Tag Archives: SNS

Troubleshooting event publishing issues in Amazon SES

Post Syndicated from Dustin Taylor original https://aws.amazon.com/blogs/ses/troubleshooting-event-publishing-issues-in-amazon-ses/

Over the past year, we’ve released several features that make it easier to track the metrics that are associated with your Amazon SES account. The first of these features, launched in November of last year, was event publishing.

Initially, event publishing let you capture basic metrics related to your email sending and publish them to other AWS services, such as Amazon CloudWatch and Amazon Kinesis Data Firehose. Some examples of these basic metrics include the number of emails that were sent and delivered, as well as the number that bounced or received complaints. A few months ago, we expanded this feature by adding engagement metrics—specifically, information about the number of emails that your customers opened or engaged with by clicking links.

As a former Cloud Support Engineer, I’ve seen Amazon SES customers do some amazing things with event publishing, but I’ve also seen some common issues. In this article, we look at some of these issues, and discuss the steps you can take to resolve them.

Before we begin

This post assumes that your Amazon SES account is already out of the sandbox, that you’ve verified an identity (such as an email address or domain), and that you have the necessary permissions to use Amazon SES and the service that you’ll publish event data to (such as Amazon SNS, CloudWatch, or Kinesis Data Firehose).

We also assume that you’re familiar with the process of creating configuration sets and specifying event destinations for those configuration sets. For more information, see Using Amazon SES Configuration Sets in the Amazon SES Developer Guide.

Amazon SNS event destinations

If you want to receive notifications when events occur—such as when recipients click a link in an email, or when they report an email as spam—you can use Amazon SNS as an event destination.

Occasionally, customers ask us why they’re not receiving notifications when they use an Amazon SNS topic as an event destination. One of the most common reasons for this issue is that they haven’t configured subscriptions for their Amazon SNS topic yet.

A single topic in Amazon SNS can have one or more subscriptions. When you subscribe to a topic, you tell that topic which endpoints (such as email addresses or mobile phone numbers) to contact when it receives a notification. If you haven’t set up any subscriptions, nothing will happen when an email event occurs.

For more information about setting up topics and subscriptions, see Getting Started in the Amazon SNS Developer Guide. For information about publishing Amazon SES events to Amazon SNS topics, see Set Up an Amazon SNS Event Destination for Amazon SES Event Publishing in the Amazon SES Developer Guide.

Kinesis Data Firehose event destinations

If you want to store your Amazon SES event data for the long term, choose Amazon Kinesis Data Firehose as a destination for Amazon SES events. With Kinesis Data Firehose, you can stream data to Amazon S3 or Amazon Redshift for storage and analysis.

The process of setting up Kinesis Data Firehose as an event destination is similar to the process for setting up Amazon SNS: you choose the types of events (such as deliveries, opens, clicks, or bounces) that you want to export, and the name of the Kinesis Data Firehose stream that you want to export to. However, there’s one important difference. When you set up a Kinesis Data Firehose event destination, you must also choose the IAM role that Amazon SES uses to send event data to Kinesis Data Firehose.

When you set up the Kinesis Data Firehose event destination, you can choose to have Amazon SES create the IAM role for you automatically. For many users, this is the best solution—it ensures that the IAM role has the appropriate permissions to move event data from Amazon SES to Kinesis Data Firehose.

Customers occasionally run into issues with the Kinesis Data Firehose event destination when they use an existing IAM role. If you use an existing IAM role, or create a new role for this purpose, make sure that the role includes the firehose:PutRecord and firehose:PutRecordBatch permissions. If the role doesn’t include these permissions, then the Amazon SES event data isn’t published to Kinesis Data Firehose. For more information, see Controlling Access with Amazon Kinesis Data Firehose in the Amazon Kinesis Data Firehose Developer Guide.

CloudWatch event destinations

By publishing your Amazon SES event data to Amazon CloudWatch, you can create dashboards that track your sending statistics in real time, as well as alarms that notify you when your event metrics reach certain thresholds.

The amount that you’re charged for using CloudWatch is based on several factors, including the number of metrics you use. In order to give you more control over the specific metrics you send to CloudWatch—and to help you avoid unexpected charges—you can limit the email sending events that are sent to CloudWatch.

When you choose CloudWatch as an event destination, you must choose a value source. The value source can be one of three options: a message tag, a link tag, or an email header. After you choose a value source, you then specify a name and a value. When you send an email using a configuration set that refers to a CloudWatch event destination, it only sends the metrics for that email to CloudWatch if the email contains the name and value that you specified as the value source. This requirement is commonly overlooked.

For example, assume that you chose Message Tag as the value source, and specified “CategoryId” as the dimension name and “31415” as the dimension value. When you want to send events for an email to CloudWatch, you must specify the name of the configuration set that uses the CloudWatch destination. You must also include a tag in your message. The name of the tag must be “CategoryId” and the value must be “31415”.

For more information about adding tags and email headers to your messages, see Send Email Using Amazon SES Event Publishing in the Amazon SES Developer Guide. For more information about adding tags to links, see Amazon SES Email Sending Metrics FAQs in the Amazon SES Developer Guide.

Troubleshooting event publishing for open and click data

Occasionally, customers ask why they’re not seeing open and click data for their emails. This issue most often occurs when the customer only sends text versions of their emails. Because of the way Amazon SES tracks open and click events, you can only see open and click data for emails that are sent as HTML. For more information about how Amazon SES modifies your emails when you enable open and click tracking, see Amazon SES Email Sending Metrics FAQs in the Amazon SES Developer Guide.

The process that you use to send HTML emails varies based on the email sending method you use. The Code Examples section of the Amazon SES Developer Guide contains examples of several methods of sending email by using the Amazon SES SMTP interface or an AWS SDK. All of the examples in this section include methods for sending HTML (as well as text-only) emails.

If you encounter any issues that weren’t covered in this post, please open a case in the Support Center and we’d be more than happy to assist.

Scale Your Web Application — One Step at a Time

Post Syndicated from Saurabh Shrivastava original https://aws.amazon.com/blogs/architecture/scale-your-web-application-one-step-at-a-time/

I often encounter people experiencing frustration as they attempt to scale their e-commerce or WordPress site—particularly around the cost and complexity related to scaling. When I talk to customers about their scaling plans, they often mention phrases such as horizontal scaling and microservices, but usually people aren’t sure about how to dive in and effectively scale their sites.

Now let’s talk about different scaling options. For instance if your current workload is in a traditional data center, you can leverage the cloud for your on-premises solution. This way you can scale to achieve greater efficiency with less cost. It’s not necessary to set up a whole powerhouse to light a few bulbs. If your workload is already in the cloud, you can use one of the available out-of-the-box options.

Designing your API in microservices and adding horizontal scaling might seem like the best choice, unless your web application is already running in an on-premises environment and you’ll need to quickly scale it because of unexpected large spikes in web traffic.

So how to handle this situation? Take things one step at a time when scaling and you may find horizontal scaling isn’t the right choice, after all.

For example, assume you have a tech news website where you did an early-look review of an upcoming—and highly-anticipated—smartphone launch, which went viral. The review, a blog post on your website, includes both video and pictures. Comments are enabled for the post and readers can also rate it. For example, if your website is hosted on a traditional Linux with a LAMP stack, you may find yourself with immediate scaling problems.

Let’s get more details on the current scenario and dig out more:

  • Where are images and videos stored?
  • How many read/write requests are received per second? Per minute?
  • What is the level of security required?
  • Are these synchronous or asynchronous requests?

We’ll also want to consider the following if your website has a transactional load like e-commerce or banking:

How is the website handling sessions?

  • Do you have any compliance requests—like the Payment Card Industry Data Security Standard (PCI DSS compliance) —if your website is using its own payment gateway?
  • How are you recording customer behavior data and fulfilling your analytics needs?
  • What are your loading balancing considerations (scaling, caching, session maintenance, etc.)?

So, if we take this one step at a time:

Step 1: Ease server load. We need to quickly handle spikes in traffic, generated by activity on the blog post, so let’s reduce server load by moving image and video to some third -party content delivery network (CDN). AWS provides Amazon CloudFront as a CDN solution, which is highly scalable with built-in security to verify origin access identity and handle any DDoS attacks. CloudFront can direct traffic to your on-premises or cloud-hosted server with its 113 Points of Presence (102 Edge Locations and 11 Regional Edge Caches) in 56 cities across 24 countries, which provides efficient caching.
Step 2: Reduce read load by adding more read replicas. MySQL provides a nice mirror replication for databases. Oracle has its own Oracle plug for replication and AWS RDS provide up to five read replicas, which can span across the region and even the Amazon database Amazon Aurora can have 15 read replicas with Amazon Aurora autoscaling support. If a workload is highly variable, you should consider Amazon Aurora Serverless database  to achieve high efficiency and reduced cost. While most mirror technologies do asynchronous replication, AWS RDS can provide synchronous multi-AZ replication, which is good for disaster recovery but not for scalability. Asynchronous replication to mirror instance means replication data can sometimes be stale if network bandwidth is low, so you need to plan and design your application accordingly.

I recommend that you always use a read replica for any reporting needs and try to move non-critical GET services to read replica and reduce the load on the master database. In this case, loading comments associated with a blog can be fetched from a read replica—as it can handle some delay—in case there is any issue with asynchronous reflection.

Step 3: Reduce write requests. This can be achieved by introducing queue to process the asynchronous message. Amazon Simple Queue Service (Amazon SQS) is a highly-scalable queue, which can handle any kind of work-message load. You can process data, like rating and review; or calculate Deal Quality Score (DQS) using batch processing via an SQS queue. If your workload is in AWS, I recommend using a job-observer pattern by setting up Auto Scaling to automatically increase or decrease the number of batch servers, using the number of SQS messages, with Amazon CloudWatch, as the trigger.  For on-premises workloads, you can use SQS SDK to create an Amazon SQS queue that holds messages until they’re processed by your stack. Or you can use Amazon SNS  to fan out your message processing in parallel for different purposes like adding a watermark in an image, generating a thumbnail, etc.

Step 4: Introduce a more robust caching engine. You can use Amazon Elastic Cache for Memcached or Redis to reduce write requests. Memcached and Redis have different use cases so if you can afford to lose and recover your cache from your database, use Memcached. If you are looking for more robust data persistence and complex data structure, use Redis. In AWS, these are managed services, which means AWS takes care of the workload for you and you can also deploy them in your on-premises instances or use a hybrid approach.

Step 5: Scale your server. If there are still issues, it’s time to scale your server.  For the greatest cost-effectiveness and unlimited scalability, I suggest always using horizontal scaling. However, use cases like database vertical scaling may be a better choice until you are good with sharding; or use Amazon Aurora Serverless for variable workloads. It will be wise to use Auto Scaling to manage your workload effectively for horizontal scaling. Also, to achieve that, you need to persist the session. Amazon DynamoDB can handle session persistence across instances.

If your server is on premises, consider creating a multisite architecture, which will help you achieve quick scalability as required and provide a good disaster recovery solution.  You can pick and choose individual services like Amazon Route 53, AWS CloudFormation, Amazon SQS, Amazon SNS, Amazon RDS, etc. depending on your needs.

Your multisite architecture will look like the following diagram:

In this architecture, you can run your regular workload on premises, and use your AWS workload as required for scalability and disaster recovery. Using Route 53, you can direct a precise percentage of users to an AWS workload.

If you decide to move all of your workloads to AWS, the recommended multi-AZ architecture would look like the following:

In this architecture, you are using a multi-AZ distributed workload for high availability. You can have a multi-region setup and use Route53 to distribute your workload between AWS Regions. CloudFront helps you to scale and distribute static content via an S3 bucket and DynamoDB, maintaining your application state so that Auto Scaling can apply horizontal scaling without loss of session data. At the database layer, RDS with multi-AZ standby provides high availability and read replica helps achieve scalability.

This is a high-level strategy to help you think through the scalability of your workload by using AWS even if your workload in on premises and not in the cloud…yet.

I highly recommend creating a hybrid, multisite model by placing your on-premises environment replica in the public cloud like AWS Cloud, and using Amazon Route53 DNS Service and Elastic Load Balancing to route traffic between on-premises and cloud environments. AWS now supports load balancing between AWS and on-premises environments to help you scale your cloud environment quickly, whenever required, and reduce it further by applying Amazon auto-scaling and placing a threshold on your on-premises traffic using Route 53.

Using Amazon CloudWatch and Amazon SNS to Notify when AWS X-Ray Detects Elevated Levels of Latency, Errors, and Faults in Your Application

Post Syndicated from Bharath Kumar original https://aws.amazon.com/blogs/devops/using-amazon-cloudwatch-and-amazon-sns-to-notify-when-aws-x-ray-detects-elevated-levels-of-latency-errors-and-faults-in-your-application/

AWS X-Ray helps developers analyze and debug production applications built using microservices or serverless architectures and quantify customer impact. With X-Ray, you can understand how your application and its underlying services are performing and identify and troubleshoot the root cause of performance issues and errors. You can use these insights to identify issues and opportunities for optimization.

In this blog post, I will show you how you can use Amazon CloudWatch and Amazon SNS to get notified when X-Ray detects high latency, errors, and faults in your application. Specifically, I will show you how to use this sample app to get notified through an email or SMS message when your end users observe high latencies or server-side errors when they use your application. You can customize the alarms and events by updating the sample app code.

Sample App Overview

The sample app uses the X-Ray GetServiceGraph API to get the following information:

  • Aggregated response time.
  • Requests that failed with 4xx status code (errors).
  • 429 status code (throttle).
  • 5xx status code (faults).
Sample app architecture

Overview of sample app architecture

Getting started

The sample app uses AWS CloudFormation to deploy the required resources.
To install the sample app:

  1. Run git clone to get the sample app.
  2. Update the JSON file in the Setup folder with threshold limits and notification details.
  3. Run the install.py script to install the sample app.

For more information about the installation steps, see the readme file on GitHub.

You can update the app configuration to include your phone number or email to get notified when your application in X-Ray breaches the latency, error, and fault limits you set in the configuration. If you prefer to not provide your phone number and email, then you can use the CloudWatch alarm deployed by the sample app to monitor your application in X-Ray.

The sample app deploys resources with the sample app namespace you provided during setup. This enables you to have multiple sample apps in the same region.

CloudWatch rules

The sample app uses two CloudWatch rules:

  1. SCHEDULEDLAMBDAFOR-sample_app_name to trigger at regular intervals the AWS Lambda function that queries the GetServiceGraph API.
  2. XRAYALERTSFOR-sample_app_name to look for published CloudWatch events that match the pattern defined in this rule.
CloudWatch Rules for sample app

CloudWatch rules created for the sample app

CloudWatch alarms

If you did not provide your phone number or email in the JSON file, the sample app uses a CloudWatch alarm named XRayCloudWatchAlarm-sample_app_name in combination with the CloudWatch event that you can use for monitoring.

CloudWatch Alarm for sample app

CloudWatch alarm created for the sample app

Amazon SNS messages

The sample app creates two SNS topics:

  • sample_app_name-cloudwatcheventsnstopic to send out an SMS message when the CloudWatch event matches a pattern published from the Lambda function.
  • sample_app_name-cloudwatchalarmsnstopic to send out an email message when the CloudWatch alarm goes into an ALARM state.
Amazon SNS for sample app

Amazon SNS created for the sample app

Getting notifications

The CloudWatch event looks for the following matching pattern:

{
  "detail-type": [
    "XCW Notification for Alerts"
  ],
  "source": [
    "<sample_app_name>-xcw.alerts"
  ]
}

The event then invokes an SNS topic that sends out an SMS message.

