All posts by Alex Bate

Community Profile: David Pride

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/community-profile-david-pride/

This column is from The MagPi issue 55. You can download a PDF of the full issue for free, or subscribe to receive the print edition in your mailbox or the digital edition on your tablet. All proceeds from the print and digital editions help the Raspberry Pi Foundation achieve its charitable goals.

David Pride’s experiences in computer education came slightly later in life. He admits to not being a grade-A student: he left school with few qualifications, unable to pursue further education at university. There was, however, a teacher who instilled in him a passion for computers and coding which would stick with him indefinitely.

David Pride The MagPi Raspberry Pi Community Profile

David joined us at the St James’s Palace community celebration, mingling with the likes of the Duke of York, plus organisers of Jams and clubs, such as Grace and Femi

Welcome to the Community

Twenty years later, back in 2012, David heard of the Raspberry Pi – a soon-to-be-released “new little marvel” that he instantly fell for, head first. Despite a lack of knowledge in Linux and Python, he experimented and had fun. He found a Raspberry Jam and, with it, Pi enthusiasts like Mike Horne and Peter Onion. The projects on display at the Jam were enough to push David further into the Raspberry Pi rabbit hole and, after working his way through several Python books, he began to take steps into the world of formal higher education.

David Pride The MagPi Raspberry Pi Community Profile

David’s determination to access and complete further education in computing has earned him a three-year PhD studentship. Not bad for a “lousy student”

Back to School

With a Mooc qualification from Rice University under his belt, he continued to improve upon his self-taught knowledge, and was fortunate enough to be accepted to study for a master’s degree in Computer Science at the University of Hertfordshire. With a distinction for his final dissertation, David completed the course with an overall distinction for his MSc, and was recently awarded a fully funded PhD studentship with The Open University’s Knowledge Media Institute.

David Pride The MagPi Raspberry Pi Community Profile

Self-playing xylophones, Wiimote air drums, Lego sorters, Pi Wars robots, and more. David is continually hacking toys, giving them new Pi-powered life

Maker of things

The portfolio of projects that helped him to achieve his many educational successes has provided regular retweet material for the Raspberry Pi Twitter account, and we’ve highlighted his fun, imaginative work on this blog before. His builds have travelled to a range of Jams and made their way to the Raspberry Pi and Code Club stands at the Bett Show, as well as to our birthday celebrations.

David Pride The MagPi Raspberry Pi Community Profile

“Pi & Chips – with a little extra source”

His website, the pun-tastic Pi and Chips, is home to the majority of his work; David also links to YouTube videos and walk-throughs of his projects, and relates his experiences at various events. If you’ve followed any of the action across the Raspberry Pi social media channels – or indeed read any previous issues of The MagPi magazine – you’ll no doubt have seen a couple of David’s projects.

David Pride The MagPi Raspberry Pi Community Profile 4-Bot

Many readers will have come across the wonderful 4-Bot before, and it has even made an appearance alongside David in a recent Bloomberg interview. Considering the trillions of possible game positions, David made a compromise and, if you’re lucky, you may just be able to beat it

The 4-Bot, a robotic second player for the family game Connect Four, allows people to go head to head with a Pi-powered robotic arm. Using a Python imaging library, the 4-Bot splits the game grid into 42 squares, and recognises them as being red, yellow, or empty by reading the RGB value of the space. Using the minimax algorithm, 4-Bot is able to play each move within 25 seconds. Believe us when we say that it’s not as easy to beat as you’d hope. Then there’s his more recent air drum kit, which uses an old toy found at a car boot sale together with a Wiimote to make a functional air drum that showcases David’s toy-hacking abilities… and his complete lack of rhythm. He does fare much better on his homemade laser harp, though!

The post Community Profile: David Pride appeared first on Raspberry Pi.

OK Google, be aesthetically pleasing

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/aesthetically-pleasing-ok-google/

Maker Andrew Jones took a Raspberry Pi and the Google Assistant SDK and created a gorgeous-looking, and highly functional, alternative to store-bought smart speakers.

Raspberry Pi Google AI Assistant

In this video I get an “Ok Google” voice activated AI assistant running on a raspberry pi. I also hand make a nice wooden box for it to live in.

OK Google, what are you?

Google Assistant is software of the same ilk as Amazon’s Alexa, Apple’s Siri and Microsoft’s Cortana. It’s a virtual assistant that allows you to request information, play audio, and control smart home devices via voice commands.

Infinite Looping Siri, Alexa and Google Home

One can barely see the iPhone’s screen. That’s because I have a privacy protection screen. Sorry, did not check the camera angle. Learn how to create your own loop, why we put Cortana out of the loop, and how to train Siri to an artificial voice: https://www.danrl.com/2016/12/01/looping-ais-siri-alexa-google-home.html

You probably have a digital assistant on your mobile phone, and if you go to the home of someone even mildly tech-savvy, you may see a device awaiting commands via a wake word such the device’s name or, for the Google Assistant, the phrase “OK, Google”.

Homebrew versions

Understanding the maker need to ‘put tech into stuff’ and upgrade everyday objects into everyday objects 2.0, the creators of these virtual assistants have allowed access for developers to run their software on devices such as the Raspberry Pi. This means that your common-or-garden homemade robot can now be controlled via voice, and your shed-built home automation system can have easy-to-use internet connectivity via a reliable, multi-device platform.

Andrew’s Google Assistant build

Andrew gives a peerless explanation of how the Google Assistant works:

There’s Google’s Cloud. You log into Google’s Cloud and you do a bunch of cloud configuration cloud stuff. And then on the Raspberry Pi you install some Python software and you do a bunch of configuration. And then the cloud and the Pi talk the clouds kitten rainbow protocol and then you get a Google AI assistant.

