Tag Archives: Amazon Simple Queue Service (SQS)

Optimizing the cost of serverless web applications

Post Syndicated from James Beswick original https://aws.amazon.com/blogs/compute/optimizing-the-cost-of-serverless-web-applications/

Web application backends are one of the most frequent types of serverless use-case for customers. The pay-for-value model can make it cost-efficient to build web applications using serverless tools.

While serverless cost is generally correlated with level of usage, there are architectural decisions that impact cost efficiency. The impact of these choices is more significant as your traffic grows, so it’s important to consider the cost-effectiveness of different designs and patterns.

This blog post reviews some common areas in web applications where you may be able to optimize cost. It uses the Happy Path web application as a reference example, which you can read about in the introductory blog post.

Serverless web applications generally use a combination of the services in the following diagram. I cover each of these areas to highlight common areas for cost optimization.

Serverless architecture by AWS service

The API management layer: Selecting the right API type

Most serverless web applications use an API between the frontend client and the backend architecture. Amazon API Gateway is a common choice since it is a fully managed service that scales automatically. There are three types of API offered by the service – REST APIs, WebSocket APIs, and the more recent HTTP APIs.

HTTP APIs offer many of the features in the REST APIs service, but the cost is often around 70% less. It supports Lambda service integration, JWT authorization, CORS, and custom domain names. It also has a simpler deployment model than REST APIs. This feature set tends to work well for web applications, many of which mainly use these capabilities. Additionally, HTTP APIs will gain feature parity with REST APIs over time.

The Happy Path application is designed for 100,000 monthly active users. It uses HTTP APIs, and you can inspect the backend/template.yaml to see how to define these in the AWS Serverless Application Model (AWS SAM). If you have existing AWS SAM templates that are using REST APIs, in many cases you can change these easily:

REST to HTTP API

Content distribution layer: Optimizing assets

Amazon CloudFront is a content delivery network (CDN). It enables you to distribute content globally across 216 Points of Presence without deploying or managing any infrastructure. It reduces latency for users who are geographically dispersed and can also reduce load on other parts of your service.

A typical web application uses CDNs in a couple of different ways. First, there is the distribution of the application itself. For single-page application frameworks like React or Vue.js, the build processes create static assets that are ideal for serving over a CDN.

However, these builds may not be optimized and can be larger than necessary. Many frameworks offer optimization plugins, and the JavaScript community frequently uses Webpack to bundle modules and shrink deployment packages. Similarly, any media assets used in the application build should be optimized. You can use tools like Lighthouse to analyze your web apps to find images that can be resized or compressed.

Optimizing images

The second common CDN use-case for web apps is for user-generated content (UGC). Many apps allow users to upload images, which are then shared with other users. A typical photo from a 12-megapixel smartphone is 3–9 MB in size. This high resolution is not necessary when photos are rendered within web apps. Displaying the high-resolution asset results in slower download performance and higher data transfer costs.

The Happy Path application uses a Resizer Lambda function to optimize these uploaded assets. This process creates two different optimized images depending upon which component loads the asset.

Image sizes in front-end applications

The upload S3 bucket shows the original size of the upload from the smartphone:

The distribution S3 bucket contains the two optimized images at different sizes:

Optimized images in the distribution S3 bucket

The distribution file sizes are 98–99% smaller. For a busy web application, using optimized image assets can make a significant difference to data transfer and CloudFront costs.

Additionally, you can convert to highly optimized file formats such as WebP to reduce file size even further. Not all browsers support this format, but you can use CSS on the frontend to fall back to other types if needed:

<img src="myImage.webp" onerror="this.onerror=null; this.src='myImage.jpg'">

The data layer

AWS offers many different database and storage options that can be useful for web applications. Billing models vary by service and Region. By understanding the data access and storage requirements of your app, you can make informed decisions about the right service to use.

Generally, it’s more cost-effective to store binary data in S3 than a database. First, when the data is uploaded, you can upload directly to S3 with presigned URLs instead of proxying data via API Gateway or another service.

If you are using Amazon DynamoDB, it’s best practice to store larger items in S3 and include a reference token in a table item. Part of DynamoDB pricing is based on read capacity units (RCUs). For binary items such as images, it is usually more cost-efficient to use S3 for storage.

Many web developers who are new to serverless are familiar with using a relational database, so choose Amazon RDS for their database needs. Depending upon your use-case and data access patterns, it may be more cost effective to use DynamoDB instead. RDS is not a serverless service so there are monthly charges for the underlying compute instance. DynamoDB pricing is based upon usage and storage, so for many web apps may be a lower-cost choice.

Integration layer

This layer includes services like Amazon SQS, Amazon SNS, and Amazon EventBridge, which are essential for decoupling serverless applications. Each of these have a request-based pricing component, where 64 KB of a payload is billed as one request. For example, a single SQS message with a 256 KB payload is billed as four requests. There are two optimization methods common for web applications.

1. Combine messages

Many messages sent to these services are much smaller than 64 KB. In some applications, the publishing service can combine multiple messages to reduce the total number of publish actions to SNS. Additionally, by either eliminating unused attributes in the message or compressing the message, you can store more data in a single request.

For example, a publishing service may be able to combine multiple messages together in a single publish action to an SNS topic:

  • Before optimization, a publishing service sends 100,000,000 1KB-messages to an SNS topic. This is charged as 100 million messages for a total cost of $50.00.
  • After optimization, the publishing service combines messages to send 1,562,500 64KB-messages to an SNS topic. This is charged as 1,562,500 messages for a total cost of $0.78.

2. Filter messages

In many applications, not every message is useful for a consuming service. For example, an SNS topic may publish to a Lambda function, which checks the content and discards the message based on some criteria. In this case, it’s more cost effective to use the native filtering capabilities of SNS. The service can filter messages and only invoke the Lambda function if the criteria is met. This lowers the compute cost by only invoking Lambda when necessary.

For example, an SNS topic receives messages about customer orders and forwards these to a Lambda function subscriber. The function is only interested in canceled orders and discards all other messages:

  • Before optimization, the SNS topic sends all messages to a Lambda function. It evaluates the message for the presence of an order canceled attribute. On average, only 25% of the messages are processed further. While SNS does not charge for delivery to Lambda functions, you are charged each time the Lambda service is invoked, for 100% of the messages.
  • After optimization, using an SNS subscription filter policy, the SNS subscription filters for canceled orders and only forwards matching messages. Since the Lambda function is only invoked for 25% of the messages, this may reduce the total compute cost by up to 75%.

3. Choose a different messaging service

For complex filtering options based upon matching patterns, you can use EventBridge. The service can filter messages based upon prefix matching, numeric matching, and other patterns, combining several rules into a single filter. You can create branching logic within the EventBridge rule to invoke downstream targets.

EventBridge offers a broader range of targets than SNS destinations. In cases where you publish from an SNS topic to a Lambda function to invoke an EventBridge target, you could use EventBridge instead and eliminate the Lambda invocation. For example, instead of routing from SNS to Lambda to AWS Step Functions, instead create an EventBridge rule that routes events directly to a state machine.

Business logic layer

Step Functions allows you to orchestrate complex workflows in serverless applications while eliminating common boilerplate code. The Standard Workflow service charges per state transition. Express Workflows were introduced in December 2019, with pricing based on requests and duration, instead of transitions.

For workloads that are processing large numbers of events in shorter durations, Express Workflows can be more cost-effective. This is designed for high-volume event workloads, such as streaming data processing or IoT data ingestion. For these cases, compare the cost of the two workflow types to see if you can reduce cost by switching across.

Lambda is the on-demand compute layer in serverless applications, which is billed by requests and GB-seconds. GB-seconds is calculated by multiplying duration in seconds by memory allocated to the function. For a function with a 1-second duration, invoked 1 million times, here is how memory allocation affects the total cost in the US East (N. Virginia) Region:

Memory (MB)GB/SCompute costTotal cost
128125,000$ 2.08$ 2.28
512500,000$ 8.34$ 8.54
10241,000,000$ 16.67$ 16.87
15361,500,000$ 25.01$ 25.21
20482,000,000$ 33.34$ 33.54
30082,937,500$ 48.97$ 49.17

There are many ways to optimize Lambda functions, but one of the most important choices is memory allocation. You can choose between 128 MB and 3008 MB, but this also impacts the amount of virtual CPU as memory increases. Since total cost is a combination of memory and duration, choosing more memory can often reduce duration and lower overall cost.

Instead of manually setting the memory for a Lambda function and running executions to compare duration, you can use the AWS Lambda Power Tuning tool. This uses Step Functions to run your function against varying memory configurations. It can produce a visualization to find the optimal memory setting, based upon cost or execution time.

Optimizing costs with the AWS Lambda Power Tuning tool

Conclusion

Web application backends are one of the most popular workload types for serverless applications. The pay-per-value model works well for this type of workload. As traffic grows, it’s important to consider the design choices and service configurations used to optimize your cost.

Serverless web applications generally use a common range of services, which you can logically split into different layers. This post examines each layer and suggests common cost optimizations helpful for web app developers.

To learn more about building web apps with serverless, see the Happy Path series. For more serverless learning resources, visit https://serverlessland.com.

Improved failure recovery for Amazon EventBridge

Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/improved-failure-recovery-for-amazon-eventbridge/

Today we’re announcing two new capabilities for Amazon EventBridgedead letter queues and custom retry policies. Both of these give you greater flexibility in how to handle any failures in the processing of events with EventBridge. You can easily enable them on a per target basis and configure them uniquely for each.

Dead letter queues (DLQs) are a common capability in queuing and messaging systems that allow you to handle failures in event or message receiving systems. They provide a way for failed events or messages to be captured and sent to another system, which can store them for future processing. With DLQs, you can have greater resiliency and improved recovery from any failure that happens.

You can also now configure a custom retry policy that can be set on your event bus targets. Today, there are two attributes that can control how events are retried: maximum number of retries and maximum event age. With these two settings, you could send events to a DLQ sooner and reduce the retries attempted.

For example, this could allow you to recover more quickly if an event bus target is overwhelmed by the number of events received, causing throttling to occur. The events are placed in a DLQ and then processed later.

Failures in event processing

Currently, EventBridge can fail to deliver an event to a target in certain scenarios. Events that fail to be delivered to a target due to client-side errors are dropped immediately. Examples of this are when EventBridge does not have permission to a target AWS service or if the target no longer exists. This can happen if the target resource is misconfigured or is deleted by the resource owner.

For service-side issues, EventBridge retries delivery of events for up to 24 hours. This can happen if the target service is unavailable or the target resource is not provisioned to handle the incoming event traffic and the target service is throttling the requests.

EventBridge failures

EventBridge failures

Previously, when all attempts to deliver an event to the target were exhausted, EventBridge published a CloudWatch metric indicating a failed target invocation. However, this provides no visibility into which events failed to be delivered and there was no way to recover the event that failed.

Dead letter queues

EventBridge’s DLQs are made possible today with Amazon Simple Queue Service (SQS) standard queues. With SQS, you get all of the benefits of a fully serverless queuing service: no servers to manage, automatic scalability, pay for what you consume, and high availability and security built in. You can configure the DLQs for your EventBridge bus and pay nothing until it is used, if and when a target experiences an issue. This makes it a great practice to follow and standardize on, and provides you with a safety net that’s active only when needed.

Optionally, you could later configure an AWS Lambda function to consume from that DLQ. The function is only invoked when messages exist in the queue, allowing you to maintain a serverless stack to recover from a potential failure.

DLQ configured per target

DLQ configured per target

With DLQ configured, the queue receives the event that failed in the message with important metadata that you can use to troubleshoot the issue. This can include: Error Code, Error Message, Exhausted Retry Condition, Retry Attempts, Rule ARN, and the Target ARN.

You can use this data to more easily troubleshoot what went wrong with the original delivery attempt and take action to resolve or prevent such failures in the future. You could also use the information such as Exhausted Retry Condition and Retry Attempts to further tweak your custom retry policy.

You can configure a DLQ when creating or updating rules via the AWS Management Console and AWS Command Line Interface (AWS CLI). You can also use infrastructure as code (IaC) tools such as AWS CloudFormation.

In the console, select the queue to be used for your DLQ configuration from the drop-down as shown here:

DLQ configuration

DLQ configuration

When configured via API, AWS CLI, or IaC tools, you must specify the ARN of the queue:

arn:aws:sqs:us-east-1:123456789012:orders-bus-shipping-service-dlq

When you configure a DLQ, the target SQS queue requires a resource-based policy that grants EventBridge access. One is created and applied automatically via the console when you create or update an EventBridge rule with a DLQ that exists in your own account.

For any queues created in other accounts, or via API, AWS CLI, or IaC tools, you must add a policy that allows SQS’s SendMessage permission to the EventBridge rule ARN, as shown below:

{
  "Sid": "Dead-letter queue permissions",
  "Effect": "Allow",
  "Principal": {
     "Service": "events.amazonaws.com"
  },
  "Action": "sqs:SendMessage",
  "Resource": "arn:aws:sqs:us-east-1:123456789012:orders-bus-shipping-service-dlq",
  "Condition": {
    "ArnEquals": {
      "aws:SourceArn": "arn:aws:events:us-east-1:123456789012:rule/MyTestRule"
    }
  }
}

You can read more about setting permissions for DLQ the documentation for “Granting permissions to the dead-letter queue”.

Once configured, you can monitor CloudWatch metrics for the DLQ queue. This shows both the successful delivery of messages via the InvocationsSentToDLQ metric, in addition to any failures via the InvocationsFailedToBeSentToDLQ. Note that these metrics do not exist if your queue is not considered “active”.

Retry policies

By default, EventBridge retries delivery of an event to a target so long as it does not receive a client-side error as described earlier. Retries occur with a back-off, for up to 185 attempts or for up to 24 hours, after which the event is dropped or sent to a DLQ, if configured. Due to the jitter of the back-off and retry process you may reach the 24-hour limit before reaching 185 retries.

For many workloads, this provides an acceptable way to handle momentary service issues or throttling that might occur. For some however, this model of back-off and retry can cause increased and on-going traffic to an already overloaded target system.

For example, consider an Amazon API Gateway target that has a resource constrained backend service behind it.

Constrained target service

Constrained target service

Under a consistently high load, the bus could end up generating too many API requests, tripping the API Gateway’s throttling configuration. This would cause API Gateway to respond with throttling errors back to EventBridge.

Throttled API reply

Throttled API reply

You may decide that allowing the failed events to retry for 24 hours puts too much load into this system and it may not properly recover from the load. This could lead to potential data loss unless a DLQ was configured.

Added DLQ

Added DLQ

With a DLQ, you could choose to process these events later, once the overwhelmed target service has recovered.

DLQ drained back to API

DLQ drained back to API

Or the events in question may no longer have the same value as they did previously. This can occur in systems where data loss is tolerated but the timeliness of data processing matters. In these situations, the DLQ would have less value and dropping the message is acceptable.

For either of these situations, configuring the maximum number of retries or the maximum age of the event could be useful.

Now with retry policies, you can configure per target the following two attributes:

  • MaximumEventAgeInSeconds: between 60 and 86400 seconds (86400, or 24 hours the default)
  • MaximumRetryAttempts: between 0 and 185 (185 is the default)

When either condition is met, the event fails. It’s then either dropped, which generates an increase to the FailedInvocations CloudWatch metric, or sent to a configured DLQ.

You can configure retry policy attributes when creating or updating rules via the AWS Management Console and AWS Command Line Interface (AWS CLI). You can also use infrastructure as code (IaC) tools such as AWS CloudFormation.

Retry policy

Retry policy

There is no additional cost for configuring either of these new capabilities. You only pay for the usage of the SQS standard queue configured as the dead letter queue during a failure and any application that handles the failed events. SQS pricing can be found here.

Conclusion

With dead letter queues and custom retry policies, you have improved handling and control over failure in distributed systems built with EventBridge. With DLQs you can capture failed events and then process them later, potentially saving yourself from data loss. With custom retry policies, you gain the improved ability to control the number of retries and for how long they can be retried.

I encourage you to explore how both of these new capabilities can help make your applications more resilient to failures, and to standardize on using them both in your infrastructure.

For more serverless learning resources, visit https://serverlessland.com.

Building resilient serverless patterns by combining messaging services

Post Syndicated from James Beswick original https://aws.amazon.com/blogs/compute/building-resilient-no-code-serverless-patterns-by-combining-messaging-services/

In “Choosing between messaging services for serverless applications”, I explain the features and differences between the core AWS messaging services. Amazon SQS, Amazon SNS, and Amazon EventBridge provide queues, publish/subscribe, and event bus functionality for your applications. Individually, these are robust, scalable services that are fundamental building blocks of serverless architectures.

However, you can also combine these services to solve specific challenges in distributed architectures. By doing this, you can use specific features of each service to build sophisticated patterns with little code. These combinations can make your applications more resilient and scalable, and reduce the amount of custom logic and architecture in your workload.

In this blog post, I highlight several important patterns for serverless developers. I also show how you use and deploy these integrations with the AWS Serverless Application Model (AWS SAM).

Examples in this post refer to code that can be downloaded from this GitHub repo. The README.md file explains how to deploy and run each example.

SNS to SQS: Adding resilience and throttling to message throughput

SNS has a robust retry policy that results in up to 100,010 delivery attempts over 23 days. If a downstream service is unavailable, it may be overwhelmed by retries when it comes back online. You can solve this issue by adding an SQS queue.

Adding an SQS queue between the SNS topic and its subscriber has two benefits. First, it adds resilience to message delivery, since the messages are durably stored in a queue. Second, it throttles the rate of messages to the consumer, helping smooth out traffic bursts caused by the service catching up with missed messages.

