Tag Archives: Amazon Simple Queue Service (SQS)

Building well-architected serverless applications: Regulating inbound request rates – part 2

Post Syndicated from Julian Wood original https://aws.amazon.com/blogs/compute/building-well-architected-serverless-applications-regulating-inbound-request-rates-part-2/

This series of blog posts uses the AWS Well-Architected Tool with the Serverless Lens to help customers build and operate applications using best practices. In each post, I address the serverless-specific questions identified by the Serverless Lens along with the recommended best practices. See the introduction post for a table of contents and explanation of the example application.

Reliability question REL1: How do you regulate inbound request rates?

This post continues part 1 of this security question. Previously, I cover controlling inbound request rates using throttling. I go through how to use throttling to control steady-rate and burst rate requests. I show some solutions for performance testing to identify the request rates that your workload can sustain before impacting performance.

Good practice: Use, analyze, and enforce API quotas

API quotas limit the maximum number of requests a given API key can submit within a specified time interval. Metering API consumers provides a better understanding of how different consumers use your workload at sustained and burst rates at any point in time. With this information, you can determine fine-grained rate limiting for multiple quota limits. These can be done according to a group of consumer needs, and can adjust their limits on a regular basis.

Segregate API consumers steady-rate requests and their quota into multiple buckets or tiers

Amazon API Gateway usage plans allow your API consumer to access selected APIs at agreed-upon request rates and quotas. These help your consumers meet their business requirements and budget constraints. Create and attach API keys to usage plans to control access to certain API stages. I show how to create usage plans and how to associate them with API keys in “Building well-architected serverless applications: Controlling serverless API access – part 2”.

API key associated with usage plan

API key associated with usage plan

You can extract utilization data from usage plans to analyze API usage on a per-API key basis. In the example, I show how to use usage plans to see how many requests are made.

View API key usage

View API key usage

This allows you to generate billing documents and determine whether your customers need higher or lower limits. Have a mechanism to allow customers to request higher limits preemptively. When customers anticipate greater API usage, they can take action proactively.

API Gateway Lambda authorizers can dynamically associate API keys to a given request. This can be used where you do not control API consumers, or want to associate API keys based on your own criteria. For more information, see the documentation.

You can also visualize usage plans with Amazon QuickSight using enriched API Gateway access logs.

Visualize usage plans with Amazon QuickSight

Visualize usage plans with Amazon QuickSight

Define whether your API consumers are end users or machines

Understanding your API consumers helps you manage how they connect to your API. This helps you define a request access pattern strategy, which can distinguish between end users or machines.

Machine consumers make automated connections to your API, which may require a different access pattern to end users. You may decide to prioritize end user consumers to provide a better experience. Machine consumers may be able to handle request throttling automatically.

Best practice: Use mechanisms to protect non-scalable resources

Limit component throughput by enforcing how many transactions it can accept

AWS Lambda functions can scale faster than traditional resources, such as relational databases and cache systems. Protect your non-scalable resources by ensuring that components that scale quickly do not exceed the throughput of downstream systems. This can prevent system performance degrading. There are a number of ways to achieve this, either directly or via buffer mechanisms such as queues and streams.

For relational databases such as Amazon RDS, you can limit the number of connections per user, in addition to the global maximum number of connections. With Amazon RDS Proxy, your applications can pool and share database connections to improve their ability to scale.

Amazon RDS Proxy

Amazon RDS Proxy

For additional options for using RDS with Lambda, see the AWS Serverless Hero blog post “How To: Manage RDS Connections from AWS Lambda Serverless Functions”.

Cache results and only connect to, and fetch data from databases when needed. This reduces the load on the downstream database. Adjust the maximum number of connections for caching systems. Include a caching expiration mechanism to prevent serving stale records. For more information on caching implementation patterns and considerations, see “Caching Best Practices”.

Lambda provides managed scaling. When a function is first invoked, the Lambda service creates an instance of the function to process the event. This is called a cold start. After completion, the function remains available for a period of time to process subsequent events. These are called warm starts. If other events arrive while the function is busy, Lambda creates more instances of the function to handle these requests concurrently as cold starts. The following example shows 10 events processed in six concurrent requests.

Lambda concurrency

Lambda concurrency

You can control the number of concurrent function invocations to both reserve and limit the maximum concurrency your function can achieve. You can configure reserved concurrency to set the maximum number of concurrent instances for the function. This can protect downstream resources such as a database by ensuring Lambda can only scale up to the number of connections the database can support.

For example, you may have a traditional database or external API that can only support a maximum of 50 concurrent connections. You can set the maximum number of concurrent Lambda functions using the function concurrency settings. Setting the value to 50 ensures that the traditional database or external API is not overwhelmed.

Edit Lambda concurrency

Edit Lambda concurrency

You can also set the Lambda function concurrency to 0, which disables the Lambda function in the event of anomalies.

Another solution to protect downstream resources is to use an intermediate buffer. A buffer can persistently store messages in a stream or queue until a receiver processes them. This helps you control how fast messages are processed, which can protect the load on downstream resources.

Amazon Kinesis Data Streams allows you to collect and process large streams of data records in real time, and can act as a buffer. Streams consist of a set of shards that contain a sequence of data records. When using Lambda to process records, it processes one batch of records at a time from each shard.

Kinesis Data Streams control concurrency at the shard level, meaning that a single shard has a single concurrent invocation. This can reduce downstream calls to non-scalable resources such as a traditional database. Kinesis Data Streams also support batch windows up to 5 minutes and batch record sizes. These can also be used to control how frequent invocations can occur.

To learn how to manage scaling with Kinesis, see the documentation. To learn more how Lambda works with Kinesis, read the blog series “Building serverless applications with streaming data”.

Lambda and Kinesis shards

Lambda and Kinesis shards

Amazon Simple Queue Service (SQS) is a fully managed serverless message queuing service that enables you to decouple and scale microservices. You can offload tasks from one component of your application by sending them to a queue and processing them asynchronously.

SQS can act as a buffer, using a Lambda function to process the messages. Lambda polls the queue and invokes your Lambda function synchronously with an event that contains queue messages. Lambda reads messages in batches and invokes your function once for each batch. When your function successfully processes a batch, Lambda deletes its messages from the queue.

You can protect downstream resources using the Lambda concurrency controls. This limits the number of concurrent Lambda functions that pull messages off the queue. The messages persist in the queue until Lambda can process them. For more information see, “Using AWS Lambda with Amazon SQS

Lambda and SQS

Lambda and SQS

Conclusion

Regulating inbound requests helps you adapt different scaling mechanisms based on customer demand. You can achieve better throughput for your workloads and make them more reliable by controlling requests to a rate that your workload can support.

In this post, I cover using, analyzing, and enforcing API quotas using usage plans and API keys. I show mechanisms to protect non-scalable resources such as using RDS Proxy to protect downstream databases. I show how to control the number of Lambda invocations using concurrency controls to protect downstream resources. I explain how you can use streams and queues as an intermediate buffer to store messages persistently until a receiver processes them.

In the next post in the series, I cover the second reliability question from the Well-Architected Serverless Lens, building resiliency into serverless applications.

For more serverless learning resources, visit Serverless Land.

Building well-architected serverless applications: Regulating inbound request rates – part 1

Post Syndicated from Julian Wood original https://aws.amazon.com/blogs/compute/building-well-architected-serverless-applications-regulating-inbound-request-rates-part-1/

This series of blog posts uses the AWS Well-Architected Tool with the Serverless Lens to help customers build and operate applications using best practices. In each post, I address the serverless-specific questions identified by the Serverless Lens along with the recommended best practices. See the introduction post for a table of contents and explanation of the example application.

Reliability question REL1: How do you regulate inbound request rates?

Defining, analyzing, and enforcing inbound request rates helps achieve better throughput. Regulation helps you adapt different scaling mechanisms based on customer demand. By regulating inbound request rates, you can achieve better throughput, and adapt client request submissions to a request rate that your workload can support.

Required practice: Control inbound request rates using throttling

Throttle inbound request rates using steady-rate and burst rate requests

Throttling requests limits the number of requests a client can make during a certain period of time. Throttling allows you to control your API traffic. This helps your backend services maintain their performance and availability levels by limiting the number of requests to actual system throughput.

To prevent your API from being overwhelmed by too many requests, Amazon API Gateway throttles requests to your API. These limits are applied across all clients using the token bucket algorithm. API Gateway sets a limit on a steady-state rate and a burst of request submissions. The algorithm is based on an analogy of filling and emptying a bucket of tokens representing the number of available requests that can be processed.

Each API request removes a token from the bucket. The throttle rate then determines how many requests are allowed per second. The throttle burst determines how many concurrent requests are allowed. I explain the token bucket algorithm in more detail in “Building well-architected serverless applications: Controlling serverless API access – part 2

Token bucket algorithm

Token bucket algorithm

API Gateway limits the steady-state rate and burst requests per second. These are shared across all APIs per Region in an account. For further information on account-level throttling per Region, see the documentation. You can request account-level rate limit increases using the AWS Support Center. For more information, see Amazon API Gateway quotas and important notes.

You can configure your own throttling levels, within the account and Region limits to improve overall performance across all APIs in your account. This restricts the overall request submissions so that they don’t exceed the account-level throttling limits.

You can also configure per-client throttling limits. Usage plans restrict client request submissions to within specified request rates and quotas. These are applied to clients using API keys that are associated with your usage policy as a client identifier. You can add throttling levels per API route, stage, or method that are applied in a specific order.

For more information on API Gateway throttling, see the AWS re:Invent presentation “I didn’t know Amazon API Gateway could do that”.

API Gateway throttling

API Gateway throttling

You can also throttle requests by introducing a buffering layer using Amazon Kinesis Data Stream or Amazon SQS. Kinesis can limit the number of requests at the shard level while SQS can limit at the consumer level. For more information on using SQS as a buffer with Amazon Simple Notification Service (SNS), read “How To: Use SNS and SQS to Distribute and Throttle Events”.

Identify steady-rate and burst rate requests that your workload can sustain at any point in time before performance degraded

Load testing your serverless application allows you to monitor the performance of an application before it is deployed to production. Serverless applications can be simpler to load test, thanks to the automatic scaling built into many of the services. During a load test, you can identify quotas that may act as a limiting factor for the traffic you expect and take action.

Perform load testing for a sustained period of time. Gradually increase the traffic to your API to determine your steady-state rate of requests. Also use a burst strategy with no ramp up to determine the burst rates that your workload can serve without errors or performance degradation. There are a number of AWS Marketplace and AWS Partner Network (APN) solutions available for performance testing, Gatling Frontline, BlazeMeter, and Apica.

In the serverless airline example used in this series, you can run a performance test suite using Gatling, an open source tool.

To deploy the test suite, follow the instructions in the GitHub repository perf-tests directory. Uncomment the deploy.perftest line in the repository Makefile.

Perf-test makefile

Perf-test makefile

Once the file is pushed to GitHub, AWS Amplify Console rebuilds the application, and deploys an AWS CloudFormation stack. You can run the load tests locally, or use an AWS Step Functions state machine to run the setup and Gatling load test simulation.

Performance test using Step Functions

Performance test using Step Functions

The Gatling simulation script uses constantUsersPerSec and rampUsersPerSec to add users for a number of test scenarios. You can use the test to simulate load on the application. Once the tests run, it generates a downloadable report.

Gatling performance results

Gatling performance results

Artillery Community Edition is another open-source tool for testing serverless APIs. You configure the number of requests per second and overall test duration, and it uses a headless Chromium browser to run its test flows. For Artillery, the maximum number of concurrent tests is constrained by your local computing resources and network. To achieve higher throughput, you can use Serverless Artillery, which runs the Artillery package on Lambda functions. As a result, this tool can scale up to a significantly higher number of tests.

For more information on how to use Artillery, see “Load testing a web application’s serverless backend”. This runs tests against APIs in a demo application. For example, one of the tests fetches 50,000 questions per hour. This calls an API Gateway endpoint and tests whether the AWS Lambda function, which queries an Amazon DynamoDB table, can handle the load.

Artillery performance test

Artillery performance test

This is a synchronous API so the performance directly impacts the user’s experience of the application. This test shows that the median response time is 165 ms with a p95 time of 201 ms.

Performance test API results

Performance test API results

Another consideration for API load testing is whether the authentication and authorization service can handle the load. For more information on load testing Amazon Cognito and API Gateway using Step Functions, see “Using serverless to load test Amazon API Gateway with authorization”.

API load testing with authentication and authorization

API load testing with authentication and authorization

Conclusion

Regulating inbound requests helps you adapt different scaling mechanisms based on customer demand. You can achieve better throughput for your workloads and make them more reliable by controlling requests to a rate that your workload can support.

In this post, I cover controlling inbound request rates using throttling. I show how to use throttling to control steady-rate and burst rate requests. I show some solutions for performance testing to identify the request rates that your workload can sustain before performance degradation.

This well-architected question will be continued where I look at using, analyzing, and enforcing API quotas. I cover mechanisms to protect non-scalable resources.

For more serverless learning resources, visit Serverless Land.

Amazon Simple Queue Service (SQS) – 15 Years and Still Queueing!

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/amazon-sqs-15-years-and-still-queueing/

Time sure does fly! I wrote about the production launch of Amazon Simple Queue Service (SQS) back in 2006, with no inkling that I would still be blogging fifteen years later, or that this service would still be growing rapidly while remaining fundamental to the architecture of so many different types of web-scale applications.

The first beta of SQS was announced with little fanfare in late 2004. Even though we have added many features since that beta, the original description (“a reliable, highly scalable hosted queue for buffering messages between distributed application components”) still applies. Our customers think of SQS as an infinite buffer in the cloud and use SQS queues to implement the connections between the functional parts of their application architecture.

Over the years, we have worked hard to keep the SQS interface simple and easy to use, even though there’s a lot of complexity inside. In order to make SQS scalable, durable, and reliable, messages are stored in a fleet that consists of thousands of servers in each AWS Region. Within a region, we save three copies of each message, taking care to distribute the messages across storage nodes and Availability Zones. In addition to this built-in redundant storage, SQS is self-healing and resilient to host failures & network interruptions. Even though SQS is now 15 years old, we continue to improve our scaling and load management applications so that you can always count on SQS to handle your mission-critical workloads.

SQS runs at an incredible scale. For example:

Amazon Product Fulfillment – During Prime Day 2021, traffic to SQS set a new record, peaking at 47.7 million messages per second.

Rapid7 – Amazon customer Rapid7 makes extensive use of SQS. According to Jeff Myers (Platform Software Architect):

Amazon SQS provides us with a simple to use, highly performant, and highly scalable messaging service without any management headaches. It is a crucial component of our architecture that has allowed us to scale to handle 10s of billions of messages per day.

You can visit the Amazon SQS home page to read about other high-scale use cases from NASA, BMW Group, Capital One, and other AWS customers.

Serverless Office Hours
Be sure to join us today (June 13th) for Serverless Office Hours at Noon PT on Twitch.tv. Rumor has it that there will be cake!

Back in Time
Here’s a quick recap of some of the major SQS milestones:

2006Production launch. An unlimited number of queues per account and items per queue, with each item up to 8 KB in length. Pay as you go pricing based on messages sent and data transferred.

2007Additional functions including control of the visibility timeout and access to the approximate number of queued messages.

2009SQS in Europe, and additional control over queue access via AddPermission and RemovePermission. This launch also marked the debut of what we then called the Access Policy Language, which has evolved into today’s IAM Policies.

2010A new free tier (100K requests/month then, since expanded to 1 million requests/month), configurable maximum message length (up to 64 KB), and configurable message retention time.

2011Additional CloudWatch Metrics for each SQS queue. Later that year we added batch operations (SendMessageBatch and DeleteMessageBatch), delay queues, and message timers.

2012Support for long polling, along with SDK support for request batching and client-side buffering.

2013Support for even larger payloads (256 KB) and a 50% price reduction.

2014 – Support for dead letter queues, to accept messages that have become stuck due to a timeout or to a processing error within your code.

2015 – Support for extended payloads (up to 2 GB) using the Extended Client Library.

2016 – Support for FIFO queues with exactly-once processing and deduplication and another price reduction.

2017 – Support for server-side encryption of messages and cost allocation tags.

2018 – Support for Amazon VPC Endpoints using AWS PrivateLink and the ability to invoke Lambda functions.

2019 – Support for Tag-on-Create and X-Ray tracing.

2020 – Support for 1-minute metrics for more fine-grained queue monitoring, a new console experience, and result pagination for the ListQueues and ListDeadLetterSourceQueues functions.

2021Tiered pricing so that you save money as your usage grows, and a High Throughput mode for FIFO queues.

Today, SQS remains simple, scalable, cost-effective, and highly reliable.

From the AWS Heroes
We asked some of the AWS Heroes to reflect on the success of SQS and to share some of their success stories. Here’s what we learned:

Eric Hammond (Serverless Hero) uses AWS Lambda Dead Letter Queues. They put alarms on the queues and send internal emails as alerts when problems need to be investigated.

Tom McLaughlin (Serverless Hero) has been using SQS since 2015. He said “My favorite use case is anytime someone wants a queue and I don’t want to manage a queuing platform. Which is always.”

Ken Collins (Serverless Hero) was not entirely sure how long he had been using SQS, and offered a range of 2 to 8 years! He uses it to power the Lambdakiq gem, which implements ActiveJob on SQS & Lambda.

Kyuhyun Byun (Serverless Hero) has been using SQS to power a push system that must sustain massive amounts of traffic, and tells us “Thanks to SQS, I don’t consider building a queuing system anymore.”

Prashanth HN (Serverless Hero) has been using SQS since 2017, and considers himself “late to the party.” He used SQS as part of his first serverless application, and finds that it is ideal for connecting services with differing throughput.

Ben Kehoe (Serverless Hero) told us that “I first saw the power of SQS when a colleague showed me how to retain state in a fleet of EC2 Spot instances by storing the state in SQS when an instance was getting shut down, and having new instances check the queue for state on startup.”

Jeremy Daly (Serverless Hero) started using SQS in 2010 as a lightweight queue that fed a facial recognition process on user-supplied images. Today, he often uses it as a buffer to throttle requests to downstream services that are not yet serverless.

Casey Lee (Container Hero) also started to use SQS in 2010 as a replacement for ActiveMQ between loosely coupled Java services. Casey implements auto scaling based on queue depth, and has found it to be an accurate way to handle the load.

Vlad Ionecsu (Container Hero) began his AWS journey with SQS back in 2014. Vlad found that the API was very easy to understand, and used SQS to power his thesis project.

Sheen Brisals (Serverless Hero) started to use SQS in 2018 while building a proof-of-concept that also used Lambda and S3. Sheen appreciates the ability to adjust the characteristics of each queue to create a good match for the message processing functions, and also makes use of both high and low priority queues.

Gojko Adzic (Serverless Hero) began to use SQS in 2013 as a task dispatch for exporters in MindMup. This online mind-mapping application allows large groups of users to collaborate, and requires strict ordering of updates to each document. Gojko used FIFO queues to allow them to process messages for different documents in parallel, with sequential order within each document.

Sebastian Müller (Serverless Hero) started to use SQS in 2016 by building a notification center for website-builder jimdo.com . The center ensures that customers are kept aware of events (orders, support messages, and contact requests) on a timely basis.

Luca Bianchi (Serverless Hero) first used SQS in 2012. He decoupled a pair of microservices running on AWS Elastic Beanstalk, and also created a fan-out processing system for a gamification platform. Today, his favorite SQS use case stores inference jobs and makes them available to a worker process running on Amazon SageMaker.