It all makes perfect sense. Though for more extra detail, you could always head directly to Google.

Andrew Jones Raspberry Pi OK Google Assistant

I couldn’t have explained it better myself

Andrew decided to take his Google Assistant-enabled Raspberry Pi and create a new body for it. One that was more aesthetically pleasing than the standard Pi-inna-box. After wiring his build and cannibalising some speakers and a microphone, he created a sleek, wooden body that would sit quite comfortably in any Bang & Olufsen shop window.

Find the entire build tutorial on Instructables.

Make your own

It’s more straightforward than Andrew’s explanation suggests, we promise! And with an array of useful resources online, you should be able to incorporate your choice of virtual assistants into your build.

There’s The Raspberry Pi Guy’s tutorial on setting up Amazon Alexa on the Raspberry Pi. If you’re looking to use Siri on your Pi, YouTube has a plethora of tutorials waiting for you. And lastly, check out Microsoft’s site for using Cortana on the Pi!

If you’re looking for more information on Google Assistant, check out issue 57 of The MagPi Magazine, free to download as a PDF. The print edition of this issue came with a free AIY Projects Voice Kit, and you can sign up for The MagPi newsletter to be the first to know about the kit’s availability for purchase.

The post OK Google, be aesthetically pleasing appeared first on Raspberry Pi.

Thomas and Ed become a RealLifeDoodle on the ISS

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/astro-pi-reallifedoodle/

Thanks to the very talented sooperdavid, creator of some of the wonderful animations known as RealLifeDoodles, Thomas Pesquet and Astro Pi Ed have been turned into one of the cutest videos on the internet.

space pi – Create, Discover and Share Awesome GIFs on Gfycat

Watch space pi GIF by sooperdave on Gfycat. Discover more GIFS online on Gfycat

And RealLifeDoodles aaaaare?

Thanks to the power of viral video, many will be aware of the ongoing Real Life Doodle phenomenon. Wait, you’re not aware?

Oh. Well, let me explain it to you.

Taking often comical video clips, those with a know-how and skill level that outweighs my own in spades add faces and emotions to inanimate objects, creating what the social media world refers to as a Real Life Doodle. From disappointed exercise balls to cannibalistic piles of leaves, these video clips are both cute and sometimes, though thankfully not always, a little heartbreaking.

letmegofree – Create, Discover and Share Awesome GIFs on Gfycat

Watch letmegofree GIF by sooperdave on Gfycat. Discover more reallifedoodles GIFs on Gfycat

Our own RealLifeDoodle

A few months back, when Programme Manager Dave Honess, better known to many as SpaceDave, sent me these Astro Pi videos for me to upload to YouTube, a small plan hatched in my brain. For in the midst of the video, and pointed out to me by SpaceDave – “I kind of love the way he just lets the unit drop out of shot” – was the most adorable sight as poor Ed drifted off into the great unknown of the ISS. Finding that I have this odd ability to consider many inanimate objects as ‘cute’, I wanted to see whether we could turn poor Ed into a RealLifeDoodle.

Heading to the Reddit RealLifeDoodle subreddit, I sent moderator sooperdavid a private message, asking if he’d be so kind as to bring our beloved Ed to life.

Yesterday, our dream came true!

Astro Pi

Unless you’re new to the world of the Raspberry Pi blog (in which case, welcome!), you’ll probably know about the Astro Pi Challenge. But for those who are unaware, let me break it down for you.

Raspberry Pi RealLifeDoodle

In 2015, two weeks before British ESA Astronaut Tim Peake journeyed to the International Space Station, two Raspberry Pis were sent up to await his arrival. Clad in 6063-grade aluminium flight cases and fitted with their own Sense HATs and camera modules, the Astro Pis Ed and Izzy were ready to receive the winning codes from school children in the UK. The following year, this time maintained by French ESA Astronaut Thomas Pesquet, children from every ESA member country got involved to send even more code to the ISS.

Get involved

Will there be another Astro Pi Challenge? Well, I just asked SpaceDave and he didn’t say no! So why not get yourself into training now and try out some of our space-themed free resources, including our 3D-print your own Astro Pi case tutorial? You can also follow the adventures of Ed and Izzy in our brilliant Story of Astro Pi cartoons.

Raspberry Pi RealLifeDoodle

And if you’re quick, there’s still time to take part in tomorrow’s Moonhack! Check out their website for more information and help the team at Code Club Australia beat their own world record!

The post Thomas and Ed become a RealLifeDoodle on the ISS appeared first on Raspberry Pi.

Ms. Haughs’ tote-ally awesome Raspberry Pi bag

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/pi-tote-bag/

While planning her trips to upcoming educational events, Raspberry Pi Certified Educator Amanda Haughs decided to incorporate the Pi Zero W into a rather nifty accessory.

Final Pi Tote bag

Uploaded by Amanda Haughs on 2017-07-08.

The idea

Commenting on the convenient size of the Raspberry Pi Zero W, Amanda explains on her blog “I decided that I wanted to make something that would fully take advantage of the compact size of the Pi Zero, that was somewhat useful, and that I could take with me and share with my maker friends during my summer tech travels.”

Amanda Haughs Raspberry Pi Tote Bag

Awesome grandmothers and wearable tech are an instant recipe for success!

With access to her grandmother’s “high-tech embroidery machine”, Amanda was able to incorporate various maker skills into her project.

The Tech

Amanda used five clear white LEDs and the Raspberry Pi Zero for the project. Taking inspiration from the LED-adorned Babbage Bear her team created at Picademy, she decided to connect the LEDs using female-to-female jumper wires

Amanda Haughs Pi Tote Bag

Poor Babbage really does suffer at Picademy events

It’s worth noting that she could also have used conductive thread, though we wonder how this slightly less flexible thread would work in a sewing machine, so don’t try this at home. Or do, but don’t blame me if it goes wonky.