To build this in an AWS SAM template, you first define the two resources, and the SNS subscription:

  MySqsQueue:
    Type: AWS::SQS::Queue

  MySnsTopic:
    Type: AWS::SNS::Topic
    Properties:
      Subscription:
        - Protocol: sqs
          Endpoint: !GetAtt MySqsQueue.Arn

Finally, you provide permission to the SNS topic to publish to the queue, using the AWS::SQS::QueuePolicy resource:

  SnsToSqsPolicy:
    Type: AWS::SQS::QueuePolicy
    Properties:
      PolicyDocument:
        Version: "2012-10-17"
        Statement:
          - Sid: "Allow SNS publish to SQS"
            Effect: Allow
            Principal: "*"
            Resource: !GetAtt MySqsQueue.Arn
            Action: SQS:SendMessage
            Condition:
              ArnEquals:
                aws:SourceArn: !Ref MySnsTopic
      Queues:
        - Ref: MySqsQueue

To test this, you can publish a message to the SNS topic and then inspect the SQS queue length using the AWS CLI:

aws sns publish --topic-arn "arn:aws:sns:us-east-1:123456789012:sns-sqs-MySnsTopic-ABC123ABC" --message "Test message"
aws sqs get-queue-attributes --queue-url "https://sqs.us-east-1.amazonaws.com/123456789012/sns-sqs-MySqsQueue- ABC123ABC " --attribute-names ApproximateNumberOfMessages

This results in the following output:

CLI output

Another usage of this pattern is when you want to filter messages in architectures using an SQS queue. By placing the SNS topic in front of the queue, you can use the message filtering capabilities of SNS. This ensures that only the messages you need are published to the queue. To use message filtering in AWS SAM, use the AWS:SNS:Subcription resource:

  QueueSubcription:
    Type: 'AWS::SNS::Subscription'
    Properties:
      TopicArn: !Ref MySnsTopic
      Endpoint: !GetAtt MySqsQueue.Arn
      Protocol: sqs
      FilterPolicy:
        type:
        - orders
        - payments 
      RawMessageDelivery: 'true'

EventBridge to SNS: combining features of both services

Both SNS and EventBridge have different characteristics in terms of targets, and integration with broader features. This table compares the major differences between the two services:

Amazon SNSAmazon EventBridge
Number of targets10 million (soft)5
Limits100,000 topics. 12,500,000 subscriptions per topic.100 event buses. 300 rules per event bus.
Input transformationNoYes – see details.
Message filteringYes – see details.Yes, including IP address matching – see details.
FormatRaw or JSONJSON
Receive events from AWS CloudTrailNoYes
TargetsHTTP(S), SMS, SNS Mobile Push, Email/Email-JSON, SQS, Lambda functions15 targets including AWS LambdaAmazon SQSAmazon SNSAWS Step FunctionsAmazon Kinesis Data StreamsAmazon Kinesis Data Firehose.
SaaS integrationNoYes – see integration partners.
Schema Registry integrationNoYes – see details.
Dead-letter queues supportedYesNo
Public visibilityCan create public topicsCannot create public buses
Cross-RegionYou can subscribe your AWS Lambda functions to an Amazon SNS topic in any Region.Targets must be same Region. You can publish across Region to another event bus.

In this pattern, you configure an SNS topic as a target of an EventBridge rule:

SNS topic as a target for an EventBridge rule

In the AWS SAM template, you declare the resources in the preceding diagram as follows:

Resources:
  MySnsTopic:
    Type: AWS::SNS::Topic

  EventRule: 
    Type: AWS::Events::Rule
    Properties: 
      Description: "EventRule"
      EventPattern: 
        account: 
          - !Sub '${AWS::AccountId}'
        source:
          - "demo.cli"
      Targets: 
        - Arn: !Ref MySnsTopic
          Id: "SNStopic"

The default bus already exists in every AWS account, so there is no need to declare it. For the event bus to publish matching events to the SNS topic, you define permissions using the AWS::SNS::TopicPolicy resource:

  EventBridgeToToSnsPolicy:
    Type: AWS::SNS::TopicPolicy
    Properties: 
      PolicyDocument:
        Statement:
        - Effect: Allow
          Principal:
            Service: events.amazonaws.com
          Action: sns:Publish
          Resource: !Ref MySnsTopic
      Topics: 
        - !Ref MySnsTopic       

EventBridge has a limit of five targets per rule. In cases where you must send events to hundreds or thousands of targets, publishing to SNS first and then subscribing those targets to the topic works around this limit. Both services have different targets, and this pattern allows you to deliver EventBridge events to SMS, HTTP(s), email and SNS mobile push.

You can transform and filter the message using these services, often without needing an AWS Lambda function. SNS does not support input transformation but you can do this in an EventBridge rule. Message filtering is possible in both services but EventBridge provides richer content filtering capabilities.

AWS CloudTrail can log and monitor activity across services in your AWS account. It can be a useful source for events, allowing you to respond dynamically to objects in Amazon S3 or react to changes in your environment, for example. This natively integrates with EventBridge, allowing you to ingest events at scale from dozens of services.

Using EventBridge enables you to source events from outside your AWS account, offering integrations with a list of software as a service (SaaS) providers. This capability allows you to receive events from your accounts with SaaS providers like Zendesk, PagerDuty, and Auth0. These events are delivered to a partner event bus in your account, and can then be filtered and routed to an SNS topic.

Additionally, this pattern allows you to deliver events to Lambda functions in other AWS accounts and in other AWS Regions. You can invoke Lambda from SNS topics in other Regions and accounts. It’s also possible to make SNS topics publicly read-only, making them extensible endpoints that other third parties can consume from. SNS has comprehensive access control, which you can incorporate into this pattern.

Cross-account publishing

EventBridge to SQS: Building fault-tolerant microservices

EventBridge can route events to targets such as microservices. In the case of downstream failures, the service retries events for up to 24 hours. For workloads where you need a longer period of time to store and retry messages, you can deliver the events to an SQS queue in each microservice. This durably stores those events until the downstream service recovers. Additionally, this pattern protects the microservice from large bursts of traffic by throttling the delivery of messages.

Fault-tolerant microservices architecture

The resources declared in the AWS SAM template are similar to the previous examples, but it uses the AWS::SQS::QueuePolicy resource to grant the appropriate permission to EventBridge:

  EventBridgeToToSqsPolicy:
    Type: AWS::SQS::QueuePolicy
    Properties:
      PolicyDocument:
        Statement:
        - Effect: Allow
          Principal:
            Service: events.amazonaws.com
          Action: SQS:SendMessage
          Resource:  !GetAtt MySqsQueue.Arn
      Queues:
        - Ref: MySqsQueue

Conclusion

You can combine these services in your architectures to implement patterns that solve complex challenges, often with little code required. This blog post shows three examples that implement message throttling and queueing, integrating SNS and EventBridge, and building fault tolerant microservices.

To learn more building decoupled architectures, see this Learning Path series on EventBridge. For more serverless learning resources, visit https://serverlessland.com.

Choosing between messaging services for serverless applications

Post Syndicated from James Beswick original https://aws.amazon.com/blogs/compute/choosing-between-messaging-services-for-serverless-applications/

Most serverless application architectures use a combination of different AWS services, microservices, and AWS Lambda functions. Messaging services are important in allowing distributed applications to communicate with each other, and are fundamental to most production serverless workloads.

Messaging services can improve the resilience, availability, and scalability of applications, when used appropriately. They can also enable your applications to communicate beyond your workload or even the AWS Cloud, and provide extensibility for future service features and versions.

In this blog post, I compare the primary messaging services offered by AWS and how you can use these in your serverless application architectures. I also show how you use and deploy these integrations with the AWS Serverless Application Model (AWS SAM).

Examples in this post refer to code that can be downloaded from this GitHub repository. The README.md file explains how to deploy and run each example.

Overview

Three of the most useful messaging patterns for serverless developers are queues, publish/subscribe, and event buses. In AWS, these are provided by Amazon SQS, Amazon SNS, and Amazon EventBridge respectively. All of these services are fully managed and highly available, so there is no infrastructure to manage. All three integrate with Lambda, allowing you to publish messages via the AWS SDK and invoke functions as targets. Each of these services has an important role to play in serverless architectures.

SNS enables you to send messages reliably between parts of your infrastructure. It uses a robust retry mechanism for when downstream targets are unavailable. When the delivery policy is exhausted, it can optionally send those messages to a dead-letter queue for further processing. SNS uses topics to logically separate messages into channels, and your Lambda functions interact with these topics.

SQS provides queues for your serverless applications. You can use a queue to send, store, and receive messages between different services in your workload. Queues are an important mechanism for providing fault tolerance in distributed systems, and help decouple different parts of your application. SQS scales elastically, and there is no limit to the number of messages per queue. The service durably persists messages until they are processed by a downstream consumer.

EventBridge is a serverless event bus service, simplifying routing events between AWS services, software as a service (SaaS) providers, and your own applications. It logically separates routing using event buses, and you implement the routing logic using rules. You can filter and transform incoming messages at the service level, and route events to multiple targets, including Lambda functions.

Integrating an SQS queue with AWS SAM

The first example shows an AWS SAM template defining a serverless application with two Lambda functions and an SQS queue:

Producer-consumer example

You can declare an SQS queue in an AWS SAM template with the AWS::SQS::Queue resource:

  MySqsQueue:
    Type: AWS::SQS::Queue

To publish to the queue, the publisher function must have permission to send messages. Using an AWS SAM policy template, you can apply policy that enables send messaging to one specific queue:

      Policies:
        - SQSSendMessagePolicy:
            QueueName: !GetAtt MySqsQueue.QueueName

The AWS SAM template passes the queue name into the Lambda function as an environment variable. The function uses the sendMessage method of the AWS.SQS class to publish the message:

const AWS = require('aws-sdk')
AWS.config.region = process.env.AWS_REGION 
const sqs = new AWS.SQS({apiVersion: '2012-11-05'})

// The Lambda handler
exports.handler = async (event) => {
  // Params object for SQS
  const params = {
    MessageBody: `Message at ${Date()}`,
    QueueUrl: process.env.SQSqueueName
  }
  
  // Send to SQS
  const result = await sqs.sendMessage(params).promise()
  console.log(result)
}

When the SQS queue receives the message, it publishes to the consuming Lambda function. To configure this integration in AWS SAM, the consumer function is granted the SQSPollerPolicy policy. The function’s event source is set to receive messages from the queue in batches of 10:

  QueueConsumerFunction:
    Type: AWS::Serverless::Function 
    Properties:
      CodeUri: code/
      Handler: consumer.handler
      Runtime: nodejs12.x
      Timeout: 3
      MemorySize: 128
      Policies:  
        - SQSPollerPolicy:
            QueueName: !GetAtt MySqsQueue.QueueName
      Events:
        MySQSEvent:
          Type: SQS
          Properties:
            Queue: !GetAtt MySqsQueue.Arn
            BatchSize: 10

The payload for the consumer function is the message from SQS. This is an array of messages up to the batch size, containing a body attribute with the publishing function’s MessageBody. You can see this in the CloudWatch log for the function:

CloudWatch log result

Integrating an SNS topic with AWS SAM

The second example shows an AWS SAM template defining a serverless application with three Lambda functions and an SNS topic:

SNS fanout to Lambda functions

You declare an SNS topic and the subscribing Lambda functions with the AWS::SNS:Topic resource:

  MySnsTopic:
    Type: AWS::SNS::Topic
    Properties:
      Subscription:
        - Protocol: lambda
          Endpoint: !GetAtt TopicConsumerFunction1.Arn    
        - Protocol: lambda
          Endpoint: !GetAtt TopicConsumerFunction2.Arn

You provide the SNS service with permission to invoke the Lambda functions but defining an AWS::Lambda::Permission for each:

  TopicConsumerFunction1Permission:
    Type: 'AWS::Lambda::Permission'
    Properties:
      Action: 'lambda:InvokeFunction'
      FunctionName: !Ref TopicConsumerFunction1
      Principal: sns.amazonaws.com

The SNSPublishMessagePolicy policy template grants permission to the publishing function to send messages to the topic. In the function, the publish method of the AWS.SNS class handles publishing:

const AWS = require('aws-sdk')
AWS.config.region = process.env.AWS_REGION 
const sns = new AWS.SNS({apiVersion: '2012-11-05'})

// The Lambda handler
exports.handler = async (event) => {
  // Params object for SNS
  const params = {
    Message: `Message at ${Date()}`,
    Subject: 'New message from publisher',
    TopicArn: process.env.SNStopic
  }
  
  // Send to SQS
  const result = await sns.publish(params).promise()
  console.log(result)
}

The payload for the consumer functions is the message from SNS. This is an array of messages, containing subject and message attributes from the publishing function. You can see this in the CloudWatch log for the function:

CloudWatch log result

Differences between SQS and SNS configurations

SQS queues and SNS topics offer different functionality, though both can publish to downstream Lambda functions.

An SQS message is stored on the queue for up to 14 days until it is successfully processed by a subscriber. SNS does not retain messages so if there are no subscribers for a topic, the message is discarded.

SNS topics may broadcast to multiple targets. This behavior is called fan-out. It can be used to parallelize work across Lambda functions or send messages to multiple environments (such as test or development). An SNS topic can have up to 12,500,000 subscribers, providing highly scalable fan-out capabilities. The targets may include HTTP/S endpoints, SMS text messaging, SNS mobile push, email, SQS, and Lambda functions.

In AWS SAM templates, you can retrieve properties such as ARNs and names of queues and topics, using the following intrinsic functions:

Amazon SQSAmazon SNS
Channel typeQueueTopic
Get ARN!GetAtt MySqsQueue.Arn!Ref MySnsTopic
Get name!GetAtt MySqsQueue.QueueName!GetAtt MySnsTopic.TopicName

Integrating with EventBridge in AWS SAM

The third example shows the AWS SAM template defining a serverless application with two Lambda functions and an EventBridge rule:

EventBridge integration with AWS SAM

The default event bus already exists in every AWS account. You declare a rule that filters events in the event bus using the AWS::Events::Rule resource:

  EventRule: 
    Type: AWS::Events::Rule
    Properties: 
      Description: "EventRule"
      EventPattern: 
        source: 
          - "demo.event"
        detail: 
          state: 
            - "new"
      State: "ENABLED"
      Targets: 
        - Arn: !GetAtt EventConsumerFunction.Arn
          Id: "ConsumerTarget"

The rule describes an event pattern specifying matching JSON attributes. Events that match this pattern are routed to the list of targets. You provide the EventBridge service with permission to invoke the Lambda functions in the target list:

  PermissionForEventsToInvokeLambda: 
    Type: AWS::Lambda::Permission
    Properties: 
      FunctionName: 
        Ref: "EventConsumerFunction"
      Action: "lambda:InvokeFunction"
      Principal: "events.amazonaws.com"
      SourceArn: !GetAtt EventRule.Arn

The AWS SAM template uses an IAM policy statement to grant permission to the publishing function to put events on the event bus:

  EventPublisherFunction:
    Type: AWS::Serverless::Function
    Properties:
      CodeUri: code/
      Handler: publisher.handler
      Timeout: 3
      Runtime: nodejs12.x
      Policies:
        - Statement:
          - Effect: Allow
            Resource: '*'
            Action:
              - events:PutEvents      

The publishing function then uses the putEvents method of the AWS.EventBridge class, which returns after the events have been durably stored in EventBridge:

const AWS = require('aws-sdk')
AWS.config.update({region: 'us-east-1'})
const eventbridge = new AWS.EventBridge()

exports.handler = async (event) => {
  const params = {
    Entries: [ 
      {
        Detail: JSON.stringify({
          "message": "Hello from publisher",
          "state": "new"
        }),
        DetailType: 'Message',
        EventBusName: 'default',
        Source: 'demo.event',
        Time: new Date 
      }
    ]
  }
  const result = await eventbridge.putEvents(params).promise()
  console.log(result)
}

The payload for the consumer function is the message from EventBridge. This is an array of messages, containing subject and message attributes from the publishing function. You can see this in the CloudWatch log for the function:

CloudWatch log result

Comparing SNS with EventBridge

SNS and EventBridge have many similarities. Both can be used to decouple publishers and subscribers, filter messages or events, and provide fan-in or fan-out capabilities. However, there are differences in the list of targets and features for each service, and your choice of service depends on the needs of your use-case.

EventBridge offers two newer capabilities that are not available in SNS. The first is software as a service (SaaS) integration. This enables you to authorize supported SaaS providers to send events directly from their EventBridge event bus to partner event buses in your account. This replaces the need for polling or webhook configuration, and creates a highly scalable way to ingest SaaS events directly into your AWS account.

The second feature is the Schema Registry, which makes it easier to discover and manage OpenAPI schemas for events. EventBridge can infer schemas based on events routed through an event bus by using schema discovery. This can be used to generate code bindings directly to your IDE for type-safe languages like Python, Java, and TypeScript. This can help accelerate development by automating the generation of classes and code directly from events.

This table compares the major features of both services:

Amazon SNSAmazon EventBridge
Number of targets10 million (soft)5
Availability SLA99.9%99.99%
Limits100,000 topics. 12,500,000 subscriptions per topic.100 event buses. 300 rules per event bus.
Publish throughputVaries by Region. Soft limits.Varies by Region. Soft limits.
Input transformationNoYes – see details.
Message filteringYes – see details.Yes, including IP address matching – see details.
Message size maximum256 KB256 KB
BillingPer 64 KB
FormatRaw or JSONJSON
Receive events from AWS CloudTrailNoYes
TargetsHTTP(S), SMS, SNS Mobile Push, Email/Email-JSON, SQS, Lambda functions.15 targets including AWS LambdaAmazon SQSAmazon SNSAWS Step FunctionsAmazon Kinesis Data StreamsAmazon Kinesis Data Firehose.
SaaS integrationNoYes – see integrations.
Schema Registry integrationNoYes – see details.
Dead-letter queues supportedYesNo
FIFO ordering availableNoNo
Public visibilityCan create public topicsCannot create public buses
Pricing$0.50/million requests + variable delivery cost + data transfer out cost. SMS varies.$1.00/million events. Free for AWS events. No charge for delivery.
Billable request size1 request = 64 KB1 event = 64 KB
AWS Free Tier eligibleYesNo
Cross-RegionYou can subscribe your AWS Lambda functions to an Amazon SNS topic in any Region.Targets must be in the same Region. You can publish across Regions to another event bus.
Retry policy
  • For SQS/Lambda, exponential backoff over 23 days.
  • For SMTP, SMS and Mobile push, exponential backoff over 6 hours.
At-least-once event delivery to targets, including retry with exponential backoff for up to 24 hours.

Conclusion

Messaging is an important part of serverless applications and AWS services provide queues, publish/subscribe, and event routing capabilities. This post reviews the main features of SNS, SQS, and EventBridge and how they provide different capabilities for your workloads.

I show three example applications that publish and consume events from the three services. I walk through AWS SAM syntax for deploying these resources in your applications. Finally, I compare differences between the services.

To learn more building decoupled architectures, see this Learning Path series on EventBridge. For more serverless learning resources, visit https://serverlessland.com.

Building storage-first serverless applications with HTTP APIs service integrations

Post Syndicated from Eric Johnson original https://aws.amazon.com/blogs/compute/building-storage-first-applications-with-http-apis-service-integrations/

Over the last year, I have been talking about “storage first” serverless patterns. With these patterns, data is stored persistently before any business logic is applied. The advantage of this pattern is increased application resiliency. By persisting the data before processing, the original data is still available, if or when errors occur.

Common pattern for serverless API backend

Common pattern for serverless API backend

Using Amazon API Gateway as a proxy to an AWS Lambda function is a common pattern in serverless applications. The Lambda function handles the business logic and communicates with other AWS or third-party services to route, modify, or store the processed data. One option is to place the data in an Amazon Simple Queue Service (SQS) queue for processing downstream. In this pattern, the developer is responsible for handling errors and retry logic within the Lambda function code.