Peter Hanssens (Serverless Hero) uses SQS to offload tasks that do not need to be processed immediately. Several years ago, while assisting some data scientists, he created an event-driven batch-processing system that used a Lambda function to check a queue every 5 minutes and fire up EC2 instances to build models, while keeping strict control over the maximum number of running instances.

Serkan Ozal (Serverless Hero) has been using SQS since 2013 or so. He focuses on asynchronous message processing and counts on the ability of SQS to handle a huge number of events. He also makes uses of the message visibility feature so that he can re-process messages if necessary.

Matthieu Napoli (Serverless Hero) has been using SQS for about five years, starting out with EC2, and as a replacement for other queues. As he says, “Paired with Lambda, it gives massive parallelism out of the box without having to think too much about it. Plus the built-in failure handling makes it very robust.”

As you can see, there are a multitude of use cases for SQS.

SQS Resources
If you are not already using SQS, then it is time to get in the queue and get started. Here are some resources to help you find your way:

Happy queueing!

Jeff;

 

 

 

Building well-architected serverless applications: Managing application security boundaries – part 1

Post Syndicated from Julian Wood original https://aws.amazon.com/blogs/compute/building-well-architected-serverless-applications-managing-application-security-boundaries-part-1/

This series of blog posts uses the AWS Well-Architected Tool with the Serverless Lens to help customers build and operate applications using best practices. In each post, I address the serverless-specific questions identified by the Serverless Lens along with the recommended best practices. See the introduction post for a table of contents and explanation of the example application.

Security question SEC2: How do you manage your serverless application’s security boundaries?

Defining and securing your serverless application’s boundaries ensures isolation for, within, and between components.

Required practice: Evaluate and define resource policies

Resource policies are AWS Identity and Access Management (IAM) statements. They are attached to resources such as an Amazon S3 bucket, or an Amazon API Gateway REST API resource or method. The policies define what identities have fine-grained access to the resource. To see which services support resource-based policies, see “AWS Services That Work with IAM”. For more information on how resource policies and identity policies are evaluated, see “Identity-Based Policies and Resource-Based Policies”.

Understand and determine which resource policies are necessary

Resource policies can protect a component by restricting inbound access to managed services. Use resource policies to restrict access to your component based on a number of identities, such as the source IP address/range, function event source, version, alias, or queues. Resource policies are evaluated and enforced at IAM level before each AWS service applies it’s own authorization mechanisms, when available. For example, IAM resource policies for API Gateway REST APIs can deny access to an API before an AWS Lambda authorizer is called.

If you use multiple AWS accounts, you can use AWS Organizations to manage and govern individual member accounts centrally. Certain resource policies can be applied at the organizations level, providing guardrail for what actions AWS accounts within the organization root or OU can do. For more information see, “Understanding how AWS Organization Service Control Policies work”.

Review your existing policies and how they’re configured, paying close attention to how permissive individual policies are. Your resource policies should only permit necessary callers.

Implement resource policies to prevent unauthorized access

For Lambda, use resource-based policies to provide fine-grained access to what AWS IAM identities and event sources can invoke a specific version or alias of your function. Resource-based policies can also be used to control access to Lambda layers. You can combine resource policies with Lambda event sources. For example, if API Gateway invokes Lambda, you can restrict the policy to the API Gateway ID, HTTP method, and path of the request.

In the serverless airline example used in this series, the IngestLoyalty service uses a Lambda function that subscribes to an Amazon Simple Notification Service (Amazon SNS) topic. The Lambda function resource policy allows SNS to invoke the Lambda function.

Lambda resource policy document

Lambda resource policy document

API Gateway resource-based policies can restrict API access to specific Amazon Virtual Private Cloud (VPC), VPC endpoint, source IP address/range, AWS account, or AWS IAM users.

Amazon Simple Queue Service (SQS) resource-based policies provide fine-grained access to certain AWS services and AWS IAM identities (users, roles, accounts). Amazon SNS resource-based policies restrict authenticated and non-authenticated actions to topics.

Amazon DynamoDB resource-based policies provide fine-grained access to tables and indexes. Amazon EventBridge resource-based policies restrict AWS identities to send and receive events including to specific event buses.

For Amazon S3, use bucket policies to grant permission to your Amazon S3 resources.

The AWS re:Invent session Best practices for growing a serverless application includes further suggestions on enforcing security best practices.

Best practices for growing a serverless application

Best practices for growing a serverless application

Good practice: Control network traffic at all layers

Apply controls for controlling both inbound and outbound traffic, including data loss prevention. Define requirements that help you protect your networks and protect against exfiltration.

Use networking controls to enforce access patterns

API Gateway and AWS AppSync have support for AWS Web Application Firewall (AWS WAF) which helps protect web applications and APIs from attacks. AWS WAF enables you to configure a set of rules called a web access control list (web ACL). These allow you to block, or count web requests based on customizable web security rules and conditions that you define. These can include specified IP address ranges, CIDR blocks, specific countries, or Regions. You can also block requests that contain malicious SQL code, or requests that contain malicious script. For more information, see How AWS WAF Works.

private API endpoint is an API Gateway interface VPC endpoint that can only be accessed from your Amazon Virtual Private Cloud (Amazon VPC). This is an elastic network interface that you create in a VPC. Traffic to your private API uses secure connections and does not leave the Amazon network, it is isolated from the public internet. For more information, see “Creating a private API in Amazon API Gateway”.

To restrict access to your private API to specific VPCs and VPC endpoints, you must add conditions to your API’s resource policy. For example policies, see the documentation.

By default, Lambda runs your functions in a secure Lambda-owned VPC that is not connected to your account’s default VPC. Functions can access anything available on the public internet. This includes other AWS services, HTTPS endpoints for APIs, or services and endpoints outside AWS. The function cannot directly connect to your private resources inside of your VPC.

You can configure a Lambda function to connect to private subnets in a VPC in your account. When a Lambda function is configured to use a VPC, the Lambda function still runs inside the Lambda service VPC. The function then sends all network traffic through your VPC and abides by your VPC’s network controls. Functions deployed to virtual private networks must consider network access to restrict resource access.

AWS Lambda service VPC with VPC-to-VPT NAT to customer VPC

AWS Lambda service VPC with VPC-to-VPT NAT to customer VPC

When you connect a function to a VPC in your account, the function cannot access the internet, unless the VPC provides access. To give your function access to the internet, route outbound traffic to a NAT gateway in a public subnet. The NAT gateway has a public IP address and can connect to the internet through the VPC’s internet gateway. For more information, see “How do I give internet access to my Lambda function in a VPC?”. Connecting a function to a public subnet doesn’t give it internet access or a public IP address.

You can control the VPC settings for your Lambda functions using AWS IAM condition keys. For example, you can require that all functions in your organization are connected to a VPC. You can also specify the subnets and security groups that the function’s users can and can’t use.

Unsolicited inbound traffic to a Lambda function isn’t permitted by default. There is no direct network access to the execution environment where your functions run. When connected to a VPC, function outbound traffic comes from your own network address space.

You can use security groups, which act as a virtual firewall to control outbound traffic for functions connected to a VPC. Use security groups to permit your Lambda function to communicate with other AWS resources. For example, a security group can allow the function to connect to an Amazon ElastiCache cluster.

To filter or block access to certain locations, use VPC routing tables to configure routing to different networking appliances. Use network ACLs to block access to CIDR IP ranges or ports, if necessary. For more information about the differences between security groups and network ACLs, see “Compare security groups and network ACLs.”

In addition to API Gateway private endpoints, several AWS services offer VPC endpoints, including Lambda. You can use VPC endpoints to connect to AWS services from within a VPC without an internet gateway, NAT device, VPN connection, or AWS Direct Connect connection.

Using tools to audit your traffic

When you configure a Lambda function to use a VPC, or use private API endpoints, you can use VPC Flow Logs to audit your traffic. VPC Flow Logs allow you to capture information about the IP traffic going to and from network interfaces in your VPC. Flow log data can be published to Amazon CloudWatch Logs or S3 to see where traffic is being sent to at a granular level. Here are some flow log record examples. For more information, see “Learn from your VPC Flow Logs”.

Block network access when required

In addition to security groups and network ACLs, third-party tools allow you to disable outgoing VPC internet traffic. These can also be configured to allow traffic to AWS services or allow-listed services.

Conclusion

Managing your serverless application’s security boundaries ensures isolation for, within, and between components. In this post, I cover how to evaluate and define resource policies, showing what policies are available for various serverless services. I show some of the features of AWS WAF to protect APIs. Then I review how to control network traffic at all layers. I explain how Lambda functions connect to VPCs, and how to use private APIs and VPC endpoints. I walk through how to audit your traffic.

This well-architected question will be continued where I look at using temporary credentials between resources and components. I cover why smaller, single purpose functions are better from a security perspective, and how to audit permissions. I show how to use AWS Serverless Application Model (AWS SAM) to create per-function IAM roles.

For more serverless learning resources, visit https://serverlessland.com.

Create a serverless feedback collector application using Amazon Pinpoint’s two-way SMS functionality

Post Syndicated from Murat Balkan original https://aws.amazon.com/blogs/messaging-and-targeting/create-a-serverless-feedback-collector-application-by-using-amazon-pinpoints-two-way-sms-functionality/

Introduction

Two-way SMS communication is used by many companies to create interactive engagements with their customers. Traditional SMS notifications are one-way. While this is valid for many different use cases like one-time passwords (OTP) notifications and security notifications or reminders, some other use-cases may benefit from collecting information from the same channel. Two-way SMS allows customers to create this feedback mechanism and enhance business interactions and overall customer experience.

SMS is chosen for its simplicity and availability across different sets of devices. By combining the two-way SMS mechanism with the vast breadth of services Amazon Web Services (AWS) offers, companies can create effective architectures to better interact and serve their customers.

This blog post shows you how a serverless online appointment application can use Amazon Pinpoint’s two-way SMS functionality to collect customer feedback for completed appointments. You will learn how Amazon Pinpoint interacts with other AWS serverless services with its out-of-the-box integrations to create a scalable messaging application.

Architecture

By completing the steps in this post, you can create a system that uses the architecture illustrated in the following image:

The architecture of a feedback collector application that is composed of serverless AWS services

The flow of events starts when a Amazon DynamoDB table item, representing an online appointment, changes its status to COMPLETED. An AWS Lambda function which is subscribed to these changes over DynamoDB Streams detects this change and sends an SMS to the customer by using Amazon Pinpoint API’s sendMessages operation.

Amazon Pinpoint delivers the SMS to the recipient and generates a unique message ID to the AWS Lambda function. The Lambda function then adds this message ID to a DynamoDB table called “message-lookup”. This table is used for tracking different feedback requests sent during a multi-step conversation and associate them with the appointment ids. At this stage, the Lambda function also populates another table “feedbacks” which will hold the feedback responses that will be sent as SMS reply messages.

Each time a recipient replies to an SMS, Amazon Pinpoint publishes this reply event to an Amazon SNS topic which is subscribed by an Amazon SQS queue. Amazon Pinpoint will also add a messageId to this event which allows you to bind it to a sendMessages operation call.

A second AWS Lambda function polls these reply events from the Amazon SQS queue. It checks whether the reply is in the correct format (i.e. a number) and also associated with a previous request. If all conditions are met, the AWS Lambda function checks the ConversationStage attribute’s value from its message-lookup table. According to the current stage and the SMS answer received, AWS Lambda function will determine the next step.

For example, if the feedback score received is less than 5, a follow-up SMS is sent to the user asking if they’ll be happy to receive a call from the customer support team.

All SMS replies from the users are reflected to “feedbacks” table for further analysis.

Deploying the Sample Application

  1. Clone this GitHub repository to your local machine and install and configure AWS SAM with a test AWS IAM user.

You will use AWS SAM to deploy the remaining parts of this serverless architecture.

The AWS SAM template creates the following resources:

    • An Amazon DynamoDB table (appointments) that contains information about appointments, customers and their appointment status.
    • An Amazon DynamoDB table (feedbacks) that holds the received feedbacks from customers.
    • An Amazon DynamoDB table (message-lookup) that holds the Amazon Pinpoint message ids and associate them to appointments to track a multi-step conversation.
    • Two AWS Lambda functions (FeedbackSender and FeedbackReceiver)
    • An Amazon SNS topic that collects state change events from Amazon Pinpoint.
    • An Amazon SQS queue that queues the incoming messages.
    • An Amazon Pinpoint Application with an associated SMS channel.

This architecture consists of two Lambda functions, which are represented as two different apps in the AWS SAM template. These functions are named FeedbackSender and FeedbackReceiver. The FeedbackSender function listens the Amazon DynamoDB Stream associated with the appointments table and sends the SMS message requesting a feedback. Second Lambda function, FeedbackReceiver, polls the Amazon SQS queue and updates the feedbacks table in Amazon DynamoDB. (pinpoint-two-way-sms)

          Note: You’ll incur some costs by deploying this stack into your account.

  1. To start the SAM deployment, navigate to the root directory of the repository you downloaded and where the template.yaml AWS SAM template resides. AWS SAM also requires you to specify an Amazon Simple Storage Service (Amazon S3) bucket to hold the deployment artifacts. If you haven’t already created a bucket for this purpose, create one now. The bucket should have read and write access by an AWS Identity and Access Management (IAM) user.

At the command line, enter the following command to package the application:

sam package --template template.yaml --output-template-file output_template.yaml --s3-bucket BUCKET_NAME_HERE

In the preceding command, replace BUCKET_NAME_HERE with the name of the Amazon S3 bucket that should hold the deployment artifacts.

AWS SAM packages the application and copies it into this Amazon S3 bucket.

When the AWS SAM package command finishes running, enter the following command to deploy the package:

sam deploy --template-file output_template.yaml --stack-name BlogStackPinpoint --capabilities CAPABILITY_IAM

When you run this command, AWS SAM shows the progress of the deployment. When the deployment finishes, navigate to the Amazon Pinpoint console and choose the project named “BlogApplication”. This example uses “BlogStackPinpoint” as the stack name, you can change this to any other name you want.

  1. From the left navigation, choose Settings, SMS and voice. On the SMS and voice settings page, choose the Request phone number button under Number settings

Screenshot of request phone number screen

  1. Choose a target country. Set the Default message type as Transactional, and click on the Request long codes button to buy a long code.

Note: In United States, you can also request a Toll Free Number(TFN)

Screenshot showing long code additio

A long code will be added to the Number settings list.

  1. Choose the newly added number to reach the SMS Settings page and enable the option Enable two-way-SMS. At the Incoming messages destination, select Choose an existing SNS topic, and from the drop down select the Amazon SNS topic that was created by the BlogStackPinpoint stack.

Choose Save to save your SMS settings.

 

Testing the Sample Application

Now that the application is deployed and configured, test it by creating sample records in the Amazon DynamoDB table. Navigate to Amazon DynamoDB console and reach the tables view. Inspect the tables that were created by the AWS SAM application.

Here, appointments table is the table where the appointments and their statuses are kept. It tracks the appointment lifecycle events with items identified by unique ids. In this sample scenario, we are assuming that an appointment application creates a record with ‘CREATED’ status when a new appointment is planned. After the appointment is finished, same application updates the status to ‘COMPLETED’ which will trigger the feedback collection process. Feedback results are collected in the feedbacks table. Amazon Pinpoint message id’s, conversation stage and appointment id’s are kept in the message-lookup table.

  1. To start testing the end-to-end flow, choose the appointments table to open table overview page.
  2. Next, select the Items tab and choose the Create item From the dropdown, select Text. Add the following and choose Save to create your first appointment object. While adding the following object, replace CustomerPhone attribute’s value with a phone number you own. The feedback request messages will be delivered to that number. Note: This number should match the country number for the long code you provisioned.

{

"CustomerName": "Customer A",

"CustomerPhone": "+12345678900",

"AppointmentStatus":"CREATED",

"id": "1"

}

  1. To trigger sending the feedback SMS, you need to set an existing item’s status to “COMPLETED” To do this, select the item and click Edit from the Actions menu.

Replace the item’s current JSON with the following.

{

"AppointmentStatus": "COMPLETED",

"CustomerName": "Customer A",

"CustomerPhone": "+12345678900",

"id": "1"

}

  1. Before choosing the Save button, double check that you have set CustomerPhone attribute’s value to a valid phone number.

After the change, you should receive an SMS message asking for a feedback. Provide a numeric reply of that is less than five to this message. This will trigger a follow up question asking for a consent to receive an in-person callback.

 

During your SMS conversation with the application, inspect the feedbacks table. The feedback you have given over this two-way SMS channel should have been reflected into the table.

If you want to repeat the process, make sure to increment the AppointmentId field for any additional appointment records.

Cleanup

To clean up the resources you used in your account, simply navigate to AWS Cloudformation console and delete the stack named “BlogStackPinpoint”.

After the stack is deleted, you also need to delete the Long code from the Pinpoint Console by choosing the number and pressing Remove phone number button. You can also delete the Amazon S3 bucket you used for packaging and deploying the AWS SAM application.

Conclusion

This architecture shows how Amazon Pinpoint can be used to make two-way SMS communication with your customers. You can implement Two-way SMS functionality in other use cases such as appointment reminders, polls, Q&A services, and more.

To learn more about Pinpoint and it’s two-way SMS mechanism, you can visit the Pinpoint documentation.

 

Building Multi-partner integration on AWS using Event-Driven Architecture

Post Syndicated from Vivek Kant original https://aws.amazon.com/blogs/architecture/building-multi-partner-integration-on-aws-using-event-driven-architecture/

Summary

Finserv MARKETS enables customers to buy financial services products such as credit cards, loans, insurance, and investments from various partners. Finserv integrates with a large number of partners in real time to provide services to customers.

Each partner has their own semantic APIs which can pose a challenge. There are also issues of latency and failures. We’ll show how our solution based on Event Driven Architecture (EDA) on AWS with Reactive design offers a solution to address these challenges.

Challenges with multi-partner integration

  • Latency – Making API calls to multiple partners increases latency of a service even in the scenario in which the calls are made in parallel.
  • Timeouts – If a partner’s APIs time out, this could impact overall service performance and availability.
  • Failures – A partner API failure could lead to the failure or major performance degradation of the overall service.
  • Customer Experience – Preserving the customer experience when depending on partner integration is a challenge, considering these technical issues.

Conceptual solution

In order to build this multi-partner platform, we discussed using traditional command-driven synchronous architecture. We also considered adopting an Event-Driven Architecture (EDA). Building our solution on EDA enabled us to deliver consistent customer experience while addressing failures and performance issues from partner APIs.

The diagram following shows a conceptual view of the solution:

Event Driven Conceptual view

Figure 1 – Conceptual View of Our Solution

The key components of the solution are:

1. User Interface: It is the single page application running on the user’s browser. For example, the UI makes an API call to business services to calculate insurance premiums with required parameters and receives a unique identifier. This enables the UI to be reactive and display the responses from the partner as they arrive.

2. Business Service: A microservice which provides APIs for:

• The user interface to submit and generate events for request for partner offer

• A callback to submit the response from the partner integration service in a reactive manner

3. Event Bus: The event bus infrastructure enables transportation, routing, and delivery of events to the right services. The business service raises a set of events to the event bus for a quote request. There is one event for each partner that is listened to by the reactive services.

4. Reactive Services: Services that consume events and call partner integration services for the calling partner API. On receiving the partner response, it calls the callback API on the business service. These services are organized by product domain (for example Motor Insurance).