Having set the LEDs in place, Amanda worked on the code. Unsure about how she wanted the LEDs to blink, she finally settled on a random pulsing of the lights, and used the GPIO Zero library to achieve the effect.

Raspberry Pi Tote Bag

Check out the GPIO Zero library for some great LED effects

The GPIO Zero pulse effect allows users to easily fade an LED in and out without the need for long strings of code. Very handy.

The Bag

Inspiration for the bag’s final design came thanks to a YouTube video, and Amanda and her grandmother were able to recreate the make using their fabric of choice.

DIY Tote Bag – Beginner’s Sewing Tutorial

Learn how to make this cute tote bag. A great project for beginning seamstresses!

A small pocket was added on the outside of the bag to allow for the Raspberry Pi Zero to be snugly secured, and the pattern was stitched into the front, allowing spaces for the LEDs to pop through.

Raspberry Pi Tote Bag

Amanda shows off her bag to Philip at ISTE 2017

You can find more information on the project, including Amanda’s initial experimentation with the Sense HAT, on her blog. If you’re a maker, an educator or, (and here’s a word I’m pretty sure I’ve made up) an edumaker, be sure to keep her blog bookmarked!

Make your own wearable tech

Whether you use jumper leads, or conductive thread or paint, we’d love to see your wearable tech projects.

Getting started with wearables

To help you get started, we’ve created this Getting started with wearables free resource that allows you to get making with the Adafruit FLORA and and NeoPixel. Check it out!

The post Ms. Haughs’ tote-ally awesome Raspberry Pi bag appeared first on Raspberry Pi.

Video playback on freely-arranged screens with info-beamer

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/info-beamer/

When the creator of the digital signage software info-beamer, Florian Wesch, shared this project on Reddit, I don’t think he was prepared for the excited reaction of the community. Florian’s post, which by now has thousands of upvotes, showcased the power of info-beamer. Not only can the software display a video via multiple Raspberry Pis, it also automatically rejigs the output to match the size and angle of the Pis’ monitors.

info-beamer raspberry pi

Wait…what?

I know, right? We’ve seen many video-based Raspberry Pi projects, but this is definitely one of the most impressive ones. While those of us with a creative streak were imagining cool visual arts installations using monitors and old televisions of various sizes, the more technically-minded puzzled over how Florian pulled this off.

It’s obvious that info-beamer has manifold potential uses. But we had absolutely zero understanding of how it works!

How does info-beamer do this?

Lucky for us, Florian returned to Reddit a few days later with a how-to video, explaining in layman’s terms how you too can get a video to play on a multi-screen, multi-Pi setup.

Automatic video wall configuration with info-beamer hosted

This is an exciting new feature I’ve made available for the info-beamer hosted digital signage system: You can create a video wall consisting of freely arranged screens in seconds. The screens don’t even have to be planar. Just rotate and place them as you like.

First you’ll need to set up info-beamer, which will allow you to introduce multiple Raspberry Pis, and their attached monitors, into a joint network. To make the software work, there’s some Python code you have to write yourself, but hands-on tutorials and example code exist to make this fairly easy, even if you have little experience in Python.

info-beamer raspberry pi

As you can see in Florian’s video, info-beamer assigns each monitor its own, unique section of video. Taking a photo of the monitors and uploading it to a site provides enough information for the software to play a movie trailer split across multiple screens.

info-beamer raspberry pi

A step that’s missing in the video, but that Florian described on Reddit, is how to configure the screens via a drag-and-drop interface so that the software recognizes them. Once this is done, your video display is good to go.

For more information about info-beamer check out the website, and follow the official Twitter account for updates.

Using Raspberry Pi in video-based projects

Since it has an HDMI port, connecting your Raspberry Pi to any compatible monitor, including your television, is an easy task. And with a little tweaking and soldering you can even connect your Pi to that ageing SCART TV/Video combo you might have in the loft.

As I said earlier, there’s an abundance of Pi-powered video-based projects. Many digital art installations, and even commercial media devices, rely on the Raspberry Pi because of its low cost, small size, and high-quality multimedia capabilities.

Have you used a Raspberry Pi in a video-playback project? Share it with us below – we’d love to see it!

The post Video playback on freely-arranged screens with info-beamer appeared first on Raspberry Pi.

The CNC Wood Burner turning heads (and wood, obviously)

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/cnc-wood-burner/

Why stick to conventional laser cutters or CNC machines for creating images on wood, when you can build a device to do the job that is a beautiful piece of art in itself? Mechanical and Computer Science student and Imgur user Tucker Shannon has created a wonderful-looking CNC Wood Burner using a Raspberry Pi and stepper motors. His project has a great vinyl-turntable-like design.

Raspberry Pi CNC Wood Burner

Tucker’s somewhat hypnotic build burns images into wood using a Raspberry Pi and stepper motors
GIF c/o Tucker Shannon

A CNC Wood Burner?

Sure! Why not? Tucker had already put the knowledge he acquired while studying at Oregon State University to good use by catching a bike thief in action with the help of a Raspberry Pi. Thus it’s obvious he has the skills he needed to incorporate our little computer into a project. Moreover, his Skittles portrait of Bill Nye is evidence of his artistic flare, so it’s not surprising that he wanted to make something a little different, and pretty, using code.

Tucker Shannon

“Bill Nye, the Skittles Guy”
Image c/o Tucker Shannon

With an idea in mind and sketches drawn, Tucker first considered using an old record player as the base of his build. Having a rotating deck and arm already in place would have made building his project easier. However, he reports on Imgur:

I thought about that! I couldn’t find any at local thrift shops though. Apparently, they’ve become pretty popular…

We can’t disagree with him. Since his search was unsuccessful, Tucker ended up creating the CNC Wood Burner from scratch.

Raspberry Pi CNC Wood Burner

Concept designs
Image c/o Tucker Shannon

Taking into consideration the lumps and bumps of the wood he would be using as a ‘canvas’, Tucker decided to incorporate a pivot to allow the arm to move smoothly over the rough surface.

The code for the make is currently in ‘spaghetti form’, though Tucker is set to release it, as well as full instructions for the build, in the near future.

The build

Tucker laser-cut the pieces for the wood burner’s box and gear out of birch and pine wood. As the motors require 12v power, the standard Raspberry Pi supply wasn’t going to be enough. Therefore, Tucker scavenged for old computer parts , and ended up rescuing a PSU (power supply unit). He then fitted the PSU and the Raspberry Pi within the box.

Raspberry Pi CNC Wood Burner

The cannibalised PSU, stepper motor controller, and Raspberry Pi fit nicely into Tucker’s handmade pine box.
Image c/o Tucker Shannon

Next, he got to work building runners for the stepper motor controlling the position of the ‘pen thing’ that would scorch the image into the wood.

Raspberry Pi CNC Wood Burner

Initial tests on paper help to align the pen
Image c/o Tucker Shannon

After a few test runs using paper, the CNC Wood Burner was good to go!

The results

Tucker has used his CNC Wood Burner to create some wonderful pieces of art. The few examples he’s shared on Imgur have impressed us with their precision. We’re looking forward to seeing what else he is going to make with it!

Raspberry Pi CNC Wood Burner

The build burns wonderfully clean-lined images into wood
Image c/o Tucker Shannon

Your turn

Image replication using Raspberry Pis and stepper motors isn’t a new thing – though doing it using a wood-burning device may be! We’ve seen some great builds in which makers set up motors and a marker pen to create massive works of art. Are you one of those makers? Or have you been planning a build similar to Tucker’s project, possibly with a new twist?

Share your project with us below, whether it is complete or still merely sketches in a notebook. We’d love to see what you’re getting up to!

The post The CNC Wood Burner turning heads (and wood, obviously) appeared first on Raspberry Pi.

Awesome Raspberry Pi cases to 3D print at home

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/3d-printed-raspberry-pi-cases/

Unless you’re planning to fit your Raspberry Pi inside a build, you may find yourself in need of a case to protect it from dust, damage and/or the occasional pet attack. Here are some of our favourite 3D-printed cases, for which files are available online so you can recreate them at home.

TARDIS

TARDIS Raspberry PI 3 case – 3D Printing Time lapse

Every Tuesday we’ll 3D print designs from the community and showcase slicer settings, use cases and of course, Time-lapses! This week: TARDIS Raspberry PI 3 case By: https://www.thingiverse.com/Jason3030 https://www.thingiverse.com/thing:2430122/ BCN3D Sigma Blue PLA 3hrs 20min X:73 Y:73 Z:165mm .4mm layer / .6mm nozzle 0% Infill / 4mm retract 230C / 0C 114G 60mm/s —————————————– Shop for parts for your own DIY projects http://adafru.it/3dprinting Download Autodesk Fusion 360 – 1 Year Free License (renew it after that for more free use!)

Since I am an avid Whovian, it’s not surprising that this case made its way onto the list. Its outside is aesthetically pleasing to the aspiring Time Lord, and it snugly fits your treasured Pi.



Pop this case on your desk and chuckle with glee every time someone asks what’s inside it:

Person: What’s that?
You: My Raspberry Pi.
Person: What’s a Raspberry Pi?
You: It’s a computer!
Person: There’s a whole computer in that tiny case?
You: Yes…it’s BIGGER ON THE INSIDE!

I’ll get my coat.

Pi crust

Yes, we all wish we’d thought of it first. What better case for a Raspberry Pi than a pie crust?

3D-printed Raspberry Pi cases

While the case is designed to fit the Raspberry Pi Model B, you will be able to upgrade the build to accommodate newer models with a few tweaks.



Just make sure that if you do, you credit Marco Valenzuela, its original baker.

Consoles

Since many people use the Raspberry Pi to run RetroPie, there is a growing trend of 3D-printed console-style Pi cases.

3D-printed Raspberry Pi cases

So why not pop your Raspberry Pi into a case made to look like your favourite vintage console, such as the Nintendo NES or N64?



You could also use an adapter to fit a Raspberry Pi Zero within an actual Atari cartridge, or go modern and print a PlayStation 4 case!

Functional

Maybe you’re looking to use your Raspberry Pi as a component of a larger project, such as a home automation system, learning suite, or makerspace. In that case you may need to attach it to a wall, under a desk, or behind a monitor.

3D-printed Raspberry Pi cases

Coo! Coo!

The Pidgeon, shown above, allows you to turn your Zero W into a surveillance camera, while the piPad lets you keep a breadboard attached for easy access to your Pi’s GPIO pins.



Functional cases with added brackets are great for incorporating your Pi on the sly. The VESA mount case will allow you to attach your Pi to any VESA-compatible monitor, and the Fallout 4 Terminal is just really cool.

Cute

You might want your case to just look cute, especially if it’s going to sit in full view on your desk or shelf.

3D-printed Raspberry Pi cases

The tired cube above is the only one of our featured 3D prints for which you have to buy the files ($1.30), but its adorable face begged to be shared anyway.



If you’d rather save your money for another day, you may want to check out this adorable monster from Adafruit. Be aware that this case will also need some altering to fit newer versions of the Pi.

Our cases

Finally, there are great options for you if you don’t have access to a 3D printer, or if you would like to help the Raspberry Pi Foundation’s mission. You can buy one of the official Raspberry Pi cases for the Raspberry Pi 3 and Raspberry Pi Zero (and Zero W)!

3D-printed Raspberry Pi cases



As with all official Raspberry Pi accessories (and with the Pi itself), your money goes toward helping the Foundation to put the power of digital making into the hands of people all over the world.

3D-printed Raspberry Pi cases

You could also print a replica of the official Astro Pi cases, in which two Pis are currently orbiting the earth on the International Space Station.

Design your own Raspberry Pi case!

If you’ve built a case for your Raspberry Pi, be it with a 3D printer, laser-cutter, or your bare hands, make sure to share it with us in the comments below, or via our social media channels.

And if you’d like to give 3D printing a go, there are plenty of free online learning resources, and sites that offer tutorials and software to get you started, such as TinkerCAD, Instructables, and Adafruit.

The post Awesome Raspberry Pi cases to 3D print at home appeared first on Raspberry Pi.

5…4…3…2…1…SPACESHIP BUNK BED!

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/spaceship-bunk-bed/

Many of us have created basic forts in our childhood bedrooms using pillows, sheets, and stuffed toys. Pete Dearing’s sons, meanwhile, get to play and sleep in an incredible spaceship bunk bed.

A spaceship bunk bed with functional lights, levers, buttons, and knobs.

I’m not jealous at all.

Not. At. All.

spaceship bunk bed Raspberry Pi

All the best beds have LEDs.

Building a spaceship bunk bed

Pete purchased plans for a spacecraft-shaped bunk bed online, and set out to build its MDF frame. Now, I don’t know about you, but for young me, having a bunk bed shaped like a spaceship would have been enough – tiny humans have such incredible imagination. But it wasn’t enough for Pete. He had witnessed his children’s obsession with elevator buttons, mobile phones, and the small control panel he’d made for them using switches and an old tool box. He knew he had to go big or go home.

spaceship bunk bed Raspberry Pi

While he was cutting out pieces for the bed frame, Pete asked the boys some creative input, and then adjusted the bed’s plans to include a functional cockpit and extra storage (for moon boots, spacesuits, and flags for staking claims, no doubt).

Wiring a spaceship bunk bed

After realising he hadn’t made enough allowance for the space taken up by the cockpit’s dials, levers, and switches, Pete struggled a little to fit everything in place inside the bunk bed.

spaceship bunk bed Raspberry Pi

“Ground Control to Major Sleepy…”

But it all worked out, and the results were lights, buttons, and fun aplenty. Finally, as icing on the build’s proverbial cake, Pete added sound effects, powered by a Raspberry Pi, and headsets fitted with microphones.

spaceship bunk bed Raspberry Pi

“Red Leader standing by…”

The electronics of the build run on a 12V power supply. To ensure his boys’ safety, and so that they will actually be able to sleep, Pete integrated a timer for the bed’s ‘entertainment system’.

Find more information about the spaceship bunk bed and photos of the project here.

So where do I get mine?

If you want to apply to be adopted by Pete, you can head to www.alex-is-first-in-line.com/seriously_me_first. Alternatively, you could build your own fantastic Pi-powered bed, and add lights and sounds of your choosing. How about a Yellow Submarine bed with a dashboard of Beatles songs? Or an X-Wing bed with flight and weapon controls? Oh, oh, how about a bed shaped like one of the cars from Jurassic Park, or like a Top Gun jet?

Yup…I definitely need a new bed.

While I go take measurements and get the power tools out, why not share your own ideas with us in the comments? Have you pimped your kid’s room with a Raspberry Pi (maybe like this)? Or do you have plans to incorporate lights and noise into something wonderful you’re making for a friend or relation? We want to know.

And I want a spaceship bunk bed!

The post 5…4…3…2…1…SPACESHIP BUNK BED! appeared first on Raspberry Pi.

Break a world record with Moonhack 2017

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/moonhack-2017/

The team at Code Club Australia set a world record last year by gathering 10,207 Australian kids together to participate in their coding event Moonhack. But they are not going to rest on their laurels: this year, they’ve set their sights even higher with their event on 15 August.

Moonhack Code Club Australia

What is Moonhack?

In honour of the Apollo 11 landing, Code Club Australia created a series of space-themed coding activities for their Moonhack event in July 2016. Their aim? To bring together as many kids as possible from all over Australia, to get them to code and have fun, and to hopefully establish a world record along the way.

Code Club Australia #MoonHack

Watch the Sunrise coverage of Code Club Australia World Record ‪#‎Moonhack‬ event – Launching Wed 20th July 2016 18:00 AEST – Register Now: www.moonhack.com.au

And they did exactly that! 10,207 kids completed Moonhack projects, which constitutes the largest number of children coding on one day ever recorded.

Moonhack 2017

With the success of the 2016 event spurring them on, the Code Club Australia team have scaled up their efforts this year. By opening Moonhack to kids across the globe, they want to spread enthusiasm for coding everywhere. And why not break their own world record in the process? Every kid in the world can take part in the event, as the website explains:

“Moonhack is for everyone. Moonhack is inclusive, not exclusive, because coding is for everyone, no matter their skill level or age – kids new to code, coding whizz kids, and anyone who wants to try out coding for the first time, or coding pros who want to get creative.”

Participants between the ages of 8 and 18 are invited to form teams and create their own space-themed project – or use one of the provided examples in Scratch, ScratchJr, or Python. If you’re outside the age range, don’t worry – you can still take part, but your project won’t be counted toward the world record attempt.

Moonhack Code Club Australia

The sky is no longer the limit…

Participating teams submit their complete project to the Moonhack website as a link, screenshot, or file upload. All successful participants will receive a certificate to print and hang proudly on their wall. Woohoo!

How do we take part?

Teams will need to be registered on the website by a facilitator. Registering will give the facilitator access to a whole host of helpful tips for how to help their team out. Then, on Moonhack day, 15 August, the facilitator can upload the team’s completed project. If you can’t host an event for your team on 15 August, don’t worry – simply get the kids to complete the project beforehand. For more information go to the Moonhack website, where you can also find coding projects in several human and programming languages.

So what are you waiting for? Get together with the code-loving young people in your life, put your thinking hats on, get programming, and have the chance to set a new world record!

The post Break a world record with Moonhack 2017 appeared first on Raspberry Pi.

Tijuana Rick’s 1969 Wurlitzer Jukebox revitalisation

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/1969-wurlitzer-jukebox/

After Tijuana Rick’s father-in-law came by a working 1969 Wurlitzer 3100 jukebox earlier this year, he and Tijuana Rick quickly realised they lacked the original 45s to play on it. When they introduced a Raspberry Pi 3 into the mix, this was no longer an issue.

1969 Wurlitzer 3100

Restored and retrofitted Jukebox with Arduino and Raspberry Pi

Tijuana Rick

Yes, I shall be referring to Rick as Tijuana Rick throughout this blog post. Be honest, wouldn’t you if you were writing about someone whose moniker is Tijuana Rick?

Wurlitzer

The Wurlitzer jukebox has to be one of the classic icons of Americana. It evokes images of leather-booth-lined diners filled with rock ‘n’ roll music and teddy-haired bad boys eyeing Cherry Cola-sipping Nancys and Sandys across the checkered tile floor.

Raspberry Pi Wurlitzer

image courtesy of Ariadna Bach

With its brightly lit exterior and visible record-changing mechanism, the Wurlitzer is more than just your average pub jukebox. I should know: I have an average pub jukebox in my house, and although there’s some wonderfully nostalgic joy in pressing its buttons to play my favourite track, it’s not a Wurlitzer.

Raspberry Pi Wurlitzer

Americana – exactly what it says on the tin jukebox

The Wurlitzer company was founded in 1853 by a German immigrant called – you guessed it – Rudolf Wurlitzer, and at first it imported stringed instruments for the U.S. military. When the company moved from Ohio to New York, it expanded its production range to electric pianos, organs, and jukeboxes.

And thus ends today’s history lesson.

Tijuana Rick and the Wurlitzer

Since he had prior experience in repurposing physical switches for digital ends, Tijuana Rick felt confident that he could modify the newly acquired jukebox to play MP3s while still using the standard, iconic track selection process.

Raspberry Pi Wurlitzer

In order to do this, however, he had to venture into brand-new territory: mould making. Since many of the Wurlitzer’s original buttons were in disrepair, Tijuana Rick decided to try his hand at making moulds to create a set of replacements. Using an original button, he made silicone moulds, and then produced perfect button clones in exactly the right shade of red.

Raspberry Pi Wurlitzer

Then he turned to the computing side of the project. While he set up an Arduino Mega to control the buttons, Tijuana Rick decided to use a Raspberry Pi to handle the audio playback. After an extensive online search for code inspiration, he finally found this script by Thomas Sprinkmeier and used it as the foundation for the project’s software.

More images and video of the build can be found on Tijuana Rick’s website.

Fixer-uppers

We see a lot of tech upgrades and restorations using Raspberry Pis, from old cameras such as this Mansfield Holiday Zoom, and toys like this beloved Teddy Ruxpin, to… well… dinosaurs. If a piece of retro tech has any room at all for a Pi or a Pi Zero, someone in the maker community is bound to give it a 21st century overhaul.

What have been your favourite Pi retrofit projects so far? Have you seen a build that’s inspired you to restore or recreate something from your past? Got any planned projects or successful hacks? Make sure to share them in the comments below!

The post Tijuana Rick’s 1969 Wurlitzer Jukebox revitalisation appeared first on Raspberry Pi.

A homebrew Pi kit for home brewing

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/homebrew-beer-brewing-pi/

While the rest of us are forced to leave the house to obtain a tasty brew, beer master Christoper Aedo has incorporated a Raspberry Pi into his home brewing system for ultimate ‘sit-back-and-relax’ homebrew home brew.

homebrew home brew Raspberry Pi

KEG! KEG! KEG! KEG!

I drink and I know things

Having brewed his own beer for several years, Christopher was no novice in the pursuit of creating the perfect pint*. He was already brewing 10 gallons at a time when he decided to go all electric with a Raspberry Pi. Inspiration struck when he stumbled upon the StrangeBrew Elsinore Java server, and he went to work planning the best setup for the job:

Before I could talk myself out of the project, I decided to start buying parts. My basic design was a Hot Liquor Tank (HLT) and boil kettle with 5500W heating elements in them, plus a mash tun with a false bottom. I would use a pump to recirculate the mash through a 50 foot stainless coil in the HLT (a “heat exchanger recirculating mash system”, known as HERMS). I would need a second pump to circulate the water in the HLT, and to help with transferring water to the mash tun. All of the electrical components would be controlled with a Raspberry Pi.

Homebrew hardware setup

First, he set up the electrical side of his homebrew system using The Electric Brewing Company‘s walkthrough, swapping out the 12V solid-state relays for ones that manage the 3V needed by the Pi. Aedo then implemented the temperature sensors and controls of these relays. He used Hilitchi DS18B20 Waterproof Temperature Sensors connected to a 1-Wire bus and learned how to manage the relays in this tutorial.

Christopher wanted to be able to move his system around his property. Therefore, he squeezed all the electrical components of the build into a waterproof project box. For cooling purposes, he integrated copper shims and heat sinks.

homebrew home brew raspberry pi

Among the wires, wires, and more wires sits a Raspberry Pi, bottom left.

A brew-tiful build

With the hardware sorted, he took on the project’s software next. Although he had been inspired by it, Christopher decided to move away from the StrangeBrew Elsinore project in favour of the Python-based CraftBeerPi by active repo maintainer Manuel Fritsch.

homebrew home brew raspberry pi

The CraftBeerPi dashboard

This package allowed him to configure his chosen GPIO pins and set up the appropriate sensors. In fact, the setup process was so easy that Christoper also implemented a secondhand fridge as a fermentation chamber.

Duff Beer for me, Duff Beer for you…

In his recently released article on opensource.com, Aedo goes into far more detail. So if you want to create your own brewing kit, it offers all the info you need to get going.

Christoper attributes a lot of his build to the Hosehead, Electric Brewery, and CraftBeerPi projects. Using their resources and those of StrangeBrew Elsinore, any home brewer can control at least part of their system via a Raspberry Pi. Moreover, they can also keep track of their brewery stock levels via the wonderfully named Kegerface display.

We love seeing projects like this that take inspiration from others and build on them. We also love beer.

How about you? Have you created any sort of beer brewing system, from scratch or with the help of an existing project? Then make sure to share it with us in the comments below.

Duff man homebrew

 

*Did you know the British pint is larger than the American pint?

The post A homebrew Pi kit for home brewing appeared first on Raspberry Pi.

NYC Train Sign: real-time train tracking in New York City

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/nyc-train-sign/

Raspberry Pis, blinking lights, and APIs – what’s not to love? It’s really not surprising that the NYC Train Sign caught our attention – and it doesn’t hurt that its creators’ Instagram game is 👌 on point.

NYC Train Sign

NYC Train Sign. 158 likes · 2 talking about this. Live MTA train wait times signage.

Another transport sign?

Yes, yes, I know. Janina wrote about a bus timetable display only the other day. But hear me out, I have a totally legitimate reason why we’re covering this project as well…

…it’s just a really pretty-looking build, alright?

Public transport: a brief explanation

If you’ve been to New York City, or indeed have visited any busy metropolis, you’ll probably have braved the dread conveyor belt of empty-eyed masses that is…dundunduuun…public transport. Whenever you use it, unless you manage to hit that off-peak sweet spot (somewhere between 14.30 and 14.34) where the flow of human traffic is minimal, you are exposed to a hellish amalgam of rushing bodies, yells to ‘hold the door’, and the general funk of tight-packed public situations. Delicious.

NYC Train Sign Raspberry Pi

To be fair, Kramer has bad train etiquette

As APIs for public transport websites are becoming increasingly common and user-friendly, we’re seeing a rise in the number of transport-related builds. From Dr Lucy Rogers’ #WhereIsMyBus 3D-printed London icon to the VästtraPi bus departure screen mentioned above, projects using these APIs allow us respite from the throng and save us from waiting for delayed buses at drab and dreary stations.

Lucy Rogers WhereIsMyBus Raspberry Pi

image c/o Dr Lucy Rogers

We’ve seen a lot of bus builds, but have we seen train builds yet? Anyone? I’ll check: ‘Train your rat’, ‘Picademy teacher training’, ‘How to train your…’ Nope, I think this is the first. Maybe I’m wrong though, in which case please let me know in the comments.

NYC Train Sign

Let me see if I can get this right: the NYC Train Sign-building team at NYC Train Sign has created a real-time NYC train sign using a Raspberry Pi, LED matrix, and locally 3D-printed parts at their base in Brooklyn, NYC (…train sign – shoot!)

NYC Train Sign Raspberry Pi

The NYC Train Sign…so so pretty

The team, headed by creator Timothy Wu, uses the official NTA server API to fetch real-time arrival, departure, and delay information to display on their signs. They also handcraft the signs to fit your specifications (click here to buy your own). How very artisanal!

Do the BART(man)

As a result of the success of the NYC Train Sign, the team is now experimenting with signs for other transport services, including the San Francisco BART, Chicago CTA, and Boston MBTA. APIs are also available for services in other cities around the world, for example London and Los Angeles. We could probably do with a display like this in our London office! In fact, if you commute on public transport and can find the right API, I think one of these devices would be perfect for your workplace no matter where it is.

Using APIs

Given our free resources for a Tweeting Babbage and a…location marker poo (?!), it’s clear that at the Raspberry Pi Foundation we’re huge fans of using APIs in digital making projects. Therefore, it’s really no surprise that we like sharing them as well! So if you’ve created a project using an API, we’d love to see it. Pop a link into the comments below, or tag us on social media.

Now back to their Instagram game

Honestly, their photos are so aesthetically pleasing that I’m becoming a little jealous.

making of real-time nyc mta signs with raspberry pi in bushwick . as seen @kcbcbeer @fathersbk @houdinikitchenlab @dreammachinecreative @hihellobk . 3d-printing @3dbrooklyn vectors @virilemonarch . . #nyc #mta #subwaysystem #nycsubway #subway #metro #nycsubway #train #subwaysigns #3dprinting #3dmodel #3dprinter #3dprinting #3dprints #3d #newyorkcity #manhattan #brooklyn #bushwick #bronx #raspberrypi #code #javascript #php #sql #python #subwayart #subwaygraffiti

121 Likes, 4 Comments – @nyctrainsign on Instagram: “making of real-time nyc mta signs with raspberry pi in bushwick . as seen @kcbcbeer @fathersbk…”

The post NYC Train Sign: real-time train tracking in New York City appeared first on Raspberry Pi.

Bicrophonic Research Institute and the Sonic Bike

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/sonic-bike/

The Bicrophonic Sonic Bike, created by British sound artist Kaffe Matthews, utilises a Raspberry Pi and GPS signals to map location data and plays music and sound in response to the places you take it on your cycling adventures.

What is Bicrophonics?

Bicrophonics is about the mobility of sound, experienced and shared within a moving space, free of headphones and free of the internet. Music made by the journey you take, played with the space that you move through. The Bicrophonic Research Institute (BRI) http://sonicbikes.net

Cycling and music

I’m sure I wasn’t the only teen to go for bike rides with a group of friends and a radio. Spurred on by our favourite movie, the mid-nineties classic Now and Then, we’d hook up a pair of cheap portable speakers to our handlebars, crank up the volume, and sing our hearts out as we cycled aimlessly down country lanes in the cool light evenings of the British summer.

While Sonic Bikes don’t belt out the same classics that my precariously attached speakers provided, they do give you the same sense of connection to your travelling companions via sound. Linked to GPS locations on the same preset map of zones, each bike can produce the same music, creating a cloud of sound as you cycle.

Sonic Bikes

The Sonic Bike uses five physical components: a Raspberry Pi, power source, USB GPS receiver, rechargeable speakers, and subwoofer. Within the Raspberry Pi, the build utilises mapping software to divide a map into zones and connect each zone with a specific music track.

Sonic Bikes Raspberry Pi

Custom software enables the Raspberry Pi to locate itself among the zones using the USB GPS receiver. Then it plays back the appropriate track until it registers a new zone.

Bicrophonic Research Institute

The Bicrophonic Research Institute is a collective of artists and coders with the shared goal of creating sound directed by people and places via Sonic Bikes. In their own words:

Bicrophonics is about the mobility of sound, experienced and shared within a moving space, free of headphones and free of the internet. Music made by the journey you take, played with the space that you move through.

Their technology has potential beyond the aims of the BRI. The Sonic Bike software could be useful for navigation, logging data and playing beats to indicate when to alter speed or direction. You could even use it to create a guided cycle tour, including automatically reproduced information about specific places on the route.

For the creators of Sonic Bike, the project is ever-evolving, and “continues to be researched and developed to expand the compositional potentials and unique listening experiences it creates.”

Sensory Bike

A good example of this evolution is the Sensory Bike. This offshoot of the Sonic Bike idea plays sounds guided by the cyclist’s own movements – it acts like a two-wheeled musical instrument!

lean to go up, slow to go loud,

a work for Sensory Bikes, the Berlin wall and audience to ride it. ‘ lean to go up, slow to go loud ‘ explores freedom and celebrates escape. Celebrating human energy to find solutions, hot air balloons take off, train lines sing, people cheer and nature continues to grow.

Sensors on the wheels, handlebars, and brakes, together with a Sense HAT at the rear, register the unique way in which the rider navigates their location. The bike produces output based on these variables. Its creators at BRI say:

The Sensory Bike becomes a performative instrument – with riders choosing to go slow, go fast, to hop, zigzag, or circle, creating their own unique sound piece that speeds, reverses, and changes pitch while they dance on their bicycle.

Build your own Sonic Bike

As for many wonderful Raspberry Pi-based builds, the project’s code is available on GitHub, enabling makers to recreate it. All the BRI team ask is that you contact them so they can learn more of your plans and help in any way possible. They even provide code to create your own Sonic Kayak using GPS zones, temperature sensors, and an underwater microphone!

Sonic Kayaks explained

Sonic Kayaks are musical instruments for expanding our senses and scientific instruments for gathering marine micro-climate data. Made by foAm_Kernow with the Bicrophonic Research Institute (BRI), two were first launched at the British Science Festival in Swansea Bay September 6th 2016 and used by the public for 2 days.

The post Bicrophonic Research Institute and the Sonic Bike appeared first on Raspberry Pi.

Get social: connecting with Raspberry Pi

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/connecting-raspberry-pi-social/

Fancy connecting with Raspberry Pi beyond the four imaginary walls of this blog post? Want to find ways into the conversation among our community of makers, learners, and educators? Here’s how:

Twitter

Connecting with us on Twitter is your sure-fire way of receiving the latest news and articles from and about the Raspberry Pi Foundation, Code Club, and CoderDojo. Here you’ll experience the fun, often GIF-fuelled banter of the busy Raspberry Pi community, along with tips, project support, and event updates. This is the best place to follow hashtags such as #Picademy, #MakeYourIdeas, and #RJam in real time.

Raspberry Pi on Twitter

News! Raspberry Pi and @CoderDojo join forces in a merger that will help more young people get creative with tech: https://t.co/37y45ht7li

YouTube

We create a variety of video content, from Pi Towers fun, to resource videos, to interviews and program updates. We’re constantly adding content to our channel to bring you more interesting, enjoyable videos to watch and share within the community. Want to see what happens when you drill a hole through a Raspberry Pi Zero to make a fidget spinner? Or what Code Club International volunteers got up to when we brought them together in London for a catch-up? Maybe you’d like to try a new skill and need guidance? Our YouTube channel is the place to go!

Getting started with soldering

Learn the basics of how to solder components together, and the safety precautions you need to take. Find a transcript of this video in our accompanying learning resource: raspberrypi.org/learning/getting-started-with-soldering/

Instagram

Instagram is known as the home of gorgeous projects and even better-looking project photographs. Our Instagram, however, is mainly