The storage first pattern flips this around. It uses native error handling with retry logic or dead-letter queues (DLQ) at the SQS layer before any code is run. By directly integrating API Gateway to SQS, developers can increase application reliability while reducing lines of code.

Storage first pattern for serverless API backend

Storage first pattern for serverless API backend

Previously, direct integrations require REST APIs with transformation templates written in Velocity Template Language (VTL). However, developers tell us they would like to integrate directly with services in a simpler way without using VTL. As a result, HTTP APIs now offers the ability to directly integrate with five AWS services without needing a transformation template or code layer.

The first five service integrations

This release of HTTP APIs direct integrations includes Amazon EventBridge, Amazon Kinesis Data Streams, Simple Queue Service (SQS), AWS System Manager’s AppConfig, and AWS Step Functions. With these new integrations, customers can create APIs and webhooks for their business logic hosted in these AWS services. They can also take advantage of HTTP APIs features like authorizers, throttling, and enhanced observability for securing and monitoring these applications.

Amazon EventBridge

HTTP APIs service integration with Amazon EventBridge

HTTP APIs service integration with Amazon EventBridge

The HTTP APIs direct integration for EventBridge uses the PutEvents API to enable client applications to place events on an EventBridge bus. Once the events are on the bus, EventBridge routes the event to specific targets based upon EventBridge filtering rules.

This integration is a storage first pattern because data is written to the bus before any routing or logic is applied. If the downstream target service has issues, then EventBridge implements a retry strategy with incremental back-off for up to 24 hours. Additionally, the integration helps developers reduce code by filtering events at the bus. It routes to downstream targets without the need for a Lambda function as a transport layer.

Use this direct integration when:

  • Different tasks are required based upon incoming event details
  • Only data ingestion is required
  • Payload size is less than 256 kb
  • Expected requests per second are less than the Region quotas.

Amazon Kinesis Data Streams

HTTP APIs service integration with Amazon Kinesis Data Streams

HTTP APIs service integration with Amazon Kinesis Data Streams

The HTTP APIs direct integration for Kinesis Data Streams offers the PutRecord integration action, enabling client applications to place events on a Kinesis data stream. Kinesis Data Streams are designed to handle up to 1,000 writes per second per shard, with payloads up to 1 mb in size. Developers can increase throughput by increasing the number of shards in the data stream. You can route the incoming data to targets like an Amazon S3 bucket as part of a data lake or a Kinesis data analytics application for real-time analytics.

This integration is a storage first option because data is stored on the stream for up to seven days until it is processed and routed elsewhere. When processing stream events with a Lambda function, errors are handled at the Lambda layer through a configurable error handling strategy.

Use this direct integration when:

  • Ingesting large amounts of data
  • Ingesting large payload sizes
  • Order is important
  • Routing the same data to multiple targets

Amazon SQS

HTTP APIs service integration with Amazon SQS

HTTP APIs service integration with Amazon SQS

The HTTP APIs direct integration for Amazon SQS offers the SendMessage, ReceiveMessage, DeleteMessage, and PurgeQueue integration actions. This integration differs from the EventBridge and Kinesis integrations in that data flows both ways. Events can be created, read, and deleted from the SQS queue via REST calls through the HTTP API endpoint. Additionally, a full purge of the queue can be managed using the PurgeQueue action.

This pattern is a storage first pattern because the data remains on the queue for four days by default (configurable to 14 days), unless it is processed and removed. When the Lambda service polls the queue, the messages that are returned are hidden in the queue for a set amount of time. Once the calling service has processed these messages, it uses the DeleteMessage API to remove the messages permanently.

When triggering a Lambda function with an SQS queue, the Lambda service manages this process internally. However, HTTP APIs direct integration with SQS enables developers to move this process to client applications without the need for a Lambda function as a transport layer.

Use this direct integration when:

  • Data must be received as well as sent to the service
  • Downstream services need reduced concurrency
  • The queue requires custom management
  • Order is important (FIFO queues)

AWS AppConfig

HTTP APIs service integration with AWS Systems Manager AppConfig

HTTP APIs service integration with AWS Systems Manager AppConfig

The HTTP APIs direct integration for AWS AppConfig offers the GetConfiguration integration action and allows applications to check for application configuration updates. By exposing the systems parameter API through an HTTP APIs endpoint, developers can automate configuration changes for their applications. While this integration is not considered a storage first integration, it does enable direct communication from external services to AppConfig without the need for a Lambda function as a transport layer.

Use this direct integration when:

  • Access to AWS AppConfig is required.
  • Managing application configurations.

AWS Step Functions

HTTP APIs service integration with AWS Step Functions

HTTP APIs service integration with AWS Step Functions

The HTTP APIs direct integration for Step Functions offers the StartExecution and StopExecution integration actions. These actions allow for programmatic control of a Step Functions state machine via an API. When starting a Step Functions workflow, JSON data is passed in the request and mapped to the state machine. Error messages are also mapped to the state machine when stopping the execution.

This pattern provides a storage first integration because Step Functions maintains a persistent state during the life of the orchestrated workflow. Step Functions also supports service integrations that allow the workflows to send and receive data without needing a Lambda function as a transport layer.

Use this direct integration when:

  • Orchestrating multiple actions.
  • Order of action is required.

Building HTTP APIs direct integrations

HTTP APIs service integrations can be built using the AWS CLI, AWS SAM, or through the API Gateway console. The console walks through contextual choices to help you understand what is required for each integration. Each of the integrations also includes an Advanced section to provide additional information for the integration.

Creating an HTTP APIs service integration

Creating an HTTP APIs service integration

Once you build an integration, you can export it as an OpenAPI template that can be used with infrastructure as code (IaC) tools like AWS SAM. The exported template can also include the API Gateway extensions that define the specific integration information.

Exporting the HTTP APIs configuration to OpenAPI

Exporting the HTTP APIs configuration to OpenAPI

OpenAPI template

An example of a direct integration from HTTP APIs to SQS is located in the Sessions With SAM repository. This example includes the following architecture:

AWS SAM template resource architecture

AWS SAM template resource architecture

The AWS SAM template creates the HTTP APIs, SQS queue, Lambda function, and both Identity and Access Management (IAM) roles required. This is all generated in 58 lines of code and looks like this:

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: HTTP API direct integrations

Resources:
  MyQueue:
    Type: AWS::SQS::Queue
    
  MyHttpApi:
    Type: AWS::Serverless::HttpApi
    Properties:
      DefinitionBody:
        'Fn::Transform':
          Name: 'AWS::Include'
          Parameters:
            Location: './api.yaml'
          
  MyHttpApiRole:
    Type: "AWS::IAM::Role"
    Properties:
      AssumeRolePolicyDocument:
        Version: "2012-10-17"
        Statement:
          - Effect: "Allow"
            Principal:
              Service: "apigateway.amazonaws.com"
            Action: 
              - "sts:AssumeRole"
      Policies:
        - PolicyName: ApiDirectWriteToSQS
          PolicyDocument:
            Version: '2012-10-17'
            Statement:
              Action:
              - sqs:SendMessage
              Effect: Allow
              Resource:
                - !GetAtt MyQueue.Arn
                
  MyTriggeredLambda:
    Type: AWS::Serverless::Function
    Properties:
      CodeUri: src/
      Handler: app.lambdaHandler
      Runtime: nodejs12.x
      Policies:
        - SQSPollerPolicy:
            QueueName: !GetAtt MyQueue.QueueName
      Events:
        SQSTrigger:
          Type: SQS
          Properties:
            Queue: !GetAtt MyQueue.Arn

Outputs:
  ApiEndpoint:
    Description: "HTTP API endpoint URL"
    Value: !Sub "https://${MyHttpApi}.execute-api.${AWS::Region}.amazonaws.com"

The OpenAPI template handles the route definitions for the HTTP API configuration and configures the service integration. The template looks like this:

openapi: "3.0.1"
info:
  title: "my-sqs-api"
paths:
  /:
    post:
      responses:
        default:
          description: "Default response for POST /"
      x-amazon-apigateway-integration:
        integrationSubtype: "SQS-SendMessage"
        credentials:
          Fn::GetAtt: [MyHttpApiRole, Arn]
        requestParameters:
          MessageBody: "$request.body.MessageBody"
          QueueUrl:
            Ref: MyQueue
        payloadFormatVersion: "1.0"
        type: "aws_proxy”
        connectionType: "INTERNET"
x-amazon-apigateway-importexport-version: "1.0"

Because the OpenAPI template is included in the AWS SAM template via a transform, the API Gateway integration can reference the roles and services created within the AWS SAM template.

Conclusion

This post covers the concept of storage first integration patterns and how the new HTTP APIs direct integrations can help. I cover the five current integrations and possible use cases for each. Additionally, I demonstrate how to use AWS SAM to build and manage the integrated applications using infrastructure as code.

Using the storage first pattern with direct integrations can help developers build serverless applications that are more durable with fewer lines of code. A Lambda function is no longer required to transport data from the API endpoint to the desired service. Instead, use Lambda function invocations for differentiating business logic.

To learn more join us for the HTTP API service integrations session of Sessions With SAM! 

#ServerlessForEveryone

ICYMI: Season one of Sessions with SAM

Post Syndicated from Eric Johnson original https://aws.amazon.com/blogs/compute/icymi-season-one-of-sessions-with-sam/

Developers tell us they want to know how to easily build and manage their serverless applications. In 2017 AWS announced AWS Serverless Application Model (SAM) to help with just that. To help developers learn more about SAM, I created a weekly Twitch series called Sessions with SAM. Each session focuses on a specific serverless task or service. It demonstrates deploying and managing that task using infrastructure as code (IaC) with SAM templates. This post recaps each session of the first season to prepare you for Sessions with SAM season two, starting August 13.

Sessions with SAM

Sessions with SAM

What is SAM

AWS SAM is an open source framework designed for building serverless applications. The framework provides shorthand syntax to quickly declare AWS Lambda functions, Amazon DynamoDB tables and more. Additionally, SAM is not limited to serverless resources and can also declare any standard AWS CloudFormation resource. With around 20 lines of code, a developer can create an application with an API, logic, and database layer with the proper permissions in place.

Example of using SAM templates to generate infrastructure

20 Lines of code

By using infrastructure as code to manage and deploy serverless applications, developers gain several advantages. You can version the templates and rollback when necessary. They can be parameterized for flexibility across multiple environments. They can be shared with development teams for consistency across developer environments.

Sessions

The code and linked videos are listed with the session. See the YouTube playlist and GitHub repository for the entire season.

Session one: JWT authorizers on Amazon API Gateway

In this session, I cover building an application backend using JWT authorizers with the new Amazon API Gateway HTTP API. We also discussed building an application with multiple routes and the ability to change the authorization requirements per route.

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/http-api

Video: https://youtu.be/klOScYEojzY

Session two: Amazon Cognito authentication

In this session, I cover building an Amazon Cognito template for authentication. This includes the user management component with user pools and user groups in addition to a hosted authentication workflow with an app client.

Building an Amazon Cognito authentication provider

Building an Amazon Cognito authentication provider

We also discussed using custom pre-token Lambda functions to modify the JWT token issued by Amazon Cognito. This custom token allows you to insert custom scopes based on the Amazon Cognito user groups. These custom scopes are then used to customize the authorization requirements for the individual routes.

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/cognito

Video: https://youtu.be/nBtWCjKd72M

Session three: Building a translation app with Amazon EventBridge

I covered using AWS SAM to build a basic translation and sentiment app centered around Amazon EventBridge. The SAM template created three Lambda functions, a custom EventBridge bus, and an HTTP API endpoint.

Architecture for serverless translation application

Architecture for serverless translation application

Requests from HTTP API endpoint are put into the custom EventBridge bus via the endpoint Lambda function. Based on the type of request, either the translate function or the sentiment function is invoked. The AWS SAM template manages all the infrastructure in addition to the permissions to invoke the Lambda functions and access Amazon Translate and Amazon Comprehend.

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/eventbridge

Video: https://youtu.be/73R02KufLac

Session four: Building an Amazon Kinesis Data Firehose for ingesting website access logs

In this session, I covered building an Amazon Kinesis Data Firehose for ingesting large amounts of data. This particular application is designed for access logs generated from API Gateway. The logs are first stored to an Amazon DynamoDB data base for immediate processing. Next, the logs are sent through a Kinesis Data Firehose and stored in an Amazon S3 bucket for later processing.

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/kinesis-firehose

Video: https://youtu.be/jdTBtaxs0hA

Session five: Analyzing API Gateway logs with Amazon Kinesis Data Analytics

Continuing from session 4, I discussed configuring API Gateway access logs to use the Kinesis Data Firehose built in the previous session. I also demonstrate an Amazon Kinesis data analytics application for near-real-time analytics of your access logs.

Example of Kinesis Data Analytics in SAM

Example of Kinesis Data Analytics in SAM

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/kinesis-firehose

Video: https://youtu.be/ce0v-q9EVTQ

Session six: Managing Amazon SQS with AWS SAM templates

I demonstrated configuring an Amazon Simple Queue Service (SQS) queue and the queue policy to control access to the queue. We also discuss allowing cross-account and external resources to access the queue. I show how to identify the proper principal resources for building the proper AWS IAM policy templates.

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/SQS

Video: https://youtu.be/q2rbHMyJBDY

Session seven: Creating canary deploys for Lambda functions

In this session, I cover canary and linear deployments for serverless applications. We discuss how canary releases compare to linear releases and how they can be customized. We also spend time discussing pre-traffic and post-traffic tests and how rollbacks are handled when one of these tests fails.

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/safe-deploy

Video: https://youtu.be/RE4r_6edaXc

Session eight: Configuring custom domains for Amazon API Gateway endpoints

In session eight I configured custom domains for API Gateway REST and HTTP APIs. The demonstration included the option to pass in an Amazon Route 53 zone ID or AWS Certificate Manager (ACM) certificate ARN. If either of these are missing, then the template built a zone or SSL cert respectively.

Working with Amazon Route 53 zones

Working with Amazon Route 53 zones

We discussed how to use declarative and imperative methods in our templates. We also discussed how to use a single domain across multiple APIs, regardless of they are REST or HTTP APIs.

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/custom-domains

Video: https://youtu.be/4uXEGNKU5NI

Session nine: Managing AWS Step Functions with AWS SAM

In this session I was joined by fellow Senior Developer Advocate, Rob Sutter. Rob and I demonstrated managing and deploying AWS Step Functions using the new Step Functions support built into SAM. We discussed how SAM offers definition substitutions to pass data from the template into the state machine configuration.

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/step-functions

Video: https://youtu.be/BguUgdZwymQ

Session ten: Using Amazon EFS with Lambda functions in SAM

Joined by Senior Developer Advocate, James Beswick, we covered configuring Amazon Elastic File System (EFS) as a storage option for Lambda functions using AWS SAM. We discussed the Amazon VPC requirements in configuring for EFS. James also walked through using the AWS Command Line Interface (CLI) to aid in configuration of the VPC.

Code: https://github.com/aws-samples/aws-lambda-efs-samples

Video: https://youtu.be/up1op216trk

Session eleven: Ask the experts

This session introduced you to some of our SAM experts. Jeff Griffiths, Senior Product Manager, and Alex Woods, Software Development Engineer, joined me in answering live audience questions. WE discussed best practices for local development and debugging, Docker networking, CORS configurations, roadmap features and more.

SAM experts panel

SAM experts panel

Video: https://youtu.be/2JRa8MugPCY

Session twelve: Managing .Net Lambda function in AWS SAM and Stackery

In this final session of the season, I was joined by Stackery CTO and serverless hero, Chase Douglas. Chase demonstrated using Stackery and AWS SAM to build and deploy .Net Core Lambda functions. We discuss how Stackery’s editor allows developers to visually design a serverless application and how it uses SAM templates under the hood.

Stackery visual editor

Stackery visual editor

Code only examples

In addition to code examples with each video session, the repo includes developer-requested code examples. In this section, I demonstrate how to build an access log pipeline for HTTP API or use the SAM build command to compile Swift for Lambda functions.

Conclusion

Sessions with SAM helps developers bootstrap their serverless applications with instructional video and ready-made IaC templates. From JWT authorizers to EFS storage solutions, over 15 AWS services are represented in SAM templates. The first season of live videos supplements these templates with best practices explained and real developer questions answered.

Season two of Sessions with SAM starts August 13. The series will continue the pattern of explaining best practices, providing usable starter templates, and having some fun along the way.

#ServerlessForEveryone

 

BBVA: Architecture for Large-Scale Macie Implementation

Post Syndicated from Neel Sendas original https://aws.amazon.com/blogs/architecture/bbva-architecture-for-large-scale-macie-implementation/

This post was co-written by Andrew Alaniz , Technical Information Security Officer, and Brady Pratt, Cloud Security Enginner, both at BBVA USA.

Introduction

Data Loss Prevention (DLP) is a common topic among companies that work with any type of sensitive data. One of the challenges is that many people either don’t fully understand what DLP is, or rather, have their own definition of what it is. Regardless of one’s interpretation of DLP, one thing is certain: before you can control data loss, you need to locate find the data sources.

If an organization can’t identify its data, it can’t protect it. BBVA USA, a bank holding company, turned to AWS for advice, and decided to use Amazon Macie to accomplish this in Amazon Simple Storage Service (Amazon S3). Macie is a fully managed data security and data privacy service that uses machine learning and pattern matching to discover and protect your sensitive data in AWS. This blog post will share some of the design and architecture we used to deploy Macie using services, such as AWS Lambda and Amazon CloudWatch.

Data challenges in Amazon S3

Although all S3 buckets are private by default, everyone is aware of the challenges of unsecured S3 buckets exposing data publicly. Amazon has provided a way to prevent that by removing the ability to make buckets public. As with other data storage mechanisms, this doesn’t stop anyone from storing sensitive data within AWS and exposing it another way. With Macie, one can classify the data stored in S3, centrally, and through AWS Organizations.

Recommended architecture

We can break the Macie architecture into two main parts: S3 discovery and evaluation, and S3 sensitive data discovery:

Macie architecture

The setup of discovery and evaluation is simple and straightforward, and should be enabled through Amazon Organizations and across all accounts. The cost of this piece is minimal, and it provides valuable insights into the compliance state of S3 buckets.

Once setup of discovery and evaluation is completed, we are a ready to move to the next step and configure discovery jobs for our S3 buckets. The architecture includes the use of S3, Amazon CloudWatch Events, Amazon EventBridge, and Lambda. All of the execution should happen in a centralized account, but the event triggers should come from each individual account.