5. Partner Integration Service: This service is responsible for integration with partners. The service translates the canonical request to partner-specific API calls. The service implements partner-specific security and error handling. There is one partner integration service per partner.

Realizing this solution on AWS

Amazon Web Services (AWS) offers cloud-native services enabling us to realize this solution.

Event Driven Architecture

Figure 2 – Realizing our solution on AWS

We used the following services to implement this architecture:

User Interface
We built the load balancing interface in Angular and host it on Apache Web Servers running Amazon Elastic Container Service (Amazon ECS). Elastic Load Balancing (ELB) distributes traffic evenly across the containers. Running a container gives us the required flexibility and scalability needed.

Business Service
The business service is a microservice built using Spring Boot and running on Amazon ECS containers. It uses an ELB used for service load balancing. The choice of Spring Boot and Amazon ECS gives flexibility and scalability through cluster auto scaling.

Data Store
We use polyglot architecture for data storage. For different product journeys and depending on data lifecycle, we choose either Amazon Aurora Postgres or Amazon ElastiCache for Redis. This gives us the right mix of performance and required durability for each business use case.

Event Bus
We evaluated Amazon Kinesis and Amazon Simple Notification Service (Amazon SNS) and came to the conclusion that for our volume and use cases, Amazon SNS offers the right capability. We implemented this by defining topics, for example, a four-wheeler insurance quote. This topic is subscribed by reactive services for each partner integration, where the partner service is called and a quote is generated. For downstream functionality where the API is to be called of the selected partner (for example, insurance policy issuance or credit card application submission), we chose Amazon Simple Queue Service (SQS). Amazon SQS provides simple queuing for asynchronous processing.

Reactive Services
These services are built using two different technologies. Spring Boot microservice running in an Amazon ECS container and AWS Lambda functions. Spring Boot is chosen due to our team’s familiarity of this technology; however, our plan is to move completely towards usage of Lambda functions for all asynchronous reactive services.

Partner Integration Service
Partner integration services provides the abstraction layer between partner API and canonical API, and is called by reactive services synchronously. In some cases, the error is passed back to reactive service to decide on retry. In other cases, for example, a policy issuance API retry is built into this service using exponential backoff strategy.

Partner API tracking
Partner API tracking gives us the right way of tracking the partner request and proactively address failures. We use Amazon Elasticsearch Service and Kibana for tracking. We can implement a circuit breaker pattern to shut down any partner for a period of time should failures reach a given threshold.

How this solution addresses multi-partner integration

This solution is built on the foundation of Event Driven Architecture with reactive design and is able to address the following challenges:

Latency
Since the user interface asynchronously polls for the response, it receives the partner response as soon as it arrives. This makes the response latency on the fastest partner API rather than slowest.

Timeout
Timeouts are set in the UI for polling, so if a partner API doesn’t respond, we time it out without any degradation. These timeouts are set based on the established user experience benchmarks. For example, how long do we let a user wait to see all insurance quotes before degrading their experience?

Failures
In case of an API failure, the UI will time out. Our API tracking can also enable a circuit breaker pattern to take a partner offline in the event of persistent failures.

Customer Experience
The solution gives a consistent experience to the user. Users can make their choice from the partner quotes/offers in a reactive way as received, rather than waiting for all offers to be shown. This design meets our customer requirements, derived from our Voice of Customer (VoC) study sessions.

Conclusion

In the digital space, APIs are the most common mechanism for system integration. Building a solution that is scalable, resilient, and provides the best customer experience is challenging. Event Driven Architecture with Reactive design offers a solution to address these issues. We process over 5000+ requests every day in Insurance and Credit domains. We’ve been able to achieve required availability of over 99.9%, while maintaining a positive customer experience on this platform.

Using Amazon SQS dead-letter queues to replay messages

Post Syndicated from James Beswick original https://aws.amazon.com/blogs/compute/using-amazon-sqs-dead-letter-queues-to-replay-messages/

Amazon Simple Queue Service (Amazon SQS) is a fully managed message queuing service. It enables you to decouple and scale microservices, distributed systems, and serverless applications. A commonly used feature of Amazon SQS is dead-letter queues. The DLQ (dead-letter queue) is used to store messages that can’t be processed (consumed) successfully.

This post describes how to add automated resilience to an existing SQS queue. It monitors the dead-letter queue and moves a message back to the main queue to see if it can be processed again. It also uses a specific algorithm to make sure this is not repeated forever. Each time it attempts to reprocess the message, the replay time increases until the message is finally considered dead.

I use Amazon SQS dead-letter queues, AWS Lambda, and a specific algorithm to decrease the rate of retries for failed messages. I then package and publish this serverless solution in the AWS Serverless Application Repository.

Dead-letter queues and message replay

The main task of a dead-letter queue (DLQ) is to handle message failure. It allows you to set aside and isolate non-processed messages to determine why processing failed. Often these failed messages are caused by application errors. For example, a consumer application fails to parse a message correctly and throws an unhandled exception. This exception then triggers an error response that sends the message to the DLQ. The AWS documentation contains a tutorial detailing the configuration of an Amazon SQS dead-letter queue.

To process the failed messages, I build a retry mechanism by implementing an exponential backoff algorithm. The idea behind exponential backoff is to use progressively longer waits between retries for consecutive error responses. Most exponential backoff algorithms use jitter (randomized delay) to prevent successive collisions. This spreads the message retries more evenly across time, allowing them to be processed more efficiently.

Solution overview

Solution architecture

The flow of the message sent by the producer to SQS is as follows:

  1. The producer application sends a message to an SQS queue
  2. The consumer application fails to process the message in the same SQS queue
  3. The message is moved from the main SQS queue to the default dead-letter queue as per the component settings.
  4. A Lambda function is configured with the SQS main dead-letter queue as an event source. It receives and sends back the message to the original queue adding a message timer.
  5. The message timer is defined by the exponential backoff and jitter algorithm.
  6. You can limit the number of retries. If the message exceeds this limit, the message is moved to a second DLQ where an operator processes it manually.

How the replay function works

Each time the SQS dead-letter queue receives a message, it triggers Lambda to run the replay function. The replay code uses an SQS message attribute `sqs-dlq-replay-nb` as a persistent counter for the current number of retries attempted. The number of retries is compared to the maximum number (defined in the application configuration file). If it exceeds the maximum, the message is moved to the human operated queue. If not, the function uses the AWS Lambda event data to build a new message for the Amazon SQS main queue. Finally it updates the retry counter, adds a new message timer to the message, and it sends the message back (replays) to the main queue.

def handler(event, context):
    """Lambda function handler."""
    for record in event['Records']:
        nbReplay = 0
        # number of replay
        if 'sqs-dlq-replay-nb' in record['messageAttributes']:
            nbReplay = int(record['messageAttributes']['sqs-dlq-replay-nb']["stringValue"])

        nbReplay += 1
        if nbReplay > config.MAX_ATTEMPS:
            raise MaxAttempsError(replay=nbReplay, max=config.MAX_ATTEMPS)

        # SQS attributes
        attributes = record['messageAttributes']
        attributes.update({'sqs-dlq-replay-nb': {'StringValue': str(nbReplay), 'DataType': 'Number'}})

        _sqs_attributes_cleaner(attributes)

        # Backoff
        b = backoff.ExpoBackoffFullJitter(base=config.BACKOFF_RATE, cap=config.MESSAGE_RETENTION_PERIOD)
        delaySeconds = b.backoff(n=int(nbReplay))

        # SQS
        SQS.send_message(
            QueueUrl=config.SQS_MAIN_URL,
            MessageBody=record['body'],
            DelaySeconds=int(delaySeconds),
            MessageAttributes=record['messageAttributes']
        )

How to use the application

You can use this serverless application via:

  • The Lambda console: choose the “Browse serverless app repository” option to create a function. Select “amazon-sqs-dlq-replay-backoff” application in the public applications repository. Then, configure the application with the default SQS parameters and the replay feature parameters.
  • The Serverless Framework, as described by Yan Cui in this blog post.
  • An AWS CloudFormation template by using the AWS::ServerlessRepo::Application resource, as described in the documentation.

Here is an example of a CloudFormation template using the AWS Serverless Application Repository application:

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31

Resources:
  ReplaySqsQueue:
    Type: AWS::Serverless::Application
    Properties:
      Location: 
        ApplicationId: arn:aws:serverlessrepo:eu-west-1:1234123412:applications~sqs-dlq-replay
        SemanticVersion: 1.0.0
      Parameters:
        BackoffRate: "2"
        MaxAttempts: "3"

Conclusion

I describe how an exponential backoff algorithm (with jitter) enhances the message processing capabilities of an Amazon SQS queue. You can now find the amazon-sqs-dlq-replay-backoff application in the AWS Serverless Application Repository. Download the code from this GitHub repository.

To get started with dead-letter queues in Amazon SQS, read:

To implement replay mechanisms, see:

For more serverless learning resources, visit https://serverlessland.com.

Getting started with RPA using AWS Step Functions and Amazon Textract

Post Syndicated from James Beswick original https://aws.amazon.com/blogs/compute/getting-started-with-rpa-using-aws-step-functions-and-amazon-textract/

This post is courtesy of Joe Tringali, Solutions Architect.

Many organizations are using robotic process automation (RPA) to automate workflow, back-office processes that are labor-intensive. RPA, as software bots, can often handle many of these activities. Often RPA workflows contain repetitive manual tasks that must be done by humans, such as viewing invoices to find payment details.

AWS Step Functions is a serverless function orchestrator and workflow automation tool. Amazon Textract is a fully managed machine learning service that automatically extracts text and data from scanned documents. Combining these services, you can create an RPA bot to automate the workflow and enable employees to handle more complex tasks.

In this post, I show how you can use Step Functions and Amazon Textract to build a workflow that enables the processing of invoices. Download the code for this solution from https://github.com/aws-samples/aws-step-functions-rpa.

Overview

The following serverless architecture can process scanned invoices in PDF or image formats for submitting payment information to a database.

Example architecture
To implement this architecture, I use single-purpose Lambda functions and Step Functions to build the workflow:

  1. Invoices are scanned and loaded into an Amazon Simple Storage Service (S3) bucket.
  2. The loading of an invoice into Amazon S3 triggers an AWS Lambda function to be invoked.
  3. The Lambda function starts an asynchronous Amazon Textract job to analyze the text and data of the scanned invoice.
  4. The Amazon Textract job publishes a completion notification message with a status of “SUCCEEDED” or “FAILED” to an Amazon Simple Notification Service (SNS) topic.
  5. SNS sends the message to an Amazon Simple Queue Service (SQS) queue that is subscribed to the SNS topic.
  6. The message in the SQS queue triggers another Lambda function.
  7. The Lambda function initiates a Step Functions state machine to process the results of the Amazon Textract job.
  8. For an Amazon Textract job that completes successfully, a Lambda function saves the document analysis into an Amazon S3 bucket.
  9. The loading of the document analysis to Amazon S3 triggers another Lambda function.
  10. The Lambda function retrieves the text and data of the scanned invoice to find the payment information. It writes an item to an Amazon DynamoDB table with a status indicating if the invoice can be processed.
  11. If the DynamoDB item contains the payment information, another Lambda function is invoked.
  12. The Lambda function archives the processed invoice into another S3 bucket.
  13. If the DynamoDB item does not contain the payment information, a message is published to an Amazon SNS topic requesting that the invoice be reviewed.

Amazon Textract can extract information from the various invoice images and associate labels with the data. You must then handle the various labels that different invoices may associate with the payee name, due date, and payment amount.

Determining payee name, due date and payment amount

After the document analysis has been saved to S3, a Lambda function retrieves the text and data of the scanned invoice to find the information needed for payment. However, invoices can use a variety of labels for the same piece of data, such a payment’s due date.

In the example invoices included with this blog, the payment’s due date is associated with the labels “Pay On or Before”, “Payment Due Date” and “Payment Due”. Payment amounts can also have different labels, such as “Total Due”, “New Balance Total”, “Total Current Charges”, and “Please Pay”. To address this, I use a series of helper functions in the app.py file in the process_document_analysis folder of the GitHub repo.

In app.py, there is the following get_ky_map helper function:

def get_kv_map(blocks):
    key_map = {}
    value_map = {}
    block_map = {}
    for block in blocks:
        block_id = block['Id']
        block_map[block_id] = block
        if block['BlockType'] == "KEY_VALUE_SET":
            if 'KEY' in block['EntityTypes']:
                key_map[block_id] = block
            else:
                value_map[block_id] = block
    return key_map, value_map, block_map

The get_kv_map function is invoked by the Lambda function handler. It iterates over the “Blocks” element of the document analysis produced by Amazon Textract to create dictionaries of keys (labels) and values (data) associated with each block identified by Amazon Textract. It then invokes the following get_kv_relationship helper function:

def get_kv_relationship(key_map, value_map, block_map):
    kvs = {}
    for block_id, key_block in key_map.items():
        value_block = find_value_block(key_block, value_map)
        key = get_text(key_block, block_map)
        val = get_text(value_block, block_map)
        kvs[key] = val
    return kvs

The get_kv_relationship function merges the key and value dictionaries produced by the get_kv_map function to create a single Python key value dictionary where labels are the keys to the dictionary and the invoice’s data are the values. The handler then invokes the following get_line_list helper function:

def get_line_list(blocks):
    line_list = []
    for block in blocks:
        if block['BlockType'] == "LINE":
            if 'Text' in block: 
                line_list.append(block["Text"])
    return line_list

Extracting payee names is more complex because the data may not be labeled. The payee may often differ from the entity sending the invoice. With the Amazon Textract analysis in a format more easily consumable by Python, I use the following get_payee_name helper function to parse and extract the payee:

def get_payee_name(lines):
    payee_name = ""
    payable_to = "payable to"
    payee_lines = [line for line in lines if payable_to in line.lower()]
    if len(payee_lines) > 0:
        payee_line = payee_lines[0]
        payee_line = payee_line.strip()
        pos = payee_line.lower().find(payable_to)
        if pos > -1:
            payee_line = payee_line[pos + len(payable_to):]
            if payee_line[0:1] == ':':
                payee_line = payee_line[1:]
            payee_name = payee_line.strip()
    return payee_name

The get_amount helper function searches the key value dictionary produced by the get_kv_relationship function to retrieve the payment amount:

def get_amount(kvs, lines):
    amount = None
    amounts = [search_value(kvs, amount_tag) for amount_tag in amount_tags if search_value(kvs, amount_tag) is not None]
    if len(amounts) > 0:
        amount = amounts[0]
    else:
        for idx, line in enumerate(lines):
            if line.lower() in amount_tags:
                amount = lines[idx + 1]
                break
    if amount is not None:
        amount = amount.strip()
        if amount[0:1] == '$':
            amount = amount[1:]
    return amount

The amount_tags variable contains a list of possible labels associated with the payment amount:

amount_tags = ["total due", "new balance total", "total current charges", "please pay"]

Similarly, the get_due_date helper function searches the key value dictionary produced by the get_kv_relationship function to retrieve the payment due date:

def get_due_date(kvs):
    due_date = None
    due_dates = [search_value(kvs, due_date_tag) for due_date_tag in due_date_tags if search_value(kvs, due_date_tag) is not None]
    if len(due_dates) > 0:
        due_date = due_dates[0]
    if due_date is not None:
        date_parts = due_date.split('/')
        if len(date_parts) == 3:
            due_date = datetime(int(date_parts[2]), int(date_parts[0]), int(date_parts[1])).isoformat()
        else:
            date_parts = [date_part for date_part in re.split("\s+|,", due_date) if len(date_part) > 0]
            if len(date_parts) == 3:
                datetime_object = datetime.strptime(date_parts[0], "%b")
                month_number = datetime_object.month
                due_date = datetime(int(date_parts[2]), int(month_number), int(date_parts[1])).isoformat()
    else:
        due_date = datetime.now().isoformat()
    return due_date

The due_date_tag contains a list of possible labels associated with the payment due:

due_date_tags = ["pay on or before", "payment due date", "payment due"]

If all required elements needed to issue a payment are found, it adds an item to the DynamoDB table with a status attribute of “Approved for Payment”. If the Lambda function cannot determine the value of one or more required elements, it adds an item to the DynamoDB table with a status attribute of “Pending Review”.

Payment Processing

If the item in the DynamoDB table is marked “Approved for Payment”, the processed invoice is archived. If the item’s status attribute is marked “Pending Review”, an SNS message is published to an SNS Pending Review topic. You can subscribe to this topic so that you can add additional labels to the Python code for determining payment due dates and payment amounts.

Note that the Lambda functions are single-purpose functions, and all workflow logic is contained in the Step Functions state machine. This diagram shows the various tasks (states) of a successful workflow.

State machine workflow

For more information about this solution, download the code from the GitHub repo (https://github.com/aws-samples/aws-step-functions-rpa).

Prerequisites

Before deploying the solution, you must install the following prerequisites:

  1. Python.
  2. AWS Command Line Interface (AWS CLI) – for instructions, see Installing the AWS CLI.
  3. AWS Serverless Application Model Command Line Interface (AWS SAM CLI) – for instructions, see Installing the AWS SAM CLI.

Deploying the solution

The solution creates the following S3 buckets with names suffixed by your AWS account ID to prevent a global namespace collision of your S3 bucket names:

  • scanned-invoices-<YOUR AWS ACCOUNT ID>
  • invoice-analyses-<YOUR AWS ACCOUNT ID>
  • processed-invoices-<YOUR AWS ACCOUNT ID>

The following steps deploy the example solution in your AWS account. The solution deploys several components including a Step Functions state machine, Lambda functions, S3 buckets, a DynamoDB table for payment information, and SNS topics.

AWS CloudFormation requires an S3 bucket and stack name for deploying the solution. To deploy:

  1. Download code from GitHub repo (https://github.com/aws-samples/aws-step-functions-rpa).
  2. Run the following command to build the artifacts locally on your workstation:sam build
  3. Run the following command to create a CloudFormation stack and deploy your resources:sam deploy --guided --capabilities CAPABILITY_NAMED_IAM

Monitor the progress and wait for the completion of the stack creation process from the AWS CloudFormation console before proceeding.

Testing the solution

To test the solution, upload the PDF test invoices to the S3 bucket named scanned-invoices-<YOUR AWS ACCOUNT ID>.

A Step Functions state machine with the name <YOUR STACK NAME>-ProcessedScannedInvoiceWorkflow runs the workflow. Amazon Textract document analyses are stored in the S3 bucket named invoice-analyses-<YOUR AWS ACCOUNT ID>, and processed invoices are stored in the S3 bucket named processed-invoices-<YOUR AWS ACCOUNT ID>. Processed payments are found in the DynamoDB table named <YOUR STACK NAME>-invoices.

You can monitor the status of the workflows from the Step Functions console. Upon completion of the workflow executions, review the items added to DynamoDB from the Amazon DynamoDB console.

Cleanup

To avoid ongoing charges for any resources you created in this blog post, delete the stack:

  1. Empty the three S3 buckets created during deployment using the S3 console:
    – scanned-invoices-<YOUR AWS ACCOUNT ID>
    – invoice-analyses-<YOUR AWS ACCOUNT ID>
    – processed-invoices-<YOUR AWS ACCOUNT ID>
  2. Delete the CloudFormation stack created during deployment using the CloudFormation console.

