servers. In this post, I use Systems Manager for two purposes: to run remote commands and apply operating system patches. To learn about the full capabilities of Systems Manager, see What Is AWS Systems Manager?

As of Amazon Linux 2017.09, the AMI comes preinstalled with the Systems Manager agent. Systems Manager Patch Manager also supports Red Hat and Ubuntu. To install the agent on these Linux distributions or an older version of Amazon Linux, see Installing and Configuring SSM Agent on Linux Instances.

If you are not familiar with how to launch an Amazon EC2 instance, see Launching an Instance. I also assume you launched or will launch your instance in a private subnet. You must make sure that the Amazon EC2 instance can connect to the internet using a network address translation (NAT) instance or NAT gateway to communicate with Systems Manager. The following diagram shows how you should structure your VPC.

Diagram showing how to structure your VPC

Later in this post, you will assign tasks to a maintenance window to patch your instances with Systems Manager. To do this, the IAM user you are using for this post must have the iam:PassRole permission. This permission allows the IAM user assigning tasks to pass his own IAM permissions to the AWS service. In this example, when you assign a task to a maintenance window, IAM passes your credentials to Systems Manager. You also should authorize your IAM user to use Amazon EC2 and Systems Manager. As mentioned before, you will be using the AWS CLI for most of the steps in this blog post. Our documentation shows you how to get started with the AWS CLI. Make sure you have the AWS CLI installed and configured with an AWS access key and secret access key that belong to an IAM user that have the following AWS managed policies attached to the IAM user you are using for this example: AmazonEC2FullAccess and AmazonSSMFullAccess.

Step 1: Launch an Amazon EC2 Linux instance

In this section, I show you how to launch an Amazon EC2 instance so that you can use Systems Manager with the instance. This step requires you to do three things:

  1. Create an IAM role for Systems Manager before launching your Amazon EC2 instance.
  2. Launch your Amazon EC2 instance with Amazon EBS and the IAM role for Systems Manager.
  3. Add tags to the instances so that you can add your instances to a Systems Manager maintenance window based on tags.

A. Create an IAM role for Systems Manager

Before launching an Amazon EC2 instance, I recommend that you first create an IAM role for Systems Manager, which you will use to update the Amazon EC2 instance. AWS already provides a preconfigured policy that you can use for the new role and it is called AmazonEC2RoleforSSM.

  1. Create a JSON file named trustpolicy-ec2ssm.json that contains the following trust policy. This policy describes which principal (an entity that can take action on an AWS resource) is allowed to assume the role we are going to create. In this example, the principal is the Amazon EC2 service.
    {
      "Version": "2012-10-17",
      "Statement": {
        "Effect": "Allow",
        "Principal": {"Service": "ec2.amazonaws.com"},
        "Action": "sts:AssumeRole"
      }
    }

  1. Use the following command to create a role named EC2SSM that has the AWS managed policy AmazonEC2RoleforSSM attached to it. This generates JSON-based output that describes the role and its parameters, if the command is successful.
    $ aws iam create-role --role-name EC2SSM --assume-role-policy-document file://trustpolicy-ec2ssm.json

  1. Use the following command to attach the AWS managed IAM policy (AmazonEC2RoleforSSM) to your newly created role.
    $ aws iam attach-role-policy --role-name EC2SSM --policy-arn arn:aws:iam::aws:policy/service-role/AmazonEC2RoleforSSM

  1. Use the following commands to create the IAM instance profile and add the role to the instance profile. The instance profile is needed to attach the role we created earlier to your Amazon EC2 instance.
    $ aws iam create-instance-profile --instance-profile-name EC2SSM-IP
    $ aws iam add-role-to-instance-profile --instance-profile-name EC2SSM-IP --role-name EC2SSM

B. Launch your Amazon EC2 instance

To follow along, you need an Amazon EC2 instance that is running Amazon Linux. You can use any existing instance you may have or create a new instance.

When launching a new Amazon EC2 instance, be sure that:

  1. Use the following command to launch a new Amazon EC2 instance using an Amazon Linux AMI available in the US East (N. Virginia) Region (also known as us-east-1). Replace YourKeyPair and YourSubnetId with your information. For more information about creating a key pair, see the create-key-pair documentation. Write down the InstanceId that is in the output because you will need it later in this post.
    $ aws ec2 run-instances --image-id ami-cb9ec1b1 --instance-type t2.micro --key-name YourKeyPair --subnet-id YourSubnetId --iam-instance-profile Name=EC2SSM-IP

  1. If you are using an existing Amazon EC2 instance, you can use the following command to attach the instance profile you created earlier to your instance.
    $ aws ec2 associate-iam-instance-profile --instance-id YourInstanceId --iam-instance-profile Name=EC2SSM-IP

C. Add tags

The final step of configuring your Amazon EC2 instances is to add tags. You will use these tags to configure Systems Manager in Step 2 of this post. For this example, I add a tag named Patch Group and set the value to Linux Servers. I could have other groups of Amazon EC2 instances that I treat differently by having the same tag name but a different tag value. For example, I might have a collection of other servers with the tag name Patch Group with a value of Web Servers.

  • Use the following command to add the Patch Group tag to your Amazon EC2 instance.
    $ aws ec2 create-tags --resources YourInstanceId --tags --tags Key="Patch Group",Value="Linux Servers"

Note: You must wait a few minutes until the Amazon EC2 instance is available before you can proceed to the next section. To make sure your Amazon EC2 instance is online and ready, you can use the following AWS CLI command:

$ aws ec2 describe-instance-status --instance-ids YourInstanceId

At this point, you now have at least one Amazon EC2 instance you can use to configure Systems Manager.

Step 2: Configure Systems Manager

In this section, I show you how to configure and use Systems Manager to apply operating system patches to your Amazon EC2 instances, and how to manage patch compliance.

To start, I provide some background information about Systems Manager. Then, I cover how to:

  1. Create the Systems Manager IAM role so that Systems Manager is able to perform patch operations.
  2. Create a Systems Manager patch baseline and associate it with your instance to define which patches Systems Manager should apply.
  3. Define a maintenance window to make sure Systems Manager patches your instance when you tell it to.
  4. Monitor patch compliance to verify the patch state of your instances.

You must meet two prerequisites to use Systems Manager to apply operating system patches. First, you must attach the IAM role you created in the previous section, EC2SSM, to your Amazon EC2 instance. Second, you must install the Systems Manager agent on your Amazon EC2 instance. If you have used a recent Amazon Linux AMI, Amazon has already installed the Systems Manager agent on your Amazon EC2 instance. You can confirm this by logging in to an Amazon EC2 instance and checking the Systems Manager agent log files that are located at /var/log/amazon/ssm/.

To install the Systems Manager agent on an instance that does not have the agent preinstalled or if you want to use the Systems Manager agent on your on-premises servers, see Installing and Configuring the Systems Manager Agent on Linux Instances. If you forgot to attach the newly created role when launching your Amazon EC2 instance or if you want to attach the role to already running Amazon EC2 instances, see Attach an AWS IAM Role to an Existing Amazon EC2 Instance by Using the AWS CLI or use the AWS Management Console.

A. Create the Systems Manager IAM role

For a maintenance window to be able to run any tasks, you must create a new role for Systems Manager. This role is a different kind of role than the one you created earlier: this role will be used by Systems Manager instead of Amazon EC2. Earlier, you created the role, EC2SSM, with the policy, AmazonEC2RoleforSSM, which allowed the Systems Manager agent on your instance to communicate with Systems Manager. In this section, you need a new role with the policy, AmazonSSMMaintenanceWindowRole, so that the Systems Manager service can execute commands on your instance.