SMS in sample app

SMS that is sent when CloudWatch Event invokes Amazon SNS topic

The CloudWatch alarm looks for the TriggeredRules metric that is published whenever the CloudWatch event matches the event pattern. It goes into the ALARM state whenever TriggeredRules > 0 for the specified evaluation period and invokes an SNS topic that sends an email message.

Email sent in sample app

Email that is sent when CloudWatch Alarm goes to ALARM state

Stopping notifications

If you provided your phone number or email address, but would like to stop getting notified, change the SUBSCRIBE_TO_EMAIL_SMS environment variable in the Lambda function to No. Then, go to the Amazon SNS console and delete the subscriptions. You can still monitor your application for elevated levels of latency, errors, and faults by using the CloudWatch console.

Lambda environment variable in sample app

Change environment variable in Lambda

 

Delete subscription in SNS for sample app

Delete subscriptions to stop getting notified

Uninstalling the sample app

To uninstall the sample app, run the uninstall.py script in the Setup folder.

Extending the sample app

The sample app notifes you when when X-Ray detects high latency, errors, and faults in your application. You can extend it to provide more value for your use cases (for example, to perform an action on a resource when the state of a CloudWatch alarm changes).

To summarize, after this set up you will be able to get notified through Amazon SNS when X-Ray detects high latency, errors and faults in your application.

I hope you found this information about setting up alarms and alerts for your application in AWS X-Ray helpful. Feel free to leave questions or other feedback in the comments. Feel free to learn more about AWS X-Ray, Amazon SNS and Amazon CloudWatch

About the Author

Bharath Kumar is a Sr.Product Manager with AWS X-Ray. He has developed and launched mobile games, web applications on microservices and serverless architecture.

Amazon Linux 2 – Modern, Stable, and Enterprise-Friendly

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/amazon-linux-2-modern-stable-and-enterprise-friendly/

I’m getting ready to wrap up my work for the year, cleaning up my inbox and catching up on a few recent AWS launches that happened at and shortly after AWS re:Invent.

Last week we launched Amazon Linux 2. This is modern version of Linux, designed to meet the security, stability, and productivity needs of enterprise environments while giving you timely access to new tools and features. It also includes all of the things that made the Amazon Linux AMI popular, including AWS integration, cloud-init, a secure default configuration, regular security updates, and AWS Support. From that base, we have added many new features including:

Long-Term Support – You can use Amazon Linux 2 in situations where you want to stick with a single major version of Linux for an extended period of time, perhaps to avoid re-qualifying your applications too frequently. This build (2017.12) is a candidate for LTS status; the final determination will be made based on feedback in the Amazon Linux Discussion Forum. Long-term support for the Amazon Linux 2 LTS build will include security updates, bug fixes, user-space Application Binary Interface (ABI), and user-space Application Programming Interface (API) compatibility for 5 years.

Extras Library – You can now get fast access to fresh, new functionality while keeping your base OS image stable and lightweight. The Amazon Linux Extras Library eliminates the age-old tradeoff between OS stability and access to fresh software. It contains open source databases, languages, and more, each packaged together with any needed dependencies.

Tuned Kernel – You have access to the latest 4.9 LTS kernel, with support for the latest EC2 features and tuned to run efficiently in AWS and other virtualized environments.

SystemdAmazon Linux 2 includes the systemd init system, designed to provide better boot performance and increased control over individual services and groups of interdependent services. For example, you can indicate that Service B must be started only after Service A is fully started, or that Service C should start on a change in network connection status.

Wide AvailabiltyAmazon Linux 2 is available in all AWS Regions in AMI and Docker image form. Virtual machine images for Hyper-V, KVM, VirtualBox, and VMware are also available. You can build and test your applications on your laptop or in your own data center and then deploy them to AWS.

Launching an Instance
You can launch an instance in all of the usual ways – AWS Management Console, AWS Command Line Interface (CLI), AWS Tools for Windows PowerShell, RunInstances, and via a AWS CloudFormation template. I’ll use the Console:

I’m interested in the Extras Library; here’s how I see which topics (lists of packages) are available:

As you can see, the library includes languages, editors, and web tools that receive frequent updates. Each topic contains all of dependencies that are needed to install the package on Amazon Linux 2. For example, the Rust topic includes the cmake build system for Rust, cargo for Rust package maintenance, and the LLVM-based compiler toolchain for Rust.

Here’s how I install a topic (Emacs 25.3):

SNS Updates
Many AWS customers use the Amazon Linux AMIs as a starting point for their own AMIs. If you do this and would like to kick off your build process whenever a new AMI is released, you can subscribe to an SNS topic:

You can be notified by email, invoke a AWS Lambda function, and so forth.

Available Now
Amazon Linux 2 is available now and you can start using it in the cloud and on-premises today! To learn more, read the Amazon Linux 2 LTS Candidate (2017.12) Release Notes.

Jeff;

 

Now Open AWS EU (Paris) Region

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/now-open-aws-eu-paris-region/

Today we are launching our 18th AWS Region, our fourth in Europe. Located in the Paris area, AWS customers can use this Region to better serve customers in and around France.

The Details
The new EU (Paris) Region provides a broad suite of AWS services including Amazon API Gateway, Amazon Aurora, Amazon CloudFront, Amazon CloudWatch, CloudWatch Events, Amazon CloudWatch Logs, Amazon DynamoDB, Amazon Elastic Compute Cloud (EC2), EC2 Container Registry, Amazon ECS, Amazon Elastic Block Store (EBS), Amazon EMR, Amazon ElastiCache, Amazon Elasticsearch Service, Amazon Glacier, Amazon Kinesis Streams, Polly, Amazon Redshift, Amazon Relational Database Service (RDS), Amazon Route 53, Amazon Simple Notification Service (SNS), Amazon Simple Queue Service (SQS), Amazon Simple Storage Service (S3), Amazon Simple Workflow Service (SWF), Amazon Virtual Private Cloud, Auto Scaling, AWS Certificate Manager (ACM), AWS CloudFormation, AWS CloudTrail, AWS CodeDeploy, AWS Config, AWS Database Migration Service, AWS Direct Connect, AWS Elastic Beanstalk, AWS Identity and Access Management (IAM), AWS Key Management Service (KMS), AWS Lambda, AWS Marketplace, AWS OpsWorks Stacks, AWS Personal Health Dashboard, AWS Server Migration Service, AWS Service Catalog, AWS Shield Standard, AWS Snowball, AWS Snowball Edge, AWS Snowmobile, AWS Storage Gateway, AWS Support (including AWS Trusted Advisor), Elastic Load Balancing, and VM Import.

The Paris Region supports all sizes of C5, M5, R4, T2, D2, I3, and X1 instances.

There are also four edge locations for Amazon Route 53 and Amazon CloudFront: three in Paris and one in Marseille, all with AWS WAF and AWS Shield. Check out the AWS Global Infrastructure page to learn more about current and future AWS Regions.

The Paris Region will benefit from three AWS Direct Connect locations. Telehouse Voltaire is available today. AWS Direct Connect will also become available at Equinix Paris in early 2018, followed by Interxion Paris.

All AWS infrastructure regions around the world are designed, built, and regularly audited to meet the most rigorous compliance standards and to provide high levels of security for all AWS customers. These include ISO 27001, ISO 27017, ISO 27018, SOC 1 (Formerly SAS 70), SOC 2 and SOC 3 Security & Availability, PCI DSS Level 1, and many more. This means customers benefit from all the best practices of AWS policies, architecture, and operational processes built to satisfy the needs of even the most security sensitive customers.

AWS is certified under the EU-US Privacy Shield, and the AWS Data Processing Addendum (DPA) is GDPR-ready and available now to all AWS customers to help them prepare for May 25, 2018 when the GDPR becomes enforceable. The current AWS DPA, as well as the AWS GDPR DPA, allows customers to transfer personal data to countries outside the European Economic Area (EEA) in compliance with European Union (EU) data protection laws. AWS also adheres to the Cloud Infrastructure Service Providers in Europe (CISPE) Code of Conduct. The CISPE Code of Conduct helps customers ensure that AWS is using appropriate data protection standards to protect their data, consistent with the GDPR. In addition, AWS offers a wide range of services and features to help customers meet the requirements of the GDPR, including services for access controls, monitoring, logging, and encryption.

From Our Customers
Many AWS customers are preparing to use this new Region. Here’s a small sample:

Societe Generale, one of the largest banks in France and the world, has accelerated their digital transformation while working with AWS. They developed SG Research, an application that makes reports from Societe Generale’s analysts available to corporate customers in order to improve the decision-making process for investments. The new AWS Region will reduce latency between applications running in the cloud and in their French data centers.

SNCF is the national railway company of France. Their mobile app, powered by AWS, delivers real-time traffic information to 14 million riders. Extreme weather, traffic events, holidays, and engineering works can cause usage to peak at hundreds of thousands of users per second. They are planning to use machine learning and big data to add predictive features to the app.

Radio France, the French public radio broadcaster, offers seven national networks, and uses AWS to accelerate its innovation and stay competitive.

Les Restos du Coeur, a French charity that provides assistance to the needy, delivering food packages and participating in their social and economic integration back into French society. Les Restos du Coeur is using AWS for its CRM system to track the assistance given to each of their beneficiaries and the impact this is having on their lives.

AlloResto by JustEat (a leader in the French FoodTech industry), is using AWS to to scale during traffic peaks and to accelerate their innovation process.

AWS Consulting and Technology Partners
We are already working with a wide variety of consulting, technology, managed service, and Direct Connect partners in France. Here’s a partial list:

AWS Premier Consulting PartnersAccenture, Capgemini, Claranet, CloudReach, DXC, and Edifixio.

AWS Consulting PartnersABC Systemes, Atos International SAS, CoreExpert, Cycloid, Devoteam, LINKBYNET, Oxalide, Ozones, Scaleo Information Systems, and Sopra Steria.

AWS Technology PartnersAxway, Commerce Guys, MicroStrategy, Sage, Software AG, Splunk, Tibco, and Zerolight.

AWS in France
We have been investing in Europe, with a focus on France, for the last 11 years. We have also been developing documentation and training programs to help our customers to improve their skills and to accelerate their journey to the AWS Cloud.

As part of our commitment to AWS customers in France, we plan to train more than 25,000 people in the coming years, helping them develop highly sought after cloud skills. They will have access to AWS training resources in France via AWS Academy, AWSome days, AWS Educate, and webinars, all delivered in French by AWS Technical Trainers and AWS Certified Trainers.

Use it Today
The EU (Paris) Region is open for business now and you can start using it today!

Jeff;

 

Now Open – AWS China (Ningxia) Region

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/now-open-aws-china-ningxia-region/

Today we launched our 17th Region globally, and the second in China. The AWS China (Ningxia) Region, operated by Ningxia Western Cloud Data Technology Co. Ltd. (NWCD), is generally available now and provides customers another option to run applications and store data on AWS in China.

The Details
At launch, the new China (Ningxia) Region, operated by NWCD, supports Auto Scaling, AWS Config, AWS CloudFormation, AWS CloudTrail, Amazon CloudWatch, CloudWatch Events, Amazon CloudWatch Logs, AWS CodeDeploy, AWS Direct Connect, Amazon DynamoDB, Amazon Elastic Compute Cloud (EC2), Amazon Elastic Block Store (EBS), Amazon EC2 Systems Manager, AWS Elastic Beanstalk, Amazon ElastiCache, Amazon Elasticsearch Service, Elastic Load Balancing, Amazon EMR, Amazon Glacier, AWS Identity and Access Management (IAM), Amazon Kinesis Streams, Amazon Redshift, Amazon Relational Database Service (RDS), Amazon Simple Storage Service (S3), Amazon Simple Notification Service (SNS), Amazon Simple Queue Service (SQS), AWS Support API, AWS Trusted Advisor, Amazon Simple Workflow Service (SWF), Amazon Virtual Private Cloud, and VM Import. Visit the AWS China Products page for additional information on these services.

The Region supports all sizes of C4, D2, M4, T2, R4, I3, and X1 instances.

Check out the AWS Global Infrastructure page to learn more about current and future AWS Regions.

Operating Partner
To comply with China’s legal and regulatory requirements, AWS has formed a strategic technology collaboration with NWCD to operate and provide services from the AWS China (Ningxia) Region. Founded in 2015, NWCD is a licensed datacenter and cloud services provider, based in Ningxia, China. NWCD joins Sinnet, the operator of the AWS China China (Beijing) Region, as an AWS operating partner in China. Through these relationships, AWS provides its industry-leading technology, guidance, and expertise to NWCD and Sinnet, while NWCD and Sinnet operate and provide AWS cloud services to local customers. While the cloud services offered in both AWS China Regions are the same as those available in other AWS Regions, the AWS China Regions are different in that they are isolated from all other AWS Regions and operated by AWS’s Chinese partners separately from all other AWS Regions. Customers using the AWS China Regions enter into customer agreements with Sinnet and NWCD, rather than with AWS.

Use it Today
The AWS China (Ningxia) Region, operated by NWCD, is open for business, and you can start using it now! Starting today, Chinese developers, startups, and enterprises, as well as government, education, and non-profit organizations, can leverage AWS to run their applications and store their data in the new AWS China (Ningxia) Region, operated by NWCD. Customers already using the AWS China (Beijing) Region, operated by Sinnet, can select the AWS China (Ningxia) Region directly from the AWS Management Console, while new customers can request an account at www.amazonaws.cn to begin using both AWS China Regions.

Jeff;

 

 

Implementing Canary Deployments of AWS Lambda Functions with Alias Traffic Shifting

Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/implementing-canary-deployments-of-aws-lambda-functions-with-alias-traffic-shifting/

This post courtesy of Ryan Green, Software Development Engineer, AWS Serverless

The concepts of blue/green and canary deployments have been around for a while now and have been well-established as best-practices for reducing the risk of software deployments.

In a traditional, horizontally scaled application, copies of the application code are deployed to multiple nodes (instances, containers, on-premises servers, etc.), typically behind a load balancer. In these applications, deploying new versions of software to too many nodes at the same time can impact application availability as there may not be enough healthy nodes to service requests during the deployment. This aggressive approach to deployments also drastically increases the blast radius of software bugs introduced in the new version and does not typically give adequate time to safely assess the quality of the new version against production traffic.

In such applications, one commonly accepted solution to these problems is to slowly and incrementally roll out application software across the nodes in the fleet while simultaneously verifying application health (canary deployments). Another solution is to stand up an entirely different fleet and weight (or flip) traffic over to the new fleet after verification, ideally with some production traffic (blue/green). Some teams deploy to a single host (“one box environment”), where the new release can bake for some time before promotion to the rest of the fleet. Techniques like this enable the maintainers of complex systems to safely test in production while minimizing customer impact.

Enter Serverless

There is somewhat of an impedance mismatch when mapping these concepts to a serverless world. You can’t incrementally deploy your software across a fleet of servers when there are no servers!* In fact, even the term “deployment” takes on a different meaning with functions as a service (FaaS). In AWS Lambda, a “deployment” can be roughly modeled as a call to CreateFunction, UpdateFunctionCode, or UpdateAlias (I won’t get into the semantics of whether updating configuration counts as a deployment), all of which may affect the version of code that is invoked by clients.

The abstractions provided by Lambda remove the need for developers to be concerned about servers and Availability Zones, and this provides a powerful opportunity to greatly simplify the process of deploying software.
*Of course there are servers, but they are abstracted away from the developer.