Architectural considerations

When determining the architectural design of the solution, consider a few main components:

Centralization

Utilize AWS Organizations: Macie allows native integration with AWS Organizations. This is a significant advantage for Macie. Additionally, within AWS Organizations, it allows the delegation of the Macie master account to a subordinate account. The benefit of this is that it allows centralized management while allowing for the compartmentalization of roles.

Ease of management

One of the most challenging things to manage is non-conforming configurations. It’s much easier to manage a standard way to create, name, and configure settings. Once the classification jobs were ready to be created, we had to take into consideration the following when deploying Macie for our use case:

  1. Macie classifies content in a single job across one account.
  2. If you submit multiple jobs that contain the same bucket, Macie will scan the objects multiple times.
  3. Macie jobs are immutable.

Due to these considerations, we decided to create one job per S3 bucket. This allows administrators to search more easily for jobs related to findings.

Cost considerations

Macie plays an essential role, not only in identifying data and improving data collection, but also in compliance. We needed to make a decision about how to determine if an S3 bucket would be included in a classification job. Initially, we considered including all buckets no matter what. The logic here was that even if we make an assumption that a bucket would never have sensitive data in it, an entity with the right role could always add something at a later date.

Finally, we implemented a solution to tag specific buckets that were known to have immutable properties and which would never allow sensitive data to be added. We could do this because we knew exactly what data was in the bucket, who or what created the bucket, and exactly who or what had access to the bucket.

An example of this type of bucket is the S3 bucket used to store VPC Flow Logs. We know that this bucket is only created by provisioning scripts and is only going to store VPC flow logs that contain no sensitive data based on data classification standards. Also, only VPC services and specific security services can access this bucket for anything other than READ. This is controlled organizationally and can be tagged with a simple ignore key/value pair upon creation.

Deploying Macie at BBVA USA

BBVA USA developed an approach to working within AWS that allows guardrails to be applied as accounts are created. One of those guardrails identifies if developers have stored sensitive data in an account. BBVA needed to be able to do this, and do it at scale. If there is a roadblock or a challenge with AWS services, the first place BBVA looks is to support, but the second place is the Technical Account Manager.

After initiating conversations with its account team, BBVA determined that AWS Macie was the tool to help them with this challenge.

With the help of its technical account manager (TAM), BBVA was able to meet with the Macie Product team and discuss the best options for deploying at scale. Through these conversations, they were even able to influence the Macie product roadmap.

Getting Macie ready to deploy at scale was actually quite simple once the architectural pattern was designed.

Initial job creation

In order to set up jobs for each existing bucket in the organization, it’s a matter of scripting the job creation and adding each bucket from each account into its own job, which is pretty straightforward.

Job creation for new buckets

The recommended architecture and implementation for existing buckets:

  1. Whenever a new S3 bucket is added to Organization accounts, trigger a CloudWatch Event in the target account.
  2. Set up a cross account EventBridge to consume the Event. Using the EventBridge allows for a simpler configuration and centralized management of both Events and Lambda.
  3. Trigger a Lambda function in a delegated Macie admin account, which creates classification jobs to apply Macie to all the newly created S3 buckets.
  4. Repeat the same process when a bucket is deleted by triggering a cancel job.

Evaluate the state of S3 buckets

To evaluate the S3 accounts, turn on Macie at the organization master account and delegate administration to a subordinate account used for Macie. This enables management consolidation of security features into a centralized security account. This helps further restrict access from those that may need access to the master billing account. Finally, enable Macie by default on all organization accounts.

Evaluate the state of S3 buckets

Conclusion

BBVA USA worked directly with the Macie product team by leveraging its relationship with the AWS account team and Enterprise Support. This allowed the company to eventually deploy Macie quickly and at scale. Through Macie, the company is able to track any changes to configurations on buckets that allow a bucket to be public, shared, or replicated with external accounts and if the encryption policies are disabled. Using Macie, BBVA was able to identify buckets that contained sensitive information and put in another control to bolster its AWS governance profile.

Managing backend requests and frontend notifications in serverless web apps

Post Syndicated from James Beswick original https://aws.amazon.com/blogs/compute/managing-backend-requests-and-frontend-notifications-in-serverless-web-apps/

Web and mobile applications usually interact with a backend service, often via an API. Many front-end applications pass requests for processing, wait for a result, and then display this to the user. This synchronous approach is only one way to handle messages, but modern applications have alternatives to provide a better user experience.

There are three common ways to make and manage requests from your frontend. This blog post explains the benefits and use-cases of each approach. This post references the Ask Around Me example application, which allows users to ask and answer questions in their local geographic area in real time. To learn more, refer to part 1 of the blog application series.

The synchronous model

The synchronous call is the most common API request pattern, where the caller makes a request to an API and then waits for the response:

Synchronous API example

This type of request is easy to implement and understand because it mirrors the functional call-response pattern many developers are familiar with. The requestor is blocked until the calls completes, so it is well suited to simple requests with short execution times. Use cases include: retrieving the contents of a shopping cart, looking up a value in a database, or submitting an email address from a web form.

However, when your API interacts with other services or external workflows, the synchronous model can have limitations. In the following ecommerce example, any slow performance in the downstream services delays the entire roundtrip performance. Additionally, any outages in one of those services may result in an apparent failure of the entire service.

Tight coupling of services

For services with lengthy workflows, you may reach API Gateway’s 29-second integration timeout. In the following ride sharing example, the service responsible for finding available drivers may have a highly variable response time. This request may time out. It also provides a poor user experience, as there is no feedback to the user for a considerable period.

Lengthy request example

Synchronous requests also have others limitations. You cannot receive more than one response per request, nor can you subscribe to future changes in data. In this example, the API request can only inform callers about drivers at the end of the length process request.

The asynchronous model

Asynchronous tasks are common in serverless applications and distributed applications. They allow separate parts of an application to communicate without needing to wait for a synchronous response. Asynchronous workloads often use queues between services to help manage throughout and assist with retry logic.

With asynchronous tasks, the caller hands off the event and continues on to the next task after receiving the acknowledgment response. The caller does not wait for the entire task to complete. The downstream service works on this event while the caller continues servicing other requests. The ecommerce example, converted to an asynchronous flow, looks like this:

Asynchronous request example

In this example, a caller submits an order and receives a response from API Gateway almost immediately. With service integrations, API Gateway then stores the request directly in a durable store such as Amazon SQS or DynamoDB, before any processing has occurred. This results in a relatively consistent caller response time, regardless of downstream service processing time.

The downstream services fetch messages from the SQS queue or the DynamoDB table for processing. If there is a downstream outage, messages are persisted in the queue and may be retried later. From the user’s perspective, the request has been successfully submitted.

The Ask Around Me application handles the publishing of both questions and answers asynchronously. The API passes the user data to a Lambda function that stores the message in an SQS queue. SQS responds immediately to indicate that the message has been stored successfully, ending the API response. Another Lambda function then takes the messages from the SQS queue and processes these independently.

Ask Around Me save question example

Both synchronous and asynchronous requests are useful for different functions in web applications, so it can be helpful to compare their features and behaviors:

Synchronous requestsAsynchronous requests
The caller waits until the end of processing for a response.The caller receives an acknowledgment quickly while processing continues.
Waiting may incur cost.Minimizes the cost of waiting.
Downstream slowness or outages affects the overall request.Queuing separates ingestion of the request from the processing of the request.
Passes payloads between steps.More often passes transaction identifiers.
Failure affects entire request.Failure only affects segment of request.
Easy to implement.Moderate complexity in implementation

Handling response values and state for asynchronous requests

With asynchronous processes, you cannot pass a return value back to the caller in the same way as you can for synchronous processes. Beyond the initial acknowledgment that the request has been received, there is no return path to provide further information. There are a couple of options available to web and mobile developers to track the state of inflight requests:

  • Polling: the initial request returns a tracking identifier. You create a second API endpoint for the frontend to check the status of the request, referencing the tracking ID. Use DynamoDB or another data store to track the state of the request.
  • WebSocket: this is a bidirectional connection between the frontend client and the backend service. It allows you to send additional information after the initial request is completed. Your backend services can continue to send data back to the client by using a WebSocket connection.

Polling is a simple mechanism to implement for many systems but can result in many empty calls. There is also a delay between data availability and the client being notified. WebSockets provide notifications that are closer to real time and reduce the number of messages between the client and backend system. However, implementing WebSockets is often more complex.

Using AWS IoT Core for real-time messaging

In both the synchronous and asynchronous models, it’s assumed that the caller makes a request and is only interested in the final result of that request. This doesn’t allow for partial information, such as the percentage of a task complete, or being notified continuously as data changes.

Modern web applications commonly use the publish-subscribe pattern to receive notifications as data changes. From receiving alerts when new email arrives to providing dashboard analytics, this method allows for much richer streams of event from backend systems.

In Ask Around Me, the application uses this pattern when listening for new questions from the user’s local area. The frontend subscribes to the geohash value of the user’s location via the AWS SDK. It then waits for messages published by the backend to this topic.

AWS IoT Core between frontend and backend

The SDK automatically manages the WebSocket connection and also handles many common connectivity issues in web apps. The messages are categorized using topics, which are strings defining channels of messages.

The AWS IoT Core service manages broadcasts between backend publishers and frontend subscribers. This enables fan-out functionality, which occurs when multiple subscribers are listening to the same topic. You can broadcast messages to thousands of frontend devices using this mechanism. For web application integration, this is the preferable way to implement publish-subscribe than using Amazon SNS.

The IotData class in the AWS SDK returns a client that uses the MQTT protocol. Once the frontend application establishes the connection, it returns messages, errors, and the connection status via callbacks:

        mqttClient.on('connect', function () {
          console.log('mqttClient connected')
        })

        mqttClient.on('error', function (err) {
          console.log('mqttClient error: ', err)
        })

        mqttClient.on('message', function (topic, payload) {
          const msg = JSON.parse(payload.toString())
          console.log('IoT msg: ', topic, msg)
        })

For more details on how to implement MQTT WebSocket connectivity for your application, see the Ask Around Me sample application code.

Combining multiple approaches for your frontend application

Many frontend applications can combine these models depending on the request type. The Ask Around Me application uses multiple approaches in managing the state of user questions:

Combining multiple models in one application

  1. When the application starts, it retrieves an initial set of questions from the synchronous API endpoint. This returns the available list of questions up to this point in time.
  2. Simultaneously, the frontend subscribes to the geohash topic via AWS IoT Core. Any new questions for this geohash location are sent from the backend processing service to the frontend via this topic. This allows the frontend to receive new questions without subsequent API calls.
  3. When a new question is posted, it is saved to the relevant SQS queue and acknowledged. The question is processed asynchronously by a backend process, which sends updates to the topic.

There are several benefits to combining synchronous, asynchronous, and real-time messaging approaches like this. Most importantly, the user experience remains consistent. The user receives immediate feedback to posting new questions and answers, while longer-running processes are managed asynchronously.

When new information becomes available, the frontend is notified in near-real time. This happens without needing to poll an API endpoint or have the user refresh the user interface. This also reduces the number of unnecessary API calls on the backend service, reducing the cost of running this application. Finally, this uses scalable managed services so the frontend application can support large numbers of users without impacting performance.

Conclusion

Web applications commonly use synchronous APIs when communicating with backend services. For longer-running processes, asynchronous workflows can offer an improved user experience and help manage scaling. By using durable message stores like SQS or DynamoDB, you can separate the request ingestion and response from the request processing.

In this post, I show how modern web applications use real-time messaging via WebSockets to improve the user experience. This provides a transport mechanism for pushing state updates from the backend to the frontend client. The AWS IoT Core service can fan out messages using topics, broadcasting messages to large numbers of frontend subscribers.

To see these three methods in an example frontend application, read more about the Ask Around Me example application.

Building a location-based, scalable, serverless web app – part 3

Post Syndicated from James Beswick original https://aws.amazon.com/blogs/compute/building-a-location-based-scalable-serverless-web-app-part-3/

In part 2, I cover the API configuration, geohashing algorithm, and real-time messaging architecture used in the Ask Around Me web application. These are needed for receiving and processing questions and answers, and sending results back to users in real time.

In this post, I explain the backend processing architecture, how data is aggregated, and how to deploy the final application to production. The code and instructions for this application are available in the GitHub repo.

Processing questions

The frontend sends new user questions to the backend via the POST questions API. While the predicted volume of questions is only 1,000 per hour, it’s possible for usage to spike unexpectedly. To help handle this load, the PostQuestions Lambda function puts incoming questions onto an Amazon SQS queue. The ProcessQuestions function takes messages from the Questions queue in batches of 10, and loads these into the Questions table in Amazon DynamoDB.

Questions processing architecture

This asynchronous process smooths out traffic spikes, ensuring that the application is not throttled by DynamoDB. It also provides consistent response times to the front-end POST request, since the API call returns as soon as the message is durably persisted to the queue.

Currently, the ProcessQuestions function does not parse or validate user questions. It would be easy to add message filtering at this stage, using Amazon Comprehend to detect sentiment or inappropriate language. These changes would increase the processing time per question, but by handling this asynchronously, the initial POST API latency is not adversely affected.

The ProcessQuestions function uses the Geo Library for Amazon DynamoDB that converts the question’s latitude and longitude into a geohash. This geohash attribute is one of the indexes in the underlying DynamoDB table. The GetQuestions function using the same library for efficiently querying questions based on proximity to the user.

There are a couple of different mechanisms used to pass information between the frontend and backend applications. When the frontend first initializes, it retrieves the current location of the user from the browser. It then calls the questions API to get a list of active questions within 5 miles of the current location. This retrieves the state up to this point in time. To receive notifications of new messages posted in the user’s area, the frontend also subscribes to the geohash topic in AWS IoT Core.

Processing answers

Answers processing architecture

The application allows two types of question that have different answer types. First, the rating questions accept an answer with a 0–5 score range. Second, the geography questions accept a geo-point, which is a latitude and longitude representing a location.

Similar to the way questions are handled, answers are also queued before processing. However, the PostAnswers Lambda function sends answers to different queues, depending on question type. Ratings messages are sent to the StarAnswers queue, while geography messages are routed to the GeoAnswers queue. Star ratings are saved as raw data in the Answers table by the ProcessAnswerStar function. Geography answers are first converted to a geohash before they are stored.

It’s possible for users to submit updates to their answers. For a star rating, the processing function simply saves the new score. For geography answers, if the updated answer contains a latitude and longitude close enough to the original answer, it results in the same geohash. This is due to the different aggregation processes used for these types of answers.

Aggregating data

In this application, the users asking questions are seeking aggregated answers instead of raw data. For example, “How do you rate the park?” shows an average score from users instead of thousands of individual ratings. To maintain performance, this aggregation occurs when new answers are saved to the database, not when the application fetches the question list.

The Answers table emits updates to a DynamoDB stream whenever new items are inserted or updated. The StreamSpecification parameter in the table definition is set to NEW_AND_OLD_IMAGES, meaning the stream record contains both the new and old item record.

New answers to questions are new items in the table, so the stream record only contains the new image. If users update their answers, this creates an updated item in the table, and the stream record contains both the new and old images of the item.

For star ratings, when receiving an updated rating, the Aggregation function uses both images to calculate the delta in the score. For example, if the old rating was 2 and the user changes this to 5, then the delta is 3. The summary score related to the answer is updated in the Questions table, using a DynamoDB update expression:

    const result = await myGeoTableManager.updatePoint({
      RangeKeyValue: { S: update }, 
      GeoPoint: {
        latitude: item.lat,
        longitude: item.lng
      },
      UpdateItemInput: {
        UpdateExpression: 'ADD answers :deltaAnswers, totalScore :deltaTotalScore',
        ExpressionAttributeValues: {
          ':deltaAnswers': { N: item.deltaAnswers.toString()},
          ':deltaTotalScore': { N: item.deltaValue.toString()}
        }
      }
    }).promise()

For geo-point ratings, the same approach is used but if the geohash changes, then the delta is -1 for the geohash in the old image, and +1 for the geohash in the new image. The update expression automatically creates a new geohash attribute on the DynamoDB item if it is not already present:

    const result = await myGeoTableManager.updatePoint({
      RangeKeyValue: { S: item.ID }, 
      GeoPoint: {
        latitude: item.lat,
        longitude: item.lng
      },
      UpdateItemInput: {
        UpdateExpression: `ADD ${item.geohash} :deltaAnswers, answers :deltaAnswers`,
        ExpressionAttributeValues: {
          ':deltaAnswers': { N: item.deltaAnswers.toString() }          
        }
      }
    }).promise()

By using a Lambda function as a DynamoDB stream processor, you can aggregate large amounts of data in near real time. The Questions and Answers tables have a one-to-many relationship – many answers belong to one question. As answers are saved, the aggregation process updates the summaries in the Questions table.

The Questions table also publishes updates to another DynamoDB stream. These are consumed by a Lambda function that sends the aggregated update to topics in AWS IoT Core. This is how updated scores are sent back to the frontend client application.

Publishing to production with Amplify Console

At this point, you can run the application on your local development machine and view the application via the localhost Vue.js server. Once you are ready to launch the application to users, you must deploy to production.

Single-page applications are easy to deploy publicly. The build process creates static HTML, JS, and CSS files. These can be served via Amazon S3 and Amazon CloudFront, together with any image and media assets used. The process of running the build process and managing the deployment can be automated using AWS Amplify Console.

In this walk through, I use GitHub as the repo provider. You can also use AWS CodeCommit, Bitbucket, GitLab, or upload the build directory from your machine.

To deploy the front end via Amplify Console:

  1. From the AWS Management Console, select the Services dropdown and choose AWS Amplify. From the initial splash screen, choose Get Started under Deploy.Amplify Console getting started
  2. Select GitHub as the repository provider, then choose Continue:Select GitHub as your code repo
  3. Follow the prompts to enable GitHub access, then select the repository dropdown and choose the repo. In the Branch dropdown, choose master. Choose Next.Add repository branch
  4. In the App build and test settings page, choose Next.
  5. In the Review page, choose Save and deploy.
  6. The final screen shows the deployment pipeline for the connected repo, starting at the Provision phase:Amplify Console deployment pipeline

After a few minutes, the Build, Deploy, and Verify steps show green checkmarks. Open the URL in a browser, and you see that the application is now served by the public URL:

Ask Around Me - Deployed application

Finally, before logging in, you must add the URL to the list of allowed URLs in the Auth0 settings:

  1. Log into Auth0 and navigate to the dashboard.
  2. Choose Applications in the menu, then select Ask Around Me from the list of applications.
  3. On the Settings tab, add the application’s URL to Allowed Callback URLs, Allowed Logout URLs, and Allowed Web Origins. Separate from the existing values using a comma.Updating the Auth0 configuration
  4. Choose Save changes. This allows the new published domain name to interact with Auth0 for authentication your application’s users.

