Tag Archives: Sustainable Development Goals

Computing and sustainability in your classroom | Hello World #19

Post Syndicated from Gemma Coleman original https://www.raspberrypi.org/blog/computing-sustainability-classroom-hello-world-19/

Issue 19 of our free magazine Hello World, written by and for the computing education community, focuses on the interaction between sustainability and computing, from how we can interact with technology responsibly, to its potential to mitigate climate change.

Cover of issue 19 of Hello World magazine.

To give you a taste of this brand-new issue, here is primary school teacher Peter Gaynord’s article about his experience of using an environmental case study to develop a cross-curricular physical computing unit that gives his learners a real-life context.

Peter Gaynord.
Peter Gaynord.

Real-life problem solving

The prospect of developing your own unit of work from scratch can feel very daunting. With the number of free resources available, it begs the question, why do it? Firstly, it gives you the opportunity to deliver computing that is interwoven with the rest of your curriculum. It also naturally lends itself to a constructionist approach to learning through meaningful engagement with real-world problem-solving. In this article, I am going to share my experience of developing a ten-lesson unit of physical computing for students aged nine to ten that is linked to the more general topic of the environment.

To engage children in the process of problem-solving, it is important that the problem is presented as a real and meaningful one. To introduce the topic of the environment, we showed pupils a video of the Panama Canal, including information about the staggering amount of CO2 that is saved by ships taking this route instead of the alternative, longer routes that use more fuel. However, we explained that because of the special geographical features, a moving bridge needed to be constructed over the canal. The students’ challenge was first to design a solution to the problem, and then to make a working model.

An model of a bridge.
One bridge model from Peter’s class.

The model would use physical computing as part of the solution to the problem. The children would program a single-geared motor using a Crumble microcontroller to slowly lift and lower the bridge by the desired amount. We decided to issue a warning to drivers that the road bridge was about to close using a Sparkle, a programmable LED. Ultimately, the raising and lowering of the bridge would happen automatically when a ship approached. For this purpose, we would use an ultrasonic sensor to detect the presence of the ship.

Building the required skills

To develop the skills required to use the Crumble microcontroller, we led some discrete computing lessons based largely on the Teach Computing Curriculum’s ‘Programming A — Selection in physical computing’ unit. In these lessons, the children developed the skill of sensing and responding differently to conditions using the selection programming construct. They learnt this key concept alongside controlling and connecting the motor, the Sparkle, and the ultrasonic sensor.

A learner does physical computing in the primary school classroom.
Physical computing allows learners to get hands-on.

For students to succeed, we also had to teach them skills from other subjects, and consider at what stage it would be most useful to introduce them. For example, before asking children to document their designs, we first needed to teach the design technology (DT) objectives for communicating ideas through sketches. Most other DT objectives that covered the practical skills to make a model were interwoven as the project progressed. At the end of the project, we guided the children through how to evaluate their design ideas and reflect on the process of model making. Before pupils designed their solutions, we also had to introduce some science for them to apply to their designs. We covered increasing forces using levers, pulleys, and gears, as well as the greenhouse effect and how burning fossil fuels contributes to global warming.

An end pivot model of a bridge.
Another bridge model made in Peter’s class.

It is very important not to specify a solution for students at the beginning, otherwise the whole project becomes craft instead of problem-solving. However, it is important to spend some time thinking about any practical aspects of the model building that may need extra scaffolding. Experience suggested that it was important to limit the scale of the children’s models. We did this by showing them a completed central bridge span and later, guiding the building of this component so that all bridges had the same scale. It also turned out to be very important that the children were limited in their model building to using one single-geared motor. This would ensure that all children engaged with actively thinking about how to utilise the lever and pulley system to increase force, instead of relying on using more motors to lift the bridge.

If you want to finish reading Peter’s article and see his unit outline, download Hello World issue 19 as a free PDF.

Discover more in Hello World 19 — for free

As always, you’ll find this new issue of Hello World packed with resources, ideas, and insights to inspire your learners and your own classroom practice:

  • Portraits of scientists who apply artificial intelligence models to sustainability research
  • Research behind device-repair cafés
  • A deep dive into the question of technology obsolescence
  • And much more

All issues of Hello World as available as free PDF downloads. Subscribe to never miss a digital issue — and if you’re an educator in the UK, you can subscribe to receive free print copies in the post.

PS: US-based educators, if you’re at CSTA Annual Conference in Chicago this month, come meet us at booth 521 and join us at our sessions about writing for Hello World, the Big Book of Computing Pedagogy, and more. We look forward to seeing you there!

The post Computing and sustainability in your classroom | Hello World #19 appeared first on Raspberry Pi.