Traffic shifting with Lambda aliases

Before the release of traffic shifting for Lambda aliases, deployments of a Lambda function could only be performed in a single “flip” by updating function code for version $LATEST, or by updating an alias to target a different function version. After the update propagates, typically within a few seconds, 100% of function invocations execute the new version. Implementing canary deployments with this model required the development of an additional routing layer, further adding development time, complexity, and invocation latency.
While rolling back a bad deployment of a Lambda function is a trivial operation and takes effect near instantaneously, deployments of new versions for critical functions can still be a potentially nerve-racking experience.

With the introduction of alias traffic shifting, it is now possible to trivially implement canary deployments of Lambda functions. By updating additional version weights on an alias, invocation traffic is routed to the new function versions based on the weight specified. Detailed CloudWatch metrics for the alias and version can be analyzed during the deployment, or other health checks performed, to ensure that the new version is healthy before proceeding.

Note: Sometimes the term “canary deployments” refers to the release of software to a subset of users. In the case of alias traffic shifting, the new version is released to some percentage of all users. It’s not possible to shard based on identity without adding an additional routing layer.

Examples

The simplest possible use of a canary deployment looks like the following:

# Update $LATEST version of function
aws lambda update-function-code --function-name myfunction ….

# Publish new version of function
aws lambda publish-version --function-name myfunction

# Point alias to new version, weighted at 5% (original version at 95% of traffic)
aws lambda update-alias --function-name myfunction --name myalias --routing-config '{"AdditionalVersionWeights" : {"2" : 0.05} }'

# Verify that the new version is healthy
…
# Set the primary version on the alias to the new version and reset the additional versions (100% weighted)
aws lambda update-alias --function-name myfunction --name myalias --function-version 2 --routing-config '{}'

This is begging to be automated! Here are a few options.

Simple deployment automation

This simple Python script runs as a Lambda function and deploys another function (how meta!) by incrementally increasing the weight of the new function version over a prescribed number of steps, while checking the health of the new version. If the health check fails, the alias is rolled back to its initial version. The health check is implemented as a simple check against the existence of Errors metrics in CloudWatch for the alias and new version.

GitHub aws-lambda-deploy repo

Install:

git clone https://github.com/awslabs/aws-lambda-deploy
cd aws-lambda-deploy
export BUCKET_NAME=[YOUR_S3_BUCKET_NAME_FOR_BUILD_ARTIFACTS]
./install.sh

Run:

# Rollout version 2 incrementally over 10 steps, with 120s between each step
aws lambda invoke --function-name SimpleDeployFunction --log-type Tail --payload \
  '{"function-name": "MyFunction",
  "alias-name": "MyAlias",
  "new-version": "2",
  "steps": 10,
  "interval" : 120,
  "type": "linear"
  }' output

Description of input parameters

  • function-name: The name of the Lambda function to deploy
  • alias-name: The name of the alias used to invoke the Lambda function
  • new-version: The version identifier for the new version to deploy
  • steps: The number of times the new version weight is increased
  • interval: The amount of time (in seconds) to wait between weight updates
  • type: The function to use to generate the weights. Supported values: “linear”

Because this runs as a Lambda function, it is subject to the maximum timeout of 5 minutes. This may be acceptable for many use cases, but to achieve a slower rollout of the new version, a different solution is required.

Step Functions workflow

This state machine performs essentially the same task as the simple deployment function, but it runs as an asynchronous workflow in AWS Step Functions. A nice property of Step Functions is that the maximum deployment timeout has now increased from 5 minutes to 1 year!

The step function incrementally updates the new version weight based on the steps parameter, waiting for some time based on the interval parameter, and performing health checks between updates. If the health check fails, the alias is rolled back to the original version and the workflow fails.

For example, to execute the workflow:

export STATE_MACHINE_ARN=`aws cloudformation describe-stack-resources --stack-name aws-lambda-deploy-stack --logical-resource-id DeployStateMachine --output text | cut  -d$'\t' -f3`

aws stepfunctions start-execution --state-machine-arn $STATE_MACHINE_ARN --input '{
  "function-name": "MyFunction",
  "alias-name": "MyAlias",
  "new-version": "2",
  "steps": 10,
  "interval": 120,
  "type": "linear"}'

Getting feedback on the deployment

Because the state machine runs asynchronously, retrieving feedback on the deployment requires polling for the execution status using DescribeExecution or implementing an asynchronous notification (using SNS or email, for example) from the Rollback or Finalize functions. A CloudWatch alarm could also be created to alarm based on the “ExecutionsFailed” metric for the state machine.

A note on health checks and observability

Weighted rollouts like this are considerably more successful if the code is being exercised and monitored continuously. In this example, it would help to have some automation continuously invoking the alias and reporting metrics on these invocations, such as client-side success rates and latencies.

The absence of Lambda Errors metrics used in these examples can be misleading if the function is not getting invoked. It’s also recommended to instrument your Lambda functions with custom metrics, in addition to Lambda’s built-in metrics, that can be used to monitor health during deployments.

Extensibility

These examples could be easily extended in various ways to support different use cases. For example:

  • Health check implementations: CloudWatch alarms, automatic invocations with payload assertions, querying external systems, etc.
  • Weight increase functions: Exponential, geometric progression, single canary step, etc.
  • Custom success/failure notifications: SNS, email, CI/CD systems, service discovery systems, etc.

Traffic shifting with SAM and CodeDeploy

Using the Lambda UpdateAlias operation with additional version weights provides a powerful primitive for you to implement custom traffic shifting solutions for Lambda functions.

For those not interested in building custom deployment solutions, AWS CodeDeploy provides an intuitive turn-key implementation of this functionality integrated directly into the Serverless Application Model. Traffic-shifted deployments can be declared in a SAM template, and CodeDeploy manages the function rollout as part of the CloudFormation stack update. CloudWatch alarms can also be configured to trigger a stack rollback if something goes wrong.

i.e.

MyFunction:
  Type: AWS::Serverless::Function
  Properties:
    FunctionName: MyFunction
    AutoPublishAlias: MyFunctionInvokeAlias
    DeploymentPreference:
      Type: Linear10PercentEvery1Minute
      Role:
        Fn::GetAtt: [ DeploymentRole, Arn ]
      Alarms:
       - { Ref: MyFunctionErrorsAlarm }
...

For more information about using CodeDeploy with SAM, see Automating Updates to Serverless Apps.

Conclusion

It is often the simple features that provide the most value. As I demonstrated in this post, serverless architectures allow the complex deployment orchestration used in traditional applications to be replaced with a simple Lambda function or Step Functions workflow. By allowing invocation traffic to be easily weighted to multiple function versions, Lambda alias traffic shifting provides a simple but powerful feature that I hope empowers you to easily implement safe deployment workflows for your Lambda functions.

Amazon MQ – Managed Message Broker Service for ActiveMQ

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/amazon-mq-managed-message-broker-service-for-activemq/

Messaging holds the parts of a distributed application together, while also adding resiliency and enabling the implementation of highly scalable architectures. For example, earlier this year, Amazon Simple Queue Service (SQS) and Amazon Simple Notification Service (SNS) supported the processing of customer orders on Prime Day, collectively processing 40 billion messages at a rate of 10 million per second, with no customer-visible issues.

SQS and SNS have been used extensively for applications that were born in the cloud. However, many of our larger customers are already making use of open-sourced or commercially-licensed message brokers. Their applications are mission-critical, and so is the messaging that powers them. Our customers describe the setup and on-going maintenance of their messaging infrastructure as “painful” and report that they spend at least 10 staff-hours per week on this chore.

New Amazon MQ
Today we are launching Amazon MQ – a managed message broker service for Apache ActiveMQ that lets you get started in minutes with just three clicks! As you may know, ActiveMQ is a popular open-source message broker that is fast & feature-rich. It offers queues and topics, durable and non-durable subscriptions, push-based and poll-based messaging, and filtering.

As a managed service, Amazon MQ takes care of the administration and maintenance of ActiveMQ. This includes responsibility for broker provisioning, patching, failure detection & recovery for high availability, and message durability. With Amazon MQ, you get direct access to the ActiveMQ console and industry standard APIs and protocols for messaging, including JMS, NMS, AMQP, STOMP, MQTT, and WebSocket. This allows you to move from any message broker that uses these standards to Amazon MQ–along with the supported applications–without rewriting code.

You can create a single-instance Amazon MQ broker for development and testing, or an active/standby pair that spans AZs, with quick, automatic failover. Either way, you get data replication across AZs and a pay-as-you-go model for the broker instance and message storage.

Amazon MQ is a full-fledged part of the AWS family, including the use of AWS Identity and Access Management (IAM) for authentication and authorization to use the service API. You can use Amazon CloudWatch metrics to keep a watchful eye metrics such as queue depth and initiate Auto Scaling of your consumer fleet as needed.

Launching an Amazon MQ Broker
To get started, I open up the Amazon MQ Console, select the desired AWS Region, enter a name for my broker, and click on Next step:

Then I choose the instance type, indicate that I want to create a standby , and click on Create broker (I can select a VPC and fine-tune other settings in the Advanced settings section):

My broker will be created and ready to use in 5-10 minutes:

The URLs and endpoints that I use to access my broker are all available at a click:

I can access the ActiveMQ Web Console at the link provided:

The broker publishes instance, topic, and queue metrics to CloudWatch. Here are the instance metrics:

Available Now
Amazon MQ is available now and you can start using it today in the US East (Northern Virginia), US East (Ohio), US West (Oregon), EU (Ireland), EU (Frankfurt), and Asia Pacific (Sydney) Regions.

The AWS Free Tier lets you use a single-AZ micro instance for up to 750 hours and to store up to 1 gigabyte each month, for one year. After that, billing is based on instance-hours and message storage, plus charges Internet data transfer if the broker is accessed from outside of AWS.

Jeff;

Serverless Automated Cost Controls, Part1

Post Syndicated from Shankar Ramachandran original https://aws.amazon.com/blogs/compute/serverless-automated-cost-controls-part1/

This post courtesy of Shankar Ramachandran, Pubali Sen, and George Mao

In line with AWS’s continual efforts to reduce costs for customers, this series focuses on how customers can build serverless automated cost controls. This post provides an architecture blueprint and a sample implementation to prevent budget overruns.

This solution uses the following AWS products:

  • AWS Budgets – An AWS Cost Management tool that helps customers define and track budgets for AWS costs, and forecast for up to three months.
  • Amazon SNS – An AWS service that makes it easy to set up, operate, and send notifications from the cloud.
  • AWS Lambda – An AWS service that lets you run code without provisioning or managing servers.

You can fine-tune a budget for various parameters, for example filtering by service or tag. The Budgets tool lets you post notifications on an SNS topic. A Lambda function that subscribes to the SNS topic can act on the notification. Any programmatically implementable action can be taken.

The diagram below describes the architecture blueprint.

In this post, we describe how to use this blueprint with AWS Step Functions and IAM to effectively revoke the ability of a user to start new Amazon EC2 instances, after a budget amount is exceeded.

Freedom with guardrails

AWS lets you quickly spin up resources as you need them, deploying hundreds or even thousands of servers in minutes. This means you can quickly develop and roll out new applications. Teams can experiment and innovate more quickly and frequently. If an experiment fails, you can always de-provision those servers without risk.

This improved agility also brings in the need for effective cost controls. Your Finance and Accounting department must budget, monitor, and control the AWS spend. For example, this could be a budget per project. Further, Finance and Accounting must take appropriate actions if the budget for the project has been exceeded, for example. Call it “freedom with guardrails” – where Finance wants to give developers freedom, but with financial constraints.

Architecture

This section describes how to use the blueprint introduced earlier to implement a “freedom with guardrails” solution.

  1. The budget for “Project Beta” is set up in Budgets. In this example, we focus on EC2 usage and identify the instances that belong to this project by filtering on the tag Project with the value Beta. For more information, see Creating a Budget.
  2. The budget configuration also includes settings to send a notification on an SNS topic when the usage exceeds 100% of the budgeted amount. For more information, see Creating an Amazon SNS Topic for Budget Notifications.
  3. The master Lambda function receives the SNS notification.
  4. It triggers execution of a Step Functions state machine with the parameters for completing the configured action.
  5. The action Lambda function is triggered as a task in the state machine. The function interacts with IAM to effectively remove the user’s permissions to create an EC2 instance.

This decoupled modular design allows for extensibility.  New actions (serially or in parallel) can be added by simply adding new steps.

Implementing the solution

All the instructions and code needed to implement the architecture have been posted on the Serverless Automated Cost Controls GitHub repo. We recommend that you try this first in a Dev/Test environment.

This implementation description can be broken down into two parts:

  1. Create a solution stack for serverless automated cost controls.
  2. Verify the solution by testing the EC2 fleet.

To tie this back to the “freedom with guardrails” scenario, the Finance department performs a one-time implementation of the solution stack. To simulate resources for Project Beta, the developers spin up the test EC2 fleet.

Prerequisites

There are two prerequisites:

  • Make sure that you have the necessary IAM permissions. For more information, see the section titled “Required IAM permissions” in the README.
  • Define and activate a cost allocation tag with the key Project. For more information, see Using Cost Allocation Tags. It can take up to 12 hours for the tags to propagate to Budgets.

Create resources

The solution stack includes creating the following resources:

  • Three Lambda functions
  • One Step Functions state machine
  • One SNS topic
  • One IAM group
  • One IAM user
  • IAM policies as needed
  • One budget

Two of the Lambda functions were described in the previous section, to a) receive the SNS notification and b) trigger the Step Functions state machine. Another Lambda function is used to create the budget, as a custom AWS CloudFormation resource. The SNS topic connects Budgets with Lambda function A. Lambda function B is configured as a task in Step Functions. A budget for $2 is created which is filtered by Service: EC2 and Tag: Project, Beta. A test IAM group and user is created to enable you to validate this Cost Control Solution.

To create the serverless automated cost control solution stack, choose the button below. It takes few minutes to spin up the stack. You can monitor the progress in the CloudFormation console.

When you see the CREATE_COMPLETE status for the stack you had created, choose Outputs. Copy the following four values that you need later:

  • TemplateURL
  • UserName
  • SignInURL
  • Password

Verify the stack

The next step is to verify the serverless automated cost controls solution stack that you just created. To do this, spin up an EC2 fleet of t2.micro instances, representative of the resources needed for Project Beta, and tag them with Project, Beta.

  1. Browse to the SignInURL, and log in using the UserName and Password values copied on from the stack output.
  2. In the CloudFormation console, choose Create Stack.
  3. For Choose a template, select Choose an Amazon S3 template URL and paste the TemplateURL value from the preceding section. Choose Next.
  4. Give this stack a name, such as “testEc2FleetForProjectBeta”. Choose Next.
  5. On the Specify Details page, enter parameters such as the UserName and Password copied in the previous section. Choose Next.
  6. Ignore any errors related to listing IAM roles. The test user has a minimal set of permissions that is just sufficient to spin up this test stack (in line with security best practices).
  7. On the Options page, choose Next.
  8. On the Review page, choose Create. It takes a few minutes to spin up the stack, and you can monitor the progress in the CloudFormation console. 
  9. When you see the status “CREATE_COMPLETE”, open the EC2 console to verify that four t2.micro instances have been spun up, with the tag of Project, Beta.

The hourly cost for these instances depends on the region in which they are running. On the average (irrespective of the region), you can expect the aggregate cost for this EC2 fleet to exceed the set $2 budget in 48 hours.

Verify the solution

The first step is to identify the test IAM group that was created in the previous section. The group should have “projectBeta” in the name, prepended with the CloudFormation stack name and appended with an alphanumeric string. Verify that the managed policy associated is: “EC2FullAccess”, which indicates that the users in this group have unrestricted access to EC2.