Anytime you push changes to the code repository, Amplify Console detects the commit and redeploys the application. If errors are detected, the existing version is presented to users. If there are no errors, the new version is served to visitors.

Conclusion

In the last part of this series, I show how the application queues posted questions and answers. I explain how this asynchronous approach smooths traffic spikes and helps maintain responsive APIs.

I cover how answers are collected from thousands of users and are aggregated using DynamoDB streams. These totals are saved as summaries in the Questions table, and live updates are pushed via AWS IoT Core back to the frontend.

Finally, I show how you can automate deployment using Amplify Console. By connecting the service directly with your code repository, it publishes and serves your application with no need to manually copy files.

To learn more about this application, see the accompanying GitHub repo.

Building scalable serverless applications with Amazon S3 and AWS Lambda

Post Syndicated from James Beswick original https://aws.amazon.com/blogs/compute/building-scalable-serverless-applications-with-amazon-s3-and-aws-lambda/

Well-designed serverless applications are typically a combination of managed services connected by custom business logic. One of the most powerful combinations for enterprise application development is Amazon S3 and AWS Lambda. S3 is a highly durable, highly available object store that scales to meet your storage needs. Lambda runs custom code in response to events, automatically scaling with the size of the workload. When you use the two services together, they can provide a scalable core for serverless solutions.

This blog post shows how to design and deploy serverless applications designed around S3 events. The solutions presented use AWS services to create scalable serverless architectures, using minimal custom code. This is the conclusion of a series showing how the S3-to-Lambda pattern can implement the following business solutions:

Bringing the compute layer to the data

Much traditional software operates by bringing data to the compute layer. This means that processes run on batches of data in files, databases, and other sources. This is inherently harder to scale as data volumes grow, often needing a fleet of servers to scale out at peak times. For the developer, this creates operational overhead to ensure that the compute capacity is keeping pace with the data volume.

The S3-to-Lambda serverless pattern instead brings the compute layer to the data. As data arrives, the compute process scales up and down automatically to meet the demand. This allows developers to focus on building business logic for a single item of data, and the execution at scale is handled by the Lambda service.

The image optimization application is a good example for comparing the traditional and serverless approaches. For a busy media site, capturing hundreds of images per minute in an S3 bucket, the operations overhead becomes clearer. A script running on a server must scale up across multiple instances to keep pace with this level of traffic. Compare this to the Lambda-based approach, which scales on-demand. The code itself does not change, whether it is used for a single image or thousands.

Receiving and processing events from S3 in custom code

S3 raises events when objects are put, copied, or deleted in a bucket. It also raises a broad number of other notifications, such as when lifecycle events occur. You can configure S3 to invoke Lambda from these events by using the S3 console, Lambda console, AWS CLI, or AWS Serverless Application Model (SAM) templates.

S3 passes details of the event, not the object itself, to the Lambda function in a JSON object. This object contains an array of records, so it’s possible to receive more than one S3 event per invocation:

S3 passes event details to Lambda

As the Lambda handler may receive more than one record, it should iterate through the records collection. It’s best practice to keep the handler small and generic, calling out to the business logic in a separate function or file:

const processEvent = require('my-custom-logic’)

// A Node.js Lambda handler
exports.handler = async (event) => {

  // Capture event – can be used to create mock events
  console.log (JSON.stringify(event, null, 2))  

  // Handle each incoming S3 object in the event
  await Promise.all(
    event.Records.map(async (event) => {
      try {
	  // Pass each event to the business logic handler
        await processEvent(event)
      } catch (err) {
        console.error('Handler error: ', err)
      }
    })
  )
}

This code example takes advantage of concurrent asynchronous executions available in Node.js but similar constructs are available in many other languages. This means that multiple objects are processed in parallel to minimize the overall function execution time.

Instead of handling and logging any errors within the function’s code, it’s also possible to use destinations for asynchronous invocations. You use an On failure condition to route the error to various potential targets, including another Lambda function or other AWS services. For complex applications or those handling large volumes, this provides greater control for managing events that fail processing.

During the development process, you can debug and test the S3-to-Lambda integration locally. First, capture a sample event during development to create a mock event for local testing. The sample applications in this series each use a test harness so the developer can test the handler on a local machine. The test harness invokes the handler locally, providing mock environment variables:

// Mock event
const event = require('./localTestEvent')

// Mock environment variables
process.env.AWS_REGION = 'us-east-1'
process.env.localTest = true
process.env.language = 'en'

// Lambda handler
const { handler } = require('./app')

const main = async () => {
  console.time('localTest')
  await handler(event)
  console.timeEnd('localTest')
}

main().catch(error => console.error(error))

Scaling up when more data arrives

The Lambda service scales up if S3 sends multiple events simultaneously. How this works depends on several factors. If the target Lambda function has sufficient concurrency available, and if any active instances of the function are already processing events, the Lambda service scales up.

Lambda scaling up as events queue grows

The function does not scale up if the reserved concurrency is set to 1 or the scaling capacity is fully consumed for a Region in your account. In this case, the events from S3 are queued internally until a Lambda instance is available for processing. You can request to increase the regional concurrency limit by submitting a request in the Support Center console. You may also intend to perform one-at-a-time processing by setting the reserved concurrency to 1.

One-at-a-time processing with Lambda

Generally, multiple instances of a function are invoked simultaneously when S3 receives multiple objects, to process the events as quickly as possible. It’s this rapid scaling and parallelization in both S3 and Lambda that make this pattern such a powerful core architecture for many applications.

Amazon SNS and Amazon SQS integrations

The native S3 to Lambda integration provides a reliable way to invoke one function per prefix or suffix-pattern per bucket. In example, invoking a function when object keys end in .pdf in a single bucket. This works well for the vast majority of use-cases but you may want to invoke multiple Lambda functions per S3 event.

In this case, S3 can publish notifications to SNS, where events are delivered to a range of targets. These include Lambda functions, SQS queues, HTTP endpoints, email, text messages and push notifications. SNS provides fan-out capability, enabling one event to be delivered to multiple destinations, such as Lambda functions or web hooks, for example.

In busy applications, the volume of S3 events may be too large for a downstream system, such as a non-serverless service. In this case, you can also use an SQS queue as a notification target. After events are published to a queue, they can be consumed by Lambda functions and other services. The queue acts as a buffer and can help smooth out traffic for systems consuming these events. See the DynamoDB importer repository for an example.

Uploading data to S3 in upstream applications

You may have upstream services in your architecture that generate the data stored in S3. Some upstream workloads have spiky usage patterns and large numbers of users, like web or mobile applications. You may increase the performance and throughput of these workloads by uploading directly to S3. This avoids proxying binary data through an API Gateway endpoint or web server.

For example, for a mobile application uploading user photos, S3 and Lambda can handle the upload process for large of numbers of users:

  1. The upstream process, in this case a mobile client, requests a presigned URL from an API Gateway endpoint.
  2. This invokes a Lambda function that requests a presigned URL for the S3 bucket, and returns this back via the API call.
  3. The mobile client sends the data directly to the presigned S3 URL using HTTPS POST. The upload is managed directly by S3.

This simple pattern can be a scalable and cost-effective way to upload large binary data into your applications. After the object successfully uploads, the S3 put event can then asynchronously invoke downstream workflows.

Visit this repository to see an example of a serverless S3 uploader application. You can also see a walkthrough of this process in this YouTube video.

Developing larger applications

As you develop larger serverless applications, it often becomes more practical to split applications into multiple services and repositories for separate teams. Often, individual services must integrate with existing S3 buckets, not create these in the application templates. You may also have to integrate a single service with multiple S3 buckets.

In decoupling larger applications with Amazon EventBridge, I show how you can decouple services within an application using an event bus. This pattern helps separate the producers and consumers of events in your workload. This can make each service become more independent and more resilient to changes with the overall application.

This example demonstrates how the document repository solution can be refactored into several smaller applications that communicate using events. This uses Amazon EventBridge as the event router coordinating the flow. Each application contains a SAM template that defines the EventBridge rule to filter for events, and publishes data back to the event bus after processing is complete.

One of the major benefits to using an event-based architecture is that development teams retain flexibility even as the application grows. It allows developers to separate AWS resources like S3 buckets and DynamoDB tables, from the compute resources, like Lambda functions. This decoupling can simplify the deployment process, help avoid building monoliths, and reduce the cognitive load of developing in large applications.

Conclusion

S3 and Lambda are two highly scalable AWS services that can be powerful when combined in serverless applications. In this post, I summarize many of the patterns shown across this series. I explain the integration pattern and the scaling behavior, and how you can use mock events for local testing and development. You can also use SNS and SQS in some applications for fan-out and buffering of events.

Upstream applications can upload data directly to S3 to achieve greater scalability by avoiding proxies. For larger applications, I show how using an event-based architecture modeled around EventBridge can help decouple application services. This can promote service independence, and help maintain flexibility as applications grow.

To learn more about the S3-to-Lambda architecture pattern, watch the YouTube video series, or explore the articles listed at top of this post.

Building a Scalable Document Pre-Processing Pipeline

Post Syndicated from Joel Knight original https://aws.amazon.com/blogs/architecture/building-a-scalable-document-pre-processing-pipeline/

In a recent customer engagement, Quantiphi, Inc., a member of the Amazon Web Services Partner Network, built a solution capable of pre-processing tens of millions of PDF documents before sending them for inference by a machine learning (ML) model. While the customer’s use case—and hence the ML model—was very specific to their needs, the pipeline that does the pre-processing of documents is reusable for a wide array of document processing workloads. This post will walk you through the pre-processing pipeline architecture.

Pre-processing pipeline architecture-SM

Architectural goals

Quantiphi established the following goals prior to starting:

  • Loose coupling to enable independent scaling of compute components, flexible selection of compute services, and agility as the customer’s requirements evolved.
  • Work backwards from business requirements when making decisions affecting scale and throughput and not simply because “fastest is best.” Scale components only where it makes sense and for maximum impact.
  •  Log everything at every stage to enable troubleshooting when something goes wrong, provide a detailed audit trail, and facilitate cost optimization exercises by identifying usage and load of every compute component in the architecture.

Document ingestion

The documents are initially stored in a staging bucket in Amazon Simple Storage Service (Amazon S3). The processing pipeline is kicked off when the “trigger” Amazon Lambda function is called. This Lambda function passes parameters such as the name of the staging S3 bucket and the path(s) within the bucket which are to be processed to the “ingestion app.”

The ingestion app is a simple application that runs a web service to enable triggering a batch and lists documents from the S3 bucket path(s) received via the web service. As the app processes the list of documents, it feeds the document path, S3 bucket name, and some additional metadata to the “ingest” Amazon Simple Queue Service (Amazon SQS) queue. The ingestion app also starts the audit trail for the document by writing a record to the Amazon Aurora database. As the document moves downstream, additional records are added to the database. Records are joined together by a unique ID and assigned to each document by the ingestion app and passed along throughout the pipeline.

Chunking the documents

In order to maximize grip and control, the architecture is built to submit single-page files to the ML model. This enables correlating an inference failure to a specific page instead of a whole document (which may be many pages long). It also makes identifying the location of features within the inference results an easier task. Since the documents being processed can have varied sizes, resolutions, and page count, a big part of the pre-processing pipeline is to chunk a document up into its component pages prior to sending it for inference.

The “chunking orchestrator” app repeatedly pulls a message from the ingest queue and retrieves the document named therein from the S3 bucket. The PDF document is then classified along two metrics:

  • File size
  • Number of pages

We use these metrics to determine which chunking queue the document is sent to:

  • Large: Greater than 10MB in size or greater than 10 pages
  • Small: Less than or equal to 10MB and less than or equal to 10 pages
  • Single page: Less than or equal to 10MB and exactly one page

Each of these queues is serviced by an appropriately sized compute service that breaks the document down into smaller pieces, and ultimately, into individual pages.

  • Amazon Elastic Cloud Compute (EC2) processes large documents primarily because of the high memory footprint needed to read large, multi-gigabyte PDF files into memory. The output from these workers are smaller PDF documents that are stored in Amazon S3. The name and location of these smaller documents is submitted to the “small documents” queue.
  • Small documents are processed by a Lambda function that decomposes the document into single pages that are stored in Amazon S3. The name and location of these single page files is sent to the “single page” queue.

The Dead Letter Queues (DLQs) are used to hold messages from their respective size queue which are not successfully processed. If messages start landing in the DLQs, it’s an indication that there is a problem in the pipeline. For example, if messages start landing in the “small” or “single page” DLQ, it could indicate that the Lambda function processing those respective queues has reached its maximum run time.

An Amazon CloudWatch Alarm monitors the depth of each DLQ. Upon seeing DLQ activity, a notification is sent via Amazon Simple Notification Service (Amazon SNS) so an administrator can then investigate and make adjustments such as tuning the sizing thresholds to ensure the Lambda functions can finish before reaching their maximum run time.

In order to ensure no documents are left behind in the active run, there is a failsafe in the form of an Amazon EC2 worker that retrieves and processes messages from the DLQs. This failsafe app breaks a PDF all the way down into individual pages and then does image conversion.

For documents that don’t fall into a DLQ, they make it to the “single page” queue. This queue drives each page through the “image conversion” Lambda function which converts the single page file from PDF to PNG format. These PNG files are stored in Amazon S3.

Sending for inference

At this point, the documents have been chunked up and are ready for inference.

When the single-page image files land in Amazon S3, an S3 Event Notification is fired which places a message in a “converted image” SQS queue which in turn triggers the “model endpoint” Lambda function. This function calls an API endpoint on an Amazon API Gateway that is fronting the Amazon SageMaker inference endpoint. Using API Gateway with SageMaker endpoints avoided throttling during Lambda function execution due to high volumes of concurrent calls to the Amazon SageMaker API. This pattern also resulted in a 2x inference throughput speedup. The Lambda function passes the document’s S3 bucket name and path to the API which in turn passes it to the auto scaling SageMaker endpoint. The function reads the inference results that are passed back from API Gateway and stores them in Amazon Aurora.

The inference results as well as all the telemetry collected as the document was processed can be queried from the Amazon Aurora database to build reports showing number of documents processed, number of documents with failures, and number of documents with or without whatever feature(s) the ML model is trained to look for.

Summary

This architecture is able to take PDF documents that range in size from single page up to thousands of pages or gigabytes in size, pre-process them into single page image files, and then send them for inference by a machine learning model. Once triggered, the pipeline is completely automated and is able to scale to tens of millions of pages per batch.

In keeping with the architectural goals of the project, Amazon SQS is used throughout in order to build a loosely coupled system which promotes agility, scalability, and resiliency. Loose coupling also enables a high degree of grip and control over the system making it easier to respond to changes in business needs as well as focusing tuning efforts for maximum impact. And with every compute component logging everything it does, the system provides a high degree of auditability and introspection which facilitates performance monitoring, and detailed cost optimization.

Creating a scalable serverless import process for Amazon DynamoDB

Post Syndicated from James Beswick original https://aws.amazon.com/blogs/compute/creating-a-scalable-serverless-import-process-for-amazon-dynamodb/

Amazon DynamoDB is a web-scale NoSQL database designed to provide low latency access to data. It’s well suited to many serverless applications as a primary data store, and fits into many common enterprise architectures. In this post, I show how you can import large amounts of data to DynamoDB using a serverless approach. This uses Amazon S3 as a staging area and AWS Lambda for the custom business logic.

This pattern is useful as a general import mechanism into DynamoDB because it separates the challenge of scaling from the data transformation logic. The incoming data is stored in S3 objects, formatted as JSON, CSV, or any custom format your applications produce. The process works whether you import only a few large files or many small files. It takes advantage of parallelization to import data quickly into a DynamoDB table.

Using S3-to-Lambda to import at scale to DynamoDB.

This is useful for applications where upstream services produce transaction information, and can be effective for handling data generated by spiky workloads. Alternatively, it’s also a simple way to migrate from another data source to DynamoDB, especially for large datasets.

In this blog post, I show two different import applications. The first is a direct import into the DynamoDB table. The second explores a more advanced method for smoothing out volume in the import process. The code uses the AWS Serverless Application Model (SAM), enabling you to deploy the application in your own AWS Account. This walkthrough creates resources covered in the AWS Free Tier but you may incur cost for large data imports.

To set up both example applications, visit the GitHub repo and follow the instructions in the README.md file.

Directly importing data from S3 to DynamoDB

The first example application loads data directly from S3 to DynamoDB via a Lambda function. This uses the following architecture:

Architecture for the first example application.

  1. A downstream process creates source import data in JSON format and writes to an S3 bucket.
  2. When the objects are saved, S3 invokes the main Lambda function.
  3. The function reads the S3 object and converts the JSON into the correct format for the DynamoDB table. It uploads this data in batches to the table.

The repo’s SAM template creates a DynamoDB table with a partition key, configured to use on-demand capacity. This mode enables the DynamoDB service to scale appropriately to match the number of writes required by the import process. This means you do not need to manage DynamoDB table capacity, as you would in the standard provisioned mode.

  DDBtable:
    Type: AWS::DynamoDB::Table
    Properties:
      AttributeDefinitions:
      - AttributeName: ID
        AttributeType: S
      KeySchema:
      - AttributeName: ID
        KeyType: HASH
      BillingMode: PAY_PER_REQUEST

The template defines the Lambda function to import the data:

  ImportFunction:
    Type: AWS::Serverless::Function 
    Properties:
      CodeUri: importFunction/
      Handler: app.handler
      Runtime: nodejs12.x
      MemorySize: 512
      Environment:
        Variables:
          DDBtable: !Ref DDBtable      
      Policies:
        - DynamoDBCrudPolicy:
            TableName: !Ref DDBtable        
        - S3ReadPolicy:
            BucketName: !Ref InputBucketName
      Events:
        FileUpload:
          Type: S3
          Properties:
            Bucket: !Ref InputS3Bucket
            Events: s3:ObjectCreated:*
            Filter: 
              S3Key:
                Rules:
                  - Name: suffix
                    Value: '.json'            

This uses SAM policy templates to provide write access to the DynamoDB table and read access to S3 bucket. It also defines the event that causes the function invocation from S3, filtering only for new objects with a .json suffix.

Testing the application

  1. Deploy the first application by following the README.md in the GitHub repo, and note the application’s S3 bucket name and DynamoDB table name.
  2. Change into the dataGenerator directory:
    cd ./dataGenerator
  3. Create sample data for testing. The following command creates 10 files of 100 records each:
    node ./app.js 100 10
  4. Upload the sample data into your application’s S3 bucket, replacing your-bucket below with your bucket name:
    aws s3 cp ./data/ s3://your-bucket --recursiveYour console output shows the following, confirming that the sample data is uploaded to S3.Generating and uploading sample data for testing.
  5. After a few seconds, enter this command to show the number of items in the application’s DynamoDB table. Replace your-table with your deployed table name:aws dynamodb scan --table-name your-table --select "COUNT"Your console output shows that 1,000 items are now stored in the DynamoDB and the files are successfully imported.Checking the number of items stored in the DynamoDB.