To create the new IAM role for Systems Manager:

  1. Create a JSON file named trustpolicy-maintenancewindowrole.json that contains the following trust policy. This policy describes which principal is allowed to assume the role you are going to create. This trust policy allows not only Amazon EC2 to assume this role, but also Systems Manager.
    {
       "Version":"2012-10-17",
       "Statement":[
          {
             "Sid":"",
             "Effect":"Allow",
             "Principal":{
                "Service":[
                   "ec2.amazonaws.com",
                   "ssm.amazonaws.com"
               ]
             },
             "Action":"sts:AssumeRole"
          }
       ]
    }

  1. Use the following command to create a role named MaintenanceWindowRole that has the AWS managed policy, AmazonSSMMaintenanceWindowRole, attached to it. This command generates JSON-based output that describes the role and its parameters, if the command is successful.
    $ aws iam create-role --role-name MaintenanceWindowRole --assume-role-policy-document file://trustpolicy-maintenancewindowrole.json

  1. Use the following command to attach the AWS managed IAM policy (AmazonEC2RoleforSSM) to your newly created role.
    $ aws iam attach-role-policy --role-name MaintenanceWindowRole --policy-arn arn:aws:iam::aws:policy/service-role/AmazonSSMMaintenanceWindowRole

B. Create a Systems Manager patch baseline and associate it with your instance

Next, you will create a Systems Manager patch baseline and associate it with your Amazon EC2 instance. A patch baseline defines which patches Systems Manager should apply to your instance. Before you can associate the patch baseline with your instance, though, you must determine if Systems Manager recognizes your Amazon EC2 instance. Use the following command to list all instances managed by Systems Manager. The --filters option ensures you look only for your newly created Amazon EC2 instance.

$ aws ssm describe-instance-information --filters Key=InstanceIds,Values= YourInstanceId

{
    "InstanceInformationList": [
        {
            "IsLatestVersion": true,
            "ComputerName": "ip-10-50-2-245",
            "PingStatus": "Online",
            "InstanceId": "YourInstanceId",
            "IPAddress": "10.50.2.245",
            "ResourceType": "EC2Instance",
            "AgentVersion": "2.2.120.0",
            "PlatformVersion": "2017.09",
            "PlatformName": "Amazon Linux AMI",
            "PlatformType": "Linux",
            "LastPingDateTime": 1515759143.826
        }
    ]
}

If your instance is missing from the list, verify that:

  1. Your instance is running.
  2. You attached the Systems Manager IAM role, EC2SSM.
  3. You deployed a NAT gateway in your public subnet to ensure your VPC reflects the diagram shown earlier in this post so that the Systems Manager agent can connect to the Systems Manager internet endpoint.
  4. The Systems Manager agent logs don’t include any unaddressed errors.

Now that you have checked that Systems Manager can manage your Amazon EC2 instance, it is time to create a patch baseline. With a patch baseline, you define which patches are approved to be installed on all Amazon EC2 instances associated with the patch baseline. The Patch Group resource tag you defined earlier will determine to which patch group an instance belongs. If you do not specifically define a patch baseline, the default AWS-managed patch baseline is used.

To create a patch baseline:

  1. Use the following command to create a patch baseline named AmazonLinuxServers. With approval rules, you can determine the approved patches that will be included in your patch baseline. In this example, you add all Critical severity patches to the patch baseline as soon as they are released, by setting the Auto approval delay to 0 days. By setting the Auto approval delay to 2 days, you add to this patch baseline the Important, Medium, and Low severity patches two days after they are released.
    $ aws ssm create-patch-baseline --name "AmazonLinuxServers" --description "Baseline containing all updates for Amazon Linux" --operating-system AMAZON_LINUX --approval-rules "PatchRules=[{PatchFilterGroup={PatchFilters=[{Values=[Critical],Key=SEVERITY}]},ApproveAfterDays=0,ComplianceLevel=CRITICAL},{PatchFilterGroup={PatchFilters=[{Values=[Important,Medium,Low],Key=SEVERITY}]},ApproveAfterDays=2,ComplianceLevel=HIGH}]"
    
    {
        "BaselineId": "YourBaselineId"
    }

  1. Use the following command to register the patch baseline you created with your instance. To do so, you use the Patch Group tag that you added to your Amazon EC2 instance.
    $ aws ssm register-patch-baseline-for-patch-group --baseline-id YourPatchBaselineId --patch-group "Linux Servers"
    
    {
        "PatchGroup": "Linux Servers",
        "BaselineId": "YourBaselineId"
    }

C.  Define a maintenance window

Now that you have successfully set up a role, created a patch baseline, and registered your Amazon EC2 instance with your patch baseline, you will define a maintenance window so that you can control when your Amazon EC2 instances will receive patches. By creating multiple maintenance windows and assigning them to different patch groups, you can make sure your Amazon EC2 instances do not all reboot at the same time.

To define a maintenance window:

  1. Use the following command to define a maintenance window. In this example command, the maintenance window will start every Saturday at 10:00 P.M. UTC. It will have a duration of 4 hours and will not start any new tasks 1 hour before the end of the maintenance window.
    $ aws ssm create-maintenance-window --name SaturdayNight --schedule "cron(0 0 22 ? * SAT *)" --duration 4 --cutoff 1 --allow-unassociated-targets
    
    {
        "WindowId": "YourMaintenanceWindowId"
    }

For more information about defining a cron-based schedule for maintenance windows, see Cron and Rate Expressions for Maintenance Windows.

  1. After defining the maintenance window, you must register the Amazon EC2 instance with the maintenance window so that Systems Manager knows which Amazon EC2 instance it should patch in this maintenance window. You can register the instance by using the same Patch Group tag you used to associate the Amazon EC2 instance with the AWS-provided patch baseline, as shown in the following command.
    $ aws ssm register-target-with-maintenance-window --window-id YourMaintenanceWindowId --resource-type INSTANCE --targets "Key=tag:Patch Group,Values=Linux Servers"
    
    {
        "WindowTargetId": "YourWindowTargetId"
    }

  1. Assign a task to the maintenance window that will install the operating system patches on your Amazon EC2 instance. The following command includes the following options.
    1. name is the name of your task and is optional. I named mine Patching.
    2. task-arn is the name of the task document you want to run.
    3. max-concurrency allows you to specify how many of your Amazon EC2 instances Systems Manager should patch at the same time. max-errors determines when Systems Manager should abort the task. For patching, this number should not be too low, because you do not want your entire patch task to stop on all instances if one instance fails. You can set this, for example, to 20%.
    4. service-role-arn is the Amazon Resource Name (ARN) of the AmazonSSMMaintenanceWindowRole role you created earlier in this blog post.
    5. task-invocation-parameters defines the parameters that are specific to the AWS-RunPatchBaseline task document and tells Systems Manager that you want to install patches with a timeout of 600 seconds (10 minutes).
      $ aws ssm register-task-with-maintenance-window --name "Patching" --window-id "YourMaintenanceWindowId" --targets "Key=WindowTargetIds,Values=YourWindowTargetId" --task-arn AWS-RunPatchBaseline --service-role-arn "arn:aws:iam::123456789012:role/MaintenanceWindowRole" --task-type "RUN_COMMAND" --task-invocation-parameters "RunCommand={Comment=,TimeoutSeconds=600,Parameters={SnapshotId=[''],Operation=[Install]}}" --max-concurrency "500" --max-errors "20%"
      
      {
          "WindowTaskId": "YourWindowTaskId"
      }

Now, you must wait for the maintenance window to run at least once according to the schedule you defined earlier. If your maintenance window has expired, you can check the status of any maintenance tasks Systems Manager has performed by using the following command.

$ aws ssm describe-maintenance-window-executions --window-id "YourMaintenanceWindowId"

{
    "WindowExecutions": [
        {
            "Status": "SUCCESS",
            "WindowId": "YourMaintenanceWindowId",
            "WindowExecutionId": "b594984b-430e-4ffa-a44c-a2e171de9dd3",
            "EndTime": 1515766467.487,
            "StartTime": 1515766457.691
        }
    ]
}

D.  Monitor patch compliance

You also can see the overall patch compliance of all Amazon EC2 instances using the following command in the AWS CLI.

$ aws ssm list-compliance-summaries

This command shows you the number of instances that are compliant with each category and the number of instances that are not in JSON format.

You also can see overall patch compliance by choosing Compliance under Insights in the navigation pane of the Systems Manager console. You will see a visual representation of how many Amazon EC2 instances are up to date, how many Amazon EC2 instances are noncompliant, and how many Amazon EC2 instances are compliant in relation to the earlier defined patch baseline.

Screenshot of the Compliance page of the Systems Manager console

In this section, you have set everything up for patch management on your instance. Now you know how to patch your Amazon EC2 instance in a controlled manner and how to check if your Amazon EC2 instance is compliant with the patch baseline you have defined. Of course, I recommend that you apply these steps to all Amazon EC2 instances you manage.

Summary

In this blog post, I showed how to use Systems Manager to create a patch baseline and maintenance window to keep your Amazon EC2 Linux instances up to date with the latest security patches. Remember that by creating multiple maintenance windows and assigning them to different patch groups, you can make sure your Amazon EC2 instances do not all reboot at the same time.

If you have comments about this post, submit them in the “Comments” section below. If you have questions about or issues implementing any part of this solution, start a new thread on the Amazon EC2 forum or contact AWS Support.

– Koen

[$] Two FOSDEM talks on Samba 4

Post Syndicated from jake original https://lwn.net/Articles/747098/rss

Much as some of us would love never to have to deal with Windows,
it exists. It wants to authenticate its users and share
resources like files and printers over the network. Although many
enterprises use Microsoft tools to do this, there is a free alternative,
in the form of Samba. While Samba 3 has been happily providing
authentication along with file and print sharing to Windows clients for
many years,
the Microsoft world has been slowly moving toward Active Directory (AD).
Meanwhile, Samba 4, which adds a free reimplementation of AD on Linux, has
been increasingly ready for deployment. Three short talks at FOSDEM 2018
provided three different views of Samba 4, also known as Samba-AD,
and left behind a pretty clear picture that Samba 4 is truly
ready for use.

Subscribers can read on for a report from guest author Tom Yates on the first two of those talks; stay tuned for another on the third soon.

Build a Multi-Tenant Amazon EMR Cluster with Kerberos, Microsoft Active Directory Integration and EMRFS Authorization

Post Syndicated from Songzhi Liu original https://aws.amazon.com/blogs/big-data/build-a-multi-tenant-amazon-emr-cluster-with-kerberos-microsoft-active-directory-integration-and-emrfs-authorization/

One of the challenges faced by our customers—especially those in highly regulated industries—is balancing the need for security with flexibility. In this post, we cover how to enable multi-tenancy and increase security by using EMRFS (EMR File System) authorization, the Amazon S3 storage-level authorization on Amazon EMR.

Amazon EMR is an easy, fast, and scalable analytics platform enabling large-scale data processing. EMRFS authorization provides Amazon S3 storage-level authorization by configuring EMRFS with multiple IAM roles. With this functionality enabled, different users and groups can share the same cluster and assume their own IAM roles respectively.

Simply put, on Amazon EMR, we can now have an Amazon EC2 role per user assumed at run time instead of one general EC2 role at the cluster level. When the user is trying to access Amazon S3 resources, Amazon EMR evaluates against a predefined mappings list in EMRFS configurations and picks up the right role for the user.

In this post, we will discuss what EMRFS authorization is (Amazon S3 storage-level access control) and show how to configure the role mappings with detailed examples. You will then have the desired permissions in a multi-tenant environment. We also demo Amazon S3 access from HDFS command line, Apache Hive on Hue, and Apache Spark.

EMRFS authorization for Amazon S3

There are two prerequisites for using this feature:

  1. Users must be authenticated, because EMRFS needs to map the current user/group/prefix to a predefined user/group/prefix. There are several authentication options. In this post, we launch a Kerberos-enabled cluster that manages the Key Distribution Center (KDC) on the master node, and enable a one-way trust from the KDC to a Microsoft Active Directory domain.
  2. The application must support accessing Amazon S3 via Applications that have their own S3FileSystem APIs (for example, Presto) are not supported at this time.

EMRFS supports three types of mapping entries: user, group, and Amazon S3 prefix. Let’s use an example to show how this works.

Assume that you have the following three identities in your organization, and they are defined in the Active Directory:

To enable all these groups and users to share the EMR cluster, you need to define the following IAM roles:

In this case, you create a separate Amazon EC2 role that doesn’t give any permission to Amazon S3. Let’s call the role the base role (the EC2 role attached to the EMR cluster), which in this example is named EMR_EC2_RestrictedRole. Then, you define all the Amazon S3 permissions for each specific user or group in their own roles. The restricted role serves as the fallback role when the user doesn’t belong to any user/group, nor does the user try to access any listed Amazon S3 prefixes defined on the list.

Important: For all other roles, like emrfs_auth_group_role_data_eng, you need to add the base role (EMR_EC2_RestrictedRole) as the trusted entity so that it can assume other roles. See the following example:

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "ec2.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    },
    {
      "Effect": "Allow",
      "Principal": {
        "AWS": "arn:aws:iam::511586466501:role/EMR_EC2_RestrictedRole"
      },
      "Action": "sts:AssumeRole"
    }
  ]
}

The following is an example policy for the admin user role (emrfs_auth_user_role_admin_user):

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": "s3:*",
            "Resource": "*"
        }
    ]
}

We are assuming the admin user has access to all buckets in this example.

The following is an example policy for the data science group role (emrfs_auth_group_role_data_sci):

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Resource": [
                "arn:aws:s3:::emrfs-auth-data-science-bucket-demo/*",
                "arn:aws:s3:::emrfs-auth-data-science-bucket-demo"
            ],
            "Action": [
                "s3:*"
            ]
        }
    ]
}

This role grants all Amazon S3 permissions to the emrfs-auth-data-science-bucket-demo bucket and all the objects in it. Similarly, the policy for the role emrfs_auth_group_role_data_eng is shown below:

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Resource": [
                "arn:aws:s3:::emrfs-auth-data-engineering-bucket-demo/*",
                "arn:aws:s3:::emrfs-auth-data-engineering-bucket-demo"
            ],
            "Action": [
                "s3:*"
            ]
        }
    ]
}

Example role mappings configuration

To configure EMRFS authorization, you use EMR security configuration. Here is the configuration we use in this post

Consider the following scenario.

First, the admin user admin1 tries to log in and run a command to access Amazon S3 data through EMRFS. The first role emrfs_auth_user_role_admin_user on the mapping list, which is a user role, is mapped and picked up. Then admin1 has access to the Amazon S3 locations that are defined in this role.

Then a user from the data engineer group (grp_data_engineering) tries to access a data bucket to run some jobs. When EMRFS sees that the user is a member of the grp_data_engineering group, the group role emrfs_auth_group_role_data_eng is assumed, and the user has proper access to Amazon S3 that is defined in the emrfs_auth_group_role_data_eng role.