There are two stages of verification for this serverless automated cost controls solution: simulating a notification and waiting for a breach.

Simulated notification

Because it takes at least a few hours for the aggregate cost of the EC2 fleet to breach the set budget, you can verify the solution by simulating the notification from Budgets.

  1. Log in to the SNS console (using your regular AWS credentials).
  2. Publish a message on the SNS topic that has “budgetNotificationTopic” in the name. The complete name is appended by the CloudFormation stack identifier.  
  3. Copy the following text as the body of the notification: “This is a mock notification”.
  4. Choose Publish.
  5. Open the IAM console to verify that the policy for the test group has been switched to “EC2ReadOnly”. This prevents users in this group from creating new instances.
  6. Verify that the test user created in the previous section cannot spin up new EC2 instances.  You can log in as the test user and try creating a new EC2 instance (via the same CloudFormation stack or the EC2 console). You should get an error message indicating that you do not have the necessary permissions.
  7. If you are proceeding to stage 2 of the verification, then you must switch the permissions back to “EC2FullAccess” for the test group, which can be done in the IAM console.

Automatic notification

Within 48 hours, the aggregate cost of the EC2 fleet spun up in the earlier section breaches the budget rule and triggers an automatic notification. This results in the permissions getting switched out, just as in the simulated notification.

Clean up

Use the following steps to delete your resources and stop incurring costs.

  1. Open the CloudFormation console.
  2. Delete the EC2 fleet by deleting the appropriate stack (for example, delete the stack named “testEc2FleetForProjectBeta”).                                               
  3. Next, delete the “costControlStack” stack.                                                                                                                                                    

Conclusion

Using Lambda in tandem with Budgets, you can build Serverless automated cost controls on AWS. Find all the resources (instructions, code) for implementing the solution discussed in this post on the Serverless Automated Cost Controls GitHub repo.

Stay tuned to this series for more tips about building serverless automated cost controls. In the next post, we discuss using smart lighting to influence developer behavior and describe a solution to encourage cost-aware development practices.

If you have questions or suggestions, please comment below.

 

How to Patch, Inspect, and Protect Microsoft Windows Workloads on AWS—Part 2

Post Syndicated from Koen van Blijderveen original https://aws.amazon.com/blogs/security/how-to-patch-inspect-and-protect-microsoft-windows-workloads-on-aws-part-2/

Yesterday in Part 1 of this blog post, I showed you how to:

  1. Launch an Amazon EC2 instance with an AWS Identity and Access Management (IAM) role, an Amazon Elastic Block Store (Amazon EBS) volume, and tags that Amazon EC2 Systems Manager (Systems Manager) and Amazon Inspector use.
  2. Configure Systems Manager to install the Amazon Inspector agent and patch your EC2 instances.

Today in Steps 3 and 4, I show you how to:

  1. Take Amazon EBS snapshots using Amazon EBS Snapshot Scheduler to automate snapshots based on instance tags.
  2. Use Amazon Inspector to check if your EC2 instances running Microsoft Windows contain any common vulnerabilities and exposures (CVEs).

To catch up on Steps 1 and 2, see yesterday’s blog post.

Step 3: Take EBS snapshots using EBS Snapshot Scheduler

In this section, I show you how to use EBS Snapshot Scheduler to take snapshots of your instances at specific intervals. To do this, I will show you how to:

  • Determine the schedule for EBS Snapshot Scheduler by providing you with best practices.
  • Deploy EBS Snapshot Scheduler by using AWS CloudFormation.
  • Tag your EC2 instances so that EBS Snapshot Scheduler backs up your instances when you want them backed up.

In addition to making sure your EC2 instances have all the available operating system patches applied on a regular schedule, you should take snapshots of the EBS storage volumes attached to your EC2 instances. Taking regular snapshots allows you to restore your data to a previous state quickly and cost effectively. With Amazon EBS snapshots, you pay only for the actual data you store, and snapshots save only the data that has changed since the previous snapshot, which minimizes your cost. You will use EBS Snapshot Scheduler to make regular snapshots of your EC2 instance. EBS Snapshot Scheduler takes advantage of other AWS services including CloudFormation, Amazon DynamoDB, and AWS Lambda to make backing up your EBS volumes simple.

Determine the schedule

As a best practice, you should back up your data frequently during the hours when your data changes the most. This reduces the amount of data you lose if you have to restore from a snapshot. For the purposes of this blog post, the data for my instances changes the most between the business hours of 9:00 A.M. to 5:00 P.M. Pacific Time. During these hours, I will make snapshots hourly to minimize data loss.

In addition to backing up frequently, another best practice is to establish a strategy for retention. This will vary based on how you need to use the snapshots. If you have compliance requirements to be able to restore for auditing, your needs may be different than if you are able to detect data corruption within three hours and simply need to restore to something that limits data loss to five hours. EBS Snapshot Scheduler enables you to specify the retention period for your snapshots. For this post, I only need to keep snapshots for recent business days. To account for weekends, I will set my retention period to three days, which is down from the default of 15 days when deploying EBS Snapshot Scheduler.

Deploy EBS Snapshot Scheduler

In Step 1 of Part 1 of this post, I showed how to configure an EC2 for Windows Server 2012 R2 instance with an EBS volume. You will use EBS Snapshot Scheduler to take eight snapshots each weekday of your EC2 instance’s EBS volumes:

  1. Navigate to the EBS Snapshot Scheduler deployment page and choose Launch Solution. This takes you to the CloudFormation console in your account. The Specify an Amazon S3 template URL option is already selected and prefilled. Choose Next on the Select Template page.
  2. On the Specify Details page, retain all default parameters except for AutoSnapshotDeletion. Set AutoSnapshotDeletion to Yes to ensure that old snapshots are periodically deleted. The default retention period is 15 days (you will specify a shorter value on your instance in the next subsection).
  3. Choose Next twice to move to the Review step, and start deployment by choosing the I acknowledge that AWS CloudFormation might create IAM resources check box and then choosing Create.

Tag your EC2 instances

EBS Snapshot Scheduler takes a few minutes to deploy. While waiting for its deployment, you can start to tag your instance to define its schedule. EBS Snapshot Scheduler reads tag values and looks for four possible custom parameters in the following order:

  • <snapshot time> – Time in 24-hour format with no colon.
  • <retention days> – The number of days (a positive integer) to retain the snapshot before deletion, if set to automatically delete snapshots.
  • <time zone> – The time zone of the times specified in <snapshot time>.
  • <active day(s)>all, weekdays, or mon, tue, wed, thu, fri, sat, and/or sun.

Because you want hourly backups on weekdays between 9:00 A.M. and 5:00 P.M. Pacific Time, you need to configure eight tags—one for each hour of the day. You will add the eight tags shown in the following table to your EC2 instance.

Tag Value
scheduler:ebs-snapshot:0900 0900;3;utc;weekdays
scheduler:ebs-snapshot:1000 1000;3;utc;weekdays
scheduler:ebs-snapshot:1100 1100;3;utc;weekdays
scheduler:ebs-snapshot:1200 1200;3;utc;weekdays
scheduler:ebs-snapshot:1300 1300;3;utc;weekdays
scheduler:ebs-snapshot:1400 1400;3;utc;weekdays
scheduler:ebs-snapshot:1500 1500;3;utc;weekdays
scheduler:ebs-snapshot:1600 1600;3;utc;weekdays

Next, you will add these tags to your instance. If you want to tag multiple instances at once, you can use Tag Editor instead. To add the tags in the preceding table to your EC2 instance:

  1. Navigate to your EC2 instance in the EC2 console and choose Tags in the navigation pane.
  2. Choose Add/Edit Tags and then choose Create Tag to add all the tags specified in the preceding table.
  3. Confirm you have added the tags by choosing Save. After adding these tags, navigate to your EC2 instance in the EC2 console. Your EC2 instance should look similar to the following screenshot.
    Screenshot of how your EC2 instance should look in the console
  4. After waiting a couple of hours, you can see snapshots beginning to populate on the Snapshots page of the EC2 console.Screenshot of snapshots beginning to populate on the Snapshots page of the EC2 console
  5. To check if EBS Snapshot Scheduler is active, you can check the CloudWatch rule that runs the Lambda function. If the clock icon shown in the following screenshot is green, the scheduler is active. If the clock icon is gray, the rule is disabled and does not run. You can enable or disable the rule by selecting it, choosing Actions, and choosing Enable or Disable. This also allows you to temporarily disable EBS Snapshot Scheduler.Screenshot of checking to see if EBS Snapshot Scheduler is active
  1. You can also monitor when EBS Snapshot Scheduler has run by choosing the name of the CloudWatch rule as shown in the previous screenshot and choosing Show metrics for the rule.Screenshot of monitoring when EBS Snapshot Scheduler has run by choosing the name of the CloudWatch rule

If you want to restore and attach an EBS volume, see Restoring an Amazon EBS Volume from a Snapshot and Attaching an Amazon EBS Volume to an Instance.

Step 4: Use Amazon Inspector

In this section, I show you how to you use Amazon Inspector to scan your EC2 instance for common vulnerabilities and exposures (CVEs) and set up Amazon SNS notifications. To do this I will show you how to:

  • Install the Amazon Inspector agent by using EC2 Run Command.
  • Set up notifications using Amazon SNS to notify you of any findings.
  • Define an Amazon Inspector target and template to define what assessment to perform on your EC2 instance.
  • Schedule Amazon Inspector assessment runs to assess your EC2 instance on a regular interval.

Amazon Inspector can help you scan your EC2 instance using prebuilt rules packages, which are built and maintained by AWS. These prebuilt rules packages tell Amazon Inspector what to scan for on the EC2 instances you select. Amazon Inspector provides the following prebuilt packages for Microsoft Windows Server 2012 R2:

  • Common Vulnerabilities and Exposures
  • Center for Internet Security Benchmarks
  • Runtime Behavior Analysis

In this post, I’m focused on how to make sure you keep your EC2 instances patched, backed up, and inspected for common vulnerabilities and exposures (CVEs). As a result, I will focus on how to use the CVE rules package and use your instance tags to identify the instances on which to run the CVE rules. If your EC2 instance is fully patched using Systems Manager, as described earlier, you should not have any findings with the CVE rules package. Regardless, as a best practice I recommend that you use Amazon Inspector as an additional layer for identifying any unexpected failures. This involves using Amazon CloudWatch to set up weekly Amazon Inspector scans, and configuring Amazon Inspector to notify you of any findings through SNS topics. By acting on the notifications you receive, you can respond quickly to any CVEs on any of your EC2 instances to help ensure that malware using known CVEs does not affect your EC2 instances. In a previous blog post, Eric Fitzgerald showed how to remediate Amazon Inspector security findings automatically.

Install the Amazon Inspector agent

To install the Amazon Inspector agent, you will use EC2 Run Command, which allows you to run any command on any of your EC2 instances that have the Systems Manager agent with an attached IAM role that allows access to Systems Manager.

  1. Choose Run Command under Systems Manager Services in the navigation pane of the EC2 console. Then choose Run a command.
    Screenshot of choosing "Run a command"
  2. To install the Amazon Inspector agent, you will use an AWS managed and provided command document that downloads and installs the agent for you on the selected EC2 instance. Choose AmazonInspector-ManageAWSAgent. To choose the target EC2 instance where this command will be run, use the tag you previously assigned to your EC2 instance, Patch Group, with a value of Windows Servers. For this example, set the concurrent installations to 1 and tell Systems Manager to stop after 5 errors.
    Screenshot of installing the Amazon Inspector agent
  3. Retain the default values for all other settings on the Run a command page and choose Run. Back on the Run Command page, you can see if the command that installed the Amazon Inspector agent executed successfully on all selected EC2 instances.
    Screenshot showing that the command that installed the Amazon Inspector agent executed successfully on all selected EC2 instances

Set up notifications using Amazon SNS

Now that you have installed the Amazon Inspector agent, you will set up an SNS topic that will notify you of any findings after an Amazon Inspector run.

To set up an SNS topic:

  1. In the AWS Management Console, choose Simple Notification Service under Messaging in the Services menu.
  2. Choose Create topic, name your topic (only alphanumeric characters, hyphens, and underscores are allowed) and give it a display name to ensure you know what this topic does (I’ve named mine Inspector). Choose Create topic.
    "Create new topic" page
  3. To allow Amazon Inspector to publish messages to your new topic, choose Other topic actions and choose Edit topic policy.
  4. For Allow these users to publish messages to this topic and Allow these users to subscribe to this topic, choose Only these AWS users. Type the following ARN for the US East (N. Virginia) Region in which you are deploying the solution in this post: arn:aws:iam::316112463485:root. This is the ARN of Amazon Inspector itself. For the ARNs of Amazon Inspector in other AWS Regions, see Setting Up an SNS Topic for Amazon Inspector Notifications (Console). Amazon Resource Names (ARNs) uniquely identify AWS resources across all of AWS.
    Screenshot of editing the topic policy
  5. To receive notifications from Amazon Inspector, subscribe to your new topic by choosing Create subscription and adding your email address. After confirming your subscription by clicking the link in the email, the topic should display your email address as a subscriber. Later, you will configure the Amazon Inspector template to publish to this topic.
    Screenshot of subscribing to the new topic

Define an Amazon Inspector target and template

Now that you have set up the notification topic by which Amazon Inspector can notify you of findings, you can create an Amazon Inspector target and template. A target defines which EC2 instances are in scope for Amazon Inspector. A template defines which packages to run, for how long, and on which target.

To create an Amazon Inspector target:

  1. Navigate to the Amazon Inspector console and choose Get started. At the time of writing this blog post, Amazon Inspector is available in the US East (N. Virginia), US West (N. California), US West (Oregon), EU (Ireland), Asia Pacific (Mumbai), Asia Pacific (Seoul), Asia Pacific (Sydney), and Asia Pacific (Tokyo) Regions.
  2. For Amazon Inspector to be able to collect the necessary data from your EC2 instance, you must create an IAM service role for Amazon Inspector. Amazon Inspector can create this role for you if you choose Choose or create role and confirm the role creation by choosing Allow.
    Screenshot of creating an IAM service role for Amazon Inspector
  3. Amazon Inspector also asks you to tag your EC2 instance and install the Amazon Inspector agent. You already performed these steps in Part 1 of this post, so you can proceed by choosing Next. To define the Amazon Inspector target, choose the previously used Patch Group tag with a Value of Windows Servers. This is the same tag that you used to define the targets for patching. Then choose Next.
    Screenshot of defining the Amazon Inspector target
  4. Now, define your Amazon Inspector template, and choose a name and the package you want to run. For this post, use the Common Vulnerabilities and Exposures package and choose the default duration of 1 hour. As you can see, the package has a version number, so always select the latest version of the rules package if multiple versions are available.
    Screenshot of defining an assessment template
  5. Configure Amazon Inspector to publish to your SNS topic when findings are reported. You can also choose to receive a notification of a started run, a finished run, or changes in the state of a run. For this blog post, you want to receive notifications if there are any findings. To start, choose Assessment Templates from the Amazon Inspector console and choose your newly created Amazon Inspector assessment template. Choose the icon below SNS topics (see the following screenshot).
    Screenshot of choosing an assessment template
  6. A pop-up appears in which you can choose the previously created topic and the events about which you want SNS to notify you (choose Finding reported).
    Screenshot of choosing the previously created topic and the events about which you want SNS to notify you

Schedule Amazon Inspector assessment runs

The last step in using Amazon Inspector to assess for CVEs is to schedule the Amazon Inspector template to run using Amazon CloudWatch Events. This will make sure that Amazon Inspector assesses your EC2 instance on a regular basis. To do this, you need the Amazon Inspector template ARN, which you can find under Assessment templates in the Amazon Inspector console. CloudWatch Events can run your Amazon Inspector assessment at an interval you define using a Cron-based schedule. Cron is a well-known scheduling agent that is widely used on UNIX-like operating systems and uses the following syntax for CloudWatch Events.

Image of Cron schedule

All scheduled events use a UTC time zone, and the minimum precision for schedules is one minute. For more information about scheduling CloudWatch Events, see Schedule Expressions for Rules.

To create the CloudWatch Events rule:

  1. Navigate to the CloudWatch console, choose Events, and choose Create rule.
    Screenshot of starting to create a rule in the CloudWatch Events console
  2. On the next page, specify if you want to invoke your rule based on an event pattern or a schedule. For this blog post, you will select a schedule based on a Cron expression.
  3. You can schedule the Amazon Inspector assessment any time you want using the Cron expression, or you can use the Cron expression I used in the following screenshot, which will run the Amazon Inspector assessment every Sunday at 10:00 P.M. GMT.
    Screenshot of scheduling an Amazon Inspector assessment with a Cron expression
  4. Choose Add target and choose Inspector assessment template from the drop-down menu. Paste the ARN of the Amazon Inspector template you previously created in the Amazon Inspector console in the Assessment template box and choose Create a new role for this specific resource. This new role is necessary so that CloudWatch Events has the necessary permissions to start the Amazon Inspector assessment. CloudWatch Events will automatically create the new role and grant the minimum set of permissions needed to run the Amazon Inspector assessment. To proceed, choose Configure details.
    Screenshot of adding a target
  5. Next, give your rule a name and a description. I suggest using a name that describes what the rule does, as shown in the following screenshot.
  6. Finish the wizard by choosing Create rule. The rule should appear in the Events – Rules section of the CloudWatch console.
    Screenshot of completing the creation of the rule
  7. To confirm your CloudWatch Events rule works, wait for the next time your CloudWatch Events rule is scheduled to run. For testing purposes, you can choose your CloudWatch Events rule and choose Edit to change the schedule to run it sooner than scheduled.
    Screenshot of confirming the CloudWatch Events rule works
  8. Now navigate to the Amazon Inspector console to confirm the launch of your first assessment run. The Start time column shows you the time each assessment started and the Status column the status of your assessment. In the following screenshot, you can see Amazon Inspector is busy Collecting data from the selected assessment targets.
    Screenshot of confirming the launch of the first assessment run

You have concluded the last step of this blog post by setting up a regular scan of your EC2 instance with Amazon Inspector and a notification that will let you know if your EC2 instance is vulnerable to any known CVEs. In a previous Security Blog post, Eric Fitzgerald explained How to Remediate Amazon Inspector Security Findings Automatically. Although that blog post is for Linux-based EC2 instances, the post shows that you can learn about Amazon Inspector findings in other ways than email alerts.

Conclusion

In this two-part blog post, I showed how to make sure you keep your EC2 instances up to date with patching, how to back up your instances with snapshots, and how to monitor your instances for CVEs. Collectively these measures help to protect your instances against common attack vectors that attempt to exploit known vulnerabilities. In Part 1, I showed how to configure your EC2 instances to make it easy to use Systems Manager, EBS Snapshot Scheduler, and Amazon Inspector. I also showed how to use Systems Manager to schedule automatic patches to keep your instances current in a timely fashion. In Part 2, I showed you how to take regular snapshots of your data by using EBS Snapshot Scheduler and how to use Amazon Inspector to check if your EC2 instances running Microsoft Windows contain any common vulnerabilities and exposures (CVEs).

If you have comments about today’s or yesterday’s post, submit them in the “Comments” section below. If you have questions about or issues implementing any part of this solution, start a new thread on the Amazon EC2 forum or the Amazon Inspector forum, or contact AWS Support.

– Koen

AWS IoT Update – Better Value with New Pricing Model

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-iot-update-better-value-with-new-pricing-model/

Our customers are using AWS IoT to make their connected devices more intelligent. These devices collect & measure data in the field (below the ground, in the air, in the water, on factory floors and in hospital rooms) and use AWS IoT as their gateway to the AWS Cloud. Once connected to the cloud, customers can write device data to Amazon Simple Storage Service (S3) and Amazon DynamoDB, process data using Amazon Kinesis and AWS Lambda functions, initiate Amazon Simple Notification Service (SNS) push notifications, and much more.

New Pricing Model (20-40% Reduction)
Today we are making a change to the AWS IoT pricing model that will make it an even better value for you. Most customers will see a price reduction of 20-40%, with some receiving a significantly larger discount depending on their workload.

The original model was based on a charge for the number of messages that were sent to or from the service. This all-inclusive model was a good starting point, but also meant that some customers were effectively paying for parts of AWS IoT that they did not actually use. For example, some customers have devices that ping AWS IoT very frequently, with sparse rule sets that fire infrequently. Our new model is more fine-grained, with independent charges for each component (all prices are for devices that connect to the US East (Northern Virginia) Region):

Connectivity – Metered in 1 minute increments and based on the total time your devices are connected to AWS IoT. Priced at $0.08 per million minutes of connection (equivalent to $0.042 per device per year for 24/7 connectivity). Your devices can send keep-alive pings at 30 second to 20 minute intervals at no additional cost.

Messaging – Metered by the number of messages transmitted between your devices and AWS IoT. Pricing starts at $1 per million messages, with volume pricing falling as low as $0.70 per million. You may send and receive messages up to 128 kilobytes in size. Messages are metered in 5 kilobyte increments (up from 512 bytes previously). For example, an 8 kilobyte message is metered as two messages.

Rules Engine – Metered for each time a rule is triggered, and for the number of actions executed within a rule, with a minimum of one action per rule. Priced at $0.15 per million rules-triggered and $0.15 per million actions-executed. Rules that process a message in excess of 5 kilobytes are metered at the next multiple of the 5 kilobyte size. For example, a rule that processes an 8 kilobyte message is metered as two rules.

Device Shadow & Registry Updates – Metered on the number of operations to access or modify Device Shadow or Registry data, priced at $1.25 per million operations. Device Shadow and Registry operations are metered in 1 kilobyte increments of the Device Shadow or Registry record size. For example, an update to a 1.5 kilobyte Shadow record is metered as two operations.

The AWS Free Tier now offers a generous allocation of connection minutes, messages, triggered rules, rules actions, Shadow, and Registry usage, enough to operate a fleet of up to 50 devices. The new prices will take effect on January 1, 2018 with no effort on your part. At that time, the updated prices will be published on the AWS IoT Pricing page.

AWS IoT at re:Invent
We have an entire IoT track at this year’s AWS re:Invent. Here is a sampling:

We also have customer-led sessions from Philips, Panasonic, Enel, and Salesforce.

Jeff;

Event-Driven Computing with Amazon SNS and AWS Compute, Storage, Database, and Networking Services

Post Syndicated from Christie Gifrin original https://aws.amazon.com/blogs/compute/event-driven-computing-with-amazon-sns-compute-storage-database-and-networking-services/

Contributed by Otavio Ferreira, Manager, Software Development, AWS Messaging

Like other developers around the world, you may be tackling increasingly complex business problems. A key success factor, in that case, is the ability to break down a large project scope into smaller, more manageable components. A service-oriented architecture guides you toward designing systems as a collection of loosely coupled, independently scaled, and highly reusable services. Microservices take this even further. To improve performance and scalability, they promote fine-grained interfaces and lightweight protocols.

However, the communication among isolated microservices can be challenging. Services are often deployed onto independent servers and don’t share any compute or storage resources. Also, you should avoid hard dependencies among microservices, to preserve maintainability and reusability.

If you apply the pub/sub design pattern, you can effortlessly decouple and independently scale out your microservices and serverless architectures. A pub/sub messaging service, such as Amazon SNS, promotes event-driven computing that statically decouples event publishers from subscribers, while dynamically allowing for the exchange of messages between them. An event-driven architecture also introduces the responsiveness needed to deal with complex problems, which are often unpredictable and asynchronous.

What is event-driven computing?

Given the context of microservices, event-driven computing is a model in which subscriber services automatically perform work in response to events triggered by publisher services. This paradigm can be applied to automate workflows while decoupling the services that collectively and independently work to fulfil these workflows. Amazon SNS is an event-driven computing hub, in the AWS Cloud, that has native integration with several AWS publisher and subscriber services.

Which AWS services publish events to SNS natively?

Several AWS services have been integrated as SNS publishers and, therefore, can natively trigger event-driven computing for a variety of use cases. In this post, I specifically cover AWS compute, storage, database, and networking services, as depicted below.

Compute services

  • Auto Scaling: Helps you ensure that you have the correct number of Amazon EC2 instances available to handle the load for your application. You can configure Auto Scaling lifecycle hooks to trigger events, as Auto Scaling resizes your EC2 cluster.As an example, you may want to warm up the local cache store on newly launched EC2 instances, and also download log files from other EC2 instances that are about to be terminated. To make this happen, set an SNS topic as your Auto Scaling group’s notification target, then subscribe two Lambda functions to this SNS topic. The first function is responsible for handling scale-out events (to warm up cache upon provisioning), whereas the second is in charge of handling scale-in events (to download logs upon termination).

  • AWS Elastic Beanstalk: An easy-to-use service for deploying and scaling web applications and web services developed in a number of programming languages. You can configure event notifications for your Elastic Beanstalk environment so that notable events can be automatically published to an SNS topic, then pushed to topic subscribers.As an example, you may use this event-driven architecture to coordinate your continuous integration pipeline (such as Jenkins CI). That way, whenever an environment is created, Elastic Beanstalk publishes this event to an SNS topic, which triggers a subscribing Lambda function, which then kicks off a CI job against your newly created Elastic Beanstalk environment.

  • Elastic Load Balancing: Automatically distributes incoming application traffic across Amazon EC2 instances, containers, or other resources identified by IP addresses.You can configure CloudWatch alarms on Elastic Load Balancing metrics, to automate the handling of events derived from Classic Load Balancers. As an example, you may leverage this event-driven design to automate latency profiling in an Amazon ECS cluster behind a Classic Load Balancer. In this example, whenever your ECS cluster breaches your load balancer latency threshold, an event is posted by CloudWatch to an SNS topic, which then triggers a subscribing Lambda function. This function runs a task on your ECS cluster to trigger a latency profiling tool, hosted on the cluster itself. This can enhance your latency troubleshooting exercise by making it timely.

Storage services

  • Amazon S3: Object storage built to store and retrieve any amount of data.You can enable S3 event notifications, and automatically get them posted to SNS topics, to automate a variety of workflows. For instance, imagine that you have an S3 bucket to store incoming resumes from candidates, and a fleet of EC2 instances to encode these resumes from their original format (such as Word or text) into a portable format (such as PDF).In this example, whenever new files are uploaded to your input bucket, S3 publishes these events to an SNS topic, which in turn pushes these messages into subscribing SQS queues. Then, encoding workers running on EC2 instances poll these messages from the SQS queues; retrieve the original files from the input S3 bucket; encode them into PDF; and finally store them in an output S3 bucket.

  • Amazon EFS: Provides simple and scalable file storage, for use with Amazon EC2 instances, in the AWS Cloud.You can configure CloudWatch alarms on EFS metrics, to automate the management of your EFS systems. For example, consider a highly parallelized genomics analysis application that runs against an EFS system. By default, this file system is instantiated on the “General Purpose” performance mode. Although this performance mode allows for lower latency, it might eventually impose a scaling bottleneck. Therefore, you may leverage an event-driven design to handle it automatically.Basically, as soon as the EFS metric “Percent I/O Limit” breaches 95%, CloudWatch could post this event to an SNS topic, which in turn would push this message into a subscribing Lambda function. This function automatically creates a new file system, this time on the “Max I/O” performance mode, then switches the genomics analysis application to this new file system. As a result, your application starts experiencing higher I/O throughput rates.

  • Amazon Glacier: A secure, durable, and low-cost cloud storage service for data archiving and long-term backup.You can set a notification configuration on an Amazon Glacier vault so that when a job completes, a message is published to an SNS topic. Retrieving an archive from Amazon Glacier is a two-step asynchronous operation, in which you first initiate a job, and then download the output after the job completes. Therefore, SNS helps you eliminate polling your Amazon Glacier vault to check whether your job has been completed, or not. As usual, you may subscribe SQS queues, Lambda functions, and HTTP endpoints to your SNS topic, to be notified when your Amazon Glacier job is done.

  • AWS Snowball: A petabyte-scale data transport solution that uses secure appliances to transfer large amounts of data.You can leverage Snowball notifications to automate workflows related to importing data into and exporting data from AWS. More specifically, whenever your Snowball job status changes, Snowball can publish this event to an SNS topic, which in turn can broadcast the event to all its subscribers.As an example, imagine a Geographic Information System (GIS) that distributes high-resolution satellite images to users via Web browser. In this example, the GIS vendor could capture up to 80 TB of satellite images; create a Snowball job to import these files from an on-premises system to an S3 bucket; and provide an SNS topic ARN to be notified upon job status changes in Snowball. After Snowball changes the job status from “Importing” to “Completed”, Snowball publishes this event to the specified SNS topic, which delivers this message to a subscribing Lambda function, which finally creates a CloudFront web distribution for the target S3 bucket, to serve the images to end users.

Database services

  • Amazon RDS: Makes it easy to set up, operate, and scale a relational database in the cloud.RDS leverages SNS to broadcast notifications when RDS events occur. As usual, these notifications can be delivered via any protocol supported by SNS, including SQS queues, Lambda functions, and HTTP endpoints.As an example, imagine that you own a social network website that has experienced organic growth, and needs to scale its compute and database resources on demand. In this case, you could provide an SNS topic to listen to RDS DB instance events. When the “Low Storage” event is published to the topic, SNS pushes this event to a subscribing Lambda function, which in turn leverages the RDS API to increase the storage capacity allocated to your DB instance. The provisioning itself takes place within the specified DB maintenance window.

  • Amazon ElastiCache: A web service that makes it easy to deploy, operate, and scale an in-memory data store or cache in the cloud.ElastiCache can publish messages using Amazon SNS when significant events happen on your cache cluster. This feature can be used to refresh the list of servers on client machines connected to individual cache node endpoints of a cache cluster. For instance, an ecommerce website fetches product details from a cache cluster, with the goal of offloading a relational database and speeding up page load times. Ideally, you want to make sure that each web server always has an updated list of cache servers to which to connect.To automate this node discovery process, you can get your ElastiCache cluster to publish events to an SNS topic. Thus, when ElastiCache event “AddCacheNodeComplete” is published, your topic then pushes this event to all subscribing HTTP endpoints that serve your ecommerce website, so that these HTTP servers can update their list of cache nodes.

  • Amazon Redshift: A fully managed data warehouse that makes it simple to analyze data using standard SQL and BI (Business Intelligence) tools.Amazon Redshift uses SNS to broadcast relevant events so that data warehouse workflows can be automated. As an example, imagine a news website that sends clickstream data to a Kinesis Firehose stream, which then loads the data into Amazon Redshift, so that popular news and reading preferences might be surfaced on a BI tool. At some point though, this Amazon Redshift cluster might need to be resized, and the cluster enters a ready-only mode. Hence, this Amazon Redshift event is published to an SNS topic, which delivers this event to a subscribing Lambda function, which finally deletes the corresponding Kinesis Firehose delivery stream, so that clickstream data uploads can be put on hold.At a later point, after Amazon Redshift publishes the event that the maintenance window has been closed, SNS notifies a subscribing Lambda function accordingly, so that this function can re-create the Kinesis Firehose delivery stream, and resume clickstream data uploads to Amazon Redshift.

  • AWS DMS: Helps you migrate databases to AWS quickly and securely. The source database remains fully operational during the migration, minimizing downtime to applications that rely on the database.DMS also uses SNS to provide notifications when DMS events occur, which can automate database migration workflows. As an example, you might create data replication tasks to migrate an on-premises MS SQL database, composed of multiple tables, to MySQL. Thus, if replication tasks fail due to incompatible data encoding in the source tables, these events can be published to an SNS topic, which can push these messages into a subscribing SQS queue. Then, encoders running on EC2 can poll these messages from the SQS queue, encode the source tables into a compatible character set, and restart the corresponding replication tasks in DMS. This is an event-driven approach to a self-healing database migration process.

Networking services

  • Amazon Route 53: A highly available and scalable cloud-based DNS (Domain Name System). Route 53 health checks monitor the health and performance of your web applications, web servers, and other resources.You can set CloudWatch alarms and get automated Amazon SNS notifications when the status of your Route 53 health check changes. As an example, imagine an online payment gateway that reports the health of its platform to merchants worldwide, via a status page. This page is hosted on EC2 and fetches platform health data from DynamoDB. In this case, you could configure a CloudWatch alarm for your Route 53 health check, so that when the alarm threshold is breached, and the payment gateway is no longer considered healthy, then CloudWatch publishes this event to an SNS topic, which pushes this message to a subscribing Lambda function, which finally updates the DynamoDB table that populates the status page. This event-driven approach avoids any kind of manual update to the status page visited by merchants.

  • AWS Direct Connect (AWS DX): Makes it easy to establish a dedicated network connection from your premises to AWS, which can reduce your network costs, increase bandwidth throughput, and provide a more consistent network experience than Internet-based connections.You can monitor physical DX connections using CloudWatch alarms, and send SNS messages when alarms change their status. As an example, when a DX connection state shifts to 0 (zero), indicating that the connection is down, this event can be published to an SNS topic, which can fan out this message to impacted servers through HTTP endpoints, so that they might reroute their traffic through a different connection instead. This is an event-driven approach to connectivity resilience.

More event-driven computing on AWS

In addition to SNS, event-driven computing is also addressed by Amazon CloudWatch Events, which delivers a near real-time stream of system events that describe changes in AWS resources. With CloudWatch Events, you can route each event type to one or more targets, including:

Many AWS services publish events to CloudWatch. As an example, you can get CloudWatch Events to capture events on your ETL (Extract, Transform, Load) jobs running on AWS Glue and push failed ones to an SQS queue, so that you can retry them later.

Conclusion

Amazon SNS is a pub/sub messaging service that can be used as an event-driven computing hub to AWS customers worldwide. By capturing events natively triggered by AWS services, such as EC2, S3 and RDS, you can automate and optimize all kinds of workflows, namely scaling, testing, encoding, profiling, broadcasting, discovery, failover, and much more. Business use cases presented in this post ranged from recruiting websites, to scientific research, geographic systems, social networks, retail websites, and news portals.

Start now by visiting Amazon SNS in the AWS Management Console, or by trying the AWS 10-Minute Tutorial, Send Fan-out Event Notifications with Amazon SNS and Amazon SQS.

 

Capturing Custom, High-Resolution Metrics from Containers Using AWS Step Functions and AWS Lambda

Post Syndicated from Nathan Taber original https://aws.amazon.com/blogs/compute/capturing-custom-high-resolution-metrics-from-containers-using-aws-step-functions-and-aws-lambda/

Contributed by Trevor Sullivan, AWS Solutions Architect

When you deploy containers with Amazon ECS, are you gathering all of the key metrics so that you can correctly monitor the overall health of your ECS cluster?

By default, ECS writes metrics to Amazon CloudWatch in 5-minute increments. For complex or large services, this may not be sufficient to make scaling decisions quickly. You may want to respond immediately to changes in workload or to identify application performance problems. Last July, CloudWatch announced support for high-resolution metrics, up to a per-second basis.

These high-resolution metrics can be used to give you a clearer picture of the load and performance for your applications, containers, clusters, and hosts. In this post, I discuss how you can use AWS Step Functions, along with AWS Lambda, to cost effectively record high-resolution metrics into CloudWatch. You implement this solution using a serverless architecture, which keeps your costs low and makes it easier to troubleshoot the solution.

To show how this works, you retrieve some useful metric data from an ECS cluster running in the same AWS account and region (Oregon, us-west-2) as the Step Functions state machine and Lambda function. However, you can use this architecture to retrieve any custom application metrics from any resource in any AWS account and region.

Why Step Functions?

Step Functions enables you to orchestrate multi-step tasks in the AWS Cloud that run for any period of time, up to a year. Effectively, you’re building a blueprint for an end-to-end process. After it’s built, you can execute the process as many times as you want.

For this architecture, you gather metrics from an ECS cluster, every five seconds, and then write the metric data to CloudWatch. After your ECS cluster metrics are stored in CloudWatch, you can create CloudWatch alarms to notify you. An alarm can also trigger an automated remediation activity such as scaling ECS services, when a metric exceeds a threshold defined by you.

When you build a Step Functions state machine, you define the different states inside it as JSON objects. The bulk of the work in Step Functions is handled by the common task state, which invokes Lambda functions or Step Functions activities. There is also a built-in library of other useful states that allow you to control the execution flow of your program.

One of the most useful state types in Step Functions is the parallel state. Each parallel state in your state machine can have one or more branches, each of which is executed in parallel. Another useful state type is the wait state, which waits for a period of time before moving to the next state.

In this walkthrough, you combine these three states (parallel, wait, and task) to create a state machine that triggers a Lambda function, which then gathers metrics from your ECS cluster.

Step Functions pricing

This state machine is executed every minute, resulting in 60 executions per hour, and 1,440 executions per day. Step Functions is billed per state transition, including the Start and End state transitions, and giving you approximately 37,440 state transitions per day. To reach this number, I’m using this estimated math:

26 state transitions per-execution x 60 minutes x 24 hours

Based on current pricing, at $0.000025 per state transition, the daily cost of this metric gathering state machine would be $0.936.

Step Functions offers an indefinite 4,000 free state transitions every month. This benefit is available to all customers, not just customers who are still under the 12-month AWS Free Tier. For more information and cost example scenarios, see Step Functions pricing.

Why Lambda?

The goal is to capture metrics from an ECS cluster, and write the metric data to CloudWatch. This is a straightforward, short-running process that makes Lambda the perfect place to run your code. Lambda is one of the key services that makes up “Serverless” application architectures. It enables you to consume compute capacity only when your code is actually executing.

The process of gathering metric data from ECS and writing it to CloudWatch takes a short period of time. In fact, my average Lambda function execution time, while developing this post, is only about 250 milliseconds on average. For every five-second interval that occurs, I’m only using 1/20th of the compute time that I’d otherwise be paying for.

Lambda pricing

For billing purposes, Lambda execution time is rounded up to the nearest 100-ms interval. In general, based on the metrics that I observed during development, a 250-ms runtime would be billed at 300 ms. Here, I calculate the cost of this Lambda function executing on a daily basis.

Assuming 31 days in each month, there would be 535,680 five-second intervals (31 days x 24 hours x 60 minutes x 12 five-second intervals = 535,680). The Lambda function is invoked every five-second interval, by the Step Functions state machine, and runs for a 300-ms period. At current Lambda pricing, for a 128-MB function, you would be paying approximately the following:

Total compute

Total executions = 535,680
Total compute = total executions x (3 x $0.000000208 per 100 ms) = $0.334 per day

Total requests

Total requests = (535,680 / 1000000) * $0.20 per million requests = $0.11 per day

Total Lambda Cost

$0.11 requests + $0.334 compute time = $0.444 per day

Similar to Step Functions, Lambda offers an indefinite free tier. For more information, see Lambda Pricing.

Walkthrough

In the following sections, I step through the process of configuring the solution just discussed. If you follow along, at a high level, you will:

  • Configure an IAM role and policy
  • Create a Step Functions state machine to control metric gathering execution
  • Create a metric-gathering Lambda function
  • Configure a CloudWatch Events rule to trigger the state machine
  • Validate the solution

Prerequisites

You should already have an AWS account with a running ECS cluster. If you don’t have one running, you can easily deploy a Docker container on an ECS cluster using the AWS Management Console. In the example produced for this post, I use an ECS cluster running Windows Server (currently in beta), but either a Linux or Windows Server cluster works.

Create an IAM role and policy

First, create an IAM role and policy that enables Step Functions, Lambda, and CloudWatch to communicate with each other.

  • The CloudWatch Events rule needs permissions to trigger the Step Functions state machine.
  • The Step Functions state machine needs permissions to trigger the Lambda function.
  • The Lambda function needs permissions to query ECS and then write to CloudWatch Logs and metrics.

When you create the state machine, Lambda function, and CloudWatch Events rule, you assign this role to each of those resources. Upon execution, each of these resources assumes the specified role and executes using the role’s permissions.

  1. Open the IAM console.
  2. Choose Roles, create New Role.
  3. For Role Name, enter WriteMetricFromStepFunction.
  4. Choose Save.

Create the IAM role trust relationship
The trust relationship (also known as the assume role policy document) for your IAM role looks like the following JSON document. As you can see from the document, your IAM role needs to trust the Lambda, CloudWatch Events, and Step Functions services. By configuring your role to trust these services, they can assume this role and inherit the role permissions.

  1. Open the IAM console.
  2. Choose Roles and select the IAM role previously created.
  3. Choose Trust RelationshipsEdit Trust Relationships.
  4. Enter the following trust policy text and choose Save.
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "lambda.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    },
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "events.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    },
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "states.us-west-2.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    }
  ]
}

Create an IAM policy

After you’ve finished configuring your role’s trust relationship, grant the role access to the other AWS resources that make up the solution.

The IAM policy is what gives your IAM role permissions to access various resources. You must whitelist explicitly the specific resources to which your role has access, because the default IAM behavior is to deny access to any AWS resources.

I’ve tried to keep this policy document as generic as possible, without allowing permissions to be too open. If the name of your ECS cluster is different than the one in the example policy below, make sure that you update the policy document before attaching it to your IAM role. You can attach this policy as an inline policy, instead of creating the policy separately first. However, either approach is valid.

  1. Open the IAM console.
  2. Select the IAM role, and choose Permissions.
  3. Choose Add in-line policy.
  4. Choose Custom Policy and then enter the following policy. The inline policy name does not matter.
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [ "logs:*" ],
            "Resource": "*"
        },
        {
            "Effect": "Allow",
            "Action": [ "cloudwatch:PutMetricData" ],
            "Resource": "*"
        },
        {
            "Effect": "Allow",
            "Action": [ "states:StartExecution" ],
            "Resource": [
                "arn:aws:states:*:*:stateMachine:WriteMetricFromStepFunction"
            ]
        },
        {
            "Effect": "Allow",
            "Action": [ "lambda:InvokeFunction" ],
            "Resource": "arn:aws:lambda:*:*:function:WriteMetricFromStepFunction"
        },
        {
            "Effect": "Allow",
            "Action": [ "ecs:Describe*" ],
            "Resource": "arn:aws:ecs:*:*:cluster/ECSEsgaroth"
        }
    ]
}

Create a Step Functions state machine

In this section, you create a Step Functions state machine that invokes the metric-gathering Lambda function every five (5) seconds, for a one-minute period. If you divide a minute (60) seconds into equal parts of five-second intervals, you get 12. Based on this math, you create 12 branches, in a single parallel state, in the state machine. Each branch triggers the metric-gathering Lambda function at a different five-second marker, throughout the one-minute period. After all of the parallel branches finish executing, the Step Functions execution completes and another begins.

Follow these steps to create your Step Functions state machine:

  1. Open the Step Functions console.
  2. Choose DashboardCreate State Machine.
  3. For State Machine Name, enter WriteMetricFromStepFunction.
  4. Enter the state machine code below into the editor. Make sure that you insert your own AWS account ID for every instance of “676655494xxx”
  5. Choose Create State Machine.
  6. Select the WriteMetricFromStepFunction IAM role that you previously created.
{
    "Comment": "Writes ECS metrics to CloudWatch every five seconds, for a one-minute period.",
    "StartAt": "ParallelMetric",
    "States": {
      "ParallelMetric": {
        "Type": "Parallel",
        "Branches": [
          {
            "StartAt": "WriteMetricLambda",
            "States": {
             	"WriteMetricLambda": {
                  "Type": "Task",
				  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
    	  {
            "StartAt": "WaitFive",
            "States": {
            	"WaitFive": {
            		"Type": "Wait",
            		"Seconds": 5,
            		"Next": "WriteMetricLambdaFive"
          		},
             	"WriteMetricLambdaFive": {
                  "Type": "Task",
				  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
    	  {
            "StartAt": "WaitTen",
            "States": {
            	"WaitTen": {
            		"Type": "Wait",
            		"Seconds": 10,
            		"Next": "WriteMetricLambda10"
          		},
             	"WriteMetricLambda10": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
    	  {
            "StartAt": "WaitFifteen",
            "States": {
            	"WaitFifteen": {
            		"Type": "Wait",
            		"Seconds": 15,
            		"Next": "WriteMetricLambda15"
          		},
             	"WriteMetricLambda15": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
          {
            "StartAt": "Wait20",
            "States": {
            	"Wait20": {
            		"Type": "Wait",
            		"Seconds": 20,
            		"Next": "WriteMetricLambda20"
          		},
             	"WriteMetricLambda20": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
          {
            "StartAt": "Wait25",
            "States": {
            	"Wait25": {
            		"Type": "Wait",
            		"Seconds": 25,
            		"Next": "WriteMetricLambda25"
          		},
             	"WriteMetricLambda25": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
          {
            "StartAt": "Wait30",
            "States": {
            	"Wait30": {
            		"Type": "Wait",
            		"Seconds": 30,
            		"Next": "WriteMetricLambda30"
          		},
             	"WriteMetricLambda30": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
          {
            "StartAt": "Wait35",
            "States": {
            	"Wait35": {
            		"Type": "Wait",
            		"Seconds": 35,
            		"Next": "WriteMetricLambda35"
          		},
             	"WriteMetricLambda35": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
          {
            "StartAt": "Wait40",
            "States": {
            	"Wait40": {
            		"Type": "Wait",
            		"Seconds": 40,
            		"Next": "WriteMetricLambda40"
          		},
             	"WriteMetricLambda40": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
          {
            "StartAt": "Wait45",
            "States": {
            	"Wait45": {
            		"Type": "Wait",
            		"Seconds": 45,
            		"Next": "WriteMetricLambda45"
          		},
             	"WriteMetricLambda45": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
          {
            "StartAt": "Wait50",
            "States": {
            	"Wait50": {
            		"Type": "Wait",
            		"Seconds": 50,
            		"Next": "WriteMetricLambda50"
          		},
             	"WriteMetricLambda50": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
          {
            "StartAt": "Wait55",
            "States": {
            	"Wait55": {
            		"Type": "Wait",
            		"Seconds": 55,
            		"Next": "WriteMetricLambda55"
          		},
             	"WriteMetricLambda55": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          }
        ],
        "End": true
      }
  }
}

Now you’ve got a shiny new Step Functions state machine! However, you might ask yourself, “After the state machine has been created, how does it get executed?” Before I answer that question, create the Lambda function that writes the custom metric, and then you get the end-to-end process moving.