With on-demand provisioning, the per-table limit of 40,000 write request units still applies. For high volumes or sudden, spiky workloads, DynamoDB may throttle the import when using this approach. Any throttling events appears in the Metrics tab of the table in the DynamoDB service console. Throttling is intended to protect your infrastructure but there are times when you want to process these high volumes. The second application in the repo shows how to address this.

Handling extreme loads and variability in the import process

In this next example, the goal is to smooth out the traffic, so that the load process into DynamoDB is much more consistent. The key service used to achieve this is Amazon SQS, which holds all the items until a loader process stores the data in DynamoDB. The architecture looks like this:

Architecture for the second example application.

  1. A downstream process creates source import data in JSON format and writes to an S3 bucket.
  2. When the objects are saved, S3 invokes a Lambda function that transforms the input and adds these as messages in an Amazon SQS queue.
  3. The Lambda polls the SQS queue and invokes a function to process the messages batches.
  4. The function converts the JSON messages into the correct format for the DynamoDB table. It uploads this data in batches to the table.

Testing the application

In this test, you generate a much larger amount of data using a greater number of S3 objects. The instructions below creates 100,000 sample records, so running this code may incur cost on your AWS bill.

  1. Deploy the second application by following the README.md in the GitHub repo, and note the application’s S3 bucket name and DynamoDB table name.
  2. Change into the dataGenerator directory:
    cd ./dataGenerator
  3. Create sample data for testing. The following command creates 100 files of 1,000 records each:
    node ./app.js 1000 100
  4. Upload the sample data into your application’s S3 bucket, replacing your-bucket below with your deployed bucket name:aws s3 cp ./data/ s3://your-bucket --recursiveThis process takes around 10 minutes to complete with the default configuration in the repo.
  5. From the DynamoDB console, select the application’s table and then choose the Metrics tab. Select the Write capacity graph to zoom into the chart:Using CloudWatch to view WCUs consumed in the uploading process.

The default configuration deliberately slows down the load process to illustrate how it works. Using this approach, the load into the database is much more consistent, consuming between 125-150 write capacity units (WCUs) per minute. This design makes it possible to vary how quickly you load data into the DynamoDB table, depending upon the needs of your use-case.

How this works

In this second application, there are multiple points where the application uses a configuration setting to throttle the flow of data to the next step.

Throttling points in the architecture.

  1. AddToQueue function: this loads data from the source S3 object into SQS in batches of 25 messages. Depending on the size of your source records, you may add more records into a single SQS message, which has a size limit of 256 Kb. You can also compress this message with gzip to further add more records.
  2. Function concurrency: the SAM template sets the Loader function’s concurrency to 1, using the ReservedConcurrentExecutions attribute. In effect, this stops Lambda from scaling this function, which means it keeps fetching the next batch from SQS as soon as processing finishes. The concurrency is a multiplier – as this value is increased, the loading into the DynamoDB table increases proportionately, if there are messages available in SQS. Select a value greater than 1 to use parallelization in the load process.
  3. Loader function: this consumes messages from the SQS queue. The BatchSize configured in the SAM template is set to four messages per invocation. Since each message contains 25 records, this represents 100 records per invocation when the queue has enough messages. You can set a BatchSize value from 1 to 10, so could increase this from the application’s default.

When you combine these settings, it’s possible to dramatically increase the throughput for loading data into DynamoDB. Increasing the load also increases WCUs consumed, which increases cost. Your use case can inform you about the optimal balance between speed and cost. You can make changes, too – it’s simple to make adjustments to meet your requirements.

Additionally, each of the services used has its own service limits. For high production loads, it’s important to understand the quotas set, and whether these are soft or hard limits. If your application requires higher throughput, you can request raising soft limits via an AWS Support Center ticket.

Conclusion

DynamoDB does not offer a native import process and existing solutions may not meet your needs for unplanned, large-scale imports. The AWS Database Migration Service is not serverless, and the AWS Data Pipeline is schedule-based rather than event-based. This solution is designed to provide a fully serverless alternative that responds to incoming data to S3 on-demand.

In this post, I show how you can create a simple import process directly to the DynamoDB table, triggered by objects put into an S3 bucket. This provides a near-real time import process. I also show a more advanced approach to smooth out traffic for high-volume or spiky workloads. This helps create a resilient and consistent data import for DynamoDB.

To learn more, watch this video to see how to deploy and test the DynamoDB importer application.

Serving Billions of Ads in Just 100 ms Using Amazon Elasticache for Redis

Post Syndicated from Rodrigo Asensio original https://aws.amazon.com/blogs/architecture/serving-billions-of-ads-with-amazon-elasticache-for-redis/

This post was co-written with Lucas Ceballos, CTO of Smadex

Introduction

Showing ads may seem to be a simple task, but it’s not. Showing the right ad to the right user is an incredibly complex challenge that involves multiple disciplines such as artificial intelligence, data science, and software engineering. Doing it one million times per second with a 100-ms constraint is even harder.

In the ad-tech business, speed and infrastructure costs are the keys to success. The less the final user waits for an ad, the higher the probability of that user clicking on the ad. Doing that while keeping infrastructure costs under control is crucial for business profitability.

About Smadex

Smadex is the leading mobile-first programmatic advertising platform specifically built to deliver best user acquisition performance and complete transparency.

Its state-of-the-art digital signal processing (DSP) technology provides advertisers with the tools they need to achieve their goals and ROI, with measurable results from web forms, post-app install events, store visits, and sales.

Smadex advertising architecture

What does showing ads look like under the hood? At Smadex, our technology works based on the OpenRTB (Real-Time Bidding) protocol.

RTB is a means by which advertising inventory is bought and sold on a per-impression basis, via programmatic instantaneous auction, which is similar to financial markets.

To show ads, we participate in auctions deciding in real time which ad to show and how much to bid trying to optimize the cost of every impression.

High level diagram

  1. The final user browses the publisher’s website or app.
  2. Ad-exchange is called to start a new auction.
  3. Smadex receives the bid request and has to decide which ad to show and how much to offer in just 100 ms (and this is happening one million times per second).
  4. If Smadex won the auction, the ad must be sent and rendered on the publisher’s website or app.
  5. In the end, the user interacts with the ad sending new requests and events to Smadex platform.

Flow of data

As you can see in the previous diagram, showing ads is just one part of the challenge. After the ad is shown, the final user interacts with it in multiple ways, such as clicking it, installing an application, subscribing to a service, etc. This happens during a determined period that we call the “attribution window.” All of those interactions must be tracked and linked to the original bid transaction (using the request_id parameter).

Doing this is complicated: billions of bid transactions must be stored and available so that they can be quickly accessed every time the user interacts with the ad. The longer we store the transactions, the longer we can “wait” for an interaction to take place, and the better for our business and our clients, too.

Detailed diagram

Challenge #1: Cost

The challenge is: What kind of database can store billions of records per day, with at least a 30-day retention capacity (attribution window), be accessed by key-value, and all by spending as little as possible?

The answer is…none! Based on our research, all the available options that met the technical requirements were way out of our budget.

So…how to solve it? Here is when creativity and the combination of different AWS services comes into place.

We started to analyze the time dispersion of the events trying to find some clues. The interesting thing we spotted was that 90% of what we call “post-bid events” (impression, click, install, etc.) happened within one hour after the auction took place.

That means that we can process 90% of post-bid events by storing just one hour of bids.

Under our current workload, in one hour we participate in approximately 3.7 billion auctions generating 100 million bid records of an average 600 bytes each. This adds up to 55 gigabytes per hour, an easier amount of data to process.

Instead of thinking about one single database to store all the bid requests, we decided to split bids into two different categories:

  • Hot Bid: A request that took place within the last hour (small amount and frequently accessed)
  • Cold Bid: A request that took place more than our hour ago (huge amount and infrequently accessed)

Amazon ElastiCache for Redis is the best option to store 55 GB of data in memory, which gives us the ability to query in a key-value way with the lowest possible latency.

Hot Bids flow

Hot Bids flow diagram

  1. Every new bid is a hot bid by definition so it’s going to be stored in the hot bids Redis cluster.
  2. At the moment of the user interaction with the ad, the Smadex tracker component receives an HTTPS notification, including the bid request UUID that originated it.
  3. Based on the date of occurrence extracted from the received UUID, the tracker component can determine if it’s looking for a hot bid or not. If it’s a hot bid, the tracker reads it directly from Redis performing a key-value lookup query.

It’s been easy so far but what to do with the other 29 days and 23 hours we need to store?

Challenge #2: Performance

As we previously mentioned, cold bids are a huge infrequently accessed number of records with only 10% of post-bid events pointing to them. That sounds like a good use case for an inexpensive and slower data store like Amazon S3.

Thanks to the S3 low-cost storage prices combined with the ability to query S3 objects directly using Amazon Athena, we were able to optimize our costs by storing and querying cold bids by implementing a serverless architecture.

Cold Bids Flow

Cold Bids flow diagram

  1. Incoming bids are buffered by Fluentd and flushed to S3 every one minute in JSON format. Every single file flushed to S3 contains all the bids processed by a specific EC2 instance for one minute.
  2. An AWS Lambda function is automatically triggered on every new PutObject event from S3. This function transforms the JSON records to Parquet format and will save it back the S3 bucket, but this time into a specific partition folder based on file creation timestamp.
  3. As seen on the hot bids flow, the tracker component will determine if it’s looking for a hot or a cold bid based on the extracted timestamp of the request UUID. In this case, the cold bid will be retrieved by running an Amazon Athena look-up query leveraging the use of partitions and Parquet format to reduce as much as possible the latency and data that needs to be scanned.

Conclusion

Thanks to this combined approach using different technologies and a variety of AWS services we were able to extend our attribution window from 30 to 90 days while reducing the infrastructure costs by 45%.

 

 

Translating documents at enterprise scale with serverless

Post Syndicated from James Beswick original https://aws.amazon.com/blogs/compute/translating-documents-at-enterprise-scale-with-serverless/

For organizations operating in multiple countries, helping customers in different languages is an everyday reality. But in many IT systems, data remains static in a single language, making it difficult or impossible for international customers to use. In this blog post, I show how you can automate language translation at scale to solve a number of common enterprise problems.

Many types of data are good targets for translation. For example, product catalog information, for sharing with a geographically broad customer base. Or customer emails and interactions in multiple languages, translating back to a single language for analytics. Or even resource files for mobile applications, to automate string processing into different languages during the build process.

Building the machine learning models for language translation is extraordinarily complex, so fortunately you have a pay-as-you-go service available in Amazon Translate. This can accurately translate text between 54 languages, and automatically detects the source language.

Developing a scalable translation solution for thousands of documents can be challenging using traditional, server-based architecture. Using a serverless approach, this becomes much easier since you can use storage and compute services that scale for you – Amazon S3 and AWS Lambda:

Integrating S3 with Translate via Lambda.

In this post, I show two solutions that provide an event-based architecture for automated translation. In the first, S3 invokes a Lambda function when objects are stored. It immediately reads the file and requests a translation from Amazon Translate. The second solution explores a more advanced method for scaling to large numbers of documents, queuing the requests and tracking their state. The walkthrough creates resources covered in the AWS Free Tier but you may incur costs for usage.

To set up both example applications, visit the GitHub repo and follow the instructions in the README.md file. Both applications use the AWS Serverless Application Model (SAM) to make it easy to deploy in your AWS account.

Translating in near real time

In the first application, the workflow is straightforward. The source text is sent immediately to Translate for processing, and the result is saved back into the S3 bucket. It provides near real-time translation whenever an object is saved. This uses the following architecture:

Architecture for the first example application.

  1. The source text is saved in the Batching S3 bucket.
  2. The S3 put event invokes the Batching Lambda function. Since Translate has a limit of 5,000 characters per request, it slices the contents of the input into parts small enough for processing.
  3. The resulting parts are saved in the Translation S3 bucket.
  4. The S3 put events invoke the Translation function, which scales up concurrently depending on the number of parts.
  5. Amazon Translate returns the translations back to the Lambda function, which saves the results in the Translation bucket.

The repo’s SAM template allows you to specify a list of target languages, as a space-delimited list of supported language codes. In this case, any text uploaded to S3 is translated into French, Spanish, and Italian:

Parameters:
  TargetLanguage:
    Type: String
    Default: 'fr es it'

Testing the application

  1. Deploy the first application by following the README.md in the GitHub repo. Note the application’s S3 Translation and Batching bucket names shown in the output:Output values after SAM deployment.
  2. The testdata directory contains several sample text files. Change into this directory, then upload coffee.txt to the S3 bucket, replacing your-bucket below with your Translation bucket name:
    cd ./testdata/
    aws s3 cp ./coffee.txt s3://your-bucket
  3. The application invokes the translation workflow, and within a couple of seconds you can list the output files in the translations folder:aws s3 ls s3://your-bucket/translations/

    Translations output.

  4. Create an output directory, then download the translations to your local machine to view the contents:
    mkdir output
    aws s3 cp s3://your-bucket/translations/ ./output/ --recursive
    more ./output/coffee-fr.txt
    more ./output/coffee-es.txt
    more ./output/coffee-it.txt
  5. For the next step, translate several text files containing test data. Copy these to the Translation bucket, replacing your-bucket below with your bucket name:aws s3 cp ./ s3://your-bucket --include "*.txt" --exclude "*/*" --recursive
  6. After a few seconds, list the files in the translations folder to see your translated files:aws s3 ls s3://your-bucket/translations/

    Listing the translated files.

  7. Finally, translate a larger file using the batching process. Copy this file to the Batching S3 bucket (replacing your-bucket with this bucket name):
    cd ../testdata-batching/
    aws s3 cp ./your-filename.txt s3://your-bucket
  8. Since this is a larger file, the batching Lambda function breaks it apart into smaller text files in the Translation bucket. List these files in the terminal, together with their translations:
    aws s3 ls s3://your-bucket
    aws s3 ls s3://your-bucket/translations/

    Listing the output files.

In this example, you can translate a reasonable number of text files for a trivial use-case. However, in an enterprise environment where there could be thousands of files in a single bucket, you need a more robust architecture. The second application introduces a more resilient approach.

Scaling up the translation solution

In an enterprise environment, the application must handle long documents and large quantities of documents. Amazon Translate has service limits in place per account – you can request an increase via an AWS Support Center ticket if needed. However, S3 can ingest a large number of objects quickly, so the application should decouple these two services.

The next example uses Amazon SQS for decoupling, and also introduces Amazon DynamoDB for tracking the status of each translation. The new architecture looks like this:

Decoupled translation architecture.

  1. A downstream process saves text objects in the Batching S3 bucket.
  2. The Batching function breaks these files into smaller parts, saving these in the Translation S3 bucket.
  3. When an object is saved in this bucket, this invokes the Add to Queue function. This writes a message to an SQS queue, and logs the item in a DynamoDB table.
  4. The Translation function receives messages from the SQS queue, and requests translations from the Amazon Translate service.
  5. The function updates the item as completed in the DynamoDB table, and stores the output translation in the Results S3 bucket.

Testing the application

This test uses a much larger text document – the text version of the novel War and Peace, which is over 3 million characters long. It’s recommended that you use a shorter piece of text for the walkthrough, between 20-50 kilobytes, to minimize cost on your AWS bill.

  1. Deploy the second application by following the README.md in the GitHub repo, and note the application’s S3 bucket name and DynamoDB table name.
    The output values from the SAM deployment.
  2. Download your text sample and then upload it the Batching bucket. Replace your-bucket with your bucket name and your-text.txt with your text file name:aws s3 cp ./your-text.txt s3://your-bucket/ 
  3. The batching process creates smaller files in the Translation bucket. After a few seconds, list the files in the Translation bucket (replacing your-bucket with your bucket name):aws s3 ls s3://patterns-translations-v2/ --recursive --summarize

    Listing the translated files.

  4. To see the status of the translations, navigate to the DynamoDB console. Select Tables in the left-side menu and then choose the application’s DynamoDB table. Select the Items tab:Listing items in the DynamoDB table.

    This shows each translation file and a status of Queue or Translated.

  5. As translations complete, these appear in the Results bucket:aws s3 ls s3://patterns-results-v2/ --summarize

    Listing the output translations.

How this works

In the second application, the SQS queue acts as a buffer between the Batching process and the Translation process. The Translation Lambda function fetches messages from the SQS queue when they are available, and submits the source file to Amazon Translate. This throttles the overall speed of processing.

There are configuration settings you can change in the SAM template to vary the speed of throughput:

  • Translator function: this consumes messages from the SQS queue. The BatchSize configured in the SAM template is set to one message per invocation. This is equivalent to processing one source file at a time. You can set a BatchSize value from 1 to 10, so could increase this from the application’s default.
  • Function concurrency: the SAM template sets the Loader function’s concurrency to 1, using the ReservedConcurrentExecutions attribute. In effect, this means Lambda can only invoke 1 function at the same time. As a result, it keeps fetching the next batch from SQS as soon as processing finishes. The concurrency is a multiplier – as this value is increased, the translation throughput increases proportionately, if there are messages available in SQS.
  • Amazon Translate limits: the service limits in place are designed to protect you from higher-than-intended usage. If you need higher soft limits, open an AWS Support Center ticket.

Combining these settings, you have considerable control over the speed of processing. The defaults in the sample application are set at the lowest values possible so you can observe the queueing mechanism.

Conclusion

Automated translation using deep learning enables you to make documents available at scale to an international audience. For organizations operating globally, this can improve your user experience and increase customer access to your company’s products and services.

In this post, I show how you can create a serverless application to process large numbers of files stored in S3. The write operation in the S3 bucket triggers the process, and you use SQS to buffer the workload between S3 and the Amazon Translate service. This solution also uses DynamoDB to help track the state of the translated files.

Creating a searchable enterprise document repository

Post Syndicated from James Beswick original https://aws.amazon.com/blogs/compute/creating-a-searchable-enterprise-document-repository/

Enterprise customers frequently have repositories with thousands of documents, images and other media. While these contain valuable information for users, it’s often hard to index and search this content. One challenge is interpreting the data intelligently, and another issue is processing these files at scale.

In this blog post, I show how you can deploy a serverless application that uses machine learning to interpret your documents. The architecture includes a queueing mechanism for handling large volumes, and posting the indexing metadata to an Amazon Elasticsearch domain. This solution is scalable and cost effective, and you can modify the functionality to meet your organization’s requirements.

The overall architecture for a searchable document repository solution.

The application takes unstructured data and applies machine learning to extract context for a search service, in this case Elasticsearch. There are many business uses for this design. For example, this could help Human Resources departments in searching for skills in PDF resumes. It can also be used by Marketing departments or creative groups with a large number of images, providing a simple way to search for items within the images.

As documents and images are added to the S3 bucket, these events invoke AWS Lambda functions. This runs custom code to extract data from the files, and also calls Amazon ML services for interpretation. For example, when adding a resume, the Lambda function extracts text from the PDF file while Amazon Comprehend determines the key phrases and topics in the document. For images, it uses Amazon Rekognition to determine the contents. In both cases, once it identifies the indexing attributes, it saves the data to Elasticsearch.

The code uses the AWS Serverless Application Model (SAM), enabling you to deploy the application easily in your own AWS Account. This walkthrough creates resources covered in the AWS Free Tier but you may incur cost for large data imports. Additionally, it requires an Elasticsearch domain, which may incur cost on your AWS bill.

To set up the example application, visit the GitHub repo and follow the instructions in the README.md file.

Creating an Elasticsearch domain

This application requires an Elasticsearch development domain for testing purposes. To learn more about production configurations, see the Elasticsearch documentation.

To create the test domain:

  1. Navigate to the Amazon Elasticsearch console. Choose Create a new domain.
  2. For Deployment type, choose Development and testing. Choose Next.
  3. In the Configure Domain page:
    1. For Elasticsearch domain name, enter serverless-docrepo.
    2. Change Instance Type to t2.small.elasticsearch.
    3. Leave all the other defaults. Choose Next at the end of the page.
  4. In Network Configuration, choose Public access. This is adequate for a tutorial but in a production use-case, it’s recommended to use VPC access.
  5. Under Access Policy, in the Domain access policy dropdown, choose Custom access policy.
  6. Select IAM ARN and in the Enter principal field, enter your AWS account ID (learn how to find your AWS account ID). In the Select Action dropdown, select Allow.
  7. Under Encryption, leave HTTPS checked. Choose Next.
  8. On the Review page, review your domain configuration, and then choose Confirm.

Your domain is now being configured, and the Domain status shows Loading in the Overview tab.

After creating the Elasticsearch domain, the domain status shows ‘Loading’.

It takes 10-15 minutes to fully configure the domain. Wait until the Domain status shows Active before continuing. When the domain is ready, note the Endpoint address since you need this in the application deployment.

The Endpoint for an Elasticsearch domain.

Deploying the application

After cloning the repo to your local development machine, open a terminal window and change to the cloned directory.

  1. Run the SAM build process to create an installation package, and then deploy the application:
    sam build
    sam deploy --guided
  2. In the guided deployment process, enter unique names for the S3 buckets when prompted. For the ESdomain parameter, enter the Elasticsearch domain Endpoint from the previous section.
  3. After the deployment completes, note the Lambda function ARN shown in the output:
    Lambda function ARN output.
  4. Back in the Elasticsearch console, select the Actions dropdown and choose Modify Access Policy. Paste the Lambda function ARN as an AWS Principal in the JSON, in addition to the root user, as follows:
    Modify access policy for Elasticsearch.
  5. Choose Submit. This grants the Lambda function access to the Elasticsearch domain.

Testing the application

To test the application, you need a few test documents and images with the file types DOCX (Microsoft Word), PDF, and JPG. This walkthrough uses multiple files to illustrate the queuing process.

  1. Navigate to the S3 console and select the Documents bucket from your deployment.
  2. Choose Upload and select your sample PDF or DOCX files:
    Upload files to S3.
  3. Choose Next on the following three pages to complete the upload process. The application now analyzes these documents and adds the indexing information to Elasticsearch.

To query Elasticsearch, first you must generate an Access Key ID and Secret Access Key. For detailed steps, see this documentation on creating security credentials. Next, use Postman to create an HTTP request for the Elasticsearch domain:

  1. Download and install Postman.
  2. From Postman, enter the Elasticsearch endpoint, adding /_search?q=keyword. Replace keyword with a search term.
  3. On the Authorization tab, complete the Access Key ID and Secret Access Key fields with the credentials you created. For Service Name, enter es.Postman query with AWS authorization.
  4. Choose Send. Elasticsearch responds with document results matching your search term.REST response from Elasticsearch.

How this works

This application creates a processing pipeline between the originating Documents bucket and the Elasticsearch domain. Each document type has a custom parser, preparing the content in a Queuing bucket. It uses an Amazon SQS queue to buffer work, which is fetched by a Lambda function and analyzed with Amazon Comprehend. Finally, the indexing metadata is saved in Elasticsearch.

Serverless architecture for text extraction and classification.

  1. Documents and images are saved in the Documents bucket.
  2. Depending upon the file type, this triggers a custom parser Lambda function.
    1. For PDFs and DOCX files, the extracted text is stored in a Staging bucket. If the content is longer than 5,000 characters, it is broken into smaller files by a Lambda function, then saved in the Queued bucket.
    2. For JPG files, the parser uses Amazon Rekognition to detect the contents of the image. The labeling metadata is stored in the Queued bucket.
  3. When items are stored in the Queued bucket, this triggers a Lambda function to add the job to an SQS queue.
  4. The Analyze function is invoked when there are messages in the SQS queue. It uses Amazon Comprehend to find entities in the text. This function then stores the metadata in Elasticsearch.

S3 and Lambda both scale to handle the traffic. The Elasticsearch domain is not serverless, however, so it’s possible to overwhelm this instance with requests. There may be a large number of objects stored in the Documents bucket triggering the workflow, so the application uses SQS couple to smooth out the traffic. When large numbers of objects are processed, you see the Messages Available increase in the SQS queue:

SQS queue buffers messages to smooth out traffic.
For the Lambda function consuming messages from the SQS queue, the BatchSize configured in the SAM template controls the rate of processing. The function continues to fetch messages from the SQS queue while Messages Available is greater than zero. This can be a useful mechanism for protecting downstream services that are not serverless, or simply cannot scale to match the processing rates of the upstream application. In this case, it provides a more consistent flow of indexing data to the Elasticsearch domain.

In a production use-case, you would scale the Elasticsearch domain depending upon the load of search requests, not just the indexing traffic from this application. This tutorial uses a minimal Elasticsearch configuration, but this service is capable of supporting enterprise-scale use-cases.

Conclusion

Enterprise document repositories can be a rich source of information but can be difficult to search and index. In this blog post, I show how you can use a serverless approach to build scalable solution easily. With minimum code, we can use Amazon ML services to create the indexing metadata. By using powerful image recognition and language comprehension capabilities, this makes the metadata more useful and the search solution more accurate.

This also shows how serverless solutions can be used with existing non-serverless infrastructure, like Elasticsearch. By decoupling scalable serverless applications, you can protect downstream services from heavy traffic loads, even as Lambda scales up. Elasticsearch provides a fast, easy way to query your document repository once the serverless application has completed the indexing process.

To learn more about how to use Elasticsearch for production workloads, see the documentation on managing domains.

Application Integration Using Queues and Messages

Post Syndicated from Mithun Mallick original https://aws.amazon.com/blogs/architecture/application-integration-using-queues-and-messages/

In previous blog posts in this messaging series, we provided an overview of messaging and we also explained the common characteristics to consider when  evaluating messaging channel technologies. In this post, we will explain some of the semantics of queue-based processing, its use in designing flexible systems, and how to apply it to your use cases. AWS offers two queue-based services: Amazon Simple Queue Service (SQS) and Amazon MQ. We will focus on SQS in this blog.

Building Blocks

In the digital world, even the most basic design of web based systems requires the use of queues to integrate applications. SQS is a secure, serverless, durable, and highly available message queue service. It provides a simple REST API to create a queue as well as send, receive, and delete messages.

Producing Messages

Message producers are processes that call the SendMessage APIs of SQS. SQS supports two types of queues: standard and first-in-first-out (FIFO). Standard queues provide best effort ordering while FIFO provides first-in-first-out ordering. Messages can be sent either as single messages or in batches. Standard queues can support unlimited throughput by adding as many concurrent producers as needed, whereas FIFO queues can support up to 300 TPS without batching and 3000 TPS with batching.

app integration- producing messages

In terms of message delivery, SQS standard supports “at-least-once” delivery, meaning that messages will be delivered at least once but occasionally, more than one copy of the message will be delivered. SQS FIFO provides “exactly once” delivery, meaning it can detect duplicate messages.

Consuming Messages

Message consumers are processes that make the ReceiveMessage API call on SQS. Messages from queues can be processed either in batch or as a single message at a time. Each approach has its advantages and disadvantages.

  • Batch processing: This is where each message can be processed independently, and an error on a single message is not required to disrupt the entire batch. Batch processing provides the most throughput for processing, and also provides the most optimizations for resources involved in reading messages.
  • Single message processing: Single message processing is commonly used in scenarios where each message may trigger multiple processes within the consumer. In case of errors, the retry is confined to the single message.

To maintain the order of processing, FIFO queues are typically consumed by a single process. Messages across message groups can still be processed in parallel. However, the overall throughput limit will still apply for FIFO queues.

SQS supports long and short polling on queues. Short polling will sample a subset of servers and will return the messages or provide an empty response if there are no messages in those servers. Long polling will query all servers and return immediately if there are messages. Long polling can reduce cost by reducing the number of calls in cases of empty responses. Get more details and sample code for sending and receiving messages.

It’s simple to poll for messages but it does have an overhead of running a process continuously. In some situations it may be hard to monitor such processes and troubleshoot in case of errors. SQS integration with AWS Lambda takes the undifferentiated heavy lifting of polling logic into a Lambda agent.

app integration- consuming messages

Get more details for SQS as an event source for Lambda in this blog post: AWS Lambda Adds Amazon Simple Queue Service to Supported Event Sources. This is supported for both standard as well as FIFO queues.

Benefits

Queue-based processing can protect backend systems like relational databases from unexpected surge in front-end traffic. You can decouple the processing logic by using an intermediate queue.

Consider a scenario that involves a web application to order products related to a TV show. It’s possible that the ordering and payment systems rely on a traditional relational database. During peak show seasons, queues can be used to control the traffic to the ordering and payment system. In the following diagram we show how the web application requests are staged in the queue, while the consumption of the users on the backend is based on the capacity of the database.

app integration - benefits

Error Handling

Asynchronous message processing presents unique challenges with error handling since they just manifest as log entries on the producer or consumer and create backlogs in processing. In order to handle errors elegantly, the first requirement is to address the nature of the error. In case the error is transient, it may help to retry after a brief delay and eventually move to a dead letter queue if repeated attempts fail. The other error scenario can be cases where the data itself is bad and the error won’t fix, even after repeated attempts. In such cases, consumer process needs to make this determination and needs to move the message to an error queue.

In some cases, due to its highly distributed architecture, Standard SQS can deliver a duplicate message, which it can result in duplicate key errors for the consumer. The best way to mitigate it is to make the consumers idempotent so that processing the same message multiple times produces the same result.

Conclusion

In this blog, we explained the importance of messaging in building distributed applications, various aspects of queue based processing using SQS like sending and receiving messages, FIFO versus Standard SQS, and common error handling scenarios. We also covered using SQS as an event source for AWS Lambda. Please refer to following blog posts for using messaging in different integration patterns:

Halodoc: Building the Future of Tele-Health One Microservice at a Time

Post Syndicated from Annik Stahl original https://aws.amazon.com/blogs/architecture/halodoc-building-the-future-of-tele-health-one-microservice-at-a-time/

Halodoc, a Jakarta-based healthtech platform, uses tele-health and artificial intelligence to connect patients, doctors, and pharmacies. Join builder Adrian De Luca for this special edition of This is My Architecture as he dives deep into the solutions architecture of this Indonesian healthtech platform that provides healthcare services in one of the most challenging traffic environments in the world.

Explore how the company evolved its monolithic backend into decoupled microservices with Amazon EC2 and Amazon Simple Queue Service (SQS), adopted serverless to cost effectively support new user functionality with AWS Lambda, and manages the high volume and velocity of data with Amazon DynamoDB, Amazon Relational Database Service (RDS), and Amazon Redshift.

For more content like this, subscribe to our YouTube channels This is My Architecture, This is My Code, and This is My Model, or visit the This is My Architecture AWS website, which has search functionality and the ability to filter by industry, language, and service.

ICYMI: Serverless Q4 2019

Post Syndicated from Rob Sutter original https://aws.amazon.com/blogs/compute/icymi-serverless-q4-2019/

Welcome to the eighth edition of the AWS Serverless ICYMI (in case you missed it) quarterly recap. Every quarter, we share the most recent product launches, feature enhancements, blog posts, webinars, Twitch live streams, and other interesting things that you might have missed!

In case you missed our last ICYMI, checkout what happened last quarter here.

The three months comprising the fourth quarter of 2019

AWS re:Invent

AWS re:Invent 2019

re:Invent 2019 dominated the fourth quarter at AWS. The serverless team presented a number of talks, workshops, and builder sessions to help customers increase their skills and deliver value more rapidly to their own customers.

Serverless talks from re:Invent 2019

Chris Munns presenting 'Building microservices with AWS Lambda' at re:Invent 2019

We presented dozens of sessions showing how customers can improve their architecture and agility with serverless. Here are some of the most popular.

Videos

Decks

You can also find decks for many of the serverless presentations and other re:Invent presentations on our AWS Events Content.

AWS Lambda

For developers needing greater control over performance of their serverless applications at any scale, AWS Lambda announced Provisioned Concurrency at re:Invent. This feature enables Lambda functions to execute with consistent start-up latency making them ideal for building latency sensitive applications.

As shown in the below graph, provisioned concurrency reduces tail latency, directly impacting response times and providing a more responsive end user experience.

Graph showing performance enhancements with AWS Lambda Provisioned Concurrency

Lambda rolled out enhanced VPC networking to 14 additional Regions around the world. This change brings dramatic improvements to startup performance for Lambda functions running in VPCs due to more efficient usage of elastic network interfaces.

Illustration of AWS Lambda VPC to VPC NAT

New VPC to VPC NAT for Lambda functions

Lambda now supports three additional runtimes: Node.js 12, Java 11, and Python 3.8. Each of these new runtimes has new version-specific features and benefits, which are covered in the linked release posts. Like the Node.js 10 runtime, these new runtimes are all based on an Amazon Linux 2 execution environment.

Lambda released a number of controls for both stream and async-based invocations:

  • You can now configure error handling for Lambda functions consuming events from Amazon Kinesis Data Streams or Amazon DynamoDB Streams. It’s now possible to limit the retry count, limit the age of records being retried, configure a failure destination, or split a batch to isolate a problem record. These capabilities help you deal with potential “poison pill” records that would previously cause streams to pause in processing.
  • For asynchronous Lambda invocations, you can now set the maximum event age and retry attempts on the event. If either configured condition is met, the event can be routed to a dead letter queue (DLQ), Lambda destination, or it can be discarded.

AWS Lambda Destinations is a new feature that allows developers to designate an asynchronous target for Lambda function invocation results. You can set separate destinations for success and failure. This unlocks new patterns for distributed event-based applications and can replace custom code previously used to manage routing results.

Illustration depicting AWS Lambda Destinations with success and failure configurations

Lambda Destinations

Lambda also now supports setting a Parallelization Factor, which allows you to set multiple Lambda invocations per shard for Kinesis Data Streams and DynamoDB Streams. This enables faster processing without the need to increase your shard count, while still guaranteeing the order of records processed.

Illustration of multiple AWS Lambda invocations per Kinesis Data Streams shard

Lambda Parallelization Factor diagram

Lambda introduced Amazon SQS FIFO queues as an event source. “First in, first out” (FIFO) queues guarantee the order of record processing, unlike standard queues. FIFO queues support messaging batching via a MessageGroupID attribute that supports parallel Lambda consumers of a single FIFO queue, enabling high throughput of record processing by Lambda.

Lambda now supports Environment Variables in the AWS China (Beijing) Region and the AWS China (Ningxia) Region.

You can now view percentile statistics for the duration metric of your Lambda functions. Percentile statistics show the relative standing of a value in a dataset, and are useful when applied to metrics that exhibit large variances. They can help you understand the distribution of a metric, discover outliers, and find hard-to-spot situations that affect customer experience for a subset of your users.

Amazon API Gateway

Screen capture of creating an Amazon API Gateway HTTP API in the AWS Management Console

Amazon API Gateway announced the preview of HTTP APIs. In addition to significant performance improvements, most customers see an average cost savings of 70% when compared with API Gateway REST APIs. With HTTP APIs, you can create an API in four simple steps. Once the API is created, additional configuration for CORS and JWT authorizers can be added.

AWS SAM CLI

Screen capture of the new 'sam deploy' process in a terminal window

The AWS SAM CLI team simplified the bucket management and deployment process in the SAM CLI. You no longer need to manage a bucket for deployment artifacts – SAM CLI handles this for you. The deployment process has also been streamlined from multiple flagged commands to a single command, sam deploy.

AWS Step Functions

One powerful feature of AWS Step Functions is its ability to integrate directly with AWS services without you needing to write complicated application code. In Q4, Step Functions expanded its integration with Amazon SageMaker to simplify machine learning workflows. Step Functions also added a new integration with Amazon EMR, making EMR big data processing workflows faster to build and easier to monitor.

Screen capture of an AWS Step Functions step with Amazon EMR

Step Functions step with EMR

Step Functions now provides the ability to track state transition usage by integrating with AWS Budgets, allowing you to monitor trends and react to usage on your AWS account.

You can now view CloudWatch Metrics for Step Functions at a one-minute frequency. This makes it easier to set up detailed monitoring for your workflows. You can use one-minute metrics to set up CloudWatch Alarms based on your Step Functions API usage, Lambda functions, service integrations, and execution details.

Step Functions now supports higher throughput workflows, making it easier to coordinate applications with high event rates. This increases the limits to 1,500 state transitions per second and a default start rate of 300 state machine executions per second in US East (N. Virginia), US West (Oregon), and Europe (Ireland). Click the above link to learn more about the limit increases in other Regions.

Screen capture of choosing Express Workflows in the AWS Management Console

Step Functions released AWS Step Functions Express Workflows. With the ability to support event rates greater than 100,000 per second, this feature is designed for high-performance workloads at a reduced cost.

Amazon EventBridge

Illustration of the Amazon EventBridge schema registry and discovery service

Amazon EventBridge announced the preview of the Amazon EventBridge schema registry and discovery service. This service allows developers to automate discovery and cataloging event schemas for use in their applications. Additionally, once a schema is stored in the registry, you can generate and download a code binding that represents the schema as an object in your code.

Amazon SNS

Amazon SNS now supports the use of dead letter queues (DLQ) to help capture unhandled events. By enabling a DLQ, you can catch events that are not processed and re-submit them or analyze to locate processing issues.

Amazon CloudWatch

Amazon CloudWatch announced Amazon CloudWatch ServiceLens to provide a “single pane of glass” to observe health, performance, and availability of your application.

Screenshot of Amazon CloudWatch ServiceLens in the AWS Management Console

CloudWatch ServiceLens

CloudWatch also announced a preview of a capability called Synthetics. CloudWatch Synthetics allows you to test your application endpoints and URLs using configurable scripts that mimic what a real customer would do. This enables the outside-in view of your customers’ experiences, and your service’s availability from their point of view.

CloudWatch introduced Embedded Metric Format, which helps you ingest complex high-cardinality application data as logs and easily generate actionable metrics. You can publish these metrics from your Lambda function by using the PutLogEvents API or using an open source library for Node.js or Python applications.

Finally, CloudWatch announced a preview of Contributor Insights, a capability to identify who or what is impacting your system or application performance by identifying outliers or patterns in log data.

AWS X-Ray

AWS X-Ray announced trace maps, which enable you to map the end-to-end path of a single request. Identifiers show issues and how they affect other services in the request’s path. These can help you to identify and isolate service points that are causing degradation or failures.

X-Ray also announced support for Amazon CloudWatch Synthetics, currently in preview. CloudWatch Synthetics on X-Ray support tracing canary scripts throughout the application, providing metrics on performance or application issues.

Screen capture of AWS X-Ray Service map in the AWS Management Console

X-Ray Service map with CloudWatch Synthetics

Amazon DynamoDB

Amazon DynamoDB announced support for customer-managed customer master keys (CMKs) to encrypt data in DynamoDB. This allows customers to bring your own key (BYOK) giving you full control over how you encrypt and manage the security of your DynamoDB data.

It is now possible to add global replicas to existing DynamoDB tables to provide enhanced availability across the globe.

Another new DynamoDB capability to identify frequently accessed keys and database traffic trends is currently in preview. With this, you can now more easily identify “hot keys” and understand usage of your DynamoDB tables.

Screen capture of Amazon CloudWatch Contributor Insights for DynamoDB in the AWS Management Console

CloudWatch Contributor Insights for DynamoDB

DynamoDB also released adaptive capacity. Adaptive capacity helps you handle imbalanced workloads by automatically isolating frequently accessed items and shifting data across partitions to rebalance them. This helps reduce cost by enabling you to provision throughput for a more balanced workload instead of over provisioning for uneven data access patterns.

Amazon RDS

Amazon Relational Database Services (RDS) announced a preview of Amazon RDS Proxy to help developers manage RDS connection strings for serverless applications.

Illustration of Amazon RDS Proxy

The RDS Proxy maintains a pool of established connections to your RDS database instances. This pool enables you to support a large number of application connections so your application can scale without compromising performance. It also increases security by enabling IAM authentication for database access and enabling you to centrally manage database credentials using AWS Secrets Manager.

AWS Serverless Application Repository

The AWS Serverless Application Repository (SAR) now offers Verified Author badges. These badges enable consumers to quickly and reliably know who you are. The badge appears next to your name in the SAR and links to your GitHub profile.

Screen capture of SAR Verifiedl developer badge in the AWS Management Console

SAR Verified developer badges

AWS Developer Tools

AWS CodeCommit launched the ability for you to enforce rule workflows for pull requests, making it easier to ensure that code has pass through specific rule requirements. You can now create an approval rule specifically for a pull request, or create approval rule templates to be applied to all future pull requests in a repository.

AWS CodeBuild added beta support for test reporting. With test reporting, you can now view the detailed results, trends, and history for tests executed on CodeBuild for any framework that supports the JUnit XML or Cucumber JSON test format.

Screen capture of AWS CodeBuild

CodeBuild test trends in the AWS Management Console

Amazon CodeGuru

AWS announced a preview of Amazon CodeGuru at re:Invent 2019. CodeGuru is a machine learning based service that makes code reviews more effective and aids developers in writing code that is more secure, performant, and consistent.

AWS Amplify and AWS AppSync

AWS Amplify added iOS and Android as supported platforms. Now developers can build iOS and Android applications using the Amplify Framework with the same category-based programming model that they use for JavaScript apps.

Screen capture of 'amplify init' for an iOS application in a terminal window

The Amplify team has also improved offline data access and synchronization by announcing Amplify DataStore. Developers can now create applications that allow users to continue to access and modify data, without an internet connection. Upon connection, the data synchronizes transparently with the cloud.

For a summary of Amplify and AppSync announcements before re:Invent, read: “A round up of the recent pre-re:Invent 2019 AWS Amplify Launches”.

Illustration of AWS AppSync integrations with other AWS services

Q4 serverless content

Blog posts

October

November

December

Tech talks

We hold several AWS Online Tech Talks covering serverless tech talks throughout the year. These are listed in the Serverless section of the AWS Online Tech Talks page.

Here are the ones from Q4:

Twitch

October

There are also a number of other helpful video series covering Serverless available on the AWS Twitch Channel.

AWS Serverless Heroes

We are excited to welcome some new AWS Serverless Heroes to help grow the serverless community. We look forward to some amazing content to help you with your serverless journey.

AWS Serverless Application Repository (SAR) Apps

In this edition of ICYMI, we are introducing a section devoted to SAR apps written by the AWS Serverless Developer Advocacy team. You can run these applications and review their source code to learn more about serverless and to see examples of suggested practices.

Still looking for more?

The Serverless landing page has much more information. The Lambda resources page contains case studies, webinars, whitepapers, customer stories, reference architectures, and even more Getting Started tutorials. We’re also kicking off a fresh series of Tech Talks in 2020 with new content providing greater detail on everything new coming out of AWS for serverless application developers.

Throughout 2020, the AWS Serverless Developer Advocates are crossing the globe to tell you more about serverless, and to hear more about what you need. Follow this blog to keep up on new launches and announcements, best practices, and examples of serverless applications in action.

You can also follow all of us on Twitter to see latest news, follow conversations, and interact with the team.

Chris Munns: @chrismunns
Eric Johnson: @edjgeek
James Beswick: @jbesw
Moheeb Zara: @virgilvox
Ben Smith: @benjamin_l_s
Rob Sutter: @rts_rob
Julian Wood: @julian_wood

Happy coding!

re:Invent 2019: Introducing the Amazon Builders’ Library (Part I)

Post Syndicated from Annik Stahl original https://aws.amazon.com/blogs/architecture/reinvent-2019-introducing-the-amazon-builders-library-part-i/

Today, I’m going to tell you about a new site we launched at re:Invent, the Amazon Builders’ Library, a collection of living articles covering topics across architecture, software delivery, and operations. You get to peek under the hood of how Amazon architects, releases, and operates the software underpinning Amazon.com and AWS.

Want to know how Amazon.com does what it does? This is for you. In this two-part series (the next one coming December 23), I’ll highlight some of the best architecture articles written by Amazon’s senior technical leaders and engineers.

Avoiding insurmountable queue backlogs

Avoiding insurmountable queue backlogs

In queueing theory, the behavior of queues when they are short is relatively uninteresting. After all, when a queue is short, everyone is happy. It’s only when the queue is backlogged, when the line to an event goes out the door and around the corner, that people start thinking about throughput and prioritization.

In this article, I discuss strategies we use at Amazon to deal with queue backlog scenarios – design approaches we take to drain queues quickly and to prioritize workloads. Most importantly, I describe how to prevent queue backlogs from building up in the first place. In the first half, I describe scenarios that lead to backlogs, and in the second half, I describe many approaches used at Amazon to avoid backlogs or deal with them gracefully.

Read the full article by David Yanacek – Principal Engineer

Timeouts, retries, and backoff with jitter

Timeouts, retries and backoff with jitter

Whenever one service or system calls another, failures can happen. These failures can come from a variety of factors. They include servers, networks, load balancers, software, operating systems, or even mistakes from system operators. We design our systems to reduce the probability of failure, but impossible to build systems that never fail. So in Amazon, we design our systems to tolerate and reduce the probability of failure, and avoid magnifying a small percentage of failures into a complete outage. To build resilient systems, we employ three essential tools: timeouts, retries, and backoff.

Read the full article by Marc Brooker, Senior Principal Engineer

Challenges with distributed systems

Challenges with distributed systems

The moment we added our second server, distributed systems became the way of life at Amazon. When I started at Amazon in 1999, we had so few servers that we could give some of them recognizable names like “fishy” or “online-01”. However, even in 1999, distributed computing was not easy. Then as now, challenges with distributed systems involved latency, scaling, understanding networking APIs, marshalling and unmarshalling data, and the complexity of algorithms such as Paxos. As the systems quickly grew larger and more distributed, what had been theoretical edge cases turned into regular occurrences.

Developing distributed utility computing services, such as reliable long-distance telephone networks, or Amazon Web Services (AWS) services, is hard. Distributed computing is also weirder and less intuitive than other forms of computing because of two interrelated problems. Independent failures and nondeterminism cause the most impactful issues in distributed systems. In addition to the typical computing failures most engineers are used to, failures in distributed systems can occur in many other ways. What’s worse, it’s impossible always to know whether something failed.

Read the full article by Jacob Gabrielson, Senior Principal Engineer

Static stability using Availability Zones

Static stability using availability zones

At Amazon, the services we build must meet extremely high availability targets. This means that we need to think carefully about the dependencies that our systems take. We design our systems to stay resilient even when those dependencies are impaired. In this article, we’ll define a pattern that we use called static stability to achieve this level of resilience. We’ll show you how we apply this concept to Availability Zones, a key infrastructure building block in AWS and therefore a bedrock dependency on which all of our services are built.

Read the full article by Becky Weiss, Senior Principal Engineer, and Mike Furr, Principal Engineer

Check back in two weeks to read about some other architecture-based expert articles that let you in on how Amazon does what it does.

ICYMI: Serverless pre:Invent 2019

Post Syndicated from Eric Johnson original https://aws.amazon.com/blogs/compute/icymi-serverless-preinvent-2019/

With Contributions from Chris Munns – Sr Manager – Developer Advocacy – AWS Serverless

The last two weeks have been a frenzy of AWS service and feature launches, building up to AWS re:Invent 2019. As there has been a lot announced we thought we’d ship an ICYMI post summarizing the serverless service specific features that have been announced. We’ve also dropped in some service announcements from services that are commonly used in serverless application architectures or development.

AWS re:Invent

AWS re:Invent 2019

We also want you to know that we’ll be talking about many of these features (as well as those coming) in sessions at re:Invent.

Here’s what’s new!

AWS Lambda

On September 3, AWS Lambda started rolling out a major improvement to how AWS Lambda functions work with your Amazon VPC networks. This change brings both scale and performance improvements, and addresses several of the limitations of the previous networking model with VPCs.

On November 25, Lambda announced that the rollout of this new capability has completed in 6 additional regions including US East (Virginia) and US West (Oregon).

New VPC to VPC NAT for Lambda functions

New VPC to VPC NAT for Lambda functions

On November 18, Lambda announced three new runtime updates. Lambda now supports Node.js 12, Java 11, and Python 3.8. Each of these new runtimes has new language features and benefits so be sure to check out the linked release posts. These new runtimes are all based on an Amazon Linux 2 execution environment.

Lambda has released a number of controls for both stream and async based invocations:

  • For Lambda functions consuming events from Amazon Kinesis Data Streams or Amazon DynamoDB Streams, it’s now possible to limit the retry count, limit the age of records being retried, configure a failure destination, or split a batch to isolate a problem record. These capabilities will help you deal with potential “poison pill” records that would previously cause streams to pause in processing.
  • For asynchronous Lambda invocations, you can now set the maximum event age and retry attempts on the event. If either configured condition is met, the event can be routed to a dead letter queue (DLQ), Lambda destination, or it can be discarded.

In addition to the above controls, Lambda Destinations is a new feature that allows developers to designate an asynchronous target for Lambda function invocation results. You can set one destination for a success, and another for a failure. This unlocks really useful patterns for distributed event-based applications and can reduce code to send function results to a destination manually.

Lambda Destinations

Lambda Destinations

Lambda also now supports setting a Parallelization Factor, which allows you to set multiple Lambda invocations per shard for Amazon Kinesis Data Streams and Amazon DynamoDB Streams. This allows for faster processing without the need to increase your shard count, while still guaranteeing the order of records processed.

Lambda Parallelization Factor diagram

Lambda Parallelization Factor diagram

Lambda now supports Amazon SQS FIFO queues as an event source. FIFO queues guarantee the order of record processing compared to standard queues which are unordered. FIFO queues support messaging batching via a MessageGroupID attribute which allows for parallel Lambda consumers of a single FIFO queue. This allows for high throughput of record processing by Lambda.

Lambda now supports Environment Variables in AWS China (Beijing) Region, operated by Sinnet and the AWS China (Ningxia) Region, operated by NWCD.

Lastly, you can now view percentile statistics for the duration metric of your Lambda functions. Percentile statistics tell you the relative standing of a value in a dataset, and are useful when applied to metrics that exhibit large variances. They can help you understand the distribution of a metric, spot outliers, and find hard-to-spot situations that create a poor customer experience for a subset of your users.

AWS SAM CLI

AWS SAM CLI deploy command

AWS SAM CLI deploy command

The SAM CLI team simplified the bucket management and deployment process in the SAM CLI. You no longer need to manage a bucket for deployment artifacts – SAM CLI handles this for you. The deployment process has also been streamlined from multiple flagged commands to a single command, sam deploy.

AWS Step Functions

One of the powerful features of Step Functions is its ability to integrate directly with AWS services without you needing to write complicated application code. Step Functions has expanded its integration with Amazon SageMaker to simplify machine learning workflows, and added a new integration with Amazon EMR, making it faster to build and easier to monitor EMR big data processing workflows.

Step Functions step with EMR

Step Functions step with EMR

Step Functions now provides the ability to track state transition usage by integrating with AWS Budgets, allowing you to monitor and react to usage and spending trends on your AWS accounts.

You can now view CloudWatch Metrics for Step Functions at a one-minute frequency. This makes it easier to set up detailed monitoring for your workflows. You can use one-minute metrics to set up CloudWatch Alarms based on your Step Functions API usage, Lambda functions, service integrations, and execution details.

AWS Step Functions now supports higher throughput workflows, making it easier to coordinate applications with high event rates.

In US East (N. Virginia), US West (Oregon), and EU (Ireland), throughput has increased from 1,000 state transitions per second to 1,500 state transitions per second with bucket capacity of 5,000 state transitions. The default start rate for state machine executions has also increased from 200 per second to 300 per second, with bucket capacity of up to 1,300 starts in these regions.

In all other regions, throughput has increased from 400 state transitions per second to 500 state transitions per second with bucket capacity of 800 state transitions. The default start rate for AWS Step Functions state machine executions has also increased from 25 per second to 150 per second, with bucket capacity of up to 800 state machine executions.

Amazon SNS

Amazon SNS now supports the use of dead letter queues (DLQ) to help capture unhandled events. By enabling a DLQ, you can catch events that are not processed and re-submit them or analyze to locate processing issues.

Amazon CloudWatch

CloudWatch announced Amazon CloudWatch ServiceLens to provide a “single pane of glass” to observe health, performance, and availability of your application.

CloudWatch ServiceLens

CloudWatch ServiceLens

CloudWatch also announced a preview of a capability called Synthetics. CloudWatch Synthetics allows you to test your application endpoints and URLs using configurable scripts that mimic what a real customer would do. This enables the outside-in view of your customers’ experiences, and your service’s availability from their point of view.

On November 18, CloudWatch launched Embedded Metric Format to help you ingest complex high-cardinality application data in the form of logs and easily generate actionable metrics from them. You can publish these metrics from your Lambda function by using the PutLogEvents API or for Node.js or Python based applications using an open source library.

Lastly, CloudWatch announced a preview of Contributor Insights, a capability to identify who or what is impacting your system or application performance by identifying outliers or patterns in log data.

AWS X-Ray

X-Ray announced trace maps, which enable you to map the end to end path of a single request. Identifiers will show issues and how they affect other services in the request’s path. These can help you to identify and isolate service points that are causing degradation or failures.

X-Ray also announced support for Amazon CloudWatch Synthetics, currently in preview. X-Ray supports tracing canary scripts throughout the application providing metrics on performance or application issues.

X-Ray Service map with CloudWatch Synthetics

X-Ray Service map with CloudWatch Synthetics

Amazon DynamoDB

DynamoDB announced support for customer managed customer master keys (CMKs) to encrypt data in DynamoDB. This allows customers to bring your own key (BYOK) giving you full control over how you encrypt and manage the security of your DynamoDB data.

It is now possible to add global replicas to existing DynamoDB tables to provide enhanced availability across the globe.

Currently under preview, is another new DynamoDB capability to identify frequently accessed keys and database traffic trends. With this you can now more easily identify “hot keys” and understand usage of your DynamoDB tables.

CloudWatch Contributor Insights for DynamoDB

CloudWatch Contributor Insights for DynamoDB

Last but far from least for DynamoDB, is adaptive capacity, a feature which helps you handle imbalanced workloads by isolating frequently accessed items automatically and shifting data across partitions to rebalance them. This helps both reduce cost by enabling you to provision throughput for a more balanced out workload vs. over provisioning for uneven data access patterns.

AWS Serverless Application Repository

The AWS Serverless Application Repository (SAR) now offers Verified Author badges. These badges enable consumers to quickly and reliably know who you are. The badge will appear next to your name in the SAR and will deep-link to your GitHub profile.

SAR Verified developer badges

SAR Verified developer badges

AWS Code Services

AWS CodeCommit launched the ability for you to enforce rule workflows for pull requests, making it easier to ensure that code has pass through specific rule requirements. You can now create an approval rule specifically for a pull request, or create approval rule templates to be applied to all future pull requests in a repository.

AWS CodeBuild added beta support for test reporting. With test reporting, you can now view the detailed results, trends, and history for tests executed on CodeBuild for any framework that supports the JUnit XML or Cucumber JSON test format.

CodeBuild test trends

CodeBuild test trends

AWS Amplify and AWS AppSync

Instead of trying to summarize all the awesome things that our peers over in the Amplify and AppSync teams have done recently we’ll instead link you to their own recent summary: “A round up of the recent pre-re:Invent 2019 AWS Amplify Launches”.

AWS AppSync

AWS AppSync

Still looking for more?

We only covered a small bit of all the awesome new things that were recently announced. Keep your eyes peeled for more exciting announcements next week during re:Invent and for a future ICYMI Serverless Q4 roundup. We’ll also be kicking off a fresh series of Tech Talks in 2020 with new content helping to dive deeper on everything new coming out of AWS for serverless application developers.