Tag Archives: teacher training

Digital making with Raspberry Pis in primary schools in Sarawak, Malaysia

Post Syndicated from Jenni Fletcher-McGrady original https://www.raspberrypi.org/blog/computing-education-primary-schools-sarawak-malaysia/

Dr Sue Sentance, Director of our Raspberry Pi Computing Education Research Centre at the University of Cambridge, shares what she learned on a recent visit in Malaysia to understand more about the approach taken to computing education in the state of Sarawak.

Dr Sue Sentance

Computing education is a challenge around the world, and it is fascinating to see how different countries and education systems approach it. I recently had the opportunity to attend an event organised by the government of Sarawak, Malaysia, to see first-hand what learners and teachers are achieving thanks to the state’s recent policies.

Raspberry Pis and training for Sarawak’s primary schools

In Sarawak, the largest state of Malaysia, the local Ministry of Education, Innovation and Talent Development is funding an ambitious project through which all of Sarawak’s primary schools are receiving sets of Raspberry Pis. Learners use these as desktop computers and to develop computer science skills and knowledge, including the skills to create digital making projects.

The state of Sarawak, Malaysia circled on a map.
Sarawak is the largest state of Malaysia, situated on the island of Borneo

Crucially, the ministry is combining this hardware distribution initiative with a three-year programme of professional development for primary school teachers. They receive training known as the Raspberry Pi Training Programme, which starts with Scratch programming and incorporates elements of physical computing with the Raspberry Pis and sensors.

To date the project has provided 9436 kits (including Raspberry Pi computer, case, monitor, mouse, and keyboard) to schools, and training for over 1200 teachers.

The STEM Trailblazers event

In order to showcase what has been achieved through the project so far, students and teachers were invited to use their schools’ Raspberry Pis to create projects to prototype solutions to real problems faced by their communities, and to showcase these projects at a special STEM Trailblazers event.

Geographically, Sarawak is Malaysia’s largest state, but it has a much smaller population than the west of the country. This means that towns and villages are very spread out and teachers and students had large distances to travel to attend the STEM Trailblazers event. To partially address this, the event was held in two locations simultaneously, Kuching and Miri, and talks were live-streamed between both venues.

STEM Trailblazers featured a host of talks from people involved in the initiative. I was very honoured to be invited as a guest speaker, representing both the University of Cambridge and the Raspberry Pi Foundation as the Director of the Raspberry Pi Computing Education Research Centre.

Solving real-world problems

The Raspberry Pi projects at STEM Trailblazers were entered into a competition, with prizes for students and teachers. Most projects had been created using Scratch to control the Raspberry Pi as well as a range of sensors.

The children and teachers who participated came from both rural and urban areas, and it was clear that the issues they had chosen to address were genuine problems in their communities.

Many of the projects I saw related to issues that schools faced around heat and hydration: a Smart Bottle project reminded children to drink regularly, a shade creator project created shade when the temperature got too high, a teachers’ project told students that they could no longer play outside when the temperature exceeded 35 degrees, and a water cooling system project set off sprinklers when the temperature rose. Other themes of the projects were keeping toilets clean, reminding children to eat healthily, and helping children to learn the alphabet. One project that especially intrigued me was an alert system for large and troublesome birds that were a problem for rural schools.

Participants showcasing their project at the STEM Trailblazers event.

The creativity and quality of the projects on show was impressive given that all the students (and many of their teachers) had learned to program very recently, and also had to be quite innovative where they hadn’t been able to access all the hardware they needed to build their creations.

What we can learn from this initiative

Everyone involved in this project in Sarawak — including teachers, government representatives, university academics, and industry partners — is really committed to giving children the best opportunities to grow up with an understanding of digital technology. They know this is essential for their professional futures, and also fosters their creativity, independence, and problem-solving skills.

Young people showcasing their project at the STEM Trailblazers event.

Over the last ten years, I’ve been fortunate enough to travel widely in my capacity as a computing education researcher, and I’ve seen first-hand a number of the approaches countries are taking to help their young people gain the skills and understanding of computing technologies that they need for their futures.