Conclusion

In this post, I showed you how to use a Step Functions state machine and Amazon Textract to automatically extract data from a scanned invoice. This eliminates the need for a person to perform the manual step of reviewing an invoice to find payment information to be fed into a backend system. By replacing the manual steps of a workflow with automation, an organization can free up their human workforce to handle more value-added tasks.

To learn more, visit AWS Step Functions and Amazon Textract for more information. For more serverless learning resources, visit https://serverlessland.com.

 

Application integration patterns for microservices: Running distributed RFQs

Post Syndicated from James Beswick original https://aws.amazon.com/blogs/compute/application-integration-patterns-running-distributed-rfqs/

This post is courtesy of Dirk Fröhner, Principal Solutions Architect.

The first blog in this series introduces asynchronous messaging for building loosely coupled systems that can scale, operate, and evolve individually. It considers messaging as a communications model for microservices architectures. Part 2 dives into fan-out strategies and applies the respective patterns to a concrete use case.

In this post, I look at how to apply messaging patterns to help coordinate distributed requests and responses. Specifically, I focus on a composite pattern called scatter-gather, as presented in the book “Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions” (Hohpe and Woolf, 2004).

I also show how a client can communicate with a backend via synchronous REST API operations while asynchronous messaging is applied internally for processing.

Overview

The use case is for Wild Rydes, a fictional application that replaces traditional taxis with unicorns. It’s used in several hands-on AWS workshops that illustrate serverless development concepts.

Wild Rydes wants to allow customers to initiate requests for quotation (RFQs) for their rides. This allows unicorns to make special offers to potential customers within a defined schedule. A customer can send their ride details and ask for quotations from all unicorns that are within a certain vicinity. The customer can then choose the best offer.

Wild Rydes

The scatter-gather pattern

The scatter-gather pattern can be used to implement this use-case on the server side. This pattern is ideal for requesting responses from multiple parties, then aggregating and processing that data.

As presented by Hohpe and Woolf, the scatter-gather pattern is a composite pattern that illustrates how to “broadcast a message to multiple recipients and re-aggregate the responses back into a single message”. The pattern is illustrated in the following diagram.

Scatter-gather architecture

The flow starts with the Requester to initiate the broadcast to all potential Responders. This can be architected in a loosely coupled manner using pub-sub messaging with Amazon SNS or Amazon MQ, as shown in this blog post.

All responders must send their answers somewhere for aggregation and processing. This can also be architected in a loosely coupled manner using a message queue with Amazon SQS or Amazon MQ, as described in this blog post.

The Aggregator component consumes the individual responses from the response queue. It forwards the aggregate to the Processor component for final processing. Both Aggregator and Processor can be part of the same application or process. If separated, they can be decoupled through messaging. The Requester can also be part of the same application or process as Aggregator and Processor.

Explaining the architecture and API

In this section, I walk through the use-case and explain how it can be architected and implemented. I show how the scatter-gather pattern works in the backend, and the client-to-backend communication.

Submit instant ride RFQ

To initiate such an RFQ, the customer app communicates with the ride booking service on the backend. The ride booking service exposes a REST API. By default, an RFQ runs for five minutes, but Wild Rydes is working on a feature to let a customer individually set that value.

A request to submit an instant-ride RFQ contains start and destination locations for the ride and the customer ID:

POST /<submit-instant-ride-rfq-resource-path> HTTP/1.1
...

{
    "from": "...",
    "to": "...",
    "customer": "..."
}

The RFQ is a lengthy process so the client app should not expect an immediate response. Instead, the API accepts the RFQ, creates an RFQ task resource, and returns to the client. The response contains a URL to request an update for the status. It also provides an estimated time for the end of the RFQ:

HTTP/1.1 202 Accepted
...

{
    "links": {
        "self": "http://.../<rfq-task-resource-path>",
        "...": "..."
    },
    "status": "running",
    "eta": "..."
}

The following architecture shows this interaction, excluding the process after a new RFQ is submitted.

Client app interaction

Processing the RFQ

The backend uses the scatter-gather pattern to publish the RFQ to unicorns and collect responses for aggregation and processing.

Backend architecture

1. The ride booking service acts as the requester in the scatter-gather pattern. Following a new RFQ from the client app, it publishes the details into an SNS topic. This topic is related to the location of the ride’s starting point since customers need quotes from unicorns within the vicinity. These messages are the green request messages.

2. The unicorn management service maintains instances of unicorn management resources and subscribes them to RFQ topics related to their current location. These resources receive the RFQ request messages and handle the interaction with the Wild Rydes unicorn app.

3. The unicorns in the vicinity are notified through the Wild Rydes unicorn app about the new RFQ and can react if they are available. Notification options between the unicorn management service and the Wild Rydes unicorn app include push notifications and web sockets.

4. Every addressed unicorn can now submit their quote. All quotes go back through the unicorn management resources and the unicorn management service into the RFQ response queue. They act as the responders in the sense of the scatter-gather pattern.

5. The ride booking service also acts as aggregator and processor in the sense of the scatter-gather pattern. It uses SQS to consume messages from an RFQ response queue that eventually contains the RFQ responses from the involved unicorns. It starts doing so immediately after it publishes the details of a new RFQ into the RFQ topic. The messages from the RFQ response queue relate to the blue response messages.

The ride booking service consumes all incoming responses from that queue. This continues until the deadline or all participating unicorns have answered, whatever occurs first. The aggregator responsibility can be as simple as persisting the details of each incoming RFQ response into an Amazon DynamoDB table.

To match incoming responses to the right RFQ, it uses a fundamental integration pattern, correlation ID. In this pattern, a requester adds a unique ID to an outgoing message and each responder is asked to forward this ID in their response.

Also, responders must know where to send their responses to. To keep this dynamic, there is another fundamental integration pattern: return address. It suggests that a requester adds meta information into outgoing messages that indicate the address for their responses. In this architecture, this is the ARN of the SQS queue that acts as the RFQ response queue. This supports an option to simplify the response management: the RFQ response queue is a dedicated queue per customer.

Lastly, the processor responsibility in the ride booking service reads the RFQ responses from the DynamoDB table. It converts the data to JSON for the Wild Rydes customer app.

Check RFQ status

During the RFQ processing, a customer may want to know how many responses have already arrived, or if the results are already available. After submitting an instant ride RFQ, the client receives a representation of the running task. It can use the self-link to request an update:

GET /<rfq-task-resource-path> HTTP/1.1

While the task is running, a response from the ride booking service comes back with the respective status value and the count of responses that have already arrived:

HTTP/1.1 200 OK
...

{
    "links": {
        "self": "http://.../<rfq-task-resource-path>",
        "...": "..."
    },
    "status": "running",
    "responses-received": 2,
    "eta": "..."
}

After the RFQ is completed

An RFQ is completed if either the time is up or all unicorns have answered. The result of the RFQ is then available to the customer. If the client requests an update to the task representation, the response indicates this by redirecting to the RFQ result:

HTTP/1.1 303 See Other
Location: <url-of-rfq-result-resource>

Requesting a representation of the results resource, the client receives the quotes of all the participating unicorns. The frontend customer app can visualize these accordingly:

HTTP/1.1 200 OK
...

{
    "links": { ... },
    "from": "...",
    "to": "...",
    "customer": "...",
    "quotes": [ ... ]
}

The ride booking service can also use means of active notifications to make the customer app aware once the RFQ result is ready, including the link to the RFQ result. Examples for this include push notifications and web sockets.

Conclusion

In this blog, I present the scatter-gather pattern, which is a composite pattern based on pub-sub and point-to-point messaging channels. It also employs correlation ID and return address. I show how this is implemented in the Wild Rydes example application. You can use this integration pattern for communication in your microservices.

I cover how synchronous API communication between end user client and backend can work along with asynchronous messaging for request processing internally.

To learn more:

For more serverless learning resources, visit https://serverlessland.com.

Optimizing the cost of serverless web applications

Post Syndicated from James Beswick original https://aws.amazon.com/blogs/compute/optimizing-the-cost-of-serverless-web-applications/

Web application backends are one of the most frequent types of serverless use-case for customers. The pay-for-value model can make it cost-efficient to build web applications using serverless tools.

While serverless cost is generally correlated with level of usage, there are architectural decisions that impact cost efficiency. The impact of these choices is more significant as your traffic grows, so it’s important to consider the cost-effectiveness of different designs and patterns.

This blog post reviews some common areas in web applications where you may be able to optimize cost. It uses the Happy Path web application as a reference example, which you can read about in the introductory blog post.

Serverless web applications generally use a combination of the services in the following diagram. I cover each of these areas to highlight common areas for cost optimization.

Serverless architecture by AWS service

The API management layer: Selecting the right API type

Most serverless web applications use an API between the frontend client and the backend architecture. Amazon API Gateway is a common choice since it is a fully managed service that scales automatically. There are three types of API offered by the service – REST APIs, WebSocket APIs, and the more recent HTTP APIs.

HTTP APIs offer many of the features in the REST APIs service, but the cost is often around 70% less. It supports Lambda service integration, JWT authorization, CORS, and custom domain names. It also has a simpler deployment model than REST APIs. This feature set tends to work well for web applications, many of which mainly use these capabilities. Additionally, HTTP APIs will gain feature parity with REST APIs over time.

The Happy Path application is designed for 100,000 monthly active users. It uses HTTP APIs, and you can inspect the backend/template.yaml to see how to define these in the AWS Serverless Application Model (AWS SAM). If you have existing AWS SAM templates that are using REST APIs, in many cases you can change these easily:

REST to HTTP API

Content distribution layer: Optimizing assets

Amazon CloudFront is a content delivery network (CDN). It enables you to distribute content globally across 216 Points of Presence without deploying or managing any infrastructure. It reduces latency for users who are geographically dispersed and can also reduce load on other parts of your service.

A typical web application uses CDNs in a couple of different ways. First, there is the distribution of the application itself. For single-page application frameworks like React or Vue.js, the build processes create static assets that are ideal for serving over a CDN.

However, these builds may not be optimized and can be larger than necessary. Many frameworks offer optimization plugins, and the JavaScript community frequently uses Webpack to bundle modules and shrink deployment packages. Similarly, any media assets used in the application build should be optimized. You can use tools like Lighthouse to analyze your web apps to find images that can be resized or compressed.

Optimizing images

The second common CDN use-case for web apps is for user-generated content (UGC). Many apps allow users to upload images, which are then shared with other users. A typical photo from a 12-megapixel smartphone is 3–9 MB in size. This high resolution is not necessary when photos are rendered within web apps. Displaying the high-resolution asset results in slower download performance and higher data transfer costs.

The Happy Path application uses a Resizer Lambda function to optimize these uploaded assets. This process creates two different optimized images depending upon which component loads the asset.

Image sizes in front-end applications

The upload S3 bucket shows the original size of the upload from the smartphone:

The distribution S3 bucket contains the two optimized images at different sizes:

Optimized images in the distribution S3 bucket

The distribution file sizes are 98–99% smaller. For a busy web application, using optimized image assets can make a significant difference to data transfer and CloudFront costs.

Additionally, you can convert to highly optimized file formats such as WebP to reduce file size even further. Not all browsers support this format, but you can use CSS on the frontend to fall back to other types if needed:

<img src="myImage.webp" onerror="this.onerror=null; this.src='myImage.jpg'">

The data layer

AWS offers many different database and storage options that can be useful for web applications. Billing models vary by service and Region. By understanding the data access and storage requirements of your app, you can make informed decisions about the right service to use.

Generally, it’s more cost-effective to store binary data in S3 than a database. First, when the data is uploaded, you can upload directly to S3 with presigned URLs instead of proxying data via API Gateway or another service.

If you are using Amazon DynamoDB, it’s best practice to store larger items in S3 and include a reference token in a table item. Part of DynamoDB pricing is based on read capacity units (RCUs). For binary items such as images, it is usually more cost-efficient to use S3 for storage.

Many web developers who are new to serverless are familiar with using a relational database, so choose Amazon RDS for their database needs. Depending upon your use-case and data access patterns, it may be more cost effective to use DynamoDB instead. RDS is not a serverless service so there are monthly charges for the underlying compute instance. DynamoDB pricing is based upon usage and storage, so for many web apps may be a lower-cost choice.

Integration layer

This layer includes services like Amazon SQS, Amazon SNS, and Amazon EventBridge, which are essential for decoupling serverless applications. Each of these have a request-based pricing component, where 64 KB of a payload is billed as one request. For example, a single SQS message with a 256 KB payload is billed as four requests. There are two optimization methods common for web applications.

1. Combine messages

Many messages sent to these services are much smaller than 64 KB. In some applications, the publishing service can combine multiple messages to reduce the total number of publish actions to SNS. Additionally, by either eliminating unused attributes in the message or compressing the message, you can store more data in a single request.

For example, a publishing service may be able to combine multiple messages together in a single publish action to an SNS topic:

  • Before optimization, a publishing service sends 100,000,000 1KB-messages to an SNS topic. This is charged as 100 million messages for a total cost of $50.00.
  • After optimization, the publishing service combines messages to send 1,562,500 64KB-messages to an SNS topic. This is charged as 1,562,500 messages for a total cost of $0.78.

2. Filter messages

In many applications, not every message is useful for a consuming service. For example, an SNS topic may publish to a Lambda function, which checks the content and discards the message based on some criteria. In this case, it’s more cost effective to use the native filtering capabilities of SNS. The service can filter messages and only invoke the Lambda function if the criteria is met. This lowers the compute cost by only invoking Lambda when necessary.

For example, an SNS topic receives messages about customer orders and forwards these to a Lambda function subscriber. The function is only interested in canceled orders and discards all other messages:

  • Before optimization, the SNS topic sends all messages to a Lambda function. It evaluates the message for the presence of an order canceled attribute. On average, only 25% of the messages are processed further. While SNS does not charge for delivery to Lambda functions, you are charged each time the Lambda service is invoked, for 100% of the messages.
  • After optimization, using an SNS subscription filter policy, the SNS subscription filters for canceled orders and only forwards matching messages. Since the Lambda function is only invoked for 25% of the messages, this may reduce the total compute cost by up to 75%.

3. Choose a different messaging service

For complex filtering options based upon matching patterns, you can use EventBridge. The service can filter messages based upon prefix matching, numeric matching, and other patterns, combining several rules into a single filter. You can create branching logic within the EventBridge rule to invoke downstream targets.

EventBridge offers a broader range of targets than SNS destinations. In cases where you publish from an SNS topic to a Lambda function to invoke an EventBridge target, you could use EventBridge instead and eliminate the Lambda invocation. For example, instead of routing from SNS to Lambda to AWS Step Functions, instead create an EventBridge rule that routes events directly to a state machine.

Business logic layer

Step Functions allows you to orchestrate complex workflows in serverless applications while eliminating common boilerplate code. The Standard Workflow service charges per state transition. Express Workflows were introduced in December 2019, with pricing based on requests and duration, instead of transitions.

For workloads that are processing large numbers of events in shorter durations, Express Workflows can be more cost-effective. This is designed for high-volume event workloads, such as streaming data processing or IoT data ingestion. For these cases, compare the cost of the two workflow types to see if you can reduce cost by switching across.

Lambda is the on-demand compute layer in serverless applications, which is billed by requests and GB-seconds. GB-seconds is calculated by multiplying duration in seconds by memory allocated to the function. For a function with a 1-second duration, invoked 1 million times, here is how memory allocation affects the total cost in the US East (N. Virginia) Region:

Memory (MB) GB/S Compute cost Total cost
128 125,000 $ 2.08 $ 2.28
512 500,000 $ 8.34 $ 8.54
1024 1,000,000 $ 16.67 $ 16.87
1536 1,500,000 $ 25.01 $ 25.21
2048 2,000,000 $ 33.34 $ 33.54
3008 2,937,500 $ 48.97 $ 49.17

There are many ways to optimize Lambda functions, but one of the most important choices is memory allocation. You can choose between 128 MB and 3008 MB, but this also impacts the amount of virtual CPU as memory increases. Since total cost is a combination of memory and duration, choosing more memory can often reduce duration and lower overall cost.

Instead of manually setting the memory for a Lambda function and running executions to compare duration, you can use the AWS Lambda Power Tuning tool. This uses Step Functions to run your function against varying memory configurations. It can produce a visualization to find the optimal memory setting, based upon cost or execution time.

Optimizing costs with the AWS Lambda Power Tuning tool

Conclusion

Web application backends are one of the most popular workload types for serverless applications. The pay-per-value model works well for this type of workload. As traffic grows, it’s important to consider the design choices and service configurations used to optimize your cost.

Serverless web applications generally use a common range of services, which you can logically split into different layers. This post examines each layer and suggests common cost optimizations helpful for web app developers.

To learn more about building web apps with serverless, see the Happy Path series. For more serverless learning resources, visit https://serverlessland.com.

Improved failure recovery for Amazon EventBridge

Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/improved-failure-recovery-for-amazon-eventbridge/

Today we’re announcing two new capabilities for Amazon EventBridgedead letter queues and custom retry policies. Both of these give you greater flexibility in how to handle any failures in the processing of events with EventBridge. You can easily enable them on a per target basis and configure them uniquely for each.

Dead letter queues (DLQs) are a common capability in queuing and messaging systems that allow you to handle failures in event or message receiving systems. They provide a way for failed events or messages to be captured and sent to another system, which can store them for future processing. With DLQs, you can have greater resiliency and improved recovery from any failure that happens.

You can also now configure a custom retry policy that can be set on your event bus targets. Today, there are two attributes that can control how events are retried: maximum number of retries and maximum event age. With these two settings, you could send events to a DLQ sooner and reduce the retries attempted.

For example, this could allow you to recover more quickly if an event bus target is overwhelmed by the number of events received, causing throttling to occur. The events are placed in a DLQ and then processed later.

Failures in event processing

Currently, EventBridge can fail to deliver an event to a target in certain scenarios. Events that fail to be delivered to a target due to client-side errors are dropped immediately. Examples of this are when EventBridge does not have permission to a target AWS service or if the target no longer exists. This can happen if the target resource is misconfigured or is deleted by the resource owner.

For service-side issues, EventBridge retries delivery of events for up to 24 hours. This can happen if the target service is unavailable or the target resource is not provisioned to handle the incoming event traffic and the target service is throttling the requests.

EventBridge failures

EventBridge failures

Previously, when all attempts to deliver an event to the target were exhausted, EventBridge published a CloudWatch metric indicating a failed target invocation. However, this provides no visibility into which events failed to be delivered and there was no way to recover the event that failed.

Dead letter queues

EventBridge’s DLQs are made possible today with Amazon Simple Queue Service (SQS) standard queues. With SQS, you get all of the benefits of a fully serverless queuing service: no servers to manage, automatic scalability, pay for what you consume, and high availability and security built in. You can configure the DLQs for your EventBridge bus and pay nothing until it is used, if and when a target experiences an issue. This makes it a great practice to follow and standardize on, and provides you with a safety net that’s active only when needed.

Optionally, you could later configure an AWS Lambda function to consume from that DLQ. The function is only invoked when messages exist in the queue, allowing you to maintain a serverless stack to recover from a potential failure.

DLQ configured per target

DLQ configured per target

With DLQ configured, the queue receives the event that failed in the message with important metadata that you can use to troubleshoot the issue. This can include: Error Code, Error Message, Exhausted Retry Condition, Retry Attempts, Rule ARN, and the Target ARN.

You can use this data to more easily troubleshoot what went wrong with the original delivery attempt and take action to resolve or prevent such failures in the future. You could also use the information such as Exhausted Retry Condition and Retry Attempts to further tweak your custom retry policy.

You can configure a DLQ when creating or updating rules via the AWS Management Console and AWS Command Line Interface (AWS CLI). You can also use infrastructure as code (IaC) tools such as AWS CloudFormation.

In the console, select the queue to be used for your DLQ configuration from the drop-down as shown here:

DLQ configuration

DLQ configuration

When configured via API, AWS CLI, or IaC tools, you must specify the ARN of the queue:

arn:aws:sqs:us-east-1:123456789012:orders-bus-shipping-service-dlq

When you configure a DLQ, the target SQS queue requires a resource-based policy that grants EventBridge access. One is created and applied automatically via the console when you create or update an EventBridge rule with a DLQ that exists in your own account.

For any queues created in other accounts, or via API, AWS CLI, or IaC tools, you must add a policy that allows SQS’s SendMessage permission to the EventBridge rule ARN, as shown below:

{
  "Sid": "Dead-letter queue permissions",
  "Effect": "Allow",
  "Principal": {
     "Service": "events.amazonaws.com"
  },
  "Action": "sqs:SendMessage",
  "Resource": "arn:aws:sqs:us-east-1:123456789012:orders-bus-shipping-service-dlq",
  "Condition": {
    "ArnEquals": {
      "aws:SourceArn": "arn:aws:events:us-east-1:123456789012:rule/MyTestRule"
    }
  }
}

You can read more about setting permissions for DLQ the documentation for “Granting permissions to the dead-letter queue”.

Once configured, you can monitor CloudWatch metrics for the DLQ queue. This shows both the successful delivery of messages via the InvocationsSentToDLQ metric, in addition to any failures via the InvocationsFailedToBeSentToDLQ. Note that these metrics do not exist if your queue is not considered “active”.

Retry policies

By default, EventBridge retries delivery of an event to a target so long as it does not receive a client-side error as described earlier. Retries occur with a back-off, for up to 185 attempts or for up to 24 hours, after which the event is dropped or sent to a DLQ, if configured. Due to the jitter of the back-off and retry process you may reach the 24-hour limit before reaching 185 retries.

For many workloads, this provides an acceptable way to handle momentary service issues or throttling that might occur. For some however, this model of back-off and retry can cause increased and on-going traffic to an already overloaded target system.

For example, consider an Amazon API Gateway target that has a resource constrained backend service behind it.

Constrained target service

Constrained target service

Under a consistently high load, the bus could end up generating too many API requests, tripping the API Gateway’s throttling configuration. This would cause API Gateway to respond with throttling errors back to EventBridge.

Throttled API reply

Throttled API reply

You may decide that allowing the failed events to retry for 24 hours puts too much load into this system and it may not properly recover from the load. This could lead to potential data loss unless a DLQ was configured.

Added DLQ

Added DLQ

With a DLQ, you could choose to process these events later, once the overwhelmed target service has recovered.

DLQ drained back to API

DLQ drained back to API

Or the events in question may no longer have the same value as they did previously. This can occur in systems where data loss is tolerated but the timeliness of data processing matters. In these situations, the DLQ would have less value and dropping the message is acceptable.

For either of these situations, configuring the maximum number of retries or the maximum age of the event could be useful.

Now with retry policies, you can configure per target the following two attributes:

  • MaximumEventAgeInSeconds: between 60 and 86400 seconds (86400, or 24 hours the default)
  • MaximumRetryAttempts: between 0 and 185 (185 is the default)

When either condition is met, the event fails. It’s then either dropped, which generates an increase to the FailedInvocations CloudWatch metric, or sent to a configured DLQ.

You can configure retry policy attributes when creating or updating rules via the AWS Management Console and AWS Command Line Interface (AWS CLI). You can also use infrastructure as code (IaC) tools such as AWS CloudFormation.

Retry policy

Retry policy

There is no additional cost for configuring either of these new capabilities. You only pay for the usage of the SQS standard queue configured as the dead letter queue during a failure and any application that handles the failed events. SQS pricing can be found here.

Conclusion

With dead letter queues and custom retry policies, you have improved handling and control over failure in distributed systems built with EventBridge. With DLQs you can capture failed events and then process them later, potentially saving yourself from data loss. With custom retry policies, you gain the improved ability to control the number of retries and for how long they can be retried.

I encourage you to explore how both of these new capabilities can help make your applications more resilient to failures, and to standardize on using them both in your infrastructure.

For more serverless learning resources, visit https://serverlessland.com.

Building resilient serverless patterns by combining messaging services

Post Syndicated from James Beswick original https://aws.amazon.com/blogs/compute/building-resilient-no-code-serverless-patterns-by-combining-messaging-services/

In “Choosing between messaging services for serverless applications”, I explain the features and differences between the core AWS messaging services. Amazon SQS, Amazon SNS, and Amazon EventBridge provide queues, publish/subscribe, and event bus functionality for your applications. Individually, these are robust, scalable services that are fundamental building blocks of serverless architectures.

However, you can also combine these services to solve specific challenges in distributed architectures. By doing this, you can use specific features of each service to build sophisticated patterns with little code. These combinations can make your applications more resilient and scalable, and reduce the amount of custom logic and architecture in your workload.

In this blog post, I highlight several important patterns for serverless developers. I also show how you use and deploy these integrations with the AWS Serverless Application Model (AWS SAM).

Examples in this post refer to code that can be downloaded from this GitHub repo. The README.md file explains how to deploy and run each example.

SNS to SQS: Adding resilience and throttling to message throughput

SNS has a robust retry policy that results in up to 100,010 delivery attempts over 23 days. If a downstream service is unavailable, it may be overwhelmed by retries when it comes back online. You can solve this issue by adding an SQS queue.

Adding an SQS queue between the SNS topic and its subscriber has two benefits. First, it adds resilience to message delivery, since the messages are durably stored in a queue. Second, it throttles the rate of messages to the consumer, helping smooth out traffic bursts caused by the service catching up with missed messages.

To build this in an AWS SAM template, you first define the two resources, and the SNS subscription:

  MySqsQueue:
    Type: AWS::SQS::Queue

  MySnsTopic:
    Type: AWS::SNS::Topic
    Properties:
      Subscription:
        - Protocol: sqs
          Endpoint: !GetAtt MySqsQueue.Arn

Finally, you provide permission to the SNS topic to publish to the queue, using the AWS::SQS::QueuePolicy resource:

  SnsToSqsPolicy:
    Type: AWS::SQS::QueuePolicy
    Properties:
      PolicyDocument:
        Version: "2012-10-17"
        Statement:
          - Sid: "Allow SNS publish to SQS"
            Effect: Allow
            Principal: "*"
            Resource: !GetAtt MySqsQueue.Arn
            Action: SQS:SendMessage
            Condition:
              ArnEquals:
                aws:SourceArn: !Ref MySnsTopic
      Queues:
        - Ref: MySqsQueue

To test this, you can publish a message to the SNS topic and then inspect the SQS queue length using the AWS CLI:

aws sns publish --topic-arn "arn:aws:sns:us-east-1:123456789012:sns-sqs-MySnsTopic-ABC123ABC" --message "Test message"
aws sqs get-queue-attributes --queue-url "https://sqs.us-east-1.amazonaws.com/123456789012/sns-sqs-MySqsQueue- ABC123ABC " --attribute-names ApproximateNumberOfMessages

This results in the following output:

CLI output

Another usage of this pattern is when you want to filter messages in architectures using an SQS queue. By placing the SNS topic in front of the queue, you can use the message filtering capabilities of SNS. This ensures that only the messages you need are published to the queue. To use message filtering in AWS SAM, use the AWS:SNS:Subcription resource:

  QueueSubcription:
    Type: 'AWS::SNS::Subscription'
    Properties:
      TopicArn: !Ref MySnsTopic
      Endpoint: !GetAtt MySqsQueue.Arn
      Protocol: sqs
      FilterPolicy:
        type:
        - orders
        - payments 
      RawMessageDelivery: 'true'

EventBridge to SNS: combining features of both services

Both SNS and EventBridge have different characteristics in terms of targets, and integration with broader features. This table compares the major differences between the two services:

Amazon SNS Amazon EventBridge
Number of targets 10 million (soft) 5
Limits 100,000 topics. 12,500,000 subscriptions per topic. 100 event buses. 300 rules per event bus.
Input transformation No Yes – see details.
Message filtering Yes – see details. Yes, including IP address matching – see details.
Format Raw or JSON JSON
Receive events from AWS CloudTrail No Yes
Targets HTTP(S), SMS, SNS Mobile Push, Email/Email-JSON, SQS, Lambda functions 15 targets including AWS LambdaAmazon SQSAmazon SNSAWS Step FunctionsAmazon Kinesis Data StreamsAmazon Kinesis Data Firehose.
SaaS integration No Yes – see integration partners.
Schema Registry integration No Yes – see details.
Dead-letter queues supported Yes No
Public visibility Can create public topics Cannot create public buses
Cross-Region You can subscribe your AWS Lambda functions to an Amazon SNS topic in any Region. Targets must be same Region. You can publish across Region to another event bus.

In this pattern, you configure an SNS topic as a target of an EventBridge rule:

SNS topic as a target for an EventBridge rule

In the AWS SAM template, you declare the resources in the preceding diagram as follows:

Resources:
  MySnsTopic:
    Type: AWS::SNS::Topic

  EventRule: 
    Type: AWS::Events::Rule
    Properties: 
      Description: "EventRule"
      EventPattern: 
        account: 
          - !Sub '${AWS::AccountId}'
        source:
          - "demo.cli"
      Targets: 
        - Arn: !Ref MySnsTopic
          Id: "SNStopic"

The default bus already exists in every AWS account, so there is no need to declare it. For the event bus to publish matching events to the SNS topic, you define permissions using the AWS::SNS::TopicPolicy resource:

  EventBridgeToToSnsPolicy:
    Type: AWS::SNS::TopicPolicy
    Properties: 
      PolicyDocument:
        Statement:
        - Effect: Allow
          Principal:
            Service: events.amazonaws.com
          Action: sns:Publish
          Resource: !Ref MySnsTopic
      Topics: 
        - !Ref MySnsTopic       

EventBridge has a limit of five targets per rule. In cases where you must send events to hundreds or thousands of targets, publishing to SNS first and then subscribing those targets to the topic works around this limit. Both services have different targets, and this pattern allows you to deliver EventBridge events to SMS, HTTP(s), email and SNS mobile push.

You can transform and filter the message using these services, often without needing an AWS Lambda function. SNS does not support input transformation but you can do this in an EventBridge rule. Message filtering is possible in both services but EventBridge provides richer content filtering capabilities.

AWS CloudTrail can log and monitor activity across services in your AWS account. It can be a useful source for events, allowing you to respond dynamically to objects in Amazon S3 or react to changes in your environment, for example. This natively integrates with EventBridge, allowing you to ingest events at scale from dozens of services.

Using EventBridge enables you to source events from outside your AWS account, offering integrations with a list of software as a service (SaaS) providers. This capability allows you to receive events from your accounts with SaaS providers like Zendesk, PagerDuty, and Auth0. These events are delivered to a partner event bus in your account, and can then be filtered and routed to an SNS topic.

Additionally, this pattern allows you to deliver events to Lambda functions in other AWS accounts and in other AWS Regions. You can invoke Lambda from SNS topics in other Regions and accounts. It’s also possible to make SNS topics publicly read-only, making them extensible endpoints that other third parties can consume from. SNS has comprehensive access control, which you can incorporate into this pattern.

Cross-account publishing

EventBridge to SQS: Building fault-tolerant microservices

EventBridge can route events to targets such as microservices. In the case of downstream failures, the service retries events for up to 24 hours. For workloads where you need a longer period of time to store and retry messages, you can deliver the events to an SQS queue in each microservice. This durably stores those events until the downstream service recovers. Additionally, this pattern protects the microservice from large bursts of traffic by throttling the delivery of messages.

Fault-tolerant microservices architecture

The resources declared in the AWS SAM template are similar to the previous examples, but it uses the AWS::SQS::QueuePolicy resource to grant the appropriate permission to EventBridge:

  EventBridgeToToSqsPolicy:
    Type: AWS::SQS::QueuePolicy
    Properties:
      PolicyDocument:
        Statement:
        - Effect: Allow
          Principal:
            Service: events.amazonaws.com
          Action: SQS:SendMessage
          Resource:  !GetAtt MySqsQueue.Arn
      Queues:
        - Ref: MySqsQueue

Conclusion

You can combine these services in your architectures to implement patterns that solve complex challenges, often with little code required. This blog post shows three examples that implement message throttling and queueing, integrating SNS and EventBridge, and building fault tolerant microservices.

To learn more building decoupled architectures, see this Learning Path series on EventBridge. For more serverless learning resources, visit https://serverlessland.com.

Choosing between messaging services for serverless applications

Post Syndicated from James Beswick original https://aws.amazon.com/blogs/compute/choosing-between-messaging-services-for-serverless-applications/

Most serverless application architectures use a combination of different AWS services, microservices, and AWS Lambda functions. Messaging services are important in allowing distributed applications to communicate with each other, and are fundamental to most production serverless workloads.

Messaging services can improve the resilience, availability, and scalability of applications, when used appropriately. They can also enable your applications to communicate beyond your workload or even the AWS Cloud, and provide extensibility for future service features and versions.

In this blog post, I compare the primary messaging services offered by AWS and how you can use these in your serverless application architectures. I also show how you use and deploy these integrations with the AWS Serverless Application Model (AWS SAM).

Examples in this post refer to code that can be downloaded from this GitHub repository. The README.md file explains how to deploy and run each example.

Overview

Three of the most useful messaging patterns for serverless developers are queues, publish/subscribe, and event buses. In AWS, these are provided by Amazon SQS, Amazon SNS, and Amazon EventBridge respectively. All of these services are fully managed and highly available, so there is no infrastructure to manage. All three integrate with Lambda, allowing you to publish messages via the AWS SDK and invoke functions as targets. Each of these services has an important role to play in serverless architectures.

SNS enables you to send messages reliably between parts of your infrastructure. It uses a robust retry mechanism for when downstream targets are unavailable. When the delivery policy is exhausted, it can optionally send those messages to a dead-letter queue for further processing. SNS uses topics to logically separate messages into channels, and your Lambda functions interact with these topics.

SQS provides queues for your serverless applications. You can use a queue to send, store, and receive messages between different services in your workload. Queues are an important mechanism for providing fault tolerance in distributed systems, and help decouple different parts of your application. SQS scales elastically, and there is no limit to the number of messages per queue. The service durably persists messages until they are processed by a downstream consumer.

EventBridge is a serverless event bus service, simplifying routing events between AWS services, software as a service (SaaS) providers, and your own applications. It logically separates routing using event buses, and you implement the routing logic using rules. You can filter and transform incoming messages at the service level, and route events to multiple targets, including Lambda functions.

Integrating an SQS queue with AWS SAM

The first example shows an AWS SAM template defining a serverless application with two Lambda functions and an SQS queue:

Producer-consumer example

You can declare an SQS queue in an AWS SAM template with the AWS::SQS::Queue resource:

  MySqsQueue:
    Type: AWS::SQS::Queue

To publish to the queue, the publisher function must have permission to send messages. Using an AWS SAM policy template, you can apply policy that enables send messaging to one specific queue:

      Policies:
        - SQSSendMessagePolicy:
            QueueName: !GetAtt MySqsQueue.QueueName

The AWS SAM template passes the queue name into the Lambda function as an environment variable. The function uses the sendMessage method of the AWS.SQS class to publish the message:

const AWS = require('aws-sdk')
AWS.config.region = process.env.AWS_REGION 
const sqs = new AWS.SQS({apiVersion: '2012-11-05'})

// The Lambda handler
exports.handler = async (event) => {
  // Params object for SQS
  const params = {
    MessageBody: `Message at ${Date()}`,
    QueueUrl: process.env.SQSqueueName
  }
  
  // Send to SQS
  const result = await sqs.sendMessage(params).promise()
  console.log(result)
}

When the SQS queue receives the message, it publishes to the consuming Lambda function. To configure this integration in AWS SAM, the consumer function is granted the SQSPollerPolicy policy. The function’s event source is set to receive messages from the queue in batches of 10:

  QueueConsumerFunction:
    Type: AWS::Serverless::Function 
    Properties:
      CodeUri: code/
      Handler: consumer.handler
      Runtime: nodejs12.x
      Timeout: 3
      MemorySize: 128
      Policies:  
        - SQSPollerPolicy:
            QueueName: !GetAtt MySqsQueue.QueueName
      Events:
        MySQSEvent:
          Type: SQS
          Properties:
            Queue: !GetAtt MySqsQueue.Arn
            BatchSize: 10

The payload for the consumer function is the message from SQS. This is an array of messages up to the batch size, containing a body attribute with the publishing function’s MessageBody. You can see this in the CloudWatch log for the function:

CloudWatch log result

Integrating an SNS topic with AWS SAM

The second example shows an AWS SAM template defining a serverless application with three Lambda functions and an SNS topic:

SNS fanout to Lambda functions

You declare an SNS topic and the subscribing Lambda functions with the AWS::SNS:Topic resource:

  MySnsTopic:
    Type: AWS::SNS::Topic
    Properties:
      Subscription:
        - Protocol: lambda
          Endpoint: !GetAtt TopicConsumerFunction1.Arn    
        - Protocol: lambda
          Endpoint: !GetAtt TopicConsumerFunction2.Arn

You provide the SNS service with permission to invoke the Lambda functions but defining an AWS::Lambda::Permission for each:

  TopicConsumerFunction1Permission:
    Type: 'AWS::Lambda::Permission'
    Properties:
      Action: 'lambda:InvokeFunction'
      FunctionName: !Ref TopicConsumerFunction1
      Principal: sns.amazonaws.com

The SNSPublishMessagePolicy policy template grants permission to the publishing function to send messages to the topic. In the function, the publish method of the AWS.SNS class handles publishing:

const AWS = require('aws-sdk')
AWS.config.region = process.env.AWS_REGION 
const sns = new AWS.SNS({apiVersion: '2012-11-05'})

// The Lambda handler
exports.handler = async (event) => {
  // Params object for SNS
  const params = {
    Message: `Message at ${Date()}`,
    Subject: 'New message from publisher',
    TopicArn: process.env.SNStopic
  }
  
  // Send to SQS
  const result = await sns.publish(params).promise()
  console.log(result)
}

The payload for the consumer functions is the message from SNS. This is an array of messages, containing subject and message attributes from the publishing function. You can see this in the CloudWatch log for the function:

CloudWatch log result

Differences between SQS and SNS configurations

SQS queues and SNS topics offer different functionality, though both can publish to downstream Lambda functions.

An SQS message is stored on the queue for up to 14 days until it is successfully processed by a subscriber. SNS does not retain messages so if there are no subscribers for a topic, the message is discarded.

SNS topics may broadcast to multiple targets. This behavior is called fan-out. It can be used to parallelize work across Lambda functions or send messages to multiple environments (such as test or development). An SNS topic can have up to 12,500,000 subscribers, providing highly scalable fan-out capabilities. The targets may include HTTP/S endpoints, SMS text messaging, SNS mobile push, email, SQS, and Lambda functions.

In AWS SAM templates, you can retrieve properties such as ARNs and names of queues and topics, using the following intrinsic functions:

Amazon SQS Amazon SNS
Channel type Queue Topic
Get ARN !GetAtt MySqsQueue.Arn !Ref MySnsTopic
Get name !GetAtt MySqsQueue.QueueName !GetAtt MySnsTopic.TopicName

Integrating with EventBridge in AWS SAM

The third example shows the AWS SAM template defining a serverless application with two Lambda functions and an EventBridge rule:

EventBridge integration with AWS SAM

The default event bus already exists in every AWS account. You declare a rule that filters events in the event bus using the AWS::Events::Rule resource:

  EventRule: 
    Type: AWS::Events::Rule
    Properties: 
      Description: "EventRule"
      EventPattern: 
        source: 
          - "demo.event"
        detail: 
          state: 
            - "new"
      State: "ENABLED"
      Targets: 
        - Arn: !GetAtt EventConsumerFunction.Arn
          Id: "ConsumerTarget"

The rule describes an event pattern specifying matching JSON attributes. Events that match this pattern are routed to the list of targets. You provide the EventBridge service with permission to invoke the Lambda functions in the target list:

  PermissionForEventsToInvokeLambda: 
    Type: AWS::Lambda::Permission
    Properties: 
      FunctionName: 
        Ref: "EventConsumerFunction"
      Action: "lambda:InvokeFunction"
      Principal: "events.amazonaws.com"
      SourceArn: !GetAtt EventRule.Arn

The AWS SAM template uses an IAM policy statement to grant permission to the publishing function to put events on the event bus:

  EventPublisherFunction:
    Type: AWS::Serverless::Function
    Properties:
      CodeUri: code/
      Handler: publisher.handler
      Timeout: 3
      Runtime: nodejs12.x
      Policies:
        - Statement:
          - Effect: Allow
            Resource: '*'
            Action:
              - events:PutEvents      

The publishing function then uses the putEvents method of the AWS.EventBridge class, which returns after the events have been durably stored in EventBridge:

const AWS = require('aws-sdk')
AWS.config.update({region: 'us-east-1'})
const eventbridge = new AWS.EventBridge()

exports.handler = async (event) => {
  const params = {
    Entries: [ 
      {
        Detail: JSON.stringify({
          "message": "Hello from publisher",
          "state": "new"
        }),
        DetailType: 'Message',
        EventBusName: 'default',
        Source: 'demo.event',
        Time: new Date 
      }
    ]
  }
  const result = await eventbridge.putEvents(params).promise()
  console.log(result)
}

The payload for the consumer function is the message from EventBridge. This is an array of messages, containing subject and message attributes from the publishing function. You can see this in the CloudWatch log for the function:

CloudWatch log result

Comparing SNS with EventBridge

SNS and EventBridge have many similarities. Both can be used to decouple publishers and subscribers, filter messages or events, and provide fan-in or fan-out capabilities. However, there are differences in the list of targets and features for each service, and your choice of service depends on the needs of your use-case.

EventBridge offers two newer capabilities that are not available in SNS. The first is software as a service (SaaS) integration. This enables you to authorize supported SaaS providers to send events directly from their EventBridge event bus to partner event buses in your account. This replaces the need for polling or webhook configuration, and creates a highly scalable way to ingest SaaS events directly into your AWS account.

The second feature is the Schema Registry, which makes it easier to discover and manage OpenAPI schemas for events. EventBridge can infer schemas based on events routed through an event bus by using schema discovery. This can be used to generate code bindings directly to your IDE for type-safe languages like Python, Java, and TypeScript. This can help accelerate development by automating the generation of classes and code directly from events.

This table compares the major features of both services:

Amazon SNS Amazon EventBridge
Number of targets 10 million (soft) 5
Availability SLA 99.9% 99.99%
Limits 100,000 topics. 12,500,000 subscriptions per topic. 100 event buses. 300 rules per event bus.
Publish throughput Varies by Region. Soft limits. Varies by Region. Soft limits.
Input transformation No Yes – see details.
Message filtering Yes – see details. Yes, including IP address matching – see details.
Message size maximum 256 KB 256 KB
Billing Per 64 KB
Format Raw or JSON JSON
Receive events from AWS CloudTrail No Yes
Targets HTTP(S), SMS, SNS Mobile Push, Email/Email-JSON, SQS, Lambda functions. 15 targets including AWS LambdaAmazon SQSAmazon SNSAWS Step FunctionsAmazon Kinesis Data StreamsAmazon Kinesis Data Firehose.
SaaS integration No Yes – see integrations.
Schema Registry integration No Yes – see details.
Dead-letter queues supported Yes No
FIFO ordering available No No
Public visibility Can create public topics Cannot create public buses
Pricing $0.50/million requests + variable delivery cost + data transfer out cost. SMS varies. $1.00/million events. Free for AWS events. No charge for delivery.
Billable request size 1 request = 64 KB 1 event = 64 KB
AWS Free Tier eligible Yes No
Cross-Region You can subscribe your AWS Lambda functions to an Amazon SNS topic in any Region. Targets must be in the same Region. You can publish across Regions to another event bus.
Retry policy
  • For SQS/Lambda, exponential backoff over 23 days.
  • For SMTP, SMS and Mobile push, exponential backoff over 6 hours.
At-least-once event delivery to targets, including retry with exponential backoff for up to 24 hours.

Conclusion

Messaging is an important part of serverless applications and AWS services provide queues, publish/subscribe, and event routing capabilities. This post reviews the main features of SNS, SQS, and EventBridge and how they provide different capabilities for your workloads.

I show three example applications that publish and consume events from the three services. I walk through AWS SAM syntax for deploying these resources in your applications. Finally, I compare differences between the services.

To learn more building decoupled architectures, see this Learning Path series on EventBridge. For more serverless learning resources, visit https://serverlessland.com.

Building storage-first serverless applications with HTTP APIs service integrations

Post Syndicated from Eric Johnson original https://aws.amazon.com/blogs/compute/building-storage-first-applications-with-http-apis-service-integrations/

Over the last year, I have been talking about “storage first” serverless patterns. With these patterns, data is stored persistently before any business logic is applied. The advantage of this pattern is increased application resiliency. By persisting the data before processing, the original data is still available, if or when errors occur.

Common pattern for serverless API backend

Common pattern for serverless API backend

Using Amazon API Gateway as a proxy to an AWS Lambda function is a common pattern in serverless applications. The Lambda function handles the business logic and communicates with other AWS or third-party services to route, modify, or store the processed data. One option is to place the data in an Amazon Simple Queue Service (SQS) queue for processing downstream. In this pattern, the developer is responsible for handling errors and retry logic within the Lambda function code.

The storage first pattern flips this around. It uses native error handling with retry logic or dead-letter queues (DLQ) at the SQS layer before any code is run. By directly integrating API Gateway to SQS, developers can increase application reliability while reducing lines of code.

Storage first pattern for serverless API backend

Storage first pattern for serverless API backend

Previously, direct integrations require REST APIs with transformation templates written in Velocity Template Language (VTL). However, developers tell us they would like to integrate directly with services in a simpler way without using VTL. As a result, HTTP APIs now offers the ability to directly integrate with five AWS services without needing a transformation template or code layer.

The first five service integrations

This release of HTTP APIs direct integrations includes Amazon EventBridge, Amazon Kinesis Data Streams, Simple Queue Service (SQS), AWS System Manager’s AppConfig, and AWS Step Functions. With these new integrations, customers can create APIs and webhooks for their business logic hosted in these AWS services. They can also take advantage of HTTP APIs features like authorizers, throttling, and enhanced observability for securing and monitoring these applications.

Amazon EventBridge

HTTP APIs service integration with Amazon EventBridge

HTTP APIs service integration with Amazon EventBridge

The HTTP APIs direct integration for EventBridge uses the PutEvents API to enable client applications to place events on an EventBridge bus. Once the events are on the bus, EventBridge routes the event to specific targets based upon EventBridge filtering rules.

This integration is a storage first pattern because data is written to the bus before any routing or logic is applied. If the downstream target service has issues, then EventBridge implements a retry strategy with incremental back-off for up to 24 hours. Additionally, the integration helps developers reduce code by filtering events at the bus. It routes to downstream targets without the need for a Lambda function as a transport layer.

Use this direct integration when:

  • Different tasks are required based upon incoming event details
  • Only data ingestion is required
  • Payload size is less than 256 kb
  • Expected requests per second are less than the Region quotas.

Amazon Kinesis Data Streams

HTTP APIs service integration with Amazon Kinesis Data Streams

HTTP APIs service integration with Amazon Kinesis Data Streams

The HTTP APIs direct integration for Kinesis Data Streams offers the PutRecord integration action, enabling client applications to place events on a Kinesis data stream. Kinesis Data Streams are designed to handle up to 1,000 writes per second per shard, with payloads up to 1 mb in size. Developers can increase throughput by increasing the number of shards in the data stream. You can route the incoming data to targets like an Amazon S3 bucket as part of a data lake or a Kinesis data analytics application for real-time analytics.

This integration is a storage first option because data is stored on the stream for up to seven days until it is processed and routed elsewhere. When processing stream events with a Lambda function, errors are handled at the Lambda layer through a configurable error handling strategy.

Use this direct integration when:

  • Ingesting large amounts of data
  • Ingesting large payload sizes
  • Order is important
  • Routing the same data to multiple targets

Amazon SQS

HTTP APIs service integration with Amazon SQS

HTTP APIs service integration with Amazon SQS

The HTTP APIs direct integration for Amazon SQS offers the SendMessage, ReceiveMessage, DeleteMessage, and PurgeQueue integration actions. This integration differs from the EventBridge and Kinesis integrations in that data flows both ways. Events can be created, read, and deleted from the SQS queue via REST calls through the HTTP API endpoint. Additionally, a full purge of the queue can be managed using the PurgeQueue action.

This pattern is a storage first pattern because the data remains on the queue for four days by default (configurable to 14 days), unless it is processed and removed. When the Lambda service polls the queue, the messages that are returned are hidden in the queue for a set amount of time. Once the calling service has processed these messages, it uses the DeleteMessage API to remove the messages permanently.

When triggering a Lambda function with an SQS queue, the Lambda service manages this process internally. However, HTTP APIs direct integration with SQS enables developers to move this process to client applications without the need for a Lambda function as a transport layer.

Use this direct integration when:

  • Data must be received as well as sent to the service
  • Downstream services need reduced concurrency
  • The queue requires custom management
  • Order is important (FIFO queues)

AWS AppConfig

HTTP APIs service integration with AWS Systems Manager AppConfig

HTTP APIs service integration with AWS Systems Manager AppConfig

The HTTP APIs direct integration for AWS AppConfig offers the GetConfiguration integration action and allows applications to check for application configuration updates. By exposing the systems parameter API through an HTTP APIs endpoint, developers can automate configuration changes for their applications. While this integration is not considered a storage first integration, it does enable direct communication from external services to AppConfig without the need for a Lambda function as a transport layer.

Use this direct integration when:

  • Access to AWS AppConfig is required.
  • Managing application configurations.

AWS Step Functions

HTTP APIs service integration with AWS Step Functions

HTTP APIs service integration with AWS Step Functions

The HTTP APIs direct integration for Step Functions offers the StartExecution and StopExecution integration actions. These actions allow for programmatic control of a Step Functions state machine via an API. When starting a Step Functions workflow, JSON data is passed in the request and mapped to the state machine. Error messages are also mapped to the state machine when stopping the execution.

This pattern provides a storage first integration because Step Functions maintains a persistent state during the life of the orchestrated workflow. Step Functions also supports service integrations that allow the workflows to send and receive data without needing a Lambda function as a transport layer.

Use this direct integration when:

  • Orchestrating multiple actions.
  • Order of action is required.

Building HTTP APIs direct integrations

HTTP APIs service integrations can be built using the AWS CLI, AWS SAM, or through the API Gateway console. The console walks through contextual choices to help you understand what is required for each integration. Each of the integrations also includes an Advanced section to provide additional information for the integration.

Creating an HTTP APIs service integration

Creating an HTTP APIs service integration

Once you build an integration, you can export it as an OpenAPI template that can be used with infrastructure as code (IaC) tools like AWS SAM. The exported template can also include the API Gateway extensions that define the specific integration information.

Exporting the HTTP APIs configuration to OpenAPI

Exporting the HTTP APIs configuration to OpenAPI

OpenAPI template

An example of a direct integration from HTTP APIs to SQS is located in the Sessions With SAM repository. This example includes the following architecture:

AWS SAM template resource architecture

AWS SAM template resource architecture

The AWS SAM template creates the HTTP APIs, SQS queue, Lambda function, and both Identity and Access Management (IAM) roles required. This is all generated in 58 lines of code and looks like this:

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: HTTP API direct integrations

Resources:
  MyQueue:
    Type: AWS::SQS::Queue
    
  MyHttpApi:
    Type: AWS::Serverless::HttpApi
    Properties:
      DefinitionBody:
        'Fn::Transform':
          Name: 'AWS::Include'
          Parameters:
            Location: './api.yaml'
          
  MyHttpApiRole:
    Type: "AWS::IAM::Role"
    Properties:
      AssumeRolePolicyDocument:
        Version: "2012-10-17"
        Statement:
          - Effect: "Allow"
            Principal:
              Service: "apigateway.amazonaws.com"
            Action: 
              - "sts:AssumeRole"
      Policies:
        - PolicyName: ApiDirectWriteToSQS
          PolicyDocument:
            Version: '2012-10-17'
            Statement:
              Action:
              - sqs:SendMessage
              Effect: Allow
              Resource:
                - !GetAtt MyQueue.Arn
                
  MyTriggeredLambda:
    Type: AWS::Serverless::Function
    Properties:
      CodeUri: src/
      Handler: app.lambdaHandler
      Runtime: nodejs12.x
      Policies:
        - SQSPollerPolicy:
            QueueName: !GetAtt MyQueue.QueueName
      Events:
        SQSTrigger:
          Type: SQS
          Properties:
            Queue: !GetAtt MyQueue.Arn

Outputs:
  ApiEndpoint:
    Description: "HTTP API endpoint URL"
    Value: !Sub "https://${MyHttpApi}.execute-api.${AWS::Region}.amazonaws.com"

The OpenAPI template handles the route definitions for the HTTP API configuration and configures the service integration. The template looks like this:

openapi: "3.0.1"
info:
  title: "my-sqs-api"
paths:
  /:
    post:
      responses:
        default:
          description: "Default response for POST /"
      x-amazon-apigateway-integration:
        integrationSubtype: "SQS-SendMessage"
        credentials:
          Fn::GetAtt: [MyHttpApiRole, Arn]
        requestParameters:
          MessageBody: "$request.body.MessageBody"
          QueueUrl:
            Ref: MyQueue
        payloadFormatVersion: "1.0"
        type: "aws_proxy”
        connectionType: "INTERNET"
x-amazon-apigateway-importexport-version: "1.0"

Because the OpenAPI template is included in the AWS SAM template via a transform, the API Gateway integration can reference the roles and services created within the AWS SAM template.

Conclusion

This post covers the concept of storage first integration patterns and how the new HTTP APIs direct integrations can help. I cover the five current integrations and possible use cases for each. Additionally, I demonstrate how to use AWS SAM to build and manage the integrated applications using infrastructure as code.

Using the storage first pattern with direct integrations can help developers build serverless applications that are more durable with fewer lines of code. A Lambda function is no longer required to transport data from the API endpoint to the desired service. Instead, use Lambda function invocations for differentiating business logic.

To learn more join us for the HTTP API service integrations session of Sessions With SAM! 

#ServerlessForEveryone

ICYMI: Season one of Sessions with SAM

Post Syndicated from Eric Johnson original https://aws.amazon.com/blogs/compute/icymi-season-one-of-sessions-with-sam/

Developers tell us they want to know how to easily build and manage their serverless applications. In 2017 AWS announced AWS Serverless Application Model (SAM) to help with just that. To help developers learn more about SAM, I created a weekly Twitch series called Sessions with SAM. Each session focuses on a specific serverless task or service. It demonstrates deploying and managing that task using infrastructure as code (IaC) with SAM templates. This post recaps each session of the first season to prepare you for Sessions with SAM season two, starting August 13.

Sessions with SAM

Sessions with SAM

What is SAM

AWS SAM is an open source framework designed for building serverless applications. The framework provides shorthand syntax to quickly declare AWS Lambda functions, Amazon DynamoDB tables and more. Additionally, SAM is not limited to serverless resources and can also declare any standard AWS CloudFormation resource. With around 20 lines of code, a developer can create an application with an API, logic, and database layer with the proper permissions in place.

Example of using SAM templates to generate infrastructure

20 Lines of code

By using infrastructure as code to manage and deploy serverless applications, developers gain several advantages. You can version the templates and rollback when necessary. They can be parameterized for flexibility across multiple environments. They can be shared with development teams for consistency across developer environments.

Sessions

The code and linked videos are listed with the session. See the YouTube playlist and GitHub repository for the entire season.

Session one: JWT authorizers on Amazon API Gateway

In this session, I cover building an application backend using JWT authorizers with the new Amazon API Gateway HTTP API. We also discussed building an application with multiple routes and the ability to change the authorization requirements per route.

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/http-api

Video: https://youtu.be/klOScYEojzY

Session two: Amazon Cognito authentication

In this session, I cover building an Amazon Cognito template for authentication. This includes the user management component with user pools and user groups in addition to a hosted authentication workflow with an app client.

Building an Amazon Cognito authentication provider

Building an Amazon Cognito authentication provider

We also discussed using custom pre-token Lambda functions to modify the JWT token issued by Amazon Cognito. This custom token allows you to insert custom scopes based on the Amazon Cognito user groups. These custom scopes are then used to customize the authorization requirements for the individual routes.

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/cognito

Video: https://youtu.be/nBtWCjKd72M

Session three: Building a translation app with Amazon EventBridge

I covered using AWS SAM to build a basic translation and sentiment app centered around Amazon EventBridge. The SAM template created three Lambda functions, a custom EventBridge bus, and an HTTP API endpoint.

Architecture for serverless translation application

Architecture for serverless translation application

Requests from HTTP API endpoint are put into the custom EventBridge bus via the endpoint Lambda function. Based on the type of request, either the translate function or the sentiment function is invoked. The AWS SAM template manages all the infrastructure in addition to the permissions to invoke the Lambda functions and access Amazon Translate and Amazon Comprehend.

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/eventbridge

Video: https://youtu.be/73R02KufLac

Session four: Building an Amazon Kinesis Data Firehose for ingesting website access logs

In this session, I covered building an Amazon Kinesis Data Firehose for ingesting large amounts of data. This particular application is designed for access logs generated from API Gateway. The logs are first stored to an Amazon DynamoDB data base for immediate processing. Next, the logs are sent through a Kinesis Data Firehose and stored in an Amazon S3 bucket for later processing.

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/kinesis-firehose

Video: https://youtu.be/jdTBtaxs0hA

Session five: Analyzing API Gateway logs with Amazon Kinesis Data Analytics

Continuing from session 4, I discussed configuring API Gateway access logs to use the Kinesis Data Firehose built in the previous session. I also demonstrate an Amazon Kinesis data analytics application for near-real-time analytics of your access logs.

Example of Kinesis Data Analytics in SAM

Example of Kinesis Data Analytics in SAM

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/kinesis-firehose

Video: https://youtu.be/ce0v-q9EVTQ

Session six: Managing Amazon SQS with AWS SAM templates

I demonstrated configuring an Amazon Simple Queue Service (SQS) queue and the queue policy to control access to the queue. We also discuss allowing cross-account and external resources to access the queue. I show how to identify the proper principal resources for building the proper AWS IAM policy templates.