Create a Lambda function

The meaty part of the solution is a Lambda function, written to consume the Python 3.6 runtime, that retrieves metric values from ECS, and then writes them to CloudWatch. This Lambda function is what the Step Functions state machine is triggering every five seconds, via the Task states. Key points to remember:

The Lambda function needs permission to:

  • Write CloudWatch metrics (PutMetricData API).
  • Retrieve metrics from ECS clusters (DescribeCluster API).
  • Write StdOut to CloudWatch Logs.

Boto3, the AWS SDK for Python, is included in the Lambda execution environment for Python 2.x and 3.x.

Because Lambda includes the AWS SDK, you don’t have to worry about packaging it up and uploading it to Lambda. You can focus on writing code and automatically take a dependency on boto3.

As for permissions, you’ve already created the IAM role and attached a policy to it that enables your Lambda function to access the necessary API actions. When you create your Lambda function, make sure that you select the correct IAM role, to ensure it is invoked with the correct permissions.

The following Lambda function code is generic. So how does the Lambda function know which ECS cluster to gather metrics for? Your Step Functions state machine automatically passes in its state to the Lambda function. When you create your CloudWatch Events rule, you specify a simple JSON object that passes the desired ECS cluster name into your Step Functions state machine, which then passes it to the Lambda function.

Use the following property values as you create your Lambda function:

Function Name: WriteMetricFromStepFunction
Description: This Lambda function retrieves metric values from an ECS cluster and writes them to Amazon CloudWatch.
Runtime: Python3.6
Memory: 128 MB
IAM Role: WriteMetricFromStepFunction

import boto3

def handler(event, context):
    cw = boto3.client('cloudwatch')
    ecs = boto3.client('ecs')
    print('Got boto3 client objects')
    
    Dimension = {
        'Name': 'ClusterName',
        'Value': event['ECSClusterName']
    }

    cluster = get_ecs_cluster(ecs, Dimension['Value'])
    
    cw_args = {
       'Namespace': 'ECS',
       'MetricData': [
           {
               'MetricName': 'RunningTask',
               'Dimensions': [ Dimension ],
               'Value': cluster['runningTasksCount'],
               'Unit': 'Count',
               'StorageResolution': 1
           },
           {
               'MetricName': 'PendingTask',
               'Dimensions': [ Dimension ],
               'Value': cluster['pendingTasksCount'],
               'Unit': 'Count',
               'StorageResolution': 1
           },
           {
               'MetricName': 'ActiveServices',
               'Dimensions': [ Dimension ],
               'Value': cluster['activeServicesCount'],
               'Unit': 'Count',
               'StorageResolution': 1
           },
           {
               'MetricName': 'RegisteredContainerInstances',
               'Dimensions': [ Dimension ],
               'Value': cluster['registeredContainerInstancesCount'],
               'Unit': 'Count',
               'StorageResolution': 1
           }
        ]
    }
    cw.put_metric_data(**cw_args)
    print('Finished writing metric data')
    
def get_ecs_cluster(client, cluster_name):
    cluster = client.describe_clusters(clusters = [ cluster_name ])
    print('Retrieved cluster details from ECS')
    return cluster['clusters'][0]

Create the CloudWatch Events rule

Now you’ve created an IAM role and policy, Step Functions state machine, and Lambda function. How do these components actually start communicating with each other? The final step in this process is to set up a CloudWatch Events rule that triggers your metric-gathering Step Functions state machine every minute. You have two choices for your CloudWatch Events rule expression: rate or cron. In this example, use the cron expression.

A couple key learning points from creating the CloudWatch Events rule:

  • You can specify one or more targets, of different types (for example, Lambda function, Step Functions state machine, SNS topic, and so on).
  • You’re required to specify an IAM role with permissions to trigger your target.
    NOTE: This applies only to certain types of targets, including Step Functions state machines.
  • Each target that supports IAM roles can be triggered using a different IAM role, in the same CloudWatch Events rule.
  • Optional: You can provide custom JSON that is passed to your target Step Functions state machine as input.

Follow these steps to create the CloudWatch Events rule:

  1. Open the CloudWatch console.
  2. Choose Events, RulesCreate Rule.
  3. Select Schedule, Cron Expression, and then enter the following rule:
    0/1 * * * ? *
  4. Choose Add Target, Step Functions State MachineWriteMetricFromStepFunction.
  5. For Configure Input, select Constant (JSON Text).
  6. Enter the following JSON input, which is passed to Step Functions, while changing the cluster name accordingly:
    { "ECSClusterName": "ECSEsgaroth" }
  7. Choose Use Existing Role, WriteMetricFromStepFunction (the IAM role that you previously created).

After you’ve completed with these steps, your screen should look similar to this:

Validate the solution

Now that you have finished implementing the solution to gather high-resolution metrics from ECS, validate that it’s working properly.

  1. Open the CloudWatch console.
  2. Choose Metrics.
  3. Choose custom and select the ECS namespace.
  4. Choose the ClusterName metric dimension.

You should see your metrics listed below.

Troubleshoot configuration issues

If you aren’t receiving the expected ECS cluster metrics in CloudWatch, check for the following common configuration issues. Review the earlier procedures to make sure that the resources were properly configured.

  • The IAM role’s trust relationship is incorrectly configured.
    Make sure that the IAM role trusts Lambda, CloudWatch Events, and Step Functions in the correct region.
  • The IAM role does not have the correct policies attached to it.
    Make sure that you have copied the IAM policy correctly as an inline policy on the IAM role.
  • The CloudWatch Events rule is not triggering new Step Functions executions.
    Make sure that the target configuration on the rule has the correct Step Functions state machine and IAM role selected.
  • The Step Functions state machine is being executed, but failing part way through.
    Examine the detailed error message on the failed state within the failed Step Functions execution. It’s possible that the
  • IAM role does not have permissions to trigger the target Lambda function, that the target Lambda function may not exist, or that the Lambda function failed to complete successfully due to invalid permissions.
    Although the above list covers several different potential configuration issues, it is not comprehensive. Make sure that you understand how each service is connected to each other, how permissions are granted through IAM policies, and how IAM trust relationships work.

Conclusion

In this post, you implemented a Serverless solution to gather and record high-resolution application metrics from containers running on Amazon ECS into CloudWatch. The solution consists of a Step Functions state machine, Lambda function, CloudWatch Events rule, and an IAM role and policy. The data that you gather from this solution helps you rapidly identify issues with an ECS cluster.

To gather high-resolution metrics from any service, modify your Lambda function to gather the correct metrics from your target. If you prefer not to use Python, you can implement a Lambda function using one of the other supported runtimes, including Node.js, Java, or .NET Core. However, this post should give you the fundamental basics about capturing high-resolution metrics in CloudWatch.

If you found this post useful, or have questions, please comment below.

Protect your Reputation with Email Pausing and Configuration Set Metrics

Post Syndicated from Brent Meyer original https://aws.amazon.com/blogs/ses/protect-your-reputation-with-email-pausing-and-configuration-set-metrics/

In August, we launched the reputation dashboard, which helps you track important metrics that could impact your ability to send emails. By monitoring the metrics in this dashboard, you can protect your sender reputation, which can increase the likelihood that the emails you send will reach your customers’ inboxes.

Today, we’re launching two features that build upon the capabilities of the reputation dashboard. The first is the ability to temporarily pause email sending, either at the configuration set level, or across your entire Amazon SES account. The second is the ability to export reputation metrics for individual configuration sets.

Email Pausing

Today’s update includes new API operations that can temporarily pause your ability to send email using Amazon SES. To disable email sending across your entire Amazon SES account, you can use the UpdateAccountSendingEnabled operation. To pause sending only for emails sent using a specific configuration set, you can use the UpdateConfigurationSetSendingEnabled operation.

Email pausing is helpful because Amazon SES uses automatic enforcement policies. If the bounce or complaint rates for your account are too high, your account is automatically placed on probation. If the bounce or complaint issues continue after the probation period has ended, your account may be suspended.

With email pausing, you can temporarily halt your ability to send email before your account is placed on probation. While your ability to send email is paused, you can identify the issues that were causing your account to register high bounce or complaint rates. You can then resume sending after the issues are resolved.

Email pausing helps ensure that your ability to send email using Amazon SES is not interrupted because of enforcement issues. It helps ensure that your sender reputation won’t be damaged by mistakes or unforeseen issues.

You can learn more about the UpdateAccountSendingEnabled and UpdateConfigurationSetSendingEnabled operations in the Amazon Simple Email Service API Reference.

Configuration Set Reputation Metrics

Amazon SES automatically publishes the bounce and complaint rates for your account to Amazon CloudWatch. In CloudWatch, you can monitor these metrics over time, and create alarms that notify you when your reputation metrics cross certain thresholds.

With today’s update, you can also publish reputation metrics for individual configuration sets to CloudWatch. This feature gives you additional information about the messages you send using Amazon SES. For example, if you send all of your marketing emails using one configuration set, and your transactional emails using a different configuration set, you can view distinct reputation metrics for each type of email.

Because we anticipate that this feature will lead to the creation of many new configuration sets, we’re increasing the maximum number of configuration sets you can create from 50 to 10,000.

For more information about exporting reputation metrics for configuration sets, see Exporting Reputation Metrics for a Configuration Set to CloudWatch in the Amazon Simple Email Service Developer Guide.

Automating These Features

You can use AWS services—including Amazon SNS, AWS Lambda, and Amazon CloudWatch—to create a solution that automatically pauses email sending for your account when your overall reputation metrics cross a certain threshold. Or, to minimize disruption to your email sending program, you can pause email sending for a specific configuration set when the metrics for that configuration set cross a threshold. The following image illustrates the processes that occur when you implement these solutions.

A flow diagram that illustrates a solution for automatically pausing Amazon SES email sending. Amazon SES provides reputation metrics to CloudWatch. If those metrics exceed a threshold, a CloudWatch alarm is triggered, which triggers an SNS topic. The SNS topic sends notifications (email, SMS), and executes a Lambda function, which pauses email sending in SES.

For more information on both of these solutions, see Automatically Pausing Email Sending in the Amazon Simple Email Service Developer Guide.

We’re always looking for ways to help safeguard the reputation you’ve worked hard to build. If you have suggestions, questions, or comments, we’d love to hear from you in the comments below, or in the Amazon SES Forum.

These features are now available in the following AWS Regions: US West (Oregon), US East (N. Virginia), and EU (Ireland).

Cross-Account Integration with Amazon SNS

Post Syndicated from Christie Gifrin original https://aws.amazon.com/blogs/compute/cross-account-integration-with-amazon-sns/

Contributed by Zak Islam, Senior Manager, Software Development, AWS Messaging

 

Amazon Simple Notification Service (Amazon SNS) is a fully managed AWS service that makes it easy to decouple your application components and fan-out messages. SNS provides topics (similar to topics in message brokers such as RabbitMQ or ActiveMQ) that you can use to create 1:1, 1:N, or N:N producer/consumer design patterns. For more information about how to send messages from SNS to Amazon SQS, AWS Lambda, or HTTP(S) endpoints in the same account, see Sending Amazon SNS Messages to Amazon SQS Queues.

SNS can be used to send messages within a single account or to resources in different accounts to create administrative isolation. This enables administrators to grant only the minimum level of permissions required to process a workload (for example, limiting the scope of your application account to only send messages and to deny deletes). This approach is commonly known as the “principle of least privilege.” If you are interested, read more about AWS’s multi-account security strategy.

This is great from a security perspective, but why would you want to share messages between accounts? It may sound scary, but it’s a common practice to isolate application components (such as producer and consumer) to operate using different AWS accounts to lock down privileges in case credentials are exposed. In this post, I go slightly deeper and explore how to set up your SNS topic so that it can route messages to SQS queues that are owned by a separate AWS account.

Potential use cases

First, look at a common order processing design pattern:

This is a simple architecture. A web server submits an order directly to an SNS topic, which then fans out messages to two SQS queues. One SQS queue is used to track all incoming orders for audits (such as anti-entropy, comparing the data of all replicas and updating each replica to the newest version). The other is used to pass the request to the order processing systems.

Imagine now that a few years have passed, and your downstream processes no longer scale, so you are kicking around the idea of a re-architecture project. To thoroughly test your system, you need a way to replay your production messages in your development system. Sure, you can build a system to replicate and replay orders from your production environment in your development environment. Wouldn’t it be easier to subscribe your development queues to the production SNS topic so you can test your new system in real time? That’s exactly what you can do here.

Here’s another use case. As your business grows, you recognize the need for more metrics from your order processing pipeline. The analytics team at your company has built a metrics aggregation service and ingests data via a central SQS queue. Their architecture is as follows:

Again, it’s a fairly simple architecture. All data is ingested via SQS queues (master_ingest_queue, in this case). You subscribe the master_ingest_queue, running under the analytics team’s AWS account, to the topic that is in the order management team’s account.

Making it work

Now that you’ve seen a few scenarios, let’s dig into the details. There are a couple of ways to link an SQS queue to an SNS topic (subscribe a queue to a topic):

  1. The queue owner can create a subscription to the topic.
  2. The topic owner can subscribe a queue in another account to the topic.

Queue owner subscription

What happens when the queue owner subscribes to a topic? In this case, assume that the topic owner has given permission to the subscriber’s account to call the Subscribe API action using the topic ARN (Amazon Resource Name). For the examples below, also assume the following:

  •  Topic_Owner is the identifier for the account that owns the topic MainTopic
  • Queue_Owner is the identifier for the account that owns the queue subscribed to the main topic

To enable the subscriber to subscribe to a topic, the topic owner must add the sns:Subscribe and topic ARN to the topic policy via the AWS Management Console, as follows:

{
  "Version":"2012-10-17",
  "Id":"MyTopicSubscribePolicy",
  "Statement":[{
      "Sid":"Allow-other-account-to-subscribe-to-topic",
      "Effect":"Allow",
      "Principal":{
        "AWS":"Topic_Owner"
      },
      "Action":"sns:Subscribe",
      "Resource":"arn:aws:sns:us-east-1:Queue_Owner:MainTopic"
    }
  ]
}

After this has been set up, the subscriber (using account Queue_Owner) can call Subscribe to link the queue to the topic. After the queue has been successfully subscribed, SNS starts to publish notifications. In this case, neither the topic owner nor the subscriber have had to process any kind of confirmation message.

Topic owner subscription

The second way to subscribe an SQS queue to an SNS topic is to have the Topic_Owner account initiate the subscription for the queue from account Queue_Owner. In this case, SNS first sends a confirmation message to the queue. To confirm the subscription, a user who can read messages from the queue must visit the URL specified in the SubscribeURL value in the message. Until the subscription is confirmed, no notifications published to the topic are sent to the queue. To confirm a subscription, you can use the SQS console or the ReceiveMessage API action.

What’s next?

In this post, I covered a few simple use cases but the principles can be extended to complex systems as well. As you architect new systems and refactor existing ones, think about where you can leverage queues (SQS) and topics (SNS) to build a loosely coupled system that can be quickly and easily extended to meet your business need.

For step by step instructions, see Sending Amazon SNS messages to an Amazon SQS queue in a different account. You can also visit the following resources to get started working with message queues and topics:

Just in Case You Missed It: Catching Up on Some Recent AWS Launches

Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/just-in-case-you-missed-it-catching-up-on-some-recent-aws-launches/

So many launches and cloud innovations, that you simply may not believe.  In order to catch up on some service launches and features, this post will be a round-up of some cool releases that happened this summer and through the end of September.