Linking AI education to meaningful projects

Post Syndicated from Sue Sentance original https://www.raspberrypi.org/blog/ai-education-meaningful-projects-tara-chklovski/

Our seminars in this series on AI and data science education, co-hosted with The Alan Turing Institute, have been covering a range of different topics and perspectives. This month was no exception. We were delighted to be able to host Tara Chklovski, CEO of Technovation, whose presentation was called ‘Teaching youth to use AI to tackle the Sustainable Development Goals’.

Tara Chklovski.
Tara Chklovski

The Technovation Challenge

Tara started Technovation, formerly called Iridescent, in 2007 with a family science programme in one school in Los Angeles. The nonprofit has grown hugely, and Technovation now runs computing education activities across the world. We heard from Tara that over 350,000 girls from more than 100 countries take part in their programmes, and that the nonprofit focuses particularly on empowering girls to become tech entrepreneurs. The girls, with support from industry volunteers, parents, and the Technovation curriculum, work in teams to solve real-world problems through an annual event called the Technovation Challenge. Working at scale with young people has given the Technovation team the opportunity to investigate the impact of their programmes as well as more generally learn what works in computing education. 

Tara Chklovski describes the Technovation Challenge in an online seminar.
Click to enlarge

Tara’s talk was extremely engaging (you’ll find the recording below), with videos of young people who had participated in recent years. Technovation works with volunteers and organisations to reach young people in communities where opportunities may be lacking, focussing on low- and middle-income countries. Tara spoke about the 900 million teenage girls in the world, a  substantial number of whom live in countries where there is considerable inequality. 

To illustrate the impact of the programme, Tara gave a number of examples of projects that students had developed, including:

  • An air quality sensor linked to messaging about climate change
  • A support circle for girls living in domestic violence situation
  • A project helping mothers communicate with their daughters
  • Support for water collection in Kenya

Early on, the Technovation Challenge had involved the creation of mobile apps, but in recent years, the projects have focused on using AI technologies to solve problems. An key message that Tara wanted to get across was that the focus on real-world problems and teamwork was as important, if not more, than the technical skills the young people were developing.

Technovation has designed an online curriculum to support teams, who may have no prior computing experience, to learn how to design an AI project. Students work through units on topics such as data analysis and building datasets. As well as the technical activities, young people also work through activities on problem-solving approaches, design, and system thinking to help them tackle a real-world problem that is relevant to them. The curriculum supports teams to identify problems in their community and find a path to prototype and share an invention to tackle that problem.

Tara Chklovski describes the Technovation Challenge in an online seminar.
Click to enlarge

While working through the curriculum, teams develop AI models to address the problem that they have chosen. They then submit them to a global competition for beginners, juniors, and seniors. Many of the girls enjoy the Technovation Challenge so much that they come back year on year to further develop their team skills. 

AI Families: Children and parents using AI to solve problems

Technovation runs another programme, AI Families, that focuses on families working together to learn AI concepts and skills and use them to develop projects together. Families worked together with the help of educators to identify meaningful problems in their communities, and developed AI prototypes to address them.

A list of lessons in the AI Families programme from Technovation.

There were 20,000 participants from under-resourced communities in 17 countries through 2018 and 2019. 70% of them were women (mothers and grandmothers) who wanted their children to participate; in this way the programme encouraged parents to be role models for their daughters, as well as enabling families to understand that AI is a tool that could be used to think about what problems in their community can be solved with the help of AI skills and principles. Tara was keen to emphasise that, given the importance of AI in the world, the more people know about it, the more impact they can make on their local communities.

Tara shared links to the curriculum to demonstrate what families in this programme would learn week by week. The AI modules use tools such as Machine Learning for Kids.

The results of the AI Families project as investigated over 2018 and 2019 are reported in this paper.  The findings of the programme included:

  • Learning needs to focus on more than just content; interviews showed that the learners needed to see the application to real-world applications
  • Engaging parents and other family members can support retention and a sense of community, and support a culture of lifelong learning
  • It takes around 3 to 5 years to iteratively develop fun, engaging, effective curriculum, training, and scalable programme delivery methods. This level of patience and commitment is needed from all community and industry partners and funders.

The research describes how the programme worked pre-pandemic. Tara highlighted that although the pandemic has prevented so much face-to-face team work, it has allowed some young people to access education online that they would not have otherwise had access to.

Many perspectives on AI education

Our goal is to listen to a variety of perspectives through this seminar series, and I felt that Tara really offered something fresh and engaging to our seminar audience, many of them (many of you!) regular attendees who we’ve got to know since we’ve been running the seminars. The seminar combined real-life stories with videos, as well as links to the curriculum used by Technovation to support learners of AI. The ‘question and answer’ session after the seminar focused on ways in which people could engage with the programme. On Twitter, one of the seminar participants declared this seminar “my favourite thus far in the series”.  It was indeed very inspirational.

As we near the end of this series, we can start to reflect on what we’ve been learning from all the various speakers, and I intend to do this more formally in a month or two as we prepare Volume 3 of our seminar proceedings. While Tara’s emphasis is on motivating children to want to learn the latest technologies because they can see what they can achieve with them, some of our other speakers have considered the actual concepts we should be teaching, whether we have to change our approach to teaching computer science if we include AI, and how we should engage young learners in the ethics of AI.

Join us for our next seminar

I’m really looking forward to our final seminar in the series, with Stefania Druga, on Tuesday 1 March at 17:00–18:30 GMT. Stefania, PhD candidate at the University of Washington Information School, will also focus on families. In her talk ‘Democratising AI education with and for families’, she will consider the ways that children engage with smart, AI-enabled devices that they are becoming part of their everyday lives. It’s a perfect way to finish this series, and we hope you’ll join us.

Thanks to our seminars series, we are developing a list of AI education resources that seminar speakers and attendees share with us, plus the free resources we are developing at the Foundation. Please do take a look.

You can find all blog posts relating to our previous seminars on this page.

The post Linking AI education to meaningful projects appeared first on Raspberry Pi.

Digital making projects about protecting our planet

Post Syndicated from Emma Posey original https://www.raspberrypi.org/blog/free-digital-making-projects-protecting-our-planet/

Explore our new free pathway of environmental digital making projects for young people! These new step-by-step projects teach learners Scratch coding and include real-world data — from data about the impact of deforestation on wildlife to sea turtle tracking information.

By following along with the digital making projects online, young people will discover how they can use technology to protect our planet, all while improving their computing skills.

Photo of a young woman holding an origami bird up to the camera
One of the new projects is an automatic creature counter based on colour recognition with Scratch

The projects help young people affect change

In the projects, learners are introduced to 5 of the United Nations’ 17 Sustainable Development Goals (SDGs) with an environment focus:

  • Affordable and Clean Energy
  • Responsible Consumption and Production
  • Climate Action
  • Life Below Water
  • Life on Land
Screenshot of a Scratch project showing a panda and the Earth
The first project in the new pathway is an animation about the UN’s five SDGs focused on the environment.

Technology, science, maths, geography, and design all play a part in the projects. Following along with the digital making projects, young people learn coding and computing skills while drawing on a range of data from across the world. In this way they will discover how computing can be harnessed to collect environmental data, to explore causes of environmental degradation, to see how humans influence the environment, and ultimately to mitigate negative effects.

Where does the real-world data come from?

To help us develop these environmental digital making projects, we reached out to a number of organisations with green credentials:

Green Sea Turtle Alasdair Davies Raspberry Pi
A sea turtle is being tagged so its movements can be tracked

Inspiring young people about coding with real-world data

The digital making projects, created with 9- to 11-year-old learners in mind, support young people on a step-by-step pathway to develop their skills gradually. Using the block-based visual programming language Scratch, learners build on programming foundations such as sequencing, loops, variables, and selection. The project pathway is designed so that learners can apply what they learned in earlier projects when following along with later projects!

The final project in the pathway, ‘Turtle tracker’, uses real-world data of migrating sea turtles!

We’re really excited to help learners explore the relationship between technology and the environment with these new digital making projects. Connecting their learning to real-world scenarios not only allows young people to build their knowledge of computing, but also gives them the opportunity to affect change and make a difference to their world!

Discover the new digital making projects yourself!

With Green goals, learners create an animation to present the United Nations’ environment-focused Sustainable Development Goals.

Through Save the shark, young people explore sharks’ favourite food source (fish, not humans!), as well as the impact of plastic in the sea, which harms sharks in their natural ocean habitat.

Illustration of a shark with sunglasses

With the Tree life simulator project guide, learners create a project that shows the impact of land management and deforestation on trees, wildlife, and the environment.

Computers can be used to study wildlife in areas where it’s not practical to do so in person. In Count the creatures, learners create a wildlife camera using their computer’s camera and Scratch’s new video sensing extension!

Electricity is important. After all, it powers the computer that learners are using! In Electricity generation, learners input real data about the type and amount of natural resources countries across the world use to generate electricity, and they then compare the results using an animated data visualisation.

Understanding the movements of endangered turtles helps to protect these wonderful animals. In this new Turtle tracker project, learners use tracking data from real-life turtles to map their movements off the coast of West Africa.

Code along wherever you are!

All of our projects are free to access online at any time and include step-by-step instructions. They can be undertaken in a club, classroom, or at home. Young people can share the project they create with their peers, friends, family, and the wider Scratch community.

Visit the Protect our planet pathway to experience the projects yourself.

The post Digital making projects about protecting our planet appeared first on Raspberry Pi.