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/SQS

Video: https://youtu.be/q2rbHMyJBDY

Session seven: Creating canary deploys for Lambda functions

In this session, I cover canary and linear deployments for serverless applications. We discuss how canary releases compare to linear releases and how they can be customized. We also spend time discussing pre-traffic and post-traffic tests and how rollbacks are handled when one of these tests fails.

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/safe-deploy

Video: https://youtu.be/RE4r_6edaXc

Session eight: Configuring custom domains for Amazon API Gateway endpoints

In session eight I configured custom domains for API Gateway REST and HTTP APIs. The demonstration included the option to pass in an Amazon Route 53 zone ID or AWS Certificate Manager (ACM) certificate ARN. If either of these are missing, then the template built a zone or SSL cert respectively.

Working with Amazon Route 53 zones

Working with Amazon Route 53 zones

We discussed how to use declarative and imperative methods in our templates. We also discussed how to use a single domain across multiple APIs, regardless of they are REST or HTTP APIs.

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/custom-domains

Video: https://youtu.be/4uXEGNKU5NI

Session nine: Managing AWS Step Functions with AWS SAM

In this session I was joined by fellow Senior Developer Advocate, Rob Sutter. Rob and I demonstrated managing and deploying AWS Step Functions using the new Step Functions support built into SAM. We discussed how SAM offers definition substitutions to pass data from the template into the state machine configuration.

Code: https://github.com/aws-samples/sessions-with-aws-sam/tree/master/step-functions

Video: https://youtu.be/BguUgdZwymQ

Session ten: Using Amazon EFS with Lambda functions in SAM

Joined by Senior Developer Advocate, James Beswick, we covered configuring Amazon Elastic File System (EFS) as a storage option for Lambda functions using AWS SAM. We discussed the Amazon VPC requirements in configuring for EFS. James also walked through using the AWS Command Line Interface (CLI) to aid in configuration of the VPC.

Code: https://github.com/aws-samples/aws-lambda-efs-samples

Video: https://youtu.be/up1op216trk

Session eleven: Ask the experts

This session introduced you to some of our SAM experts. Jeff Griffiths, Senior Product Manager, and Alex Woods, Software Development Engineer, joined me in answering live audience questions. WE discussed best practices for local development and debugging, Docker networking, CORS configurations, roadmap features and more.

SAM experts panel

SAM experts panel

Video: https://youtu.be/2JRa8MugPCY

Session twelve: Managing .Net Lambda function in AWS SAM and Stackery

In this final session of the season, I was joined by Stackery CTO and serverless hero, Chase Douglas. Chase demonstrated using Stackery and AWS SAM to build and deploy .Net Core Lambda functions. We discuss how Stackery’s editor allows developers to visually design a serverless application and how it uses SAM templates under the hood.

Stackery visual editor

Stackery visual editor

Code only examples

In addition to code examples with each video session, the repo includes developer-requested code examples. In this section, I demonstrate how to build an access log pipeline for HTTP API or use the SAM build command to compile Swift for Lambda functions.

Conclusion

Sessions with SAM helps developers bootstrap their serverless applications with instructional video and ready-made IaC templates. From JWT authorizers to EFS storage solutions, over 15 AWS services are represented in SAM templates. The first season of live videos supplements these templates with best practices explained and real developer questions answered.

Season two of Sessions with SAM starts August 13. The series will continue the pattern of explaining best practices, providing usable starter templates, and having some fun along the way.

#ServerlessForEveryone

 

BBVA: Architecture for Large-Scale Macie Implementation

Post Syndicated from Neel Sendas original https://aws.amazon.com/blogs/architecture/bbva-architecture-for-large-scale-macie-implementation/

This post was co-written by Andrew Alaniz , Technical Information Security Officer, and Brady Pratt, Cloud Security Enginner, both at BBVA USA.

Introduction

Data Loss Prevention (DLP) is a common topic among companies that work with any type of sensitive data. One of the challenges is that many people either don’t fully understand what DLP is, or rather, have their own definition of what it is. Regardless of one’s interpretation of DLP, one thing is certain: before you can control data loss, you need to locate find the data sources.

If an organization can’t identify its data, it can’t protect it. BBVA USA, a bank holding company, turned to AWS for advice, and decided to use Amazon Macie to accomplish this in Amazon Simple Storage Service (Amazon S3). Macie is a fully managed data security and data privacy service that uses machine learning and pattern matching to discover and protect your sensitive data in AWS. This blog post will share some of the design and architecture we used to deploy Macie using services, such as AWS Lambda and Amazon CloudWatch.

Data challenges in Amazon S3

Although all S3 buckets are private by default, everyone is aware of the challenges of unsecured S3 buckets exposing data publicly. Amazon has provided a way to prevent that by removing the ability to make buckets public. As with other data storage mechanisms, this doesn’t stop anyone from storing sensitive data within AWS and exposing it another way. With Macie, one can classify the data stored in S3, centrally, and through AWS Organizations.

Recommended architecture

We can break the Macie architecture into two main parts: S3 discovery and evaluation, and S3 sensitive data discovery:

Macie architecture

The setup of discovery and evaluation is simple and straightforward, and should be enabled through Amazon Organizations and across all accounts. The cost of this piece is minimal, and it provides valuable insights into the compliance state of S3 buckets.

Once setup of discovery and evaluation is completed, we are a ready to move to the next step and configure discovery jobs for our S3 buckets. The architecture includes the use of S3, Amazon CloudWatch Events, Amazon EventBridge, and Lambda. All of the execution should happen in a centralized account, but the event triggers should come from each individual account.

Architectural considerations

When determining the architectural design of the solution, consider a few main components:

Centralization

Utilize AWS Organizations: Macie allows native integration with AWS Organizations. This is a significant advantage for Macie. Additionally, within AWS Organizations, it allows the delegation of the Macie master account to a subordinate account. The benefit of this is that it allows centralized management while allowing for the compartmentalization of roles.

Ease of management

One of the most challenging things to manage is non-conforming configurations. It’s much easier to manage a standard way to create, name, and configure settings. Once the classification jobs were ready to be created, we had to take into consideration the following when deploying Macie for our use case:

  1. Macie classifies content in a single job across one account.
  2. If you submit multiple jobs that contain the same bucket, Macie will scan the objects multiple times.
  3. Macie jobs are immutable.

Due to these considerations, we decided to create one job per S3 bucket. This allows administrators to search more easily for jobs related to findings.

Cost considerations

Macie plays an essential role, not only in identifying data and improving data collection, but also in compliance. We needed to make a decision about how to determine if an S3 bucket would be included in a classification job. Initially, we considered including all buckets no matter what. The logic here was that even if we make an assumption that a bucket would never have sensitive data in it, an entity with the right role could always add something at a later date.

Finally, we implemented a solution to tag specific buckets that were known to have immutable properties and which would never allow sensitive data to be added. We could do this because we knew exactly what data was in the bucket, who or what created the bucket, and exactly who or what had access to the bucket.

An example of this type of bucket is the S3 bucket used to store VPC Flow Logs. We know that this bucket is only created by provisioning scripts and is only going to store VPC flow logs that contain no sensitive data based on data classification standards. Also, only VPC services and specific security services can access this bucket for anything other than READ. This is controlled organizationally and can be tagged with a simple ignore key/value pair upon creation.

Deploying Macie at BBVA USA

BBVA USA developed an approach to working within AWS that allows guardrails to be applied as accounts are created. One of those guardrails identifies if developers have stored sensitive data in an account. BBVA needed to be able to do this, and do it at scale. If there is a roadblock or a challenge with AWS services, the first place BBVA looks is to support, but the second place is the Technical Account Manager.

After initiating conversations with its account team, BBVA determined that AWS Macie was the tool to help them with this challenge.

With the help of its technical account manager (TAM), BBVA was able to meet with the Macie Product team and discuss the best options for deploying at scale. Through these conversations, they were even able to influence the Macie product roadmap.

Getting Macie ready to deploy at scale was actually quite simple once the architectural pattern was designed.

Initial job creation

In order to set up jobs for each existing bucket in the organization, it’s a matter of scripting the job creation and adding each bucket from each account into its own job, which is pretty straightforward.

Job creation for new buckets

The recommended architecture and implementation for existing buckets:

  1. Whenever a new S3 bucket is added to Organization accounts, trigger a CloudWatch Event in the target account.
  2. Set up a cross account EventBridge to consume the Event. Using the EventBridge allows for a simpler configuration and centralized management of both Events and Lambda.
  3. Trigger a Lambda function in a delegated Macie admin account, which creates classification jobs to apply Macie to all the newly created S3 buckets.
  4. Repeat the same process when a bucket is deleted by triggering a cancel job.

Evaluate the state of S3 buckets

To evaluate the S3 accounts, turn on Macie at the organization master account and delegate administration to a subordinate account used for Macie. This enables management consolidation of security features into a centralized security account. This helps further restrict access from those that may need access to the master billing account. Finally, enable Macie by default on all organization accounts.

Evaluate the state of S3 buckets

Conclusion

BBVA USA worked directly with the Macie product team by leveraging its relationship with the AWS account team and Enterprise Support. This allowed the company to eventually deploy Macie quickly and at scale. Through Macie, the company is able to track any changes to configurations on buckets that allow a bucket to be public, shared, or replicated with external accounts and if the encryption policies are disabled. Using Macie, BBVA was able to identify buckets that contained sensitive information and put in another control to bolster its AWS governance profile.

Managing backend requests and frontend notifications in serverless web apps

Post Syndicated from James Beswick original https://aws.amazon.com/blogs/compute/managing-backend-requests-and-frontend-notifications-in-serverless-web-apps/

Web and mobile applications usually interact with a backend service, often via an API. Many front-end applications pass requests for processing, wait for a result, and then display this to the user. This synchronous approach is only one way to handle messages, but modern applications have alternatives to provide a better user experience.

There are three common ways to make and manage requests from your frontend. This blog post explains the benefits and use-cases of each approach. This post references the Ask Around Me example application, which allows users to ask and answer questions in their local geographic area in real time. To learn more, refer to part 1 of the blog application series.

The synchronous model

The synchronous call is the most common API request pattern, where the caller makes a request to an API and then waits for the response:

Synchronous API example

This type of request is easy to implement and understand because it mirrors the functional call-response pattern many developers are familiar with. The requestor is blocked until the calls completes, so it is well suited to simple requests with short execution times. Use cases include: retrieving the contents of a shopping cart, looking up a value in a database, or submitting an email address from a web form.

However, when your API interacts with other services or external workflows, the synchronous model can have limitations. In the following ecommerce example, any slow performance in the downstream services delays the entire roundtrip performance. Additionally, any outages in one of those services may result in an apparent failure of the entire service.

Tight coupling of services

For services with lengthy workflows, you may reach API Gateway’s 29-second integration timeout. In the following ride sharing example, the service responsible for finding available drivers may have a highly variable response time. This request may time out. It also provides a poor user experience, as there is no feedback to the user for a considerable period.

Lengthy request example

Synchronous requests also have others limitations. You cannot receive more than one response per request, nor can you subscribe to future changes in data. In this example, the API request can only inform callers about drivers at the end of the length process request.

The asynchronous model

Asynchronous tasks are common in serverless applications and distributed applications. They allow separate parts of an application to communicate without needing to wait for a synchronous response. Asynchronous workloads often use queues between services to help manage throughout and assist with retry logic.

With asynchronous tasks, the caller hands off the event and continues on to the next task after receiving the acknowledgment response. The caller does not wait for the entire task to complete. The downstream service works on this event while the caller continues servicing other requests. The ecommerce example, converted to an asynchronous flow, looks like this:

Asynchronous request example

In this example, a caller submits an order and receives a response from API Gateway almost immediately. With service integrations, API Gateway then stores the request directly in a durable store such as Amazon SQS or DynamoDB, before any processing has occurred. This results in a relatively consistent caller response time, regardless of downstream service processing time.

The downstream services fetch messages from the SQS queue or the DynamoDB table for processing. If there is a downstream outage, messages are persisted in the queue and may be retried later. From the user’s perspective, the request has been successfully submitted.

The Ask Around Me application handles the publishing of both questions and answers asynchronously. The API passes the user data to a Lambda function that stores the message in an SQS queue. SQS responds immediately to indicate that the message has been stored successfully, ending the API response. Another Lambda function then takes the messages from the SQS queue and processes these independently.

Ask Around Me save question example

Both synchronous and asynchronous requests are useful for different functions in web applications, so it can be helpful to compare their features and behaviors:

Synchronous requests Asynchronous requests
The caller waits until the end of processing for a response. The caller receives an acknowledgment quickly while processing continues.
Waiting may incur cost. Minimizes the cost of waiting.
Downstream slowness or outages affects the overall request. Queuing separates ingestion of the request from the processing of the request.
Passes payloads between steps. More often passes transaction identifiers.
Failure affects entire request. Failure only affects segment of request.
Easy to implement. Moderate complexity in implementation

Handling response values and state for asynchronous requests

With asynchronous processes, you cannot pass a return value back to the caller in the same way as you can for synchronous processes. Beyond the initial acknowledgment that the request has been received, there is no return path to provide further information. There are a couple of options available to web and mobile developers to track the state of inflight requests:

  • Polling: the initial request returns a tracking identifier. You create a second API endpoint for the frontend to check the status of the request, referencing the tracking ID. Use DynamoDB or another data store to track the state of the request.
  • WebSocket: this is a bidirectional connection between the frontend client and the backend service. It allows you to send additional information after the initial request is completed. Your backend services can continue to send data back to the client by using a WebSocket connection.

Polling is a simple mechanism to implement for many systems but can result in many empty calls. There is also a delay between data availability and the client being notified. WebSockets provide notifications that are closer to real time and reduce the number of messages between the client and backend system. However, implementing WebSockets is often more complex.

Using AWS IoT Core for real-time messaging

In both the synchronous and asynchronous models, it’s assumed that the caller makes a request and is only interested in the final result of that request. This doesn’t allow for partial information, such as the percentage of a task complete, or being notified continuously as data changes.

Modern web applications commonly use the publish-subscribe pattern to receive notifications as data changes. From receiving alerts when new email arrives to providing dashboard analytics, this method allows for much richer streams of event from backend systems.

In Ask Around Me, the application uses this pattern when listening for new questions from the user’s local area. The frontend subscribes to the geohash value of the user’s location via the AWS SDK. It then waits for messages published by the backend to this topic.

AWS IoT Core between frontend and backend

The SDK automatically manages the WebSocket connection and also handles many common connectivity issues in web apps. The messages are categorized using topics, which are strings defining channels of messages.

The AWS IoT Core service manages broadcasts between backend publishers and frontend subscribers. This enables fan-out functionality, which occurs when multiple subscribers are listening to the same topic. You can broadcast messages to thousands of frontend devices using this mechanism. For web application integration, this is the preferable way to implement publish-subscribe than using Amazon SNS.

The IotData class in the AWS SDK returns a client that uses the MQTT protocol. Once the frontend application establishes the connection, it returns messages, errors, and the connection status via callbacks:

        mqttClient.on('connect', function () {
          console.log('mqttClient connected')
        })

        mqttClient.on('error', function (err) {
          console.log('mqttClient error: ', err)
        })

        mqttClient.on('message', function (topic, payload) {
          const msg = JSON.parse(payload.toString())
          console.log('IoT msg: ', topic, msg)
        })

For more details on how to implement MQTT WebSocket connectivity for your application, see the Ask Around Me sample application code.

Combining multiple approaches for your frontend application

Many frontend applications can combine these models depending on the request type. The Ask Around Me application uses multiple approaches in managing the state of user questions:

Combining multiple models in one application

  1. When the application starts, it retrieves an initial set of questions from the synchronous API endpoint. This returns the available list of questions up to this point in time.
  2. Simultaneously, the frontend subscribes to the geohash topic via AWS IoT Core. Any new questions for this geohash location are sent from the backend processing service to the frontend via this topic. This allows the frontend to receive new questions without subsequent API calls.
  3. When a new question is posted, it is saved to the relevant SQS queue and acknowledged. The question is processed asynchronously by a backend process, which sends updates to the topic.

There are several benefits to combining synchronous, asynchronous, and real-time messaging approaches like this. Most importantly, the user experience remains consistent. The user receives immediate feedback to posting new questions and answers, while longer-running processes are managed asynchronously.

When new information becomes available, the frontend is notified in near-real time. This happens without needing to poll an API endpoint or have the user refresh the user interface. This also reduces the number of unnecessary API calls on the backend service, reducing the cost of running this application. Finally, this uses scalable managed services so the frontend application can support large numbers of users without impacting performance.

Conclusion

Web applications commonly use synchronous APIs when communicating with backend services. For longer-running processes, asynchronous workflows can offer an improved user experience and help manage scaling. By using durable message stores like SQS or DynamoDB, you can separate the request ingestion and response from the request processing.

In this post, I show how modern web applications use real-time messaging via WebSockets to improve the user experience. This provides a transport mechanism for pushing state updates from the backend to the frontend client. The AWS IoT Core service can fan out messages using topics, broadcasting messages to large numbers of frontend subscribers.

To see these three methods in an example frontend application, read more about the Ask Around Me example application.

Building a location-based, scalable, serverless web app – part 3

Post Syndicated from James Beswick original https://aws.amazon.com/blogs/compute/building-a-location-based-scalable-serverless-web-app-part-3/

In part 2, I cover the API configuration, geohashing algorithm, and real-time messaging architecture used in the Ask Around Me web application. These are needed for receiving and processing questions and answers, and sending results back to users in real time.

In this post, I explain the backend processing architecture, how data is aggregated, and how to deploy the final application to production. The code and instructions for this application are available in the GitHub repo.

Processing questions

The frontend sends new user questions to the backend via the POST questions API. While the predicted volume of questions is only 1,000 per hour, it’s possible for usage to spike unexpectedly. To help handle this load, the PostQuestions Lambda function puts incoming questions onto an Amazon SQS queue. The ProcessQuestions function takes messages from the Questions queue in batches of 10, and loads these into the Questions table in Amazon DynamoDB.

Questions processing architecture

This asynchronous process smooths out traffic spikes, ensuring that the application is not throttled by DynamoDB. It also provides consistent response times to the front-end POST request, since the API call returns as soon as the message is durably persisted to the queue.

Currently, the ProcessQuestions function does not parse or validate user questions. It would be easy to add message filtering at this stage, using Amazon Comprehend to detect sentiment or inappropriate language. These changes would increase the processing time per question, but by handling this asynchronously, the initial POST API latency is not adversely affected.

The ProcessQuestions function uses the Geo Library for Amazon DynamoDB that converts the question’s latitude and longitude into a geohash. This geohash attribute is one of the indexes in the underlying DynamoDB table. The GetQuestions function using the same library for efficiently querying questions based on proximity to the user.

There are a couple of different mechanisms used to pass information between the frontend and backend applications. When the frontend first initializes, it retrieves the current location of the user from the browser. It then calls the questions API to get a list of active questions within 5 miles of the current location. This retrieves the state up to this point in time. To receive notifications of new messages posted in the user’s area, the frontend also subscribes to the geohash topic in AWS IoT Core.

Processing answers

Answers processing architecture

The application allows two types of question that have different answer types. First, the rating questions accept an answer with a 0–5 score range. Second, the geography questions accept a geo-point, which is a latitude and longitude representing a location.

Similar to the way questions are handled, answers are also queued before processing. However, the PostAnswers Lambda function sends answers to different queues, depending on question type. Ratings messages are sent to the StarAnswers queue, while geography messages are routed to the GeoAnswers queue. Star ratings are saved as raw data in the Answers table by the ProcessAnswerStar function. Geography answers are first converted to a geohash before they are stored.

It’s possible for users to submit updates to their answers. For a star rating, the processing function simply saves the new score. For geography answers, if the updated answer contains a latitude and longitude close enough to the original answer, it results in the same geohash. This is due to the different aggregation processes used for these types of answers.

Aggregating data

In this application, the users asking questions are seeking aggregated answers instead of raw data. For example, “How do you rate the park?” shows an average score from users instead of thousands of individual ratings. To maintain performance, this aggregation occurs when new answers are saved to the database, not when the application fetches the question list.

The Answers table emits updates to a DynamoDB stream whenever new items are inserted or updated. The StreamSpecification parameter in the table definition is set to NEW_AND_OLD_IMAGES, meaning the stream record contains both the new and old item record.

New answers to questions are new items in the table, so the stream record only contains the new image. If users update their answers, this creates an updated item in the table, and the stream record contains both the new and old images of the item.

For star ratings, when receiving an updated rating, the Aggregation function uses both images to calculate the delta in the score. For example, if the old rating was 2 and the user changes this to 5, then the delta is 3. The summary score related to the answer is updated in the Questions table, using a DynamoDB update expression:

    const result = await myGeoTableManager.updatePoint({
      RangeKeyValue: { S: update }, 
      GeoPoint: {
        latitude: item.lat,
        longitude: item.lng
      },
      UpdateItemInput: {
        UpdateExpression: 'ADD answers :deltaAnswers, totalScore :deltaTotalScore',
        ExpressionAttributeValues: {
          ':deltaAnswers': { N: item.deltaAnswers.toString()},
          ':deltaTotalScore': { N: item.deltaValue.toString()}
        }
      }
    }).promise()

For geo-point ratings, the same approach is used but if the geohash changes, then the delta is -1 for the geohash in the old image, and +1 for the geohash in the new image. The update expression automatically creates a new geohash attribute on the DynamoDB item if it is not already present:

    const result = await myGeoTableManager.updatePoint({
      RangeKeyValue: { S: item.ID }, 
      GeoPoint: {
        latitude: item.lat,
        longitude: item.lng
      },
      UpdateItemInput: {
        UpdateExpression: `ADD ${item.geohash} :deltaAnswers, answers :deltaAnswers`,
        ExpressionAttributeValues: {
          ':deltaAnswers': { N: item.deltaAnswers.toString() }          
        }
      }
    }).promise()

By using a Lambda function as a DynamoDB stream processor, you can aggregate large amounts of data in near real time. The Questions and Answers tables have a one-to-many relationship – many answers belong to one question. As answers are saved, the aggregation process updates the summaries in the Questions table.

The Questions table also publishes updates to another DynamoDB stream. These are consumed by a Lambda function that sends the aggregated update to topics in AWS IoT Core. This is how updated scores are sent back to the frontend client application.

Publishing to production with Amplify Console

At this point, you can run the application on your local development machine and view the application via the localhost Vue.js server. Once you are ready to launch the application to users, you must deploy to production.

Single-page applications are easy to deploy publicly. The build process creates static HTML, JS, and CSS files. These can be served via Amazon S3 and Amazon CloudFront, together with any image and media assets used. The process of running the build process and managing the deployment can be automated using AWS Amplify Console.

In this walk through, I use GitHub as the repo provider. You can also use AWS CodeCommit, Bitbucket, GitLab, or upload the build directory from your machine.

To deploy the front end via Amplify Console:

  1. From the AWS Management Console, select the Services dropdown and choose AWS Amplify. From the initial splash screen, choose Get Started under Deploy.Amplify Console getting started
  2. Select GitHub as the repository provider, then choose Continue:Select GitHub as your code repo
  3. Follow the prompts to enable GitHub access, then select the repository dropdown and choose the repo. In the Branch dropdown, choose master. Choose Next.Add repository branch
  4. In the App build and test settings page, choose Next.
  5. In the Review page, choose Save and deploy.
  6. The final screen shows the deployment pipeline for the connected repo, starting at the Provision phase:Amplify Console deployment pipeline

After a few minutes, the Build, Deploy, and Verify steps show green checkmarks. Open the URL in a browser, and you see that the application is now served by the public URL:

Ask Around Me - Deployed application

Finally, before logging in, you must add the URL to the list of allowed URLs in the Auth0 settings:

  1. Log into Auth0 and navigate to the dashboard.
  2. Choose Applications in the menu, then select Ask Around Me from the list of applications.
  3. On the Settings tab, add the application’s URL to Allowed Callback URLs, Allowed Logout URLs, and Allowed Web Origins. Separate from the existing values using a comma.Updating the Auth0 configuration
  4. Choose Save changes. This allows the new published domain name to interact with Auth0 for authentication your application’s users.

Anytime you push changes to the code repository, Amplify Console detects the commit and redeploys the application. If errors are detected, the existing version is presented to users. If there are no errors, the new version is served to visitors.

Conclusion

In the last part of this series, I show how the application queues posted questions and answers. I explain how this asynchronous approach smooths traffic spikes and helps maintain responsive APIs.

I cover how answers are collected from thousands of users and are aggregated using DynamoDB streams. These totals are saved as summaries in the Questions table, and live updates are pushed via AWS IoT Core back to the frontend.

Finally, I show how you can automate deployment using Amplify Console. By connecting the service directly with your code repository, it publishes and serves your application with no need to manually copy files.

To learn more about this application, see the accompanying GitHub repo.

Building scalable serverless applications with Amazon S3 and AWS Lambda

Post Syndicated from James Beswick original https://aws.amazon.com/blogs/compute/building-scalable-serverless-applications-with-amazon-s3-and-aws-lambda/

Well-designed serverless applications are typically a combination of managed services connected by custom business logic. One of the most powerful combinations for enterprise application development is Amazon S3 and AWS Lambda. S3 is a highly durable, highly available object store that scales to meet your storage needs. Lambda runs custom code in response to events, automatically scaling with the size of the workload. When you use the two services together, they can provide a scalable core for serverless solutions.

This blog post shows how to design and deploy serverless applications designed around S3 events. The solutions presented use AWS services to create scalable serverless architectures, using minimal custom code. This is the conclusion of a series showing how the S3-to-Lambda pattern can implement the following business solutions:

Bringing the compute layer to the data

Much traditional software operates by bringing data to the compute layer. This means that processes run on batches of data in files, databases, and other sources. This is inherently harder to scale as data volumes grow, often needing a fleet of servers to scale out at peak times. For the developer, this creates operational overhead to ensure that the compute capacity is keeping pace with the data volume.

The S3-to-Lambda serverless pattern instead brings the compute layer to the data. As data arrives, the compute process scales up and down automatically to meet the demand. This allows developers to focus on building business logic for a single item of data, and the execution at scale is handled by the Lambda service.

The image optimization application is a good example for comparing the traditional and serverless approaches. For a busy media site, capturing hundreds of images per minute in an S3 bucket, the operations overhead becomes clearer. A script running on a server must scale up across multiple instances to keep pace with this level of traffic. Compare this to the Lambda-based approach, which scales on-demand. The code itself does not change, whether it is used for a single image or thousands.

Receiving and processing events from S3 in custom code

S3 raises events when objects are put, copied, or deleted in a bucket. It also raises a broad number of other notifications, such as when lifecycle events occur. You can configure S3 to invoke Lambda from these events by using the S3 console, Lambda console, AWS CLI, or AWS Serverless Application Model (SAM) templates.

S3 passes details of the event, not the object itself, to the Lambda function in a JSON object. This object contains an array of records, so it’s possible to receive more than one S3 event per invocation:

S3 passes event details to Lambda

As the Lambda handler may receive more than one record, it should iterate through the records collection. It’s best practice to keep the handler small and generic, calling out to the business logic in a separate function or file:

const processEvent = require('my-custom-logic’)

// A Node.js Lambda handler
exports.handler = async (event) => {

  // Capture event – can be used to create mock events
  console.log (JSON.stringify(event, null, 2))  

  // Handle each incoming S3 object in the event
  await Promise.all(
    event.Records.map(async (event) => {
      try {
	  // Pass each event to the business logic handler
        await processEvent(event)
      } catch (err) {
        console.error('Handler error: ', err)
      }
    })
  )
}

This code example takes advantage of concurrent asynchronous executions available in Node.js but similar constructs are available in many other languages. This means that multiple objects are processed in parallel to minimize the overall function execution time.

Instead of handling and logging any errors within the function’s code, it’s also possible to use destinations for asynchronous invocations. You use an On failure condition to route the error to various potential targets, including another Lambda function or other AWS services. For complex applications or those handling large volumes, this provides greater control for managing events that fail processing.

During the development process, you can debug and test the S3-to-Lambda integration locally. First, capture a sample event during development to create a mock event for local testing. The sample applications in this series each use a test harness so the developer can test the handler on a local machine. The test harness invokes the handler locally, providing mock environment variables:

// Mock event
const event = require('./localTestEvent')

// Mock environment variables
process.env.AWS_REGION = 'us-east-1'
process.env.localTest = true
process.env.language = 'en'

// Lambda handler
const { handler } = require('./app')

const main = async () => {
  console.time('localTest')
  await handler(event)
  console.timeEnd('localTest')
}

main().catch(error => console.error(error))

Scaling up when more data arrives

The Lambda service scales up if S3 sends multiple events simultaneously. How this works depends on several factors. If the target Lambda function has sufficient concurrency available, and if any active instances of the function are already processing events, the Lambda service scales up.

Lambda scaling up as events queue grows

The function does not scale up if the reserved concurrency is set to 1 or the scaling capacity is fully consumed for a Region in your account. In this case, the events from S3 are queued internally until a Lambda instance is available for processing. You can request to increase the regional concurrency limit by submitting a request in the Support Center console. You may also intend to perform one-at-a-time processing by setting the reserved concurrency to 1.

One-at-a-time processing with Lambda

Generally, multiple instances of a function are invoked simultaneously when S3 receives multiple objects, to process the events as quickly as possible. It’s this rapid scaling and parallelization in both S3 and Lambda that make this pattern such a powerful core architecture for many applications.

Amazon SNS and Amazon SQS integrations

The native S3 to Lambda integration provides a reliable way to invoke one function per prefix or suffix-pattern per bucket. In example, invoking a function when object keys end in .pdf in a single bucket. This works well for the vast majority of use-cases but you may want to invoke multiple Lambda functions per S3 event.

In this case, S3 can publish notifications to SNS, where events are delivered to a range of targets. These include Lambda functions, SQS queues, HTTP endpoints, email, text messages and push notifications. SNS provides fan-out capability, enabling one event to be delivered to multiple destinations, such as Lambda functions or web hooks, for example.

In busy applications, the volume of S3 events may be too large for a downstream system, such as a non-serverless service. In this case, you can also use an SQS queue as a notification target. After events are published to a queue, they can be consumed by Lambda functions and other services. The queue acts as a buffer and can help smooth out traffic for systems consuming these events. See the DynamoDB importer repository for an example.

Uploading data to S3 in upstream applications

You may have upstream services in your architecture that generate the data stored in S3. Some upstream workloads have spiky usage patterns and large numbers of users, like web or mobile applications. You may increase the performance and throughput of these workloads by uploading directly to S3. This avoids proxying binary data through an API Gateway endpoint or web server.

For example, for a mobile application uploading user photos, S3 and Lambda can handle the upload process for large of numbers of users:

  1. The upstream process, in this case a mobile client, requests a presigned URL from an API Gateway endpoint.
  2. This invokes a Lambda function that requests a presigned URL for the S3 bucket, and returns this back via the API call.
  3. The mobile client sends the data directly to the presigned S3 URL using HTTPS POST. The upload is managed directly by S3.

This simple pattern can be a scalable and cost-effective way to upload large binary data into your applications. After the object successfully uploads, the S3 put event can then asynchronously invoke downstream workflows.

Visit this repository to see an example of a serverless S3 uploader application. You can also see a walkthrough of this process in this YouTube video.

Developing larger applications

As you develop larger serverless applications, it often becomes more practical to split applications into multiple services and repositories for separate teams. Often, individual services must integrate with existing S3 buckets, not create these in the application templates. You may also have to integrate a single service with multiple S3 buckets.

In decoupling larger applications with Amazon EventBridge, I show how you can decouple services within an application using an event bus. This pattern helps separate the producers and consumers of events in your workload. This can make each service become more independent and more resilient to changes with the overall application.

This example demonstrates how the document repository solution can be refactored into several smaller applications that communicate using events. This uses Amazon EventBridge as the event router coordinating the flow. Each application contains a SAM template that defines the EventBridge rule to filter for events, and publishes data back to the event bus after processing is complete.

One of the major benefits to using an event-based architecture is that development teams retain flexibility even as the application grows. It allows developers to separate AWS resources like S3 buckets and DynamoDB tables, from the compute resources, like Lambda functions. This decoupling can simplify the deployment process, help avoid building monoliths, and reduce the cognitive load of developing in large applications.

Conclusion

S3 and Lambda are two highly scalable AWS services that can be powerful when combined in serverless applications. In this post, I summarize many of the patterns shown across this series. I explain the integration pattern and the scaling behavior, and how you can use mock events for local testing and development. You can also use SNS and SQS in some applications for fan-out and buffering of events.

Upstream applications can upload data directly to S3 to achieve greater scalability by avoiding proxies. For larger applications, I show how using an event-based architecture modeled around EventBridge can help decouple application services. This can promote service independence, and help maintain flexibility as applications grow.

To learn more about the S3-to-Lambda architecture pattern, watch the YouTube video series, or explore the articles listed at top of this post.

Building a Scalable Document Pre-Processing Pipeline

Post Syndicated from Joel Knight original https://aws.amazon.com/blogs/architecture/building-a-scalable-document-pre-processing-pipeline/

In a recent customer engagement, Quantiphi, Inc., a member of the Amazon Web Services Partner Network, built a solution capable of pre-processing tens of millions of PDF documents before sending them for inference by a machine learning (ML) model. While the customer’s use case—and hence the ML model—was very specific to their needs, the pipeline that does the pre-processing of documents is reusable for a wide array of document processing workloads. This post will walk you through the pre-processing pipeline architecture.

Pre-processing pipeline architecture-SM

Architectural goals

Quantiphi established the following goals prior to starting:

  • Loose coupling to enable independent scaling of compute components, flexible selection of compute services, and agility as the customer’s requirements evolved.
  • Work backwards from business requirements when making decisions affecting scale and throughput and not simply because “fastest is best.” Scale components only where it makes sense and for maximum impact.
  •  Log everything at every stage to enable troubleshooting when something goes wrong, provide a detailed audit trail, and facilitate cost optimization exercises by identifying usage and load of every compute component in the architecture.

Document ingestion

The documents are initially stored in a staging bucket in Amazon Simple Storage Service (Amazon S3). The processing pipeline is kicked off when the “trigger” Amazon Lambda function is called. This Lambda function passes parameters such as the name of the staging S3 bucket and the path(s) within the bucket which are to be processed to the “ingestion app.”

The ingestion app is a simple application that runs a web service to enable triggering a batch and lists documents from the S3 bucket path(s) received via the web service. As the app processes the list of documents, it feeds the document path, S3 bucket name, and some additional metadata to the “ingest” Amazon Simple Queue Service (Amazon SQS) queue. The ingestion app also starts the audit trail for the document by writing a record to the Amazon Aurora database. As the document moves downstream, additional records are added to the database. Records are joined together by a unique ID and assigned to each document by the ingestion app and passed along throughout the pipeline.

Chunking the documents

In order to maximize grip and control, the architecture is built to submit single-page files to the ML model. This enables correlating an inference failure to a specific page instead of a whole document (which may be many pages long). It also makes identifying the location of features within the inference results an easier task. Since the documents being processed can have varied sizes, resolutions, and page count, a big part of the pre-processing pipeline is to chunk a document up into its component pages prior to sending it for inference.

The “chunking orchestrator” app repeatedly pulls a message from the ingest queue and retrieves the document named therein from the S3 bucket. The PDF document is then classified along two metrics:

  • File size
  • Number of pages

We use these metrics to determine which chunking queue the document is sent to:

  • Large: Greater than 10MB in size or greater than 10 pages
  • Small: Less than or equal to 10MB and less than or equal to 10 pages
  • Single page: Less than or equal to 10MB and exactly one page

Each of these queues is serviced by an appropriately sized compute service that breaks the document down into smaller pieces, and ultimately, into individual pages.

  • Amazon Elastic Cloud Compute (EC2) processes large documents primarily because of the high memory footprint needed to read large, multi-gigabyte PDF files into memory. The output from these workers are smaller PDF documents that are stored in Amazon S3. The name and location of these smaller documents is submitted to the “small documents” queue.
  • Small documents are processed by a Lambda function that decomposes the document into single pages that are stored in Amazon S3. The name and location of these single page files is sent to the “single page” queue.

The Dead Letter Queues (DLQs) are used to hold messages from their respective size queue which are not successfully processed. If messages start landing in the DLQs, it’s an indication that there is a problem in the pipeline. For example, if messages start landing in the “small” or “single page” DLQ, it could indicate that the Lambda function processing those respective queues has reached its maximum run time.

An Amazon CloudWatch Alarm monitors the depth of each DLQ. Upon seeing DLQ activity, a notification is sent via Amazon Simple Notification Service (Amazon SNS) so an administrator can then investigate and make adjustments such as tuning the sizing thresholds to ensure the Lambda functions can finish before reaching their maximum run time.

In order to ensure no documents are left behind in the active run, there is a failsafe in the form of an Amazon EC2 worker that retrieves and processes messages from the DLQs. This failsafe app breaks a PDF all the way down into individual pages and then does image conversion.

For documents that don’t fall into a DLQ, they make it to the “single page” queue. This queue drives each page through the “image conversion” Lambda function which converts the single page file from PDF to PNG format. These PNG files are stored in Amazon S3.

Sending for inference

At this point, the documents have been chunked up and are ready for inference.

When the single-page image files land in Amazon S3, an S3 Event Notification is fired which places a message in a “converted image” SQS queue which in turn triggers the “model endpoint” Lambda function. This function calls an API endpoint on an Amazon API Gateway that is fronting the Amazon SageMaker inference endpoint. Using API Gateway with SageMaker endpoints avoided throttling during Lambda function execution due to high volumes of concurrent calls to the Amazon SageMaker API. This pattern also resulted in a 2x inference throughput speedup. The Lambda function passes the document’s S3 bucket name and path to the API which in turn passes it to the auto scaling SageMaker endpoint. The function reads the inference results that are passed back from API Gateway and stores them in Amazon Aurora.

The inference results as well as all the telemetry collected as the document was processed can be queried from the Amazon Aurora database to build reports showing number of documents processed, number of documents with failures, and number of documents with or without whatever feature(s) the ML model is trained to look for.

Summary

This architecture is able to take PDF documents that range in size from single page up to thousands of pages or gigabytes in size, pre-process them into single page image files, and then send them for inference by a machine learning model. Once triggered, the pipeline is completely automated and is able to scale to tens of millions of pages per batch.

In keeping with the architectural goals of the project, Amazon SQS is used throughout in order to build a loosely coupled system which promotes agility, scalability, and resiliency. Loose coupling also enables a high degree of grip and control over the system making it easier to respond to changes in business needs as well as focusing tuning efforts for maximum impact. And with every compute component logging everything it does, the system provides a high degree of auditability and introspection which facilitates performance monitoring, and detailed cost optimization.