All posts by Alex Bate

TechWiser’s giant Raspberry Pi AirPod speaker (and more)

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/techwisers-giant-raspberry-pi-airpod-speaker-and-more/

YouTube is a haven for awesome Raspberry Pi projects, and we often spend time scanning through the platform’s wares for hidden gems. One such hidden gem is this video from TechWiser, in which they showcase some of their favourite Raspberry Pi projects:

Cool Raspberry Pi 4 Projects We Use At TechWiser

Here are some of the best projects we use at TechWiser office.

From installing PiHole in the office, to upgrading a cupboard with RFID recognition for keyless entry, TechWiser has the whole ‘incorporating Raspberry Pi into everything’ thing down to a fine art.

But it’s not all just about practicality. Does anyone really need a giant Apple AirPod? No. But, does the idea of a giant Apple AirPod sound cool? You betcha!

And their YouTube button that flashes whenever they earn a new subscriber is rather lovely too. I wonder if they noticed it flash when Raspberry Pi subscribed to their channel?

TechWiser’s YouTube channel contains a plethora of Raspberry Pi and tech tutorials and reviews, and you should definitely check them out.

The post TechWiser’s giant Raspberry Pi AirPod speaker (and more) appeared first on Raspberry Pi.

Connect your Raspberry Pi 4 to an iPad Pro

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/connect-your-raspberry-pi-4-to-an-ipad-pro/

Have you ever considered attaching your Raspberry Pi 4 to an Apple iPad Pro? How would you do it, and why would you want to? Here’s YouTuber Tech Craft to explain why Raspberry Pi 4 is their favourite iPad Pro accessory, and why you may want to consider using yours in the same way.

We’ve set the video to start at Tech Craft’s explanation.

My Favourite iPad Pro Accessory: The Raspberry Pi 4

The Raspberry Pi 4 is my favourite accessory to use with the iPad Pro. In this video, learn more about what the Pi can do, what gear you need to get running with one, how to connect it to your iPad and what you’ll find it useful for.

 

Having installed Raspbian on Raspberry Pi and configured the computer to use USB-C as an Ethernet connection (read Ben Hardill’s guide to find out how to do this), Tech Craft could select it as an Ethernet device in the iPad’s Settings menu.

So why would you want to connect your Raspberry Pi 4 to your iPad? For starters, using your iPad instead of a conventional HDMI monitor will free up desk space, and also allow you to edit your code on the move. And when you’ve connected the two devices like this, you don’t need a separate power lead for Raspberry Pi, because the iPad powers the computer. So this setup is perfect for train or plane journeys, or for that moment when your robot stops working at a Raspberry Jam, or for maker conventions.

You can also use Raspberry Pi as a bridge between your iPad and portable hard drive, for disk management.

Tech Craft uses the SSH client Blink to easily connect to their Raspberry Pi via its fixed IP address, and with Juno Connect, they connect to a running Jupyter instance on their Raspberry Pi to do data science work.

For more information on using Raspberry Pi with an iPad, make sure you watch the whole video. And, because you’re a lovely person, be sure to subscribe to Tech Craft for more videos, such as this one on how to connect wirelessly to your Raspberry Pi from any computer or tablet:

Mobile Raspberry Pi with ANY iPad. No USB-C needed.

Following on my from earlier video about pairing the Raspberry Pi 4 with the iPad Pro over USB-C, this video show how to pair any iPad (or iPhone, or Android tablet) with a Pi4 or a Pi3 over WiFi.

The post Connect your Raspberry Pi 4 to an iPad Pro appeared first on Raspberry Pi.

Protect your veggies from hail with a Raspberry Pi Zero W

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/protect-your-veggies-from-hail-with-a-raspberry-pi-zero-w/

Tired of losing vegetable crops to frequent summertime hail storms, Nick Rogness decided to build something to protect them. And the result is brilliant!

Digital Garden with hail protection

Tired of getting your garden destroyed by hail storms? I was, so I did something about it…maker style!

“I live in a part of the country where hail and severe weather are commonplace during the summer months,” Nick explains in his Hackster tutorial. “I was getting frustrated every year when my wife’s garden was get demolished by the nightly hail storms losing our entire haul of vegetable goodies!”

Nick drew up plans for a solution to his hail problem, incorporating liner actuators bolted to a 12ft × 12ft frame that surrounds the vegetable patch. When a storm is on the horizon, the actuators pull a heavy-duty tarp over the garden.

Nick connected two motor controllers to a Raspberry Pi Zero W. The Raspberry Pi then controls the actuators to pull the tarp, either when a manual rocker switch is flipped or when it’s told to do so via weather-controlled software.

“Software control of the garden was accomplished by using a Raspberry Pi and MQTT to communicate via Adafruit IO to reach the mobile app on my phone,” Nick explains. The whole build is powered by a 12V Marine deep-cycle battery that’s charged using a solar panel.

You can view the full tutorial on Hackster, including the code for the project.

The post Protect your veggies from hail with a Raspberry Pi Zero W appeared first on Raspberry Pi.

How to control multiple servo motors with Raspberry Pi

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/how-to-control-multiple-servo-motors-with-raspberry-pi/

In the latest Explaining Computers video, Christopher Barnatt explains how to use servo motors with Raspberry Pi. Using servos is a great introduction to the digital making side of computing; servos allow you to control the movement of all manner of project components with your Raspberry Pi and a motor controller attached to its GPIO pins.

Raspberry Pi Servo Motor Control

Control of SG90 servos in Python on a Raspberry Pi, including an explanation of PWM and how a servo differs from a motor. You can download the code from the video at: https://www.explainingcomputers.com/pi_servos_video.html The five-pack of SG90 servos used in this video was purchased on Amazon.co.uk here: https://www.amazon.co.uk/dp/B07H9VC698/ref=nosim?tag=explainin-21 with a similar product on Amazon.com here: https://amzn.to/2QHshx3 (affiliate links).

Servos and your Raspberry Pi

Christopher picked up his SG90 servo motors online, where you’ll find a variety of servo options. What type of servo you need depends on the project you want to create, so be sure to consider the weight and size of what you plan to move, and the speed at which you need to move it.

As the motor controller connects via GPIO, you can even use the tiny £5 Raspberry Pi Zero to control your servo, which makes adding movement to your projects an option even when you’re under tight space constraints.

Find out more

For other detailed computing videos, be sure to subscribe to the Explaining Computers YouTube channel.

And for more Raspberry Pi projects, check out the Raspberry Pi projects page.

Raspberry Pi projects PSA

We’re always looking for people to join our incredible community of translators to help us translate our free resources, including the free projects found on our projects page.

If you speak English and another language and would like to give a portion of your time to making our resources available to more people across the globe, sign up as a translator today.

The post How to control multiple servo motors with Raspberry Pi appeared first on Raspberry Pi.

Playing The Doors with a door (and a Raspberry Pi)

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/playing-the-doors-with-a-door-and-a-raspberry-pi/

Floyd Steinberg is back with more synthy Raspberry Pi musical magic, this time turning a door into a MIDI controller.

I played The Doors on a door – using a Raspberry PI DIY midi controller and a Yamaha EX5

You see that door? You secretly want that to be a MIDI controller? Here’s how to do it, and how to play a cover version of “Break On Through” by The Doors on a door 😉 Link to source code and the DIY kit below.

If you don’t live in a home with squeaky doors — living room door, I’m looking at you — you probably never think about the musical potential of mundane household objects.

Unless you’re these two, I guess:

When Mama Isn’t Home / When Mom Isn’t Home ORIGINAL (the Oven Kid) Timmy Trumpet – Freaks

We thought this was hilarious. Hope you enjoy! This video has over 60 million views worldwide! Social Media: @jessconte To use this video in a commercial player, advertising or in broadcasts, please email [email protected]

If the sound of a slammed oven door isn’t involved in your ditty of choice, you may instead want to add some electronics to that sweet, sweet harmony maker, just like Floyd.

Trusting in the melodic possibilities of incorporating a Raspberry Pi 3B+ and various sensory components into a humble door, Floyd created The Doors Door, a musical door that plays… well, I’m sure you can guess.

If you want to build your own, you can practice some sophisticated ‘copy and paste’ programming after downloading the code. And for links to all the kit you need, check out the description of the video over on YouTube. While you’re there, be sure to give the video a like, and subscribe to Floyd’s channel.

And now, to get you pumped for the weekend, here’s Jim:

The Doors – Break On Through HQ (1967)

recorded fall 1966 – lyrics: You know the day destroys the night Night divides the day Tried to run Tried to hide Break on through to the other side Break on through to the other side Break on through to the other side, yeah We chased our pleasures here Dug our treasures there But can you still recall The time we cried Break on through to the other side Break on through to the other side Yeah!

The post Playing The Doors with a door (and a Raspberry Pi) appeared first on Raspberry Pi.

Design 3D prints with a Raspberry Pi and BlocksCAD

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/design-3d-prints-with-a-raspberry-pi-and-blockscad/

BlocksCAD is a 3D model editor that you use in a web browser, and it runs on Raspberry Pi. You drag and drop code blocks to design 3D models that can be exported for 3D printing.

In this project, you will use BlocksCAD to design a 3D pendant. The pendant uses a geometric pattern based on ‘the flower of life’, a design which is often found in historical art.

The finished pendant with a cord threaded through the small hanging hoop

If you have access to a 3D printer, then you can print your pendant. The pendant is small and only uses a little bit of filament. There’s a hoop on top of the pendant so that you can put it on a necklace or cord. The pendant has a diameter of 40 mm, plus the hoop for hanging. It is 2 mm thick, so it will 3D-print quite quickly.

After this project, you’ll also be able to code your own design and create a custom pendant.

Step 01: create a hoop

This project can be completed in a web browser using BlocksCAD. Open Chromium and enter the BlocksCAD editor URL: blockscad3d.com/editor.

The design uses six interlocking hoops in the centre, and a larger hoop around the outside. As mentioned, the pendant is 40 mm wide, plus the hoop for hanging, which is 2 mm thick.

Click 3D Shapes and drag a cylinder block to the project. Create a cylinder with a radius of 12, and a height of 2 (the unit here is millimetres). Cylinders are automatically centred along the X and Y axes. Select not centered so that the pendant sits on the surface. (This means that the Z-axis value is greater than 0.)

Click on the Render button after each change to your code to see the results.

Step 02: add more hoops

Now, drag a difference block from Set Ops to encase the cylinder. Add another cylinder block in the bottom space, and this time give it a radius of 11 mm. This will remove a smaller cylinder from the centre. This creates a hoop. Click Render again to see it.

If you like, you can click on the coloured square to change the colour used in the viewer. This does not affect the colour of your pendant, as that depends on the colour of the filament that you use.

The design uses six intersecting hoops, and each hoop is moved out from the centre and rotated a different number of degrees.

In the final design, there is no central hoop: the hoops are all moved out from the centre.

Drag a translate block (from Transforms) around your code, and set X and Y to 5. This moves the first hoop into position.

Step 03: centre the hoop

Now the hoop is a little off-centre. You need multiple copies of this hoop, rotated around the centre. First, create three equally spaced hoops.

Add a count Loops block to create three hoops. To space the hoops, add a rotate Transforms block between the count loop and the translate block.

In the count block, set the i variable from 1 to 3. You’ll need to insert an arithmetic block from Math and a variable (i) block from Variables into the Z field of the rotate block.

The rotation moves each hoop by 120 × i degrees, so that the three hoops are distributed equally around the 360 degrees of a circle (360 / 3 = 120). Look at the code and make sure you understand how it works. The finished design has six hoops rather than three. In the count block, set i from 1 to 6, and set the Z rotation to 60, so it creates six equally spaced hoops.

Step 04: add a border

Next, add a border around the edge of the design. Create a centred hoop that touches the edges of the design. You can either do the maths to work out what the radius of the circle needs to be, or you can just create a circle and change the radius until it works. Either approach is fine!

Encase your code with a union block from Set Ops, to join the border to the other hoops. Add a difference block to the plus section of union, and two cylinder blocks to make the hoop.

The six hoops each have a radius of 12 mm, so the border cylinder that you are making needs to be bigger than that. You could try setting the radius to 24 mm.

To make a hoop, the radius of the second cylinder in the difference block needs to be 1 mm smaller than the radius of the first cylinder.

Adjust the size of the cylinders until the border hoop just touches the outer edges of the six inner hoops.

The radius should be around 20 mm. (As mentioned in the introduction, the finished pendant will be 40 mm in diameter.)

Step 05: work it out

You could also use maths to work out the diameter. The diameter of each inner hoop is 24 mm. If the hoops met at the centre of the pendant, the border hoop would need to have a radius of 24 mm. But the inner hoops overlap, as they are translated 5 mm along the X and Y axes.

This removes a section from the radius. This section is on the arc, 5 mm from the origin, so we need to remove 5 mm from 24 mm. Thus the inner radius of the border hoop should be 19 mm.

Maths is really useful when you need to be accurate. But it’s fine to just change things until you get the result you need.

Step 06: add a hanging hoop

Now, add a small hanging hoop through which you can thread a cord to make a necklace.

Click the [+] on the union block to add another section to add the new hoop.

At the moment, the position of the hanging hoop isn’t very visually pleasing.

Add a rotate block to move the inner hoops so that the hanging hoop is centred over one of the gaps between them.

Step 07: experiment with shapes

Experiment and change some values in your pendant. For example, change the number of hoops, or the rotation.

You could also try to use cuboids (cubes) instead of cylinders to create a pattern.

Step 08: export to STL

BlocksCAD 3D can export an STL file for 3D printing. Render your model and then click on Generate STL. Remember where you save the STL file. Now 3D-print your pendant using a filament of the colour of your choice. Very carefully remove the 3D print from the print bed. The pendant is thin, so it’s quite delicate.

You might need to remove small strands of filament (especially from the hanging hoop) to tidy up the print.

Thread the pendant on to a chain or cord. If you want to use a thicker cord or necklace, then you can adjust the design to have a larger hanging hoop.

Check your code

You can download the full code and check it against your own. You can also check out our projects page, where you’ll find more images and step-by-step instructions for using BlocksCAD.

This project was created by Dr Tracy Gardner and the above article was featured in this month’s issue of The MagPi magazine. Get your copy of The MagPi magazine issue 89 today from your local newsagent, the Raspberry Pi Store, Cambridge, or online from Raspberry Pi Press.

The post Design 3D prints with a Raspberry Pi and BlocksCAD appeared first on Raspberry Pi.

How to set up OctoPrint on your Raspberry Pi

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/how-to-set-up-octoprint-on-your-raspberry-pi/

If you own a 3D printer, you’ll likely have at least heard of OctoPrint from the ever benevolent 3D printing online community. It has the potential to transform your 3D printing workflow for the better, and it’s very easy to set up. This guide will take you through the setup process step by step, and give you some handy tips along the way.

Octoprint

Before we start finding out how to install OctoPrint, let’s look at why you might want to. OctoPrint is a piece of open-source software that allows us to add WiFi functionality to any 3D printer with a USB port (which is pretty much all of them). More specifically, you’ll be able to drop files from your computer onto your printer, start/stop prints, monitor your printer via a live video feed, control the motors, control the temperature, and more, all from your web browser. Of course, with great power comes great responsibility — 3D printers have parts that are hot enough to cause fires, so make sure you have a safe setup, which may include not letting it run unsupervised.

OctoPrint ingredients

• Raspberry Pi 3 (or newer)
MicroSD card
• Raspberry Pi power adapter
• USB cable (the connector type will depend on your printer)
• Webcam/Raspberry Pi Camera Module (optional)
• 3D-printed camera mount (optional)

Before we get started, it is not recommended that anything less than a Raspberry Pi 3 is used for this project. There have been reports of limited success using OctoPrint on a Raspberry Pi Zero W, but only if you have no intention of using a camera to monitor your prints. If you want to try this with a Pi Zero or an older Raspberry Pi, you may experience unexpected print failures.

Download OctoPi

Firstly, you will need to download the latest version of OctoPi from the OctoPrint website. OctoPi is a Raspbian distribution that comes with OctoPrint, video streaming software, and CuraEngine for slicing models on your Raspberry Pi. When this has finished downloading, unzip the file and put the resulting IMG file somewhere handy.

Next, we need to flash this image onto our microSD card. We recommend using Etcher to do this, due to its minimal UI and ease of use; plus it’s also available to use on both Windows and Mac. Get it here: balena.io/etcher. When Etcher is installed and running, you’ll see the UI displayed. Simply click the Select Image button and find the IMG file you unzipped earlier. Next, put your microSD card into your computer and select it in the middle column of the Etcher interface.

Finally, click on Flash!, and while the image is being burned onto the card, get your WiFi router details, as you’ll need them for the next step.

Now that you have your operating system, you’ll want to add your WiFi details so that the Raspberry Pi can automatically connect to your network after it’s booted. To do this, remove the microSD card from your computer (Etcher will have ‘ejected’ the card after it has finished burning the image onto it) and then plug it back in again. Navigate to the microSD card on your computer — it should now be called boot — and open the file called octopi-wpa-supplicant.txt. Editing this file using WordPad or TextEdit can cause formatting issues; we recommend using Notepad++ to update this file, but there are instructions within the file itself to mitigate formatting issues if you do choose to use another text editor. Find the section that begins ## WPA/WPA2 secured and remove the hash signs from the four lines below this one to uncomment them. Finally, replace the SSID value and the PSK value with the name and password for your WiFi network, respectively (keeping the quotation marks). See the example below for how this should look.

Further down in the file, there is a section for what country you are in. If you are using OctoPrint in the UK, leave this as is (by default, the UK is selected). However, if you wish to change this, simply comment the UK line again by adding a # before it, and uncomment whichever country you are setting up OctoPrint in. The example below shows how the file will look if you are setting this up for use in the US:

# Uncomment the country your Pi is in to activate Wifi in RaspberryPi 3 B+ and above
# For full list see: https://en.wikipedia.org/ wiki/ISO_3166-1_alpha-2
#country=GB # United Kingdom
#country=CA # Canada
#country=DE # Germany
#country=FR # France
country=US # United States

When the changes have been made, save the file and then eject/unmount and remove the microSD card from your computer and put it into your Raspberry Pi. Plug the power supply in, and go and make a cup of tea while it boots up for the first time (this may take around ten minutes). Make sure the Raspberry Pi is running as expected (i.e. check that the green status LED is flashing intermittently). If you’re using macOS, visit octopi.local in your browser of choice. If you’re using Windows, you can find OctoPrint by clicking on the Network tab in the sidebar. It should be called OctoPrint instance on octopi – double-clicking on this will open the OctoPrint dashboard in your browser.

If you see the screen shown above, then congratulations! You have set up OctoPrint.

Not seeing that OctoPrint splash screen? Fear not, you are not the first. While a full list of issues is beyond the scope of this article, common issues include: double-checking your WiFi details are entered correctly in the octopi-wpa-supplicant.txt file, ensuring your Raspberry Pi is working correctly (plug the Raspberry Pi into a monitor and watch what happens during boot), or your Raspberry Pi may be out of range of your WiFi router. There’s a detailed list of troubleshooting suggestions on the OctoPrint website.

Printing with OctoPrint

We now have the opportunity to set up OctoPrint for our printer using the handy wizard. Most of this is very straightforward — setting up a password, signing up to send anonymous usage stats, etc. — but there are a few sections which require a little more thought.

We recommend enabling the connectivity check and the plug-ins blacklist to help keep things nice and stable. If you plan on using OctoPrint as your slicer as well as a monitoring tool, then you can use this step to import a Cura profile. However, we recommend skipping this step as it’s much quicker (and you can use a slicer of your choice) to slice the model on your computer, and then send the finished G-code over.

Finally, we need to put in our printer details. Above, we’ve included some of the specs of the Creality Ender-3 as an example. If you can’t find the exact details of your printer, a quick web search should show what you need for this section.

The General tab can have anything in it, it’s just an identifier for your own use. Print bed & build volume should be easy to find out — if not, you can measure your print bed and find out the position of the origin by looking at your Cura printer profile. Leave Axes as default; for the Hotend and extruder section, defaults are almost certainly fine here (unless you’ve changed your nozzle; 0.4 is the default diameter for most consumer printers).

OctoPrint is better with a camera

Now that you’re set up with OctoPrint, you’re ready to start printing. Turn off your Raspberry Pi, then plug it into your 3D printer. After it has booted up, open OctoPrint again in your browser and take your newly WiFi-enabled printer for a spin by clicking the Connect button. After it has connected, you’ll be able to set the hot end and bed temperature, then watch as the real-time readings are updated.

In the Control tab, we can see the camera stream (if you’re using one) and the motor controls, as well as commands to home the axes. There’s a G-code file viewer to look through a cross-section of the currently loaded model, and a terminal to send custom G-code commands to your printer. The last tab is for making time-lapses; however, there is a plug-in available to help with this process.

Undoubtedly the easiest way to set up video monitoring of your prints is to use the official Raspberry Pi Camera Module. There are dozens of awesome mounts on Thingiverse for a Raspberry Pi Camera Module, to allow you to get the best angle of your models as they print. There are also some awesome OctoPrint-themed Raspberry Pi cases to house your new printer brains. While it isn’t officially supported by OctoPrint, you can use a USB webcam instead if you have one handy, or just want some very high-quality video streams. The OctoPrint wiki has a crowdsourced list of webcams known to work, as well as a link for the extra steps needed to get the webcam working correctly.

As mentioned earlier, our recommended way of printing a model using OctoPrint is to first use your slicer as you would if you were creating a file to save to a microSD card. Once you have the file, save it somewhere handy on your computer, and open the OctoPrint interface. In the bottom left of the screen, you will see the Upload File button — click this and upload the G-code you wish to print.

You’ll see the file/print details appear, including information on how long it’ll take for the object to print. Before you kick things off, check out the G-code Viewer tab on the right. You can not only scroll through the layers of the object, but, using the slider at the bottom, you can see the exact pattern the 3D printer will use to ‘draw’ each layer. Now click Print and watch your printer jump into action!

OctoPrint has scores of community-created plug-ins, but our favourite, Octolapse, makes beautiful hypnotic time-lapses. What makes them so special is that the plug-in alters the G-code of whatever object you are printing so that once each layer has finished, the extruder moves away from the print to let the camera take an unobstructed shot of the model. The result is an object that seems to grow out of the build plate as if by magic. You’ll not find a finer example of it than here.

Satisfying 3D Prints TimeLapse episode 7 (Prusa I3 Mk3 octopi)

3D Printing timelapses of models printed on the Prusa i3 MK3! Here’s another compilation of my recent timelapses. I got some shots that i think came out really great and i hope you enjoy them! as always if you want to see some of these timelapses before they come out or want to catch some behind the scenes action check out my instagram!

Thanks to Glenn and HackSpace magazine

This tutorial comes fresh from the pages of HackSpace magazine issue 26 and was written by Glenn Horan. Thanks, Glenn.

To get your copy of HackSpace magazine issue 26, visit your local newsagent, the Raspberry Pi Store, Cambridge, or the Raspberry Pi Press online store.

Fans of HackSpace magazine will also score themselves a rather delightful Adafruit Circuit Playground Express with a 12-month subscription. Sweet!

The post How to set up OctoPrint on your Raspberry Pi appeared first on Raspberry Pi.

What makes a mechanical keyboard ‘clicky’?

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/what-makes-a-mechanical-keyboard-clicky/

In our latest video for the newly rebranded Raspberry Pi Press YouTube channel, Custom PC’s Edward Chester explains what mechanical keyboards are, and why they’re so clicky.

How do mechanical keyboards work?

So, what makes a mechanical keyboard ‘mechanical’? And why are some mechanical keyboards more ‘clicky’ than others? Custom PC’s Edward Chester explains all. Check out our Elite List of mechanical keyboards: https://rpf.io/elite-list-mechanical-keyboard Subscribe to our channel: https://rpf.iopressytsub Visit the Custom PC magazine website: https://rpf.io/ytcustompc Our magazines and books: https://rpf.io/ytpress Raspberry Pi Press is the publishing imprint of Raspberry Pi Trading Ltd., a subsidiary of The Raspberry Pi Foundation.

Custom PC is one of the many magazines produced by Raspberry Pi Press, the publishing imprint of Raspberry Pi Trading Ltd; it does exactly what it says on the tin cover: provide everything you need to know about the ins and outs of custom PC building and all the processes that make the topic so fascinating.

Be sure to subscribe to the Raspberry Pi Press YouTube channel, because we’ll be offering more videos from Custom PC, alongside content from The MagPi magazine, HackSpace magazine, Wireframe, and our future standalone book publications, such as The Official Raspberry Pi Beginner’s Guide and An Introduction to C & GUI Programming (the latter of which is currently on sale with free worldwide shipping!), on that channel very soon.

The post What makes a mechanical keyboard ‘clicky’? appeared first on Raspberry Pi.

How to set up and use your brand-new Raspberry Pi

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/how-to-set-up-and-use-your-brand-new-raspberry-pi/

If you’re reading this, it’s probably because you bagged yourself a brand-new Raspberry Pi for Christmas, and you’re wondering what you should do next.

Well, look no further, for we’re here to show you the ropes. So, sit back, pull on a pair of those nice, warm socks that you found in your stocking, top up your eggnog, and let’s get started.

Do I need an operating system?

Unless your Raspberry Pi came in a kit with a preloaded SD card, you’ll need to download an operating system. Find a microSD card (you may have one lurking in an old phone) and click here to download the latest version of Raspbian, our dedicated Raspberry Pi operating system.

To get Raspbian onto the microSD card, use free online software such as Etcher. Here’s a video from The MagPi magazine to show you how to do it.

Use Etcher to install operating systems onto an SD card

Lucy Hattersley shows you how to install Raspberry Pi operating systems such as Raspbian onto an SD card, using the excellent Etcher. For more tutorials, check out The MagPi at http://magpi.cc ! Don’t want to miss an issue? Subscribe, and get every issue delivered straight to your door.

Turn it on!

Here, this video should help:

How to set up your Raspberry Pi || Getting started with #RaspberryPi

Learn #howto set up your Raspberry Pi for the first time, from plugging in peripherals to setting up #Raspbian.

Insert your microSD card into your Raspberry Pi. The microSD card slot should be fairly easy to find, and you need to make sure that you insert it with the contact side facing the board. If you feel like you’re having to force it in, you have it the wrong way round.

Next, plug your HDMI cable into the Raspberry Pi and your chosen HDMI display. This could be a computer monitor or your home television.

If you’re using a Raspberry Pi Zero or Raspberry Pi Zero W, you’ll need a mini HDMI to HDMI cable or adapter.

If you’re using a Raspberry Pi 4, you’ll need a micro HDMI to HDMI cable or adapter.

Raspberry Pi official keyboard

Next, plug in any peripherals that you want to use, such as a mouse or keyboard.

Lastly, plug your power cable into your Raspberry Pi. This is any standard micro USB cable (if you have an Android phone, check your phone charger!), or a USB-C power cable if you’re using the Raspberry Pi 4.

Most kits will come with all of the cables and adapters that you need, so look in the box first before you start rummaging around your home for spare cables.

Once the power cable is connected, your Raspberry Pi will turn on. If it doesn’t, check that your SD card is inserted correctly and your cables are pushed in fully.

Still in doubt? Here’s Sally Le Page with more:

How to use a Raspberry Pi ft. Dr Sally Le Page

What is a Raspberry Pi and what do you need to get started? Our ‘How to use a Raspberry Pi’ explainer will take you through the basics of your #RaspberryPi, and how you can get hands-on with Raspbian and #coding language tools such as Scratch and Mu, with our host, Dr Sally Le Page.

Once on, the Raspberry Pi will direct you through a setup process that allows you to change your password and connect to your local wireless network.

And then, you’re good to go!

Now what?

Now what? Well, that depends on what you want to do with your Raspberry Pi.

Many people use their Raspberry Pi to learn how to code. If you’re new to coding, we suggest trying out a few of our easy online projects to help you understand the basics of Scratch — the drag-and-drop coding platform from MIT — and Python — a popular general-purpose programming language and the reason for the “Pi” in Raspberry Pi’s name.

The components of a virtual analogue Raspberry Pu synthesiser


Maybe you want to use your Raspberry Pi to set up control of smart devices in your home, or build a media centre for all your favourite photos and home movies. Perhaps you want to play games on your Raspberry Pi, or try out various HATs and add-ons to create fun digital making projects.

Sally Le Page

Whatever you want to do with your Raspberry Pi, the internet is full of brilliant tutorials from the Raspberry Pi Foundation and online creators.

Some places to start

Get involved with the Raspberry Pi Foundation

From community events and magazines to online learning and space exploration – there are so many ways to get involved with the Raspberry Pi Foundation.

The Raspberry Pi community is huge, and spreads across the entire globe, bringing people together to share their love of coding, digital making, and computer education. However you use your Raspberry Pi, know that, by owning it, you’ve helped the non-profit Raspberry Pi Foundation to grow, bringing more opportunities to kids and teachers all over the world. So, from the bottom of our hearts this festive season, thank you.

We can’t wait to see what 2020 brings!

 

The post How to set up and use your brand-new Raspberry Pi appeared first on Raspberry Pi.

Brass freeform circuit (Raspberry Pi) Instagram tracker

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/brass-freeform-circuit-raspberry-pi-instagram-tracker/

A few of our favourite online makers decided to take part in a makers’ Secret Santa, producing home-made gifts based on their skills. So, OBVIOUSLY, Estefannie used a Raspberry Pi. Thanks, Estefannie.

HOW I HACKED INSTAGRAM FOR MY SECRET SANTA

I got in a Maker Secret Santa this year so I decided to make a thing and hack Instagram for it. #YTMakersSecretSanta MAKERS SECRET SANTA! FOLLOW EVERYONE: Kids Invent Stuff https://www.youtube.com/channel/UC-glo52BMvZH9PPUamjGIcw Colin Furze https://www.youtube.com/user/colinfurze The Hacksmithhttps://www.youtube.com/user/MstrJames Look Mum No Computer https://www.youtube.com/channel/UCafxR2HWJRmMfSdyZXvZMTw Sufficiently Advanced https://www.youtube.com/channel/UCVS89U86PwqzNkK2qYNbk5A Subscribe to my channel if you’d like to be the first to know when I publish the next video 🙂 Let me know what other videos you would like to see.

In the video above, Estefannie uses a Raspberry Pi to hack Instagram to illuminate a handmade freeform circuit whenever Kids Invent Stuff gains a like on a post.

“But why not use the Instagram API?”, I hear you cry. Well, as Estefannie explains, she wanted the gift to be a surprise, and if she had used the Instagram API, she would have had to have asked them for their details in order to access it.

Watch to the end of the video to see the gift that Estefannie received from her Secret Santa, a certain Colin Furze. You can see his complete build video for the Cat-o-Matic below.

CAT-O-MATIC auto cat feeder/terrifier YTMakers Secret Santa

Fear not your cat feeding issues are sorted………..Furzestyle No cat was harmed in making of this but it did run off……….but came back and is fine. Thanks to the Kids Invent Stuff channel for organising this Secret Santa check them out here https://www.youtube.com/channel/UC-glo52BMvZH9PPUamjGIcw And the other channels involved Estefannie Explains https://www.youtube.com/user/estefanniegg Sufficiently Advanced https://www.youtube.com/channel/UCVS89U86PwqzNkK2qYNbk5A Look Mum No Computer https://www.youtube.com/channel/UCafxR2HWJRmMfSdyZXvZMTw The Hacksmiths https://www.youtube.com/user/MstrJames Check out the new FURZE Merch store.

The post Brass freeform circuit (Raspberry Pi) Instagram tracker appeared first on Raspberry Pi.

How to run a script at start-up on a Raspberry Pi using crontab

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/how-to-run-a-script-at-start-up-on-a-raspberry-pi-using-crontab/

Do you need to run a script whenever your Raspberry Pi turns on? Here’s Estefannie to explain how to edit crontab to do exactly that.

How to start a script at start-up on a Raspberry Pi // LEARN SOMETHING

Do you want your Raspberry Pi to automatically run your code when it is connected to power? Then you are in the right place. In this new #LEARNSOMETHING video I show you how to make you Raspberry Pi run your script automatically when it is connected to a power source.

Running script on startup

While there are many ways of asking your Raspberry Pi to run a script on start-up, crontab -e is definitely one of the easiest.

AND, as Estefannie explains (in part thanks to me bugging asking her to do so), if you create a run folder on your desktop, you can switch out the Python scripts you want to run at start-up whenever you like and will never have to edit crontab again!

Weeeeee!

Now go write some wonderful and inspiring festive scripts while I take a well-earned nap. I just got off a plane yet here I am, writing blog posts for y’all because I love you THAT DARN MUCH!

A fluffy cat

This is Teddy. Teddy is also in the video.

And don’t forget to like and subscribe for more Estefannie Explains it All goodness!

The post How to run a script at start-up on a Raspberry Pi using crontab appeared first on Raspberry Pi.

Raspberry Pi capacitive-touch musical Christmas tree

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/capacitive-touch-musical-christmas-tree/

What, your Christmas tree ISN’T touch-enabled?

Capacitive Touch Christmas Tree How To | Raspberry Pi | Bare Conductive Pi Cap

Turn your Christmas tree into a capacitive touch-interactive musical instrument using a Raspberry Pi and a Bare Conductive Pi Cap. You’ll be rocking around the Christmas tree in no time! /* Bare Conductive */ Pi Cap: https://www.bareconductive.com/shop/pi-cap/ Touch Board: https://www.bareconductive.com/shop/touch-board/ Code: https://github.com/BareConductive/picap-touch-mp3-py #RasberryPi #BareConductive #Christmas

Using the Bare Conductive Pi Cap, Davy Wybiral hooked up his fairy lights and baubles to a Raspberry Pi. The result? Musical baubles that allow the user to play their favourite festive classics at the touch of a finger. These baubles are fantastic, and it’s easy to make your own. Just watch the video for Davy’s how-to.

The code for Bare Conductive’s Pi Cap polyphonic touch MP3 utility can be found in this GitHub repo, and you can pick up a Pi Cap on the Bare Conductive website. Then all you need to do is hook up your favourite tree decorations to the Pi Cap via insulated wires, and you’re good to go. It’s OK if your decorations aren’t conductive: you’ll actually be touching the wires and not the ornaments themselves.

And don’t worry about touching the wires, it’s perfectly safe. But just in this instance. Please don’t make a habit of touching wires.

Make sure to subscribe to Davy on YouTube (we did) and give him a like for the baubles video. Also, leave a comment to tell him how great it is, because nice comments are lovely, and we should all be leaving as many of them as we can on the videos for our favourite creators.

The post Raspberry Pi capacitive-touch musical Christmas tree appeared first on Raspberry Pi.

Using a Raspberry Pi as a synthesiser

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/virtual-analogue-synthesiser/

Synthesiser? Synthesizer? Whichever it is*, check out this video of Floyd Steinberg showing how he set up his Raspberry Pi as one of them.

How to use a Raspberry PI as a synthesizer

How to use a Raspberry PI as a synthesizer. Table of contents below! The Raspberry PI is a popular card-sized computer. In this video, I show how to set up a Raspberry PI V3 as a virtual analog synthesizer with keyboard and knobs for realtime sound tweaking, using standard MIDI controllers and some very minor shell script editing.

“In this video,” Floyd explains on YouTube, “I show how to set up a Raspberry Pi 3 as a virtual analogue synthesiser with keyboard and knobs for real-time sound tweaking, using standard MIDI controllers and some very minor shell script editing. The result is a battery-powered mini synth creating quite impressive sounds!”

The components of a virtual analogue Raspberry Pu synthesiser

We know a fair few of you (Raspberry Pi staff included) love dabbling in the world of Raspberry Pi synth sound, so be sure to watch the video to see what Floyd gets up to while turning a Raspberry Pi 3 into a virtual analogue synthesiser.

Be sure to check out Floyd’s other videos for more synthy goodness, and comment on his video if you’d like him to experiment further with Raspberry Pi. (The answer is yes, yes we would 🙏🙌)

 

*[Editor’s note: it’s spelled with a z in US English, and with an s in UK English. You’re welcome, Alex.]

The post Using a Raspberry Pi as a synthesiser appeared first on Raspberry Pi.

Really, really awesome Raspberry Pi NeoPixel LED mirror

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/awesome-neopixel-led-mirror/

Check out Super Make Something’s awesome NeoPixel LED mirror: a 576 RGB LED display that converts images via the Raspberry Pi Camera Module and Raspberry Pi 3B+ into a pixelated light show.

Neopixel LED Mirror (Python, Raspberry Pi, Arduino, 3D Printing, Laser Cutting!) DIY How To

Time to pull out all the stops for the biggest Super Make Something project to date! Using 3D printing, laser cutting, a Raspberry Pi, computer vision, Python, and nearly 600 Neopixel LEDs, I build a low resolution LED mirror that displays your reflection on a massive 3 foot by 3 foot grid made from an array of 24 by 24 RGB LEDs!

Mechanical mirrors

If you’re into cool uses of tech, you may be aware of Daniel Rozin, the creative artist building mechanical mirrors out of wooden panels, trash, and…penguins, to name but a few of his wonderful builds.

A woman standing in front of a mechanical mirror made of toy penguins

Yup, this is a mechanical mirror made of toy penguins.

A digital mechanical mirror?

Inspired by Daniel Rozin’s work, Alex, the person behind Super Make Something, put an RGB LED spin on the concept, producing this stunning mirror that thoroughly impressed visitors at Cleveland Maker Faire last month.

“Inspired by Danny Rozin’s mechanical mirrors, this 3 foot by 3 foot mirror is powered by a Raspberry Pi, and uses Python and OpenCV computer vision libraries to process captured images in real time to light up 576 individual RGB LEDs!” Alex explains on Instagram. “Also onboard are nearly 600 3D-printed squares to diffuse the light from each NeoPixel, as well as 16 laser-cut panels to hold everything in place!”

The video above gives a brilliantly detailed explanation of how Alex made the, so we highly recommend giving it a watch if you’re feeling inspired to make your own.

Seriously, we really want to make one of these for Raspberry Pi Towers!

As always, be sure to subscribe to Super Make Something on YouTube and leave a comment on the video if, like us, you love the project. Most online makers are producing content such as this with very little return on their investment, so every like and subscriber really does make a difference.

The post Really, really awesome Raspberry Pi NeoPixel LED mirror appeared first on Raspberry Pi.

IoT ugly Christmas sweaters

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/iot-ugly-christmas-sweaters/

If there’s one thing we Brits love, it’s an ugly Christmas sweater. Jim Bennett, a Senior Cloud Advocate at Microsoft, has taken his ugly sweater game to the next level by adding IoT-controlled, Twitter-connected LEDs thanks to a Raspberry Pi Zero.

IoT is Fun for Everyone! (Ugly Sweater Edition)

An Ugly Sweater is great-but what’s even better (https://aka.ms/IoTShow/UglySweater) is an IoT-enabled Ugly Sweater. In this episode of the IoT Show, Olivier Bloch is joined by Jim Bennett, a Senior Cloud Advocate at Microsoft. Jim has built an Ugly Sweater using Azure IoT Central, Microsoft’s IoT app platform, and a Raspberry Pi Zero.

Jim upgraded his ugly sweater to become IoT-compatible using Microsoft’s IoT app platform Azure IoT Central, Adafruit’s programmable NeoPixel LED Dots Strand and, of course, our sweet baby, the Raspberry Pi Zero W.

After sewing the LED strand into the ugly sweater and connecting it to Raspberry Pi Zero, Jim was able to control the colour of the LEDs. Taking it one step further, he then built a list of commands within Azure IoT Central and linked the Raspberry Pi Zero to a Twitter account to create the IoT element of the project.

Watch the video above for full details on the project, and find all the code on Github.

The post IoT ugly Christmas sweaters appeared first on Raspberry Pi.

Raspberry Pi Christmas Shopping Guide 2019

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/raspberry-pi-christmas-shopping-guide-2019/

Stuck for what to buy your friends and family this Christmas? Whether you’re looking to introduce someone to Raspberry Pi and coding, or trying to find the perfect gift for the tech-mad hobbyist in your life, our Christmas Shopping Guide 2019 will help you complete your shopping list. So, let’s get started…

The good ol’ Raspberry Pi

They’ve asked for a Raspberry Pi but not told you which one they want? You know they like coding but don’t know where to start? They’re an avid baker and you think they may have spelt ‘pie’ wrong on their Christmas list? No problem, we’ve got you sorted.

Raspberry Pi 4 Desktop Kit

With everything you need to get started using Raspberry Pi 4, the Raspberry Pi 4 Desktop Kit contains our official mouse, keyboard with an integrated USB hub, USB-C power adapter, case, two micro HDMI leads, our Beginner’s Guide and, of course, the 4GB Raspberry Pi 4. Available from our Approved Resellers and the Raspberry Pi Store, Cambridge, the Desktop Kit is the perfect gift for anyone who’s wanting to get started with coding and digital making, or who’s simply looking to upgrade their current home computer to a smaller, less power-hungry setup.

Visit the Raspberry Pi Store, Cambridge, or find your nearest Approved Reseller online.

Raspberry Pi Zero W

Raspberry Pi Zero WH

The smallest Raspberry Pi still packs a punch despite its size and price. For $10, Raspberry Pi Zero W is perfect for embedding into projects and, with onboard Bluetooth and wireless LAN, there are fewer cables to worry about. Buy a Raspberry Pi Zero W with or without pre-soldered header pins, and pop it in someone’s stocking this Christmas as a great maker surprise.

Visit the Raspberry Pi Store, Cambridge, or find your nearest Approved Reseller online.

Get Started with Raspberry Pi 3A+

 

This isn’t just a book: it’s a book with a computer on the front. Getting Started with Raspberry Pi is a great gift for anyone curious about coding and, at £35, it’s a pretty affordable gift to give this festive season. Alongside the 116-page getting-started guide, the package also contains a Raspberry Pi 3A+, official case, and 16GB micro SD card pre-loaded with NOOBs. Raspberry Pi 3A+ can be powered with a good-quality micro USB phone charger, and it can be connected to any TV or computer display via standard HDMI. Grab a keyboard and mouse — you’ll be surprised how many people have a keyboard and mouse lying around — and you’re good to go!

Order your gift today from the Raspberry Pi Press online store, with international shipping available.

A full range of all Raspberry Pi variants, official accessories, and add-ons can be found on our products page.

A Raspberry Pie

Don’t be lazy, make your own!

Books

Raspberry Pi Press has released a small library’s worth of publications these last few months — have you ordered all your copies yet?





Pre-orders are now open for our glorious Code the Classics, so secure your copy now for the 13 December release date, with free UK shipping. And, while you’re on our Raspberry Pi Press page, check out our latest range of publications to suit all techy interests: Retro Gaming with Raspberry Pi will show the budding gamer in your life how to build their own Raspberry Pi retro arcade to play their Code the Classics favourites on, while Book of Making 2 and Raspberry Pi Projects Book 5 will inspire them to make all manner of amazing projects, from electronics and woodworking to crafts and rockets.


An Introduction to C and GUI programming by Simon Long

If they’re already full to the brim with Raspberry Pi, why not treat them to our Get Started with Arduino guide so they can expand upon their electronics skills. We also offer a host of established publications at discounted prices, including Sophy Wong’s Wearable Tech Projects, An Introduction to C & GUI Programming, and previous volumes of the Book of Making and the Raspberry Pi Projects Book.

Visit the Raspberry Pi Press online store, or head to the Raspberry Pi Store, Cambridge to find all our publications. You may also find a selection in your local WHSmith, Sainsbury’s, or Barnes & Noble.

Magazine subscriptions

Subscriptions are available for all of our magazines. 12-month subscribers to The MagPi magazine will receive a free Raspberry Pi, while a 12-month subscription to HackSpace magazine will net you a free Adafruit Circuit Playground Express.

Subscribers to Wireframe magazine, Custom PC magazine, and Digital SLR Photography will save up to 49% compared to newsstand prices, with many subscription options to choose from.

Babbage Bear

Everyone needs a Babbage Bear. Your new Babs will come complete with their own Raspberry Pi-branded shirt. And, with some felt, stuffing, and a stapler, you can make them as festive as ours in no time!

Order yours online, or buy Babbage at the Raspberry Pi Store, Cambridge.

Great third-party add-ons and essential kit

The Pi Hut’s 3D Xmas Tree

This newest iteration of The Pi Hut 3D Xmas Tree includes programmable RGB LEDs! Simply detach the two halves of the tree from their frame, slot them together, and place them onto the GPIO pins of your Raspberry Pi. With the provided libraries of code, the tree will be lit up and merry before you know it.

How about programming it to flash to your favourite Christmas song? Get yours today from The Pi Hut and the Raspberry Pi Store, Cambridge.

Pimoroni Pirate Radio

“Pirate Audio Speaker,” Pimoroni explain “is perfect for making a Lilliputian radio, sound effect player, or even as a teeny-weeny games console!”

Attach this HAT to any 40-pin Raspberry Pi and start creating a whole host of wonderful audio-visual projects — such as a Christmas #1 jukebox — to get you in the mood for your office party.

Available from the Pimoroni website and the Raspberry Pi Store, Cambridge.

PocketMoneyTronics GPIO Christmas Tree

This super-cute GPIO add-on allows users to write their own light shows via GPIO. Available for £4 from the Raspberry Pi Store, Cambridge, and the PocketMoneyTronics website, it’s a nice festive addition to any coders stocking.

Full instructions are provided with the kit, and are also available online. Buy the kit pre-soldered or loose, depending on your giftee’s soldering skills.

Visit the websites of all our Approved Resellers for more great Raspberry Pi gifts. Find your local Approved Reseller by selecting your country from the dropdown menu on any Raspberry Pi Products page.

Essential kit

Fill their maker kit this festive season, with a whole host of great components and tools. A soldering iron is a great way for coders to start bringing their projects out into the real world, allowing them to permanently add sensors, lights, buttons, etc. to their Raspberry Pi. They’ll also need one if they want to add header pins to the $5 Raspberry Pi Zero and $10 Raspberry Pi Zero W.

You can never have enough LEDs. Available in a variety of sizes and colours, you can find packs of LEDs online or in your local electronics store.

Never underestimate the importance of a cutting mat. Not only will it save your tabletop from craft knife cuts and soldering iron burns, but they also look great in photos for when its time to show of their latest project!

Amazon Smile

If you plan on making online purchases via Amazon, please consider selecting the Raspberry Pi Foundation via Amazon Smile! Your items will still be the same cost to you, but Amazon will donate a portion of the purchase price to help us continue to make free computer science education available to adults  and young people everywhere.

  • Amazon Smile for the UK
  • Amazon Smile for the US
  • For those of you based elsewhere, we’re pretty sure that you just need to add smile. before amazon in the Amazon web address you use in your country, so give that a try. If that doesn’t work, try searching for Amazon Smile via your prefered search engine.

Our gift to you

We wanted to give you a gift this festive season, so we asked the incredibly talented Sam Alder to design an illustration for you to print or use as your desktop wallpaper.

The poster is completely free for you to use and can be opened by clicking on the image above. We just ask that you don’t sell it, print it onto a t-shirt or mug, tattoo it onto your body, or manipulate it. But do feel free to print it as a poster for your home, classroom, or office, or to upload it as your computer wallpaper. And, when you do, be sure to take a photo and share it with us on social media.

You can also download a wider version of the image.

Happy gift-giving this 2019!

The post Raspberry Pi Christmas Shopping Guide 2019 appeared first on Raspberry Pi.

More new books from The MagPi and HackSpace magazines

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/more-new-books-from-the-magpi-and-hackspace-magazines/

If our recent release of Retro Gaming with Raspberry Pi, Getting Started with Arduino, and Coding the Classics isn’t enough for you, today sees the release of TWO MORE publications from Raspberry Pi Press!

The Official Raspberry Pi Projects Book Volume 5

If you’re looking for Raspberry Pi inspiration, volume 5 of the ever popular Raspberry Pi Projects Book is for you. Packed full of ideas, projects, and incredible builds, The Official Raspberry Pi Projects Book Volume 5 is the perfect read for any budding coder, maker, or fan of cool stuff.

Get your copy now

Buy The Official Raspberry Pi Projects Book Volume 5 directly from the Raspberry Pi Press online store today with FREE WORLDWIDE SHIPPING, or pick up your copy from the Raspberry Pi Store, Cambridge; local UK newsagents and supermarkets such as WHSmith and Sainsbury’s; or from Barnes & Noble in the US in the next few weeks.

If you’d like to sample The Official Raspberry Pi Projects Book Volume 5, you can download the PDF from The MagPi website.

Book of Making Volume 2

Much like The Official Raspberry Pi Projects Book Volume 5, Book of Making Volume 2 collects together some of the very best projects and tutorials from the makersphere, whether they involve wood- and metalwork or fine electronics and 3D printing. If you’re a maker hobbyist, or simply a fan of awesome projects and unusual builds, Book of Making Volume 2 is the publication for you.

Get your copy today

You can buy Book of Making Volume 2 directly from the Raspberry Pi Press online store today, again with FREE WORLDWIDE SHIPPING. It’ll also be available from the Raspberry Pi Store, Cambridge; local UK newsagents and supermarkets such as WHSmith and Sainsbury’s; or Barnes & Noble in the US in the next few weeks.

You can also download the free PDF from HackSpace magazine’s website.

The post More new books from The MagPi and HackSpace magazines appeared first on Raspberry Pi.

Pre-order Code the Classics today!

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/pre-order-code-the-classics-today/

Today, we are proud to announce Code the Classics, the latest (and long-awaited) publication from Raspberry Pi Press.

Pre-order Code the Classics today

Subscribe to our YouTube channel: http://rpf.io/ytsub Help us reach a wider audience by translating our video content: http://rpf.io/yttranslate Buy a Raspberry Pi from one of our Approved Resellers: http://rpf.io/ytproducts Find out more about the #RaspberryPi Foundation: Raspberry Pi http://rpf.io/ytrpi Code Club UK http://rpf.io/ytccuk Code Club International http://rpf.io/ytcci CoderDojo http://rpf.io/ytcd Check out our free online training courses: http://rpf.io/ytfl Find your local Raspberry Jam event: http://rpf.io/ytjam Work through our free online projects: http://rpf.io/ytprojects Do you have a question about your Raspberry Pi?

Code the Classics

Code the Classics not only tells the stories of some of the seminal video games of the 1970s and 1980s, but shows you how to create your own games inspired by them using Python and Pygame Zero, following examples programmed by Raspberry Pi founder Eben Upton.

Get game design tips and tricks from the masters. Explore the code listings and find out how they work.

Learn how to code your own games with Pygame Zero. Download and play games examples by Eben Upton.

Pre-order Code the Classics today

Code the Classics is available to pre-order now from the Raspberry Pi Press online store, and it will be released in time for Christmas on 13 December. Pre-order today for FREE UK shipping.

Code the Classics is the perfect gift for anyone with fond memories of the video games of the 1970s and 1980s, and it’s also a brilliant way for young coders to get into understanding the code mechanics behind gaming, helping to inspire them to create their own.

The post Pre-order Code the Classics today! appeared first on Raspberry Pi.

Make your own NFC data cufflinks

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/make-your-own-nfc-data-cufflinks/

In this project, we’ll make a pair of NFC data cufflinks, ideal for storing a website URL, a password, or a secret message. This project is perfect for a sartorial spy who loves dry Martinis, and anyone who can’t remember their WiFi password.

NFC technology

NFC stands for near-field communication, and is a protocol that allows two devices to communicate wirelessly when they are physically near each other. An evolution of RFID, NFC is becoming increasingly popular in consumer technology, and is already commonly used in contactless payment systems and identification badges. NFC wristbands are also being used to create enhanced experiences for visitors at theme parks and other venues.

The rise of NFC hasn’t bypassed hobbyists and tinkerers, and companies like Pimoroni and Adafruit sell components that make it relatively easy to add NFC functionality to your projects. Here, we’ll make use of tiny NFC tags that can be read and written to by a smartphone or external NFC reader. The tags can be read through a non-metal barrier, like plastic, so we’ll embed the tag in resin to make an elegant cabochon for our cufflink. When complete, holding the cufflink to your smartphone or NFC reader will let you read or write data to the chip inside.

Micro NFC/RFID transponders

For this project we used the smallest NFC tags we could find, micro NFC/RFID transponders from Adafruit (product number 2800). These 15.6mm x 6mm flexible tags are formatted with the now standard NDEF format, and will work as-is with newer phones and most NFC readers. If you happen to pick up older Mifare Classic formatted tags, they may need to be reformatted as NDEF to work with your reader/writer. Reformatting isn’t a function of most NFC read/write apps, but it can be done with Adafruit’s PN532 NFC/RFID controller breakout board or shield.

If this is your first time working with resin epoxy, get ready for a new, fun kind of mess! Resin epoxy comes in two parts that must be mixed together in equal proportions before use. Once mixed, the resin will be workable for a short period of time before entering the curing phase and hardening completely. Figuring out exactly how much resin to mix up is definitely an art. There are even some online tools available to help calculate this. For a small project like this, just make sure you mix up a bit more than you think you’ll need.

You don’t want to run out during the pour and have to quickly mix up more at the last minute. If you’re tinting your resin, you definitely want to pour all of your pieces from the same mix, as it’s almost impossible to match the colour of one batch of resin to another.

All of this means you’ll undoubtedly end up with more than just two cabochons for one pair of cufflinks, and if you’re going to make a mess anyway, why not go big? Pick up a few extra NFC tags and plan to pour some other pieces, like pendants or key chain fobs. These make great holiday or birthday gifts that are both technologically advanced and crafty at the same time!

Resin-cast jewellery has been made for decades and there are loads of options for resin moulds available at craft stores and online. The best moulds for resin are made of silicone. Flexible silicone moulds make it easy to remove the hardened pieces, and produce ultra-shiny surfaces. Cufflink blanks, ring blanks, and pendant bails can also be purchased at jewellery supply stores. Refer to your moulds when choosing cufflink and ring blanks, to make sure that the blanks will work with the size of cabochon you’ve chosen to cast, and vice versa.

Licence to spill

Start by gathering your materials and setting up your workspace for working with resin. There will be a lot of stirring, pouring, and drips, and things are likely to get messy! Cover your work surface with paper and keep some paper towels nearby. Read and heed the safety warnings on your resin and hardener. Although some resins are considered non-toxic when used as directed, it’s always a good idea to work in a well-ventilated area and wear nitrile gloves to keep the resin off of your skin while working.

Once the two-part resin is mixed together, you will have a limited amount of time to pour the resin before it hardens, so planning and timing is key. Check the ‘pot life’ indicated on your resin; this is the amount of working time you’ll have after mixing before the resin begins to harden. Our resin had a pot life of 30 minutes. It can be helpful to set up a timer so you can keep track of time while you work.

If you have multiple moulds, decide which ones you will use before mixing, and make sure your NFC tags will fit into the shapes you plan to use. If you are making matching cufflinks, remember that you’ll need two identical shapes. Our tiny 15.6mm tags fit perfectly into 16mm cabochons. Remember that you will mix more resin than you need for just two cufflink cabochons, so it’s good to have extra moulds in front of you to pour into.

Prepare the NFC tags

Unwrap the NFC tags and make sure they are clean and ready to be embedded in the resin. For a light-up effect, you may want to combine a data tag with an LED tag, like we did in one of our extra pieces. The back of the NFC LED nail sticker is adhesive, so it was easy to stick it directly to the larger data tag.

Measure, mix, and pour

We mixed up about 6oz (170g) of resin, then tinted it green for a tech-emerald look. This was plenty for two cabochons and three to four extra shapes. Follow the manufacturer’s instructions to mix up your resin. Generally, it’s a 1:1 ratio by volume. A good method for this is to pour each part into matching containers, up to the same measuring mark. Then, pour both into a third cup and stir. Stir slowly, but thoroughly, for at least two or three minutes, making sure to scrape the sides of your mixing cup often. If the resin is not completely and evenly mixed, it will not cure properly. If tinting your resin, add the tint to your mixed resin one drop at a time, slowly deepening the colour to your preference.

Once your resin is mixed and tinted, you’ll notice lots of tiny bubbles that have been incorporated while you were stirring. Let the mixture rest for a few minutes so the bubbles can float to the top, then use a stick to move the bubbles to the side of your container and pop them.

When you’ve removed as many bubbles as possible, it’s time to pour! Place your moulds on a level surface where they’ll be able to sit undisturbed for the amount of time required to cure (check the manufacturer’s instructions; ours specified 24 hours curing time). Pour the resin in a thin stream into the deepest point of your mould, and let it slowly rise to just below the top lip of your mould. Don’t overfill the mould, or the resin will bow and have a convex bottom when you remove it from the mould. Pouring the resin in a thin stream can help pop larger bubbles that are still in the mix.

Embed the NFC tag

With the resin in your mould, you can slide the NFC tag into place. Using tweezers, dip the tag into your unpoured resin to coat it first – this will help the resin in your mould accept the tag without adding too many bubbles. Then, gently slide the tag into the mould and centre it in the resin. It will want to slowly sink to the bottom of the mould, and ideally it stays centred on the way down. You may need to wiggle it back into place with your tweezers or a thin stick, but try not to introduce any new bubbles.

After your resin is poured and the NFC tags are in place, let the resin sit in the moulds for about ten minutes. This is enough time for most of the bubbles to rise to the top surface. Then, spray a fine mist of isopropyl alcohol over the resin to pop the bubbles. This step is optional, but we noticed that it really helped achieve clearer results.

Repeat this process for all the moulds you want to pour and add NFC tags to. Check them after a few minutes to make sure your tag hasn’t slid out of place, and remember to keep an eye on your pot life timer. Finish all your fiddling and bubble popping before the resin starts to harden. Then, leave your resin to cure for the amount of time specified in your resin’s instructions.

Demould your resin pieces

When the resin has completely hardened, it’s time for the exciting part: removing the cured resin from the moulds. If using silicone moulds, your piece should release from the mould without much fuss. Gently flex the silicone to let air seep between the hardened resin and the wall of the mould. Then you should be able to carefully pull the resin piece out of the mould.

Take a moment to admire your shiny cabochons! If you discover that you’ve over-poured your moulds, or the resin has crept up the sides of the mould, making a curved back, don’t worry. Resin can be wet-sanded; just be sure to keep both the sandpaper and the piece underwater while sanding, and wear a mask to keep from inhaling resin particles.

Make the cufflinks

Use glue to affix the flat-backed cabochons to the cufflink blanks. We used E6000, which is an industrial-strength adhesive that works great on plastics. Again, be sure to work in a well-ventilated area, and wear a respirator while working with E6000.

Apply the glue to the cufflink blank and hold the cabochon in place while the glue sets. Make two, and you’re done! You could also glue the cabochons to ring blanks to make NFC data rings. For pendants, you can use jewellery findings like bails and jump rings to make necklaces or key-chain fobs.

Program the NFC tag

Now that you’ve made your NFC cufflinks, you can load them with data like a website, a password, or a secret message. There are a few methods for doing this. If you have an NFC-capable smartphone, such as an Android phone, you won’t need any additional hardware. You can download a free app like NFC Tools to write and read data on your cufflink. NFC Tasks, another free app, lets you create automatic actions for your phone to perform when the NFC tag is read.

If you have an iPhone, (at the time of publishing of this article) you cannot write directly to NFC tags from your phone. But don’t worry! You can still join the NFC fun by purchasing a USB NFC reader/writer. You’ll be able to read and write to NFC tags with your computer using the NFC Tools desktop app. Your author purchased the NFC reader/writer shown here for about $35 on Amazon.com. You can still use NFC Tools on your iPhone to read tags, and the latest version of iOS, 12.1, supports background NFC tag reading. Some basic actions, like opening a URL in a browser, can now be performed right from the home screen or lock screen – pretty cool!

For a more custom hardware/software approach, try Adafruit’s PN532 NFC/RFID controller breakout board, which lets you add NFC functionality to Raspberry Pi or Arduino projects. It takes some soldering and programming to set up, but this breakout gives you lower-level control of the NFC tag, and is supported by an Adafruit NFC Arduino library. The library includes handy example code for reading and writing to tags, and reformatting Mifare Classic tags with the NDEF format.

Sport your new cufflinks at your next dressy event, and you’ll be both covert and classy! Or, gift these to your favourite snappy dresser, loaded with a secret message for their eyes only. Heading to a conference? Instead of handing out a business card to connect with someone, hold your wrist over their smartphone to bring up your webpage. It’s not magic, it’s technology!

More wearable tech projects

You can find more tutorials like this in Wearable Tech Projects by Sophy Wong, a HackSpace magazine publication. Wearable Tech Projects is on sale now from the Raspberry Pi Press online store, and it’s available as part of the Raspberry Pi Store Black Friday sale this weekend.

The post Make your own NFC data cufflinks appeared first on Raspberry Pi.

Thermal testing Raspberry Pi 4

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/thermal-testing-raspberry-pi-4/

Raspberry Pi 4 just got a lot cooler! The last four months of firmware updates have taken over half a watt out of idle power and nearly a watt out of fully loaded power. For The MagPi magazine, Gareth Halfacree gets testing.

Raspberry Pi 4 Model B

Raspberry Pi 4 launched with a wealth of new features to tempt users into upgrading: a more powerful CPU and GPU, more memory, Gigabit Ethernet, and USB 3.0 support. More processing power means more electrical power, and Raspberry Pi 4 is the most power-hungry member of the family.

The launch of a new Raspberry Pi model is only the beginning of the story. Development is continuous, with new software and firmware improving each board long after it has rolled off the factory floor.

Raspberry Pi 4 updates

Raspberry Pi 4 is no exception: since launch, there has been a series of updates which have reduced its power needs and, in doing so, enabled it to run considerably cooler. These updates apply to any Raspberry Pi 4, whether you picked one up on launch day or are only just now making a purchase.

This feature takes a look at how each successive firmware release has improved Raspberry Pi 4, using a synthetic workload designed – unlike a real-world task – to make the system-on-chip (SoC) get as hot as possible in as short a time as possible.

Read on to see what wonders a simple firmware update can work.

How we tested Raspberry Pi 4 firmware revisions

To test how well each firmware revision handles the heat, a power-hungry synthetic workload was devised to represent a worst-case scenario: the stress-ng CPU stress-testing utility places all four CPU cores under heavy and continuous load. Meanwhile, the glxgears tool exercises the GPU. Both tools can be installed by typing the following at the Terminal:

sudo apt install stress-ng mesa-utils

The CPU workload can be run with the following command:

stress-ng --cpu 0 --cpu-method fft

The command will run for a full day at default settings; to cancel, press CTRL+C on the keyboard.

To run the GPU workload, type:

glxgears -fullscreen

This will display a 3D animation of moving gears, filling the entire screen. To close it, press ALT+F4 on the keyboard.

For more information on how both tools work, type:

man stress-ng
man glxgears

During the testing for this feature, both of the above workloads are run simultaneously for ten minutes. Afterwards, Raspberry Pi is allowed to cool for five minutes.

The thermal imagery was taken at idle, then again after 60 seconds of the stress-ng load alone.

Baseline test: Raspberry Pi 3B+

Already well established, Raspberry Pi 3 Model B+ was the device to beat

Before Raspberry Pi 4 came on the scene, Raspberry Pi 3 Model B+ was the must-have single-board computer. Benefiting from all the work that had gone into the earlier Raspberry Pi 3 Model B alongside improved hardware, Raspberry Pi 3B+ was – and still is – a popular device. Let’s see how well it performs before testing Raspberry Pi 4.

Power draw

An efficient processor and an improved design for the power circuitry compared to its predecessor help keep Raspberry Pi 3B+ power draw down: at idle, the board draws just 1.91W; when running the synthetic workload, that increases to 5.77W.

Thermal imaging


A thermal camera shows where the power goes. At idle, the system-on-chip is relatively cool while the combined USB and Ethernet controller to the middle-right is a noticeable hot spot; at load, measured after 60 seconds of a CPU-intensive synthetic workload, the SoC is by far the hottest component at 58.1°C.

Thermal throttling

This chart measures Raspberry Pi 3B+ CPU speed and temperature during a ten-minute power-intensive synthetic workload. The test runs on both the CPU and GPU, and is followed by a five-minute cooldown. Raspberry Pi 3B+ quickly reaches the ‘soft throttle’ point of 60°C, designed to prevent the SoC hitting the hard-throttle maximum limit of 80°C, and the CPU remains throttled at 1.2GHz for the duration of the benchmark run.

Raspberry Pi 4 Launch Firmware

The fastest Raspberry Pi ever made demanded the most power

Raspberry Pi 4 Model B launched with a range of improvements over Raspberry Pi 3B+, including a considerably more powerful CPU, a new GPU, up to four times the memory, and USB 3.0 ports. All that new hardware came at a cost: higher power draw and heat output. So let’s see how Raspberry Pi 4 performed at launch.

Power Draw

There’s no denying it, Raspberry Pi 4 was a hungry beast at launch. Even idling at the Raspbian desktop, the board draws 2.89W, hitting a peak of 7.28W under a worst-case synthetic CPU and GPU workload – a hefty increase over Raspberry Pi 3 B+.

Thermal Imaging


Thermal imaging shows that Raspberry Pi 4, using the launch-day firmware, runs hot even at idle, with hot spots at the USB controller to the middle-right and power-management circuitry to the bottom-left. Under a heavy synthetic load, the SoC hits 72.1°C by the 60-second mark.

Thermal Throttling

Raspberry Pi 4 manages to go longer than Raspberry Pi 3 B+ before the synthetic workload causes it to throttle; but throttle it does after just 65 seconds. As the workload runs, the CPU drops from 1.5GHz to a stable 1GHz, then dips as low as 750MHz towards the end.

Raspberry Pi 4 VLI Firmware

USB power management brings some relief for Raspberry Pi heat

The first major firmware update developed for Raspberry Pi 4 brought power management features to the Via Labs Inc. (VLI) USB controller. The VLI controller is responsible for handling the two USB 3.0 ports, and the firmware update allowed it to run cooler.

Power Draw

Even without anything connected to Raspberry Pi 4’s USB 3.0 ports, the VLI firmware upgrade has a noticeable impact: idle power draw has dropped to 2.62W, while the worst-case draw under a heavy synthetic workload sits at 7.01W.

Thermal Imaging


The biggest impact on heat is seen, unsurprisingly, on the VLI chip to the middle-right; the VLI firmware helps keep the SoC in the centre and the power-management circuitry at the bottom-left cooler than the launch firmware. The SoC reached 71.4°C under load – a small, but measurable, improvement.

Thermal Throttling

Enabling power management on the VLI chip has a dramatic impact on performance in the worst-case synthetic workload: the throttle point is pushed back to 77 seconds, the CPU spends more time at its full 1.5GHz speed, and it doesn’t drop to 750MHz at all. The SoC also cools marginally more rapidly at the end of the test.

Raspberry Pi 4 VLI, SDRAM firmware

With VLI tamed, it’s the memory’s turn now

The next firmware update, designed to be used alongside the VLI power management features, changes how Raspberry Pi 4’s memory – LPDDR4 SDRAM – operates. While having no impact on performance, it helps to push the power draw down still further at both idle and load.

Power Draw

As with the VLI update, the SDRAM update brings a welcome drop in power draw at both idle and load. Raspberry Pi 4 now draws 2.47W at idle and 6.79W running a worst-case synthetic load – a real improvement from the 7.28W at launch.

Thermal Imaging


Thermal imaging shows the biggest improvement yet, with both the SoC and the power-management circuitry running considerably cooler at idle after the installation of this update. After 60 seconds of load, the SoC is noticeably cooler at 68.8°C – a drop of nearly 3°C over the VLI firmware alone.

Thermal Throttling

A cooler SoC means better performance: the throttle point under the worst-case synthetic workload is pushed back to 109 seconds, after which Raspberry Pi 4 continues to bounce between full 1.5GHz and throttled 1GHz speeds for the entire ten-minute benchmark run – bringing the average speed up considerably.

Raspberry Pi 4 VLI, SDRAM, Clocking, and Load-Step Firmware

September 2019’s firmware update includes several changes, while bringing with it the VLI power management and SDRAM firmware updates. The biggest change is how the BCM2711B0 SoC on Raspberry Pi 4 increases and decreases its clock-speed in response to demand and temperature.

Power Draw

The September firmware update has incremental improvements: idle power draw is down to 2.36W and load under the worst-case synthetic workload to a peak of 6.67W, all without any reduction in raw performance or loss of functionality.

Thermal Imaging


Improved processor clocking brings a noticeable drop in idle temperature throughout the circuit board. At load, everything’s improved – the SoC peaked at 65°C after 60 seconds of the synthetic workload, while both the VLI chip and the power-management circuitry are clearly cooler than under previous firmwares.

Thermal Throttling

With this firmware, Raspberry Pi 4’s throttle point under the worst-case synthetic workload is pushed back all the way to 155 seconds – more than double the time the launch-day firmware took to hit the same point. The overall average speed is also brought up, thanks to more aggressive clocking back up to 1.5GHz.

Raspberry Pi 4 Beta Firmware

Currently in testing, this beta release is cutting-edge

Nobody at Raspberry Pi is resting on their laurels. Beta firmware is in testing and due for public release soon. It brings with it many improvements, including finer-grained control over SoC operating voltages and optimised clocking for the HDMI video state machines.

To upgrade your Raspberry Pi to the latest firmware, open a Terminal window and enter:

sudo apt update
sudo apt full-upgrade

Now restart Raspberry Pi using:

sudo shutdown - r now

Power Draw

The beta firmware decreases power draw at idle to reduce overall power usage, while tweaking the voltage of the SoC to drop power draw at load without harming performance. The result: a drop to 2.1W idle, and 6.41W at load – the best yet.

Thermal Imaging


The improvements made at idle are clear to see on thermal imaging: the majority of Raspberry Pi 4’s circuit board is below the bottom 35°C measurement point for the first time. After 60 seconds of load, there’s a smaller but still measurable improvement, with a peak measured temperature of 64.8°C.

Thermal Throttling

While Raspberry Pi 4 does still throttle with the beta firmware, thanks to the heavy demands of the synthetic workload used for testing, it delivers the best results yet: throttling occurs at the 177s mark while the new clocking controls bring the average clock speed up markedly. The firmware also allows Raspberry Pi 4 to up-clock more at idle, improving the performance of background tasks.

Keep cool with Raspberry Pi 4 orientation

Firmware upgrades offer great gains, but what about putting Raspberry Pi on its side?

While running the latest firmware will result in considerable power draw and heat management improvements, there’s a trick to unlock even greater gains: adjusting the orientation of Raspberry Pi. For this test, Raspberry Pi 4 with the beta firmware installed was stood upright with the GPIO header at the bottom and the power and HDMI ports at the top.

Thermal Throttling

Simply moving Raspberry Pi 4 into a vertical orientation has an immediate impact: the SoC idles around 2°C lower than the previous best and heats a lot more slowly – allowing it to run the synthetic workload for longer without throttling and maintain a dramatically improved average clock speed.

There are several factors at work: having the components oriented vertically improves convection, allowing the surrounding air to draw the heat away more quickly, while lifting the rear of the board from a heat-insulating desk surface dramatically increases the available surface area for cooling.

Throttle Point Timing

This chart shows how long it took to reach the throttle point under the synthetic workload. Raspberry Pi 3B+ sits at the bottom, soft-throttling after just 19 seconds. Each successive firmware update for Raspberry Pi 4, meanwhile, pushes the throttle point further and further – though the biggest impact can be achieved simply by adjusting Raspberry Pi’s orientation.

Real World Testing

Synthetic benchmarks aside, how do the boards perform with real workloads?

Looking at the previous pages, it’s hard to get a real idea of the difference in performance between Raspberry Pi 3B+ and Raspberry Pi 4. The synthetic benchmark chosen for the thermal throttle tests performs power-hungry operations which are rarely seen in real-world workloads, and repeats them over and over again with no end.

Compiling Linux

In this test, both Raspberry Pi 3B+ and Raspberry Pi 4 are given the task of compiling the Linux kernel from its source code. It’s a good example of a CPU-heavy workload which occurs in the real world, and is much more realistic than the deliberately taxing synthetic workload of earlier tests.

With this workload, Raspberry Pi 4 easily emerges the victor. Despite its CPU running only 100MHz faster than Raspberry Pi 3B+ at its full speed, it’s considerably more efficient – and, combined with the ability to run without hitting its thermal throttle point, completes the task in nearly half the time.

Kernel compile: Raspberry Pi 3B+

Raspberry Pi 3B+ throttles very early on in the benchmark compilation test and remains at a steady 1.2GHz until a brief period of cooling, as the compiler switches from a CPU-heavy workload to a storage-heavy workload, allows it to briefly spike back to its 1.4GHz default again. Compilation finished in 5097 seconds – one hour, 24 minutes, and 57 seconds.

Kernel compile: Raspberry Pi 4 model B

The difference between the synthetic and real-world workloads is clear to see: at no point during the compilation did Raspberry Pi 4 reach a high enough temperature to throttle, remaining at its full 1.5GHz throughout – bar, as with Raspberry Pi 3 B+, a brief period when a change in compiler workload allowed it to drop to its idle speeds. Compilation finished in 2660 seconds – 44 minutes and 20 seconds.

Get The MagPi magazine issue 88 now

This article is from today’s brand-new issue of The MagPi magazine, the official Raspberry Pi magazine. Buy it from all good newsagents, Raspberry Pi Press, and the Raspberry Pi Store, Cambridge.

Subscribe to pay less per issue and support our work, or download the free PDF to give it a try first.

The post Thermal testing Raspberry Pi 4 appeared first on Raspberry Pi.