It’s good for us to look beyond our own context to understand how countries across the world are preparing their young people to engage with digital technology. No matter how many similarities there are between two places, we can all learn from each other’s initiatives and ideas. In 2021 the Brookings Institution published a global review of how countries are progressing with this endeavour. Organisations such as UNESCO and WEF regularly publish reports that emphasise the importance for countries to develop their citizens’ digital skills, and also advanced technological skills. 

Young people showcasing their project at the STEM Trailblazers event.

The Sarawak government’s initiative is grounded in the use of Raspberry Pis as desktop computers for schools, which run offline where schools have no access to the internet. That teachers are also trained to use the Raspberry Pis to support learners to develop hands-on digital making skills is a really important aspect of the project.

Our commercial subsidiary Raspberry Pi Limited works with a company network of Approved Resellers around the globe; in this case the Malaysian reseller Cytron has been an enormous support in supplying Sarawak’s primary schools with Raspberry Pis and other hardware.

Schools anywhere in the world can also access the Raspberry Pi Foundation’s free learning and teaching resources, such as curriculum materials, online training courses for teachers, and our magazine for educators, Hello World. We are very proud to support the work being done in Sarawak.

As for what the future holds for Sarawak’s computing education, at the opening ceremony of the STEM Trailblazers event, the Deputy Minister announced that the event will be an annual occasion. That means every year more students and teachers will be able to come together, share their learning, and get excited about using digital making to solve the problems that matter to them.

The post Digital making with Raspberry Pis in primary schools in Sarawak, Malaysia appeared first on Raspberry Pi Foundation.

Learn to program in Python with our online courses

Post Syndicated from Rosa Brown original https://www.raspberrypi.org/blog/learn-to-program-in-python-online-courses-for-teachers/

If you’re new to teaching programming or looking to build or refresh your programming knowledge, we have a free resource that is perfect for you. Our ‘Learn to program in Python’ online course pathway is for educators who want to develop their understanding of the text-based language Python. Each course is packed with information and activities to help you apply what you learn in your classroom teaching.

A computing teacher and a learner do physical computing in the primary school classroom.

Why learn to program in Python?

Writing a program in Python is very similar to writing in English, which makes starting to program much easier. Python is also a general-purpose programming language, so once you’ve learned the basics, you can use Python for lots of different programming activities.

That’s why Python is a perfect choice for learning to program, and why many of our educational resources involve Python. Our seven online Python courses cover aspects from taking your first steps into programming, to writing a program to control an electronic circuit, to learning about object-oriented programming.

With time and practice, you will be able to use Python programming to create unique solutions to problems, build helpful tools, and make things that are important to you.

How does the Python course pathway work? 

The courses in the pathway have been written by our educators and include advice and activities to help you teach programming in your classroom. You can reuse the course activities to explain programming concepts to your learners and get them to write programs themselves. Because you will have first-hand experience of the activities, you’ll be able to anticipate your learners’ difficulties and adapt your lessons to suit them.

In a computing classroom, a smiling girl raises her hand.

All the courses are designed to take three or four weeks to complete, based on you spending two hours a week on participating. You can have free time-limited access to each course for the length of time it’s designed to take to complete. For example, if it’s a four-week course, like ‘Programming 101’, you can sign up for free to get four weeks of access.

The seven courses in the Python path can be completed in any order you like, and you can choose the courses that match your interests and needs.

A room of educators at desktop computers.

Each course involves activities that help you create a programming project using the concepts that you’re learning about. These activities are designed to be a fun and interactive way to reinforce what you’ve learned and can also be used with your learners in the classroom.

Course spotlight: Programming 101

If programming is completely new to you, our ‘Programming 101’ course is the best place to start. In ‘Programming 101’, we use this definition of programming to start with the idea that programming is about you telling a computer what to do: 

“Programming is how you get computers to solve problems.” 

We see programming as a chance to think creatively about a problem and about all the different ways it could be solved. While you might be unfamiliar with terms like programming, algorithms, or selection, the ‘Programming 101’ course demonstrates how they touch on things that many of us know from other areas of our lives.

On the course, you will:

  • Learn about basic programming concepts such as sequencing and repetition
  • Start to write your own programs
  • Discover how to interpret error messages to find and fix mistakes in your programs

What will you make in the courses?

Through building an understanding of programming, you will see how you can write your own programs to make games, quizzes, physical computing projects, and more. Here’s look at some of the things you could make in three of the seven courses: 

  • Programming 101: Write your first program in Python to make a personal assistant bot. You’ll discover how to make the output of your program respond to the user’s input.  
alt=""
You’ll write a program to create personal assistant bot in the ‘Programming 101’ course for beginners.
  • Programming with GUIs: Build a game where players compare two sets of emoji to find the emoji that matches. To make this game, you’ll use what you learn in the course to design the layout of a graphic user interface (GUI) and make sure only one emoji appears twice. 
alt=""
You’ll make an interactive graphic game in the ‘Programming with GUIs’ course.
  • Object-oriented Programming: Create a text-based adventure game with a character on a quest through different rooms! You’ll discover how to write a program that reacts to user input, and how to write your own code to create more challenges within the game based on your ideas.    

So check out our courses and start gaining Python programming skills today!

Python programming resources for young people

If you want to help your learners develop their understanding of programming in Python, you’ll be interested in these free resources we’ve created for young people: 

Introduction to Python: Our guided project path for learners who are new to text-based programming. We have created these projects with young people around the age of 9 to 13 in mind. Each project takes one hour to complete, and learners can make their own fun programs while learning about Python.

More Python: Our guided project path for learners who want to move beyond the ‘Intro to Python’ path to write programs that contain charts, artwork, and more. We’ve written these projects for young people around the age of 10 to 13.

Isaac Computer Science: This learning platform we’ve created for GCSE and A level students (age 14 to 18) uses Python and other text-based languages to teach the programming concepts within England’s computer science curriculum.   

The post Learn to program in Python with our online courses appeared first on Raspberry Pi.

How to create great educational video content for computing and beyond

Post Syndicated from Michael Conterio original https://www.raspberrypi.org/blog/how-to-create-educational-video-content-computing-computer-science/

Over the past five years, we’ve made lots of online educational video content for our online courses, for our Isaac Computer Science platform for GCSE and A level, and for our remote lessons based on our Teach Computing Curriculum hosted on Oak National Academy.

We have learned a lot from experience and from learner feedback, and we want to share this knowledge with others. We’re also aware there’s always more to learn from people across the computing education community. That’s one reason we’re continually working to broaden the range of educators we work with. Another is that we want all learners to see themselves represented in our educational materials, because everyone belongs in computer science.

Facilitators and participants involved in the Teach Online programme.
RPF staff and the Teach Online participants

To make progress with all these goals, we ran a pilot programme for educators called Teach Online at the end of 2021 and the start of 2022. Through Teach Online, we provided twelve educators with training, opportunities, and financial and material support to help them with creating online educational content, particularly videos.

Over five online sessions and a final in-person day, we trained them in not only the production of educational videos, but also some of the pedagogy behind it. The pilot programme has now finished, and we thought we’d share some of the key points from the sessions with you in the wider community.

Learning to create a great online learning experience

When you learn new skills and knowledge, it’s important to think about how you apply these. For this reason, a useful question you can use throughout the learning process is “Why?”. So as you think about how to create the best online learning experience, ask yourself in different contexts throughout the content design and production:

  • Why am I using this style of video to illustrate this topic?
  • Why am I presenting these ideas in this order?
  • Why am I using this choice of words?

For example, it’s easy to default to creating ‘talking head’ videos featuring one person talking directly to the camera. But you should always ask why — what are the reasons for using a ‘talking head’ style. Instead, or in addition, you can make videos more engaging and support the learning experience by:

  • Turning the video into an interview
  • Adding other camera angles or screencasts to focus on demonstrations
  • Cutting away to B-roll footage (additional video that can provide context or related action, while the voiceover continues) or to still images that help connect a concept to concrete examples
Teach Computing programme participant.
Teach Online participants explored different ways to make their videos engaging

Planning is key

By planning your content carefully instead of jumping into production right away, you can:

  • Better visualise what your video should look like by creating a storyboard
  • Keep learners engaged by deliberately splitting learning up into smaller chunks while still keeping a narrative flow between them
  • Develop your learners’ understanding of key computing concepts by using semantic waves to unpack and repack concepts

The Teach Online participants told us that they particularly enjoyed learning more about planning videos:

“I now understand that a little planning can make the difference between a mediocre online learning experience and a professional-looking valuable learning experience.” – Educator who participated in our Teach Online programme

“Planning the session using a storyboard is so helpful to visualise the actual recording.” – Educator who participated in our Teach Online programme

Storyboard from a Teach Computing participant.
Storyboards are a great option to plan online learning experiences

Considering equity, diversity, and inclusion

We are committed to making computing and computer science accessible and engaging, so we embed measures to improve equity, diversity, and inclusion throughout our free learning and teaching resources, including the Teach Online programme. It’s important not to leave this aspect of creating educational content as an afterthought: you can only make sure that your content is truly as equitable and inclusive as you can make it if you address this at every stage of your process. As an added bonus, many ways of making your content more accessible not only benefit learners with specific needs, but support and engage all of your audience so everyone can learn more easily.

Best practices that you can use while creating online content include:

Connecting with your learner audience

One of video’s key advantages is the ability to immediately connect with the audience. To help with that, you can try to talk directly to a single viewer, using “you” and “I” rather than “we”. You can also show off your personality in the presentation slides you use and the backgrounds of your videos.

“[I will use my learning from the programme] by adapting teaching and learning to actively engage learners.” – Educator who participated in our Teach Online programme

It’s important to find your own personal presenting style. There is not one perfect way to present, and you should experiment to find how you are best able to communicate with your viewers. How formal or informal will you be? Is your delivery calm or energetic? Whatever you decide, you may want to edit your script to better fit your style. A practical tip for doing this is to read your video scripts aloud while you are writing them to spot any language that feels awkward to you when spoken. 

“It was really great to try the presenting skills, and I learned a lot about my style.” – Educator who participated in our Teach Online programme

A videographer preparing to film a course presenter.

Connecting with each other

Throughout the Teach Online programme, we helped participants create a community with each other. Finding your own community can give you the support that you need to create, and help you continue to develop your knowledge and skills. Working together is great, whether that’s collaborating in-person locally, or online via for example the CAS forums or social media.

“I very much liked the diverse group of educators in this programme, and appreciated everyone sharing their experiences and tips.” – Educator who participated in our Teach Online programme

The Teach Online graduate have told us about the positive impact the programme has had on their teaching in their own contexts. So far we’ve worked with graduates to create Isaac Computer Science videos covering data structures, high- and low-level languages, and string handling.

What do you want to know about creating online educational content?

There is a growing need for online educational content, particularly videos — not only to improve access to education, but also to support in-person teaching. By investing in training educators, we help diversify the pool of people working in this area, improve the confidence of those who would like to start, and provide them with the skills and knowledge to successfully create great content for their learners.

In the future we’d also like to support the wider community of educators with creating online educational content. What resources would you find useful? Share your thoughts in the comments section below.

The post How to create great educational video content for computing and beyond appeared first on Raspberry Pi.

Learn the fundamentals of AI and machine learning with our free online course

Post Syndicated from Michael Conterio original https://www.raspberrypi.org/blog/fundamentals-ai-machine-learning-free-online-course/

Join our free online course Introduction to Machine Learning and AI to discover the fundamentals of machine learning and learn to train your own machine learning models using free online tools.

Drawing of a machine learning robot helping a human identify spam at a computer.

Although artificial intelligence (AI) was once the province of science fiction, these days you’re very likely to hear the term in relation to new technologies, whether that’s facial recognition, medical diagnostic tools, or self-driving cars, which use AI systems to make decisions or predictions.

By the end of this free online course, you will have an appreciation for what goes into machine learning and artificial intelligence systems — and why you should think carefully about what comes out.

Machine learning — a brief overview

You’ll also often hear about AI systems that use machine learning (ML). Very simply, we can say that programs created using ML are ‘trained’ on large collections of data to ‘learn’ to produce more accurate outputs over time. One rather funny application you might have heard of is the ‘muffin or chihuahua?’ image recognition task.

Drawing of a machine learning ars rover trying to decide whether it is seeing an alien or a rock.

More precisely, we would say that a ML algorithm builds a model, based on large collections of data (the training data), without being explicitly programmed to do so. The model is ‘finished’ when it makes predictions or decisions with an acceptable level of accuracy. (For example, it rarely mistakes a muffin for a chihuahua in a photo.) It is then considered to be able to make predictions or decisions using new data in the real world.

It’s important to understand AI and ML — especially for educators

But how does all this actually work? If you don’t know, it’s hard to judge what the impacts of these technologies might be, and how we can be sure they benefit everyone — an important discussion that needs to involve people from across all of society. Not knowing can also be a barrier to using AI, whether that’s for a hobby, as part of your job, or to help your community solve a problem.

some things that machine learning and AI systems can be built into: streetlamps, waste collecting vehicles, cars, traffic lights.

For teachers and educators it’s particularly important to have a good foundational knowledge of AI and ML, as they need to teach their learners what the young people need to know about these technologies and how they impact their lives. (We’ve also got a free seminar series about teaching these topics.)

To help you understand the fundamentals of AI and ML, we’ve put together a free online course: Introduction to Machine Learning and AI. Over four weeks in two hours per week, you’ll learn how machine learning can be used to solve problems, without going too deeply into the mathematical details. You’ll also get to grips with the different ways that machines ‘learn’, and you will try out online tools such as Machine Learning for Kids and Teachable Machine to design and train your own machine learning programs.

What types of problems and tasks are AI systems used for?

As well as finding out how these AI systems work, you’ll look at the different types of tasks that they can help us address. One of these is classification — working out which group (or groups) something fits in, such as distinguishing between positive and negative product reviews, identifying an animal (or a muffin) in an image, or spotting potential medical problems in patient data.

You’ll also learn about other types of tasks ML programs are used for, such as regression (predicting a numerical value from a continuous range) and knowledge organisation (spotting links between different pieces of data or clusters of similar data). Towards the end of the course you’ll dive into one of the hottest topics in AI today: neural networks, which are ML models whose design is inspired by networks of brain cells (neurons).

drawing of a small machine learning neural network.

Before an ML program can be trained, you need to collect data to train it with. During the course you’ll see how tools from statistics and data science are important for ML — but also how ethical issues can arise both when data is collected and when the outputs of an ML program are used.

By the end of the course, you will have an appreciation for what goes into machine learning and artificial intelligence systems — and why you should think carefully about what comes out.

Sign up to the course today, for free

The Introduction to Machine Learning and AI course is open for you to sign up to now. Sign-ups will pause after 12 December. Once you sign up, you’ll have access for six weeks. During this time you’ll be able to interact with your fellow learners, and before 25 October, you’ll also benefit from the support of our expert facilitators. So what are you waiting for?

Share your views as part of our research

As part of our research on computing education, we would like to find out about educators’ views on machine learning. Before you start the course, we will ask you to complete a short survey. As a thank you for helping us with our research, you will be offered the chance to take part in a prize draw for a £50 book token!

Learn more about AI, its impacts, and teaching learners about them

To develop your computing knowledge and skills, you might also want to:

If you are a teacher in England, you can develop your teaching skills through the National Centre for Computing Education, which will give you free upgrades for our courses (including Introduction to Machine Learning and AI) so you’ll receive certificates and unlimited access.

The post Learn the fundamentals of AI and machine learning with our free online course appeared first on Raspberry Pi.