The launches and features I want to share with you today are:

  • AWS IAM for Authenticating Database Users for RDS MySQL and Amazon Aurora
  • Amazon SES Reputation Dashboard
  • Amazon SES Open and Click Tracking Metrics
  • Serverless Image Handler by the Solutions Builder Team
  • AWS Ops Automator by the Solutions Builder Team

Let’s dive in, shall we!

AWS IAM for Authenticating Database Users for RDS MySQL and Amazon Aurora

Wished you could manage access to your Amazon RDS database instances and clusters using AWS IAM? Well, wish no longer. Amazon RDS has launched the ability for you to use IAM to manage database access for Amazon RDS for MySQL and Amazon Aurora DB.

What I like most about this new service feature is, it’s very easy to get started.  To enable database user authentication using IAM, you would select a checkbox Enable IAM DB Authentication when creating, modifying, or restoring your DB instance or cluster. You can enable IAM access using the RDS console, the AWS CLI, and/or the Amazon RDS API.

After configuring the database for IAM authentication, client applications authenticate to the database engine by providing temporary security credentials generated by the IAM Security Token Service. These credentials can be used instead of providing a password to the database engine.

You can learn more about using IAM to provide targeted permissions and authentication to MySQL and Aurora by reviewing the Amazon RDS user guide.

Amazon SES Reputation Dashboard

In order to aid Amazon Simple Email Service customers’ in utilizing best practice guidelines for sending email, I am thrilled to announce we launched the Reputation Dashboard to provide comprehensive reporting on email sending health. To aid in proactively managing emails being sent, customers now have visibility into overall account health, sending metrics, and compliance or enforcement status.

The Reputation Dashboard will provide the following information:

  • Account status: A description of your account health status.
    • Healthy – No issues currently impacting your account.
    • Probation – Account is on probation; Issues causing probation must be resolved to prevent suspension
    • Pending end of probation decision – Your account is on probation. Amazon SES team member must review your account prior to action.
    • Shutdown – Your account has been shut down. No email will be able to be sent using Amazon SES.
    • Pending shutdown – Your account is on probation and issues causing probation are unresolved.
  • Bounce Rate: Percentage of emails sent that have bounced and bounce rate status messages.
  • Complaint Rate: Percentage of emails sent that recipients have reported as spam and complaint rate status messages.
  • Notifications: Messages about other account reputation issues.

Amazon SES Open and Click Tracking Metrics

Another exciting feature recently added to Amazon SES is support for Email Open and Click Tracking Metrics. With Email Open and Click Tracking Metrics feature, SES customers can now track when email they’ve sent has been opened and track when links within the email have been clicked.  Using this SES feature will allow you to better track email campaign engagement and effectiveness.

How does this work?

When using the email open tracking feature, SES will add a transparent, miniature image into the emails that you choose to track. When the email is opened, the mail application client will load the aforementioned tracking which triggers an open track event with Amazon SES. For the email click (link) tracking, links in email and/or email templates are replaced with a custom link.  When the custom link is clicked, a click event is recorded in SES and the custom link will redirect the email user to the link destination of the original email.

You can take advantage of the new open tracking and click tracking features by creating a new configuration set or altering an existing configuration set within SES. After choosing either; Amazon SNS, Amazon CloudWatch, or Amazon Kinesis Firehose as the AWS service to receive the open and click metrics, you would only need to select a new configuration set to successfully enable these new features for any emails you want to send.

AWS Solutions: Serverless Image Handler & AWS Ops Automator

The AWS Solution Builder team has been hard at work helping to make it easier for you all to find answers to common architectural questions to aid in building and running applications on AWS. You can find these solutions on the AWS Answers page. Two new solutions released earlier this fall on AWS Answers are  Serverless Image Handler and the AWS Ops Automator.
Serverless Image Handler was developed to provide a solution to help customers dynamically process, manipulate, and optimize the handling of images on the AWS Cloud. The solution combines Amazon CloudFront for caching, AWS Lambda to dynamically retrieve images and make image modifications, and Amazon S3 bucket to store images. Additionally, the Serverless Image Handler leverages the open source image-processing suite, Thumbor, for additional image manipulation, processing, and optimization.

AWS Ops Automator solution helps you to automate manual tasks using time-based or event-based triggers to automatically such as snapshot scheduling by providing a framework for automated tasks and includes task audit trails, logging, resource selection, scaling, concurrency handling, task completion handing, and API request retries. The solution includes the following AWS services:

  • AWS CloudFormation: a templates to launches the core framework of microservices and solution generated task configurations
  • Amazon DynamoDB: a table which stores task configuration data to defines the event triggers, resources, and saves the results of the action and the errors.
  • Amazon CloudWatch Logs: provides logging to track warning and error messages
  • Amazon SNS: topic to send messages to a subscribed email address to which to send the logging information from the solution

Have fun exploring and coding.

Tara

Automating Security Group Updates with AWS Lambda

Post Syndicated from Ian Scofield original https://aws.amazon.com/blogs/compute/automating-security-group-updates-with-aws-lambda/

Customers often use public endpoints to perform cross-region replication or other application layer communication to remote regions. But a common problem is how do you protect these endpoints? It can be tempting to open up the security groups to the world due to the complexity of keeping security groups in sync across regions with a dynamically changing infrastructure.

Consider a situation where you are running large clusters of instances in different regions that all require internode connectivity. One approach would be to use a VPN tunnel between regions to provide a secure tunnel over which to send your traffic. A good example of this is the Transit VPC Solution, which is a published AWS solution to help customers quickly get up and running. However, this adds additional cost and complexity to your solution due to the newly required additional infrastructure.

Another approach, which I’ll explore in this post, is to restrict access to the nodes by whitelisting the public IP addresses of your hosts in the opposite region. Today, I’ll outline a solution that allows for cross-region security group updates, can handle remote region failures, and supports external actions such as manually terminating instances or adding instances to an existing Auto Scaling group.

Solution overview

The overview of this solution is diagrammed below. Although this post covers limiting access to your instances, you should still implement encryption to protect your data in transit.

If your entire infrastructure is running in a single region, you can reference a security group as the source, allowing your IP addresses to change without any updates required. However, if you’re going across the public internet between regions to perform things like application-level traffic or cross-region replication, this is no longer an option. Security groups are regional. When you go across regions it can be tempting to drop security to enable this communication.

Although using an Elastic IP address can provide you with a static IP address that you can define as a source for your security groups, this may not always be feasible, especially when automatic scaling is desired.

In this example scenario, you have a distributed database that requires full internode communication for replication. If you place a cluster in us-east-1 and us-west-2, you must provide a secure method of communication between the two. Because the database uses cloud best practices, you can add or remove nodes as the load varies.

To start the process of updating your security groups, you must know when an instance has come online to trigger your workflow. Auto Scaling groups have the concept of lifecycle hooks that enable you to perform custom actions as the group launches or terminates instances.

When Auto Scaling begins to launch or terminate an instance, it puts the instance into a wait state (Pending:Wait or Terminating:Wait). The instance remains in this state while you perform your various actions until either you tell Auto Scaling to Continue, Abandon, or the timeout period ends. A lifecycle hook can trigger a CloudWatch event, publish to an Amazon SNS topic, or send to an Amazon SQS queue. For this example, you use CloudWatch Events to trigger an AWS Lambda function that updates an Amazon DynamoDB table.

Component breakdown

Here’s a quick breakdown of the components involved in this solution:

• Lambda function
• CloudWatch event
• DynamoDB table

Lambda function

The Lambda function automatically updates your security groups, in the following way:

1. Determines whether a change was triggered by your Auto Scaling group lifecycle hook or manually invoked for a “true up” functionality, which I discuss later in this post.
2. Describes the instances in the Auto Scaling group and obtain public IP addresses for each instance.
3. Updates both local and remote DynamoDB tables.
4. Compares the list of public IP addresses for both local and remote clusters with what’s already in the local region security group. Update the security group.
5. Compares the list of public IP addresses for both local and remote clusters with what’s already in the remote region security group. Update the security group
6. Signals CONTINUE back to the lifecycle hook.

CloudWatch event

The CloudWatch event triggers when an instance passes through either the launching or terminating states. When the Lambda function gets invoked, it receives an event that looks like the following:

{
	"account": "123456789012",
	"region": "us-east-1",
	"detail": {
		"LifecycleHookName": "hook-launching",
		"AutoScalingGroupName": "",
		"LifecycleActionToken": "33965228-086a-4aeb-8c26-f82ed3bef495",
		"LifecycleTransition": "autoscaling:EC2_INSTANCE_LAUNCHING",
		"EC2InstanceId": "i-017425ec54f22f994"
	},
	"detail-type": "EC2 Instance-launch Lifecycle Action",
	"source": "aws.autoscaling",
	"version": "0",
	"time": "2017-05-03T02:20:59Z",
	"id": "cb930cf8-ce8b-4b6c-8011-af17966eb7e2",
	"resources": [
		"arn:aws:autoscaling:us-east-1:123456789012:autoScalingGroup:d3fe9d96-34d0-4c62-b9bb-293a41ba3765:autoScalingGroupName/"
	]
}

DynamoDB table

You use DynamoDB to store lists of remote IP addresses in a local table that is updated by the opposite region as a failsafe source of truth. Although you can describe your Auto Scaling group for the local region, you must maintain a list of IP addresses for the remote region.

To minimize the number of describe calls and prevent an issue in the remote region from blocking your local scaling actions, we keep a list of the remote IP addresses in a local DynamoDB table. Each Lambda function in each region is responsible for updating the public IP addresses of its Auto Scaling group for both the local and remote tables.

As with all the infrastructure in this solution, there is a DynamoDB table in both regions that mirror each other. For example, the following screenshot shows a sample DynamoDB table. The Lambda function in us-east-1 would update the DynamoDB entry for us-east-1 in both tables in both regions.

By updating a DynamoDB table in both regions, it allows the local region to gracefully handle issues with the remote region, which would otherwise prevent your ability to scale locally. If the remote region becomes inaccessible, you have a copy of the latest configuration from the table that you can use to continue to sync with your security groups. When the remote region comes back online, it pushes its updated public IP addresses to the DynamoDB table. The security group is updated to reflect the current status by the remote Lambda function.

 

Walkthrough

Note: All of the following steps are performed in both regions. The Launch Stack buttons will default to the us-east-1 region.

Here’s a quick overview of the steps involved in this process:

1. An instance is launched or terminated, which triggers an Auto Scaling group lifecycle hook, triggering the Lambda function via CloudWatch Events.
2. The Lambda function retrieves the list of public IP addresses for all instances in the local region Auto Scaling group.
3. The Lambda function updates the local and remote region DynamoDB tables with the public IP addresses just received for the local Auto Scaling group.
4. The Lambda function updates the local region security group with the public IP addresses, removing and adding to ensure that it mirrors what is present for the local and remote Auto Scaling groups.
5. The Lambda function updates the remote region security group with the public IP addresses, removing and adding to ensure that it mirrors what is present for the local and remote Auto Scaling groups.

Prerequisites

To deploy this solution, you need to have Auto Scaling groups, launch configurations, and a base security group in both regions. To expedite this process, this CloudFormation template can be launched in both regions.

Step 1: Launch the AWS SAM template in the first region

To make the deployment process easy, I’ve created an AWS Serverless Application Model (AWS SAM) template, which is a new specification that makes it easier to manage and deploy serverless applications on AWS. This template creates the following resources:

• A Lambda function, to perform the various security group actions
• A DynamoDB table, to track the state of the local and remote Auto Scaling groups
• Auto Scaling group lifecycle hooks for instance launching and terminating
• A CloudWatch event, to track the EC2 Instance-Launch Lifecycle-Action and EC2 Instance-terminate Lifecycle-Action events
• A pointer from the CloudWatch event to the Lambda function, and the necessary permissions

Download the template from here or click to launch.

Upon launching the template, you’ll be presented with a list of parameters which includes the remote/local names for your Auto Scaling Groups, AWS region, Security Group IDs, DynamoDB table names, as well as where the code for the Lambda function is located. Because this is the first region you’re launching the stack in, fill out all the parameters except for the RemoteTable parameter as it hasn’t been created yet (you fill this in later).

Step 2: Test the local region

After the stack has finished launching, you can test the local region. Open the EC2 console and find the Auto Scaling group that was created when launching the prerequisite stack. Change the desired number of instances from 0 to 1.

For both regions, check your security group to verify that the public IP address of the instance created is now in the security group.

Local region:

Remote region:

Now, change the desired number of instances for your group back to 0 and verify that the rules are properly removed.

Local region:

Remote region:

Step 3: Launch in the remote region

When you deploy a Lambda function using CloudFormation, the Lambda zip file needs to reside in the same region you are launching the template. Once you choose your remote region, create an Amazon S3 bucket and upload the Lambda zip file there. Next, go to the remote region and launch the same SAM template as before, but make sure you update the CodeBucket and CodeKey parameters. Also, because this is the second launch, you now have all the values and can fill out all the parameters, specifically the RemoteTable value.

 

Step 4: Update the local region Lambda environment variable

When you originally launched the template in the local region, you didn’t have the name of the DynamoDB table for the remote region, because you hadn’t created it yet. Now that you have launched the remote template, you can perform a CloudFormation stack update on the initial SAM template. This populates the remote DynamoDB table name into the initial Lambda function’s environment variables.

In the CloudFormation console in the initial region, select the stack. Under Actions, choose Update Stack, and select the SAM template used for both regions. Under Parameters, populate the remote DynamoDB table name, as shown below. Choose Next and let the stack update complete. This updates your Lambda function and completes the setup process.

 

Step 5: Final testing

You now have everything fully configured and in place to trigger security group changes based on instances being added or removed to your Auto Scaling groups in both regions. Test this by changing the desired capacity of your group in both regions.

True up functionality
If an instance is manually added or removed from the Auto Scaling group, the lifecycle hooks don’t get triggered. To account for this, the Lambda function supports a “true up” functionality in which the function can be manually invoked. If you paste in the following JSON text for your test event, it kicks off the entire workflow. For added peace of mind, you can also have this function fire via a CloudWatch event with a CRON expression for nearly continuous checking.

{
	"detail": {
		"AutoScalingGroupName": "<your ASG name>"
	},
	"trueup":true
}

Extra credit

Now that all the resources are created in both regions, go back and break down the policy to incorporate resource-level permissions for specific security groups, Auto Scaling groups, and the DynamoDB tables.

Although this post is centered around using public IP addresses for your instances, you could instead use a VPN between regions. In this case, you would still be able to use this solution to scope down the security groups to the cluster instances. However, the code would need to be modified to support private IP addresses.

 

Conclusion

At this point, you now have a mechanism in place that captures when a new instance is added to or removed from your cluster and updates the security groups in both regions. This ensures that you are locking down your infrastructure securely by allowing access only to other cluster members.

Keep in mind that this architecture (lifecycle hooks, CloudWatch event, Lambda function, and DynamoDB table) requires that the infrastructure to be deployed in both regions, to have synchronization going both ways.

Because this Lambda function is modifying security group rules, it’s important to have an audit log of what has been modified and who is modifying them. The out-of-the-box function provides logs in CloudWatch for what IP addresses are being added and removed for which ports. As these are all API calls being made, they are logged in CloudTrail and can be traced back to the IAM role that you created for your lifecycle hooks. This can provide historical data that can be used for troubleshooting or auditing purposes.

Security is paramount at AWS. We want to ensure that customers are protecting access to their resources. This solution helps you keep your security groups in both regions automatically in sync with your Auto Scaling group resources. Let us know if you have any questions or other solutions you’ve come up with!