Next, the third user comes, who is not an admin and doesn’t belong to any of the groups. After failing evaluation of the top three entries, EMRFS evaluates whether the user is trying to access a certain Amazon S3 prefix defined in the last mapping entry. This type of mapping entry is called the prefix type. If the user is trying to access s3://emrfs-auth-default-bucket-demo/, then the prefix mapping is in effect, and the prefix role emrfs_auth_prefix_role_default_s3_prefix is assumed.

If the user is not trying to access any of the Amazon S3 paths that are defined on the list—which means it failed the evaluation of all the entries—it only has the permissions defined in the EMR_EC2RestrictedRole. This role is assumed by the EC2 instances in the cluster.

In this process, all the mappings defined are evaluated in the defined order, and the first role that is mapped is assumed, and the rest of the list is skipped.

Setting up an EMR cluster and mapping Active Directory users and groups

Now that we know how EMRFS authorization role mapping works, the next thing we need to think about is how we can use this feature in an easy and manageable way.

Active Directory setup

Many customers manage their users and groups using Microsoft Active Directory or other tools like OpenLDAP. In this post, we create the Active Directory on an Amazon EC2 instance running Windows Server and create the users and groups we will be using in the example below. After setting up Active Directory, we use the Amazon EMR Kerberos auto-join capability to establish a one-way trust from the KDC running on the EMR master node to the Active Directory domain on the EC2 instance. You can use your own directory services as long as it talks to the LDAP (Lightweight Directory Access Protocol).

To create and join Active Directory to Amazon EMR, follow the steps in the blog post Use Kerberos Authentication to Integrate Amazon EMR with Microsoft Active Directory.

After configuring Active Directory, you can create all the users and groups using the Active Directory tools and add users to appropriate groups. In this example, we created users like admin1, dataeng1, datascientist1, grp_data_engineering, and grp_data_science, and then add the users to the right groups.

Join the EMR cluster to an Active Directory domain

For clusters with Kerberos, Amazon EMR now supports automated Active Directory domain joins. You can use the security configuration to configure the one-way trust from the KDC to the Active Directory domain. You also configure the EMRFS role mappings in the same security configuration.

The following is an example of the EMR security configuration with a trusted Active Directory domain EMRKRB.TEST.COM and the EMRFS role mappings as we discussed earlier:

The EMRFS role mapping configuration is shown in this example:

We will also provide an example AWS CLI command that you can run.

Launching the EMR cluster and running the tests

Now you have configured Kerberos and EMRFS authorization for Amazon S3.

Additionally, you need to configure Hue with Active Directory using the Amazon EMR configuration API in order to log in using the AD users created before. The following is an example of Hue AD configuration.

[
  {
    "Classification":"hue-ini",
    "Properties":{

    },
    "Configurations":[
      {
        "Classification":"desktop",
        "Properties":{

        },
        "Configurations":[
          {
            "Classification":"ldap",
            "Properties":{

            },
            "Configurations":[
              {
                "Classification":"ldap_servers",
                "Properties":{

                },
                "Configurations":[
                  {
                    "Classification":"AWS",
                    "Properties":{
                      "base_dn":"DC=emrkrb,DC=test,DC=com",
                      "ldap_url":"ldap://emrkrb.test.com",
                      "search_bind_authentication":"false",
                      "bind_dn":"CN=adjoiner,CN=users,DC=emrkrb,DC=test,DC=com",
                      "bind_password":"Abc123456",
                      "create_users_on_login":"true",
                      "nt_domain":"emrkrb.test.com"
                    },
                    "Configurations":[

                    ]
                  }
                ]
              }
            ]
          },
          {
            "Classification":"auth",
            "Properties":{
              "backend":"desktop.auth.backend.LdapBackend"
            },
            "Configurations":[

            ]
          }
        ]
      }
    ]
  }

Note: In the preceding configuration JSON file, change the values as required before pasting it into the software setting section in the Amazon EMR console.

Now let’s use this configuration and the security configuration you created before to launch the cluster.

In the Amazon EMR console, choose Create cluster. Then choose Go to advanced options. On the Step1: Software and Steps page, under Edit software settings (optional), paste the configuration in the box.

The rest of the setup is the same as an ordinary cluster setup, except in the Security Options section. In Step 4: Security, under Permissions, choose Custom, and then choose the RestrictedRole that you created before.

Choose the appropriate subnets (these should meet the base requirement in order for a successful Active Directory join—see the Amazon EMR Management Guide for more details), and choose the appropriate security groups to make sure it talks to the Active Directory. Choose a key so that you can log in and configure the cluster.

Most importantly, choose the security configuration that you created earlier to enable Kerberos and EMRFS authorization for Amazon S3.

You can use the following AWS CLI command to create a cluster.

aws emr create-cluster --name "TestEMRFSAuthorization" \ 
--release-label emr-5.10.0 \ --instance-type m3.xlarge \ 
--instance-count 3 \ 
--ec2-attributes InstanceProfile=EMR_EC2_DefaultRole,KeyName=MyEC2KeyPair \ --service-role EMR_DefaultRole \ 
--security-configuration MyKerberosConfig \ 
--configurations file://hue-config.json \
--applications Name=Hadoop Name=Hive Name=Hue Name=Spark \ 
--kerberos-attributes Realm=EC2.INTERNAL, \ KdcAdminPassword=<YourClusterKDCAdminPassword>, \ ADDomainJoinUser=<YourADUserLogonName>,ADDomainJoinPassword=<YourADUserPassword>, \ 
CrossRealmTrustPrincipalPassword=<MatchADTrustPwd>

Note: If you create the cluster using CLI, you need to save the JSON configuration for Hue into a file named hue-config.json and place it on the server where you run the CLI command.

After the cluster gets into the Waiting state, try to connect by using SSH into the cluster using the Active Directory user name and password.

ssh -l [email protected] <EMR IP or DNS name>

Quickly run two commands to show that the Active Directory join is successful:

  1. id [user name] shows the mapped AD users and groups in Linux.
  2. hdfs groups [user name] shows the mapped group in Hadoop.

Both should return the current Active Directory user and group information if the setup is correct.

Now, you can test the user mapping first. Log in with the admin1 user, and run a Hadoop list directory command:

hadoop fs -ls s3://emrfs-auth-data-science-bucket-demo/

Now switch to a user from the data engineer group.

Retry the previous command to access the admin’s bucket. It should throw an Amazon S3 Access Denied exception.

When you try listing the Amazon S3 bucket that a data engineer group member has accessed, it triggers the group mapping.

hadoop fs -ls s3://emrfs-auth-data-engineering-bucket-demo/

It successfully returns the listing results. Next we will test Apache Hive and then Apache Spark.

 

To run jobs successfully, you need to create a home directory for every user in HDFS for staging data under /user/<username>. Users can configure a step to create a home directory at cluster launch time for every user who has access to the cluster. In this example, you use Hue since Hue will create the home directory in HDFS for the user at the first login. Here Hue also needs to be integrated with the same Active Directory as explained in the example configuration described earlier.

First, log in to Hue as a data engineer user, and open a Hive Notebook in Hue. Then run a query to create a new table pointing to the data engineer bucket, s3://emrfs-auth-data-engineering-bucket-demo/table1_data_eng/.

You can see that the table was created successfully. Now try to create another table pointing to the data science group’s bucket, where the data engineer group doesn’t have access.

It failed and threw an Amazon S3 Access Denied error.

Now insert one line of data into the successfully create table.

Next, log out, switch to a data science group user, and create another table, test2_datasci_tb.

The creation is successful.

The last task is to test Spark (it requires the user directory, but Hue created one in the previous step).

Now let’s come back to the command line and run some Spark commands.

Login to the master node using the datascientist1 user:

Start the SparkSQL interactive shell by typing spark-sql, and run the show tables command. It should list the tables that you created using Hive.

As a data science group user, try select on both tables. You will find that you can only select the table defined in the location that your group has access to.

Conclusion

EMRFS authorization for Amazon S3 enables you to have multiple roles on the same cluster, providing flexibility to configure a shared cluster for different teams to achieve better efficiency. The Active Directory integration and group mapping make it much easier for you to manage your users and groups, and provides better auditability in a multi-tenant environment.


Additional Reading

If you found this post useful, be sure to check out Use Kerberos Authentication to Integrate Amazon EMR with Microsoft Active Directory and Launching and Running an Amazon EMR Cluster inside a VPC.


About the Authors

Songzhi Liu is a Big Data Consultant with AWS Professional Services. He works closely with AWS customers to provide them Big Data & Machine Learning solutions and best practices on the Amazon cloud.

 

 

 

 

All-In on Unlimited Backup

Post Syndicated from Gleb Budman original https://www.backblaze.com/blog/all-in-on-unlimited-backup/

chips on computer with cloud backup

The cloud backup industry has seen its share of tumultuousness. BitCasa, Dell DataSafe, Xdrive, and a dozen others have closed up shop. Mozy, Amazon, and Microsoft offered, but later canceled, their unlimited offerings. Recently, CrashPlan for Home customers were notified that their service was being end-of-lifed. Then today we’ve heard from Carbonite customers who are frustrated by this morning’s announcement of a price increase from Carbonite.

We believe that the fundamental goal of a cloud backup is having peace-of-mind: knowing your data — all of it — is safe. For over 10 years Backblaze has been providing that peace-of-mind by offering completely unlimited cloud backup to our customers. And we continue to be committed to that. Knowing that your cloud backup vendor is not going to disappear or fundamentally change their service is an essential element in achieving that peace-of-mind.

Committed to Unlimited Backup

When Mozy discontinued their unlimited backup on Jan 31, 2011, a lot of people asked, “Does this mean Backblaze will discontinue theirs as well?” At that time I wrote the blog post Backblaze is committed to unlimited backup. That was seven years ago. Since then we’ve continued to make Backblaze cloud backup better: dramatically speeding up backups and restores, offering the unique and very popular Restore Return Refund program, enabling direct access and sharing of any file in your backup, and more. We also introduced Backblaze Groups to enable businesses and families to manage backups — all at no additional cost.

How That’s Possible

I’d like to answer the question of “How have you been able to do this when others haven’t?

First, commitment. It’s not impossible to offer unlimited cloud backup, but it’s not easy. The Backblaze team has been committed to unlimited as a core tenet.

Second, we have pursued the technical, business, and cultural steps required to make it happen. We’ve designed our own servers, written our cloud storage software, run our own operations, and been continually focused on every place we could optimize a penny out of the cost of storage. We’ve built a culture at Backblaze that cares deeply about that.

Ensuring Peace-of-Mind

Price increases and plan changes happen in our industry, but Backblaze has consistently been the low price leader, and continues to stand by the foundational element of our service — truly unlimited backup storage. Carbonite just announced a price increase from $60 to $72/year, and while that’s not an astronomical increase, it’s important to keep in mind the service that they are providing at that rate. The basic Carbonite plan provides a service that doesn’t back up videos or external hard drives by default. We think that’s dangerous. No one wants to discover that their videos weren’t backed up after their computer dies, or have to worry about the safety and durability of their data. That is why we have continued to build on our foundation of unlimited, as well as making our service faster and more accessible. All of these serve the goal of ensuring peace-of-mind for our customers.

3 Months Free For You & A Friend

As part of our commitment to unlimited, refer your friends to receive three months of Backblaze service through March 15, 2018. When you Refer-a-Friend with your personal referral link, and they subscribe, both of you will receive three months of service added to your account. See promotion details on our Refer-a-Friend page.

Want A Reminder When Your Carbonite Subscription Runs Out?

If you’re considering switching from Carbonite, we’d love to be your new backup provider. Enter your email and the date you’d like to be reminded in the form below and you’ll get a friendly reminder email from us to start a new backup plan with Backblaze. Or, you could start a free trial today.

We think you’ll be glad you switched, and you’ll have a chance to experience some of that Backblaze peace-of-mind for your data.

Please Send Me a Reminder When I Need a New Backup Provider



 

The post All-In on Unlimited Backup appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

0-Day Flash Vulnerability Exploited In The Wild

Post Syndicated from Darknet original https://www.darknet.org.uk/2018/02/0-day-flash-vulnerability-exploited-in-the-wild/?utm_source=rss&utm_medium=social&utm_campaign=darknetfeed

0-Day Flash Vulnerability Exploited In The Wild

So another 0-Day Flash Vulnerability is being exploited in the Wild, a previously unknown flaw which has been labelled CVE-2018-4878 and it affects 28.0.0.137 and earlier versions for both Windows and Mac (the desktop runtime) and for basically everything in the Chrome Flash Player (Windows, Mac, Linux and Chrome OS).

The full Adobe Security Advisory can be found here:

– Security Advisory for Flash Player | APSA18-01

Adobe warned on Thursday that attackers are exploiting a previously unknown security hole in its Flash Player software to break into Microsoft Windows computers.

Read the rest of 0-Day Flash Vulnerability Exploited In The Wild now! Only available at Darknet.

Migrating .NET Classic Applications to Amazon ECS Using Windows Containers

Post Syndicated from Sundar Narasiman original https://aws.amazon.com/blogs/compute/migrating-net-classic-applications-to-amazon-ecs-using-windows-containers/

This post contributed by Sundar Narasiman, Arun Kannan, and Thomas Fuller.

AWS recently announced the general availability of Windows container management for Amazon Elastic Container Service (Amazon ECS). Docker containers and Amazon ECS make it easy to run and scale applications on a virtual machine by abstracting the complex cluster management and setup needed.

Classic .NET applications are developed with .NET Framework 4.7.1 or older and can run only on a Windows platform. These include Windows Communication Foundation (WCF), ASP.NET Web Forms, and an ASP.NET MVC web app or web API.

Why classic ASP.NET?

ASP.NET MVC 4.6 and older versions of ASP.NET occupy a significant footprint in the enterprise web application space. As enterprises move towards microservices for new or existing applications, containers are one of the stepping stones for migrating from monolithic to microservices architectures. Additionally, the support for Windows containers in Windows 10, Windows Server 2016, and Visual Studio Tooling support for Docker simplifies the containerization of ASP.NET MVC apps.

Getting started

In this post, you pick an ASP.NET 4.6.2 MVC application and get step-by-step instructions for migrating to ECS using Windows containers. The detailed steps, AWS CloudFormation template, Microsoft Visual Studio solution, ECS service definition, and ECS task definition are available in the aws-ecs-windows-aspnet GitHub repository.

To help you getting started running Windows containers, here is the reference architecture for Windows containers on GitHub: ecs-refarch-cloudformation-windows. This reference architecture is the layered CloudFormation stack, in that it calls the other stacks to create the environment. The CloudFormation YAML template in this reference architecture is referenced to create a single JSON CloudFormation stack, which is used in the steps for the migration.

Steps for Migration

The code and templates to implement this migration can be found on GitHub: https://github.com/aws-samples/aws-ecs-windows-aspnet.

  1. Your development environment needs to have the latest version and updates for Visual Studio 2017, Windows 10, and Docker for Windows Stable.
  2. Next, containerize the ASP.NET application and test it locally. The size of Windows container application images is generally larger compared to Linux containers. This is because the base image of the Windows container itself is large in size, typically greater than 9 GB.
  3. After the application is containerized, the container image needs to be pushed to Amazon Elastic Container Registry (Amazon ECR). Images stored in ECR are compressed to improve pull times and reduce storage costs. In this case, you can see that ECR compresses the image to around 1 GB, for an optimization factor of 90%.
  4. Create a CloudFormation stack using the template in the ‘CloudFormation template’ folder. This creates an ECS service, task definition (referring the containerized ASP.NET application), and other related components mentioned in the ECS reference architecture for Windows containers.
  5. After the stack is created, verify the successful creation of the ECS service, ECS instances, running tasks (with the threshold mentioned in the task definition), and the Application Load Balancer’s successful health check against running containers.
  6. Navigate to the Application Load Balancer URL and see the successful rendering of the containerized ASP.NET MVC app in the browser.

Key Notes

  • Generally, Windows container images occupy large amount of space (in the order of few GBs).
  • All the task definition parameters for Linux containers are not available for Windows containers. For more information, see Windows Task Definitions.
  • An Application Load Balancer can be configured to route requests to one or more ports on each container instance in a cluster. The dynamic port mapping allows you to have multiple tasks from a single service on the same container instance.
  • IAM roles for Windows tasks require extra configuration. For more information, see Windows IAM Roles for Tasks. For this post, configuration was handled by the CloudFormation template.
  • The ECS container agent log file can be accessed for troubleshooting Windows containers: C:\ProgramData\Amazon\ECS\log\ecs-agent.log

Summary

In this post, you migrated an ASP.NET MVC application to ECS using Windows containers.

The logical next step is to automate the activities for migration to ECS and build a fully automated continuous integration/continuous deployment (CI/CD) pipeline for Windows containers. This can be orchestrated by leveraging services such as AWS CodeCommit, AWS CodePipeline, AWS CodeBuild, Amazon ECR, and Amazon ECS. You can learn more about how this is done in the Set Up a Continuous Delivery Pipeline for Containers Using AWS CodePipeline and Amazon ECS post.

If you have questions or suggestions, please comment below.

EU Compliance Update: AWS’s 2017 C5 Assessment

Post Syndicated from Oliver Bell original https://aws.amazon.com/blogs/security/eu-compliance-update-awss-2017-c5-assessment/

C5 logo

AWS has completed its 2017 assessment against the Cloud Computing Compliance Controls Catalog (C5) information security and compliance program. Bundesamt für Sicherheit in der Informationstechnik (BSI)—Germany’s national cybersecurity authority—established C5 to define a reference standard for German cloud security requirements. With C5 (as well as with IT-Grundschutz), customers in German member states can use the work performed under this BSI audit to comply with stringent local requirements and operate secure workloads in the AWS Cloud.

Continuing our commitment to Germany and the AWS European Regions, AWS has added 16 services to this year’s scope:

The English version of the C5 report is available through AWS Artifact. The German version of the report will be available through AWS Artifact in the coming weeks.

– Oliver

Connect Veeam to the B2 Cloud: Episode 1 — Using Synology

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/backing-up-veeam-cloud-connect-synology-b2/

Veeam Cloud Connect to Backblaze B2

Veeam is well-known for its easy-to-use software for backing up virtual machines from VMware and Microsoft.

Users of Veeam and Backblaze B2 Cloud Storage have asked for a way to back up a Veeam repository to B2. Backblaze’s B2 is an ideal solution for backing up Veeam’s backup repository due to B2’s combination of low-cost and high availability compared to other cloud solutions such as Microsoft Azure.

This is the first in a series of posts on the topic of backing up Veeam to B2. Future posts will cover other methods.

In this post we provide a step-by-step tutorial on how to configure a Synology NAS as a Veeam backup repository, and in turn use Synology’s CloudSync software to back up that repository to the B2 Cloud.

Our guest contributor, Rhys Hammond, is well qualified to author this tutorial. Rhys is a Senior System Engineer for Data#3 in Australia specializing in Veeam and VMware solutions. He is a VMware vExpert and a member of the Veeam Vanguard program.

Rhy’s tutorial is outlined as follows:

Veeam and Backblaze B2 — Introduction

Introduction

Background on B2 and Veeam, and a discussion of various ways to back up a Veeam backup repository to the cloud.

Phase 1 — Create the Backblaze B2 Bucket

How to create the B2 Bucket that will be the destination for mirroring our Veeam backup repository.

Phase 2 — Install and Configure Synology CloudSync

Get CloudSync ready to perform the backup to B2.

Phase 3 — Configure Veeam Backup Repository

Create a new Veeam backup repository in preparation for upload to B2.

Phase 4 — Create the Veeam Backup Job

Configure the Veeam backup job, with two possible scenarios, primary target and secondary backup target.

Phase 5 — Testing and Tuning

Making sure it all works.

Summary

Some thoughts on the process, other options, and tips.

You can read the full tutorial on Rhy’s website by following the link below. To be sure to receive notice of future posts in this series on Veeam, use the Join button at the top of the page.

Beta Testers Needed: Veeam/Starwind/B2

If you back up Veeam using Starwind VTL, we have a BETA program for you. Help us with the Starwind VTL to Backblaze B2 integration Beta and test whether you can automatically back up Veeam to Backblaze B2 via Starwind VTL. Motivated beta testers can email starwind@backblaze.com for details and how to get started.

The post Connect Veeam to the B2 Cloud: Episode 1 — Using Synology appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

O’Callahan: The Fight For Patent-Unencumbered Media Codecs Is Nearly Won

Post Syndicated from corbet original https://lwn.net/Articles/743824/rss

Robert O’Callahan notes
an important development
in the fight for media codecs without patent
issues. “Apple joining the Alliance for Open Media is a really big
deal. Now all the most powerful tech companies — Google, Microsoft, Apple,
Mozilla, Facebook, Amazon, Intel, AMD, ARM, Nvidia — plus content providers
like Netflix and Hulu are on board. I guess there’s still no guarantee
Apple products will support AV1, but it would seem pointless for Apple to
join AOM if they’re not going to use it: apparently AOM membership obliges
Apple to provide a royalty-free license to any ‘essential patents’ it holds
for AV1 usage.

Wanted: Sales Engineer

Post Syndicated from Yev original https://www.backblaze.com/blog/wanted-sales-engineer/

At inception, Backblaze was a consumer company. Thousands upon thousands of individuals came to our website and gave us $5/mo to keep their data safe. But, we didn’t sell business solutions. It took us years before we had a sales team. In the last couple of years, we’ve released products that businesses of all sizes love: Backblaze B2 Cloud Storage and Backblaze for Business Computer Backup. Those businesses want to integrate Backblaze deeply into their infrastructure, so it’s time to hire our first Sales Engineer!

Company Description:
Founded in 2007, Backblaze started with a mission to make backup software elegant and provide complete peace of mind. Over the course of almost a decade, we have become a pioneer in robust, scalable low cost cloud backup. Recently, we launched B2 – robust and reliable object storage at just $0.005/gb/mo. Part of our differentiation is being able to offer the lowest price of any of the big players while still being profitable.

We’ve managed to nurture a team oriented culture with amazingly low turnover. We value our people and their families. Don’t forget to check out our “About Us” page to learn more about the people and some of our perks.

We have built a profitable, high growth business. While we love our investors, we have maintained control over the business. That means our corporate goals are simple – grow sustainably and profitably.

Some Backblaze Perks:

  • Competitive healthcare plans
  • Competitive compensation and 401k
  • All employees receive Option grants
  • Unlimited vacation days
  • Strong coffee
  • Fully stocked Micro kitchen
  • Catered breakfast and lunches
  • Awesome people who work on awesome projects
  • Childcare bonus
  • Normal work hours
  • Get to bring your pets into the office
  • San Mateo Office – located near Caltrain and Highways 101 & 280.

Backblaze B2 cloud storage is a building block for almost any computing service that requires storage. Customers need our help integrating B2 into iOS apps to Docker containers. Some customers integrate directly to the API using the programming language of their choice, others want to solve a specific problem using ready made software, already integrated with B2.

At the same time, our computer backup product is deepening it’s integration into enterprise IT systems. We are commonly asked for how to set Windows policies, integrate with Active Directory, and install the client via remote management tools.

We are looking for a sales engineer who can help our customers navigate the integration of Backblaze into their technical environments.

Are you 1/2” deep into many different technologies, and unafraid to dive deeper?

Can you confidently talk with customers about their technology, even if you have to look up all the acronyms right after the call?

Are you excited to setup complicated software in a lab and write knowledge base articles about your work?

Then Backblaze is the place for you!

Enough about Backblaze already, what’s in it for me?
In this role, you will be given the opportunity to learn about the technologies that drive innovation today; diverse technologies that customers are using day in and out. And more importantly, you’ll learn how to learn new technologies.

Just as an example, in the past 12 months, we’ve had the opportunity to learn and become experts in these diverse technologies:

  • How to setup VM servers for lab environments, both on-prem and using cloud services.
  • Create an automatically “resetting” demo environment for the sales team.
  • Setup Microsoft Domain Controllers with Active Directory and AD Federation Services.
  • Learn the basics of OAUTH and web single sign on (SSO).
  • Archive video workflows from camera to media asset management systems.
  • How upload/download files from Javascript by enabling CORS.
  • How to install and monitor online backup installations using RMM tools, like JAMF.
  • Tape (LTO) systems. (Yes – people still use tape for storage!)

How can I know if I’ll succeed in this role?

You have:

  • Confidence. Be able to ask customers questions about their environments and convey to them your technical acumen.
  • Curiosity. Always want to learn about customers’ situations, how they got there and what problems they are trying to solve.
  • Organization. You’ll work with customers, integration partners, and Backblaze team members on projects of various lengths. You can context switch and either have a great memory or keep copious notes. Your checklists have their own checklists.

You are versed in:

  • The fundamentals of Windows, Linux and Mac OS X operating systems. You shouldn’t be afraid to use a command line.
  • Building, installing, integrating and configuring applications on any operating system.
  • Debugging failures – reading logs, monitoring usage, effective google searching to fix problems excites you.
  • The basics of TCP/IP networking and the HTTP protocol.
  • Novice development skills in any programming/scripting language. Have basic understanding of data structures and program flow.
  • Your background contains:

  • Bachelor’s degree in computer science or the equivalent.
  • 2+ years of experience as a pre or post-sales engineer.
  • The right extra credit:
    There are literally hundreds of previous experiences you can have had that would make you perfect for this job. Some experiences that we know would be helpful for us are below, but make sure you tell us your stories!

  • Experience using or programming against Amazon S3.
  • Experience with large on-prem storage – NAS, SAN, Object. And backing up data on such storage with tools like Veeam, Veritas and others.
  • Experience with photo or video media. Media archiving is a key market for Backblaze B2.
  • Program arduinos to automatically feed your dog.
  • Experience programming against web or REST APIs. (Point us towards your projects, if they are open source and available to link to.)
  • Experience with sales tools like Salesforce.
  • 3D print door stops.
  • Experience with Windows Servers, Active Directory, Group policies and the like.
  • What’s it like working with the Sales team?
    The Backblaze sales team collaborates. We help each other out by sharing ideas, templates, and our customer’s experiences. When we talk about our accomplishments, there is no “I did this,” only “we”. We are truly a team.

    We are honest to each other and our customers and communicate openly. We aim to have fun by embracing crazy ideas and creative solutions. We try to think not outside the box, but with no boxes at all. Customers are the driving force behind the success of the company and we care deeply about their success.

    If this all sounds like you:

    1. Send an email to [email protected] with the position in the subject line.
    2. Tell us a bit about your Sales Engineering experience.
    3. Include your resume.

    The post Wanted: Sales Engineer appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

    Some notes on Meltdown/Spectre

    Post Syndicated from Robert Graham original http://blog.erratasec.com/2018/01/some-notes-on-meltdownspectre.html

    I thought I’d write up some notes.

    You don’t have to worry if you patch. If you download the latest update from Microsoft, Apple, or Linux, then the problem is fixed for you and you don’t have to worry. If you aren’t up to date, then there’s a lot of other nasties out there you should probably also be worrying about. I mention this because while this bug is big in the news, it’s probably not news the average consumer needs to concern themselves with.

    This will force a redesign of CPUs and operating systems. While not a big news item for consumers, it’s huge in the geek world. We’ll need to redesign operating systems and how CPUs are made.

    Don’t worry about the performance hit. Some, especially avid gamers, are concerned about the claims of “30%” performance reduction when applying the patch. That’s only in some rare cases, so you shouldn’t worry too much about it. As far as I can tell, 3D games aren’t likely to see less than 1% performance degradation. If you imagine your game is suddenly slower after the patch, then something else broke it.

    This wasn’t foreseeable. A common cliche is that such bugs happen because people don’t take security seriously, or that they are taking “shortcuts”. That’s not the case here. Speculative execution and timing issues with caches are inherent issues with CPU hardware. “Fixing” this would make CPUs run ten times slower. Thus, while we can tweek hardware going forward, the larger change will be in software.

    There’s no good way to disclose this. The cybersecurity industry has a process for coordinating the release of such bugs, which appears to have broken down. In truth, it didn’t. Once Linus announced a security patch that would degrade performance of the Linux kernel, we knew the coming bug was going to be Big. Looking at the Linux patch, tracking backwards to the bug was only a matter of time. Hence, the release of this information was a bit sooner than some wanted. This is to be expected, and is nothing to be upset about.

    It helps to have a name. Many are offended by the crassness of naming vulnerabilities and giving them logos. On the other hand, we are going to be talking about these bugs for the next decade. Having a recognizable name, rather than a hard-to-remember number, is useful.

    Should I stop buying Intel? Intel has the worst of the bugs here. On the other hand, ARM and AMD alternatives have their own problems. Many want to deploy ARM servers in their data centers, but these are likely to expose bugs you don’t see on x86 servers. The software fix, “page table isolation”, seems to work, so there might not be anything to worry about. On the other hand, holding up purchases because of “fear” of this bug is a good way to squeeze price reductions out of your vendor. Conversely, later generation CPUs, “Haswell” and even “Skylake” seem to have the least performance degradation, so it might be time to upgrade older servers to newer processors.

    Intel misleads. Intel has a press release that implies they are not impacted any worse than others. This is wrong: the “Meltdown” issue appears to apply only to Intel CPUs. I don’t like such marketing crap, so I mention it.


    Statements from companies:

    Kodi Returns to Its Roots, Now Available on Xbox One

    Post Syndicated from Ernesto original https://torrentfreak.com/kodi-returns-to-its-roots-now-available-on-xbox-one-171229/

    The Kodi media player software has seen a massive surge in popularity over the past few years.

    With help from a wide range of third-party add-ons, some of which offer access to pirated content, millions of people now use Kodi as their main source of entertainment.

    The Kodi software itself is perfectly legal, however, and has been around for more than 15 years. The roots of Kodi are directly connected to the Xbox, as the first iterations of the project were called the “Xbox Media Player.”

    As time went by XBMP became XBMC, and eventually Kodi. The last name change made sense as the software was no longer being developed for Xbox, but for other devices, running on Linux, Windows, OSX, and Android.

    While the broader public was perfectly happy with this, the sentimental few were missing the Xbox connection. For them, and many others, Kodi has a surprise in store today after returning to its roots.

    “Let us end the year 2017 with a blast including a nostalgic reference to the past,” the Kodi team announced.

    “It has long been asked for by so many and now it finally happened. Kodi for Xbox One is available worldwide through Windows and Xbox Store.”

    The Kodi team provides quite a bit of history and context to the Xbox return in a detailed blog post. At the same time, it also cautions users to keep in mind that this is just the initial release, which still has some very rough edges.

    “What you should really understand and keep remembering is that it is still in early stages of development and has very rough edges, might not be as stable as the regular version and may even be missing some functions,” they write.

    Kodi’s look and feel on the Xbox One are very familiar though. Anyone who had Kodi installed on a different platform should have no issue navigating the interface. The usual add-ons should work fine as well.

    With the new Xbox One release, Kodi has come full circle. After 15 years they are back where things began.

    Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

    Might Google Class “Torrent” a Dirty Word? France is About to Find Out

    Post Syndicated from Andy original https://torrentfreak.com/might-google-class-torrent-a-dirty-word-france-is-about-to-find-out-171223/

    Like most countries, France is struggling to find ways to stop online piracy running rampant. A number of options have been tested thus far, with varying results.

    One of the more interesting cases has been running since 2015, when music industry group SNEP took Google and Microsoft to court demanding automated filtering of ‘pirate’ search results featuring three local artists.

    Before the High Court of Paris, SNEP argued that searches for the artists’ names plus the word “torrent” returned mainly infringing results on Google and Bing. Filtering out results with both sets of terms would reduce the impact of people finding pirate content through search, they said.

    While SNEP claimed that its request was in line with Article L336-2 of France’s intellectual property code, which allows for “all appropriate measures” to prevent infringement, both Google and Microsoft fought back, arguing that such filtering would be disproportionate and could restrict freedom of expression.

    The Court eventually sided with the search engines, noting that torrent is a common noun that refers to a neutral communication protocol.

    “The requested measures are thus tantamount to general monitoring and may block access to lawful websites,” the High Court said.

    Despite being told that its demands were too broad, SNEP decided to appeal. The case was heard in November where concerns were expressed over potential false positives.

    Since SNEP even wants sites with “torrent” in their URL filtered out via a “fully automated procedures that do not require human intervention”, this very site – TorrentFreak.com – could be sucked in. To counter that eventuality, SNEP proposed some kind of whitelist, NextInpact reports.

    With no real consensus on how to move forward, the parties were advised to enter discussions on how to get closer to the aim of reducing piracy but without causing collateral damage. Last week the parties agreed to enter negotiations so the details will now have to be hammered out between their respective law firms. Failing that, they will face a ruling from the court.

    If this last scenario plays out, the situation appears to favor the search engines, who have a High Court ruling in their favor and already offer comprehensive takedown tools for copyright holders to combat the exploitation of their content online.

    Meanwhile, other elements of the French recording industry have booked a notable success against several pirate sites.

    SCPP, which represents Warner, Universal, Sony and thousands of others, went to court in February this year demanding that local ISPs Bouygues, Free, Orange, SFR and Numéricable prevent their subscribers from accessing ExtraTorrent, isoHunt, Torrent9 and Cpasbien.

    Like SNEP in the filtering case, SCPP also cited Article L336-2 of France’s intellectual property code, demanding that the sites plus their variants, mirrors and proxies should be blocked by the ISPs so that their subscribers can no longer gain access.

    This week the Paris Court of First Instance sided with the industry group, ordering the ISPs to block the sites. The service providers were also told to pick up the bill for costs.

    These latest cases are yet more examples of France’s determination to crack down on piracy.

    Early December it was revealed that since its inception, nine million piracy warnings have been sent to citizens via the Hadopi anti-piracy agency. Since the launch of its graduated response regime in 2010, more than 2,000 cases have been referred to prosecutors, resulting in 189 criminal convictions.

    Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

    GCHQ Found — and Disclosed — a Windows 10 Vulnerability

    Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/12/gchq_found_--_a.html

    Now this is good news. The UK’s National Cyber Security Centre (NCSC) — part of GCHQ — found a serious vulnerability in Windows Defender (their anti-virus component). Instead of keeping it secret and all of us vulnerable, it alerted Microsoft.

    I’d like believe the US does this, too.

    [$] An overview of KubeCon + CloudNativeCon

    Post Syndicated from jake original https://lwn.net/Articles/741301/rss

    The Cloud
    Native Computing Foundation
    (CNCF) held its conference,
    KubeCon + CloudNativeCon,
    in December 2017. There were 4000 attendees at this gathering in Austin, Texas,
    more than
    all the previous KubeCons before, which shows the rapid growth of the
    community building around the tool that was announced by Google in
    2014. Large corporations are also taking a larger part in the
    community, with major players in the industry joining the CNCF, which is a project of the Linux
    Foundation. The CNCF now features three of the largest cloud
    hosting businesses (Amazon, Google, and Microsoft), but also emerging
    companies from Asia like Baidu and Alibaba.

    Treasure Trove of AACS 2.0 UHD Blu-Ray Keys Leak Online

    Post Syndicated from Ernesto original https://torrentfreak.com/treasure-trove-of-aacs-2-0-uhd-blu-ray-keys-leak-online-171211/

    Nowadays, movie buffs and videophiles find it hard to imagine a good viewing experience without UHD content, but disc rippers and pirates have remained on the sidelines for a long time.

    Protected with strong AACS 2.0 encryption, UHD Blu-ray discs have long been one of the last bastions movie pirates had yet to breach.

    This year there have been some major developments on this front, as full copies of UHD discs started to leak online. While it remained unclear how these were ripped, it was a definite milestone.

    Just a few months ago another breakthrough came when a Russian company released a Windows tool called DeUHD that could rip UHD Blu-ray discs. Again, the method for obtaining the keys was not revealed.

    Now there’s another setback for AACS LA, the licensing outfit founded by Warner Bros, Disney, Microsoft, Intel, and others. On various platforms around the Internet, copies of 72 AACS 2.0 keys are being shared.

    The first mention we can find was posted a few days ago in a ten-year-old forum thread in the Doom9 forums. Since then it has been replicated a few times, without much fanfare.

    The keys

    The keys in question are confirmed to work and allow people to rip UHD Blu-ray discs of movies with freely available software such as MakeMKV. They are also different from the DeUHD list, so there are more people who know how to get them.

    The full list of leaked keys includes movies such as Deadpool, Hancock, Passengers, Star Trek: Into Darkness, and The Martian. Some movies have multiple keys, likely as a result of different disc releases.

    The leaked keys are also relevant for another reason. Ten years ago, a hacker leaked the AACS cryptographic key “09 F9” online which prompted the MPAA and AACS LA to issue DMCA takedown requests to sites where it surfaced.

    This escalated into a censorship debate when Digg started removing articles that referenced the leak, triggering a massive backlash.

    Thus fas the response to the AACS 2.0 leaks has been pretty tame, but it’s still early days. A user who posted the leaked keys on MyCe has already removed them due to possible copyright problems, so it’s definitely still a touchy subject.

    The question that remains now is how the hacker managed to secure the keys, and if AACS 2.0 has been permanently breached.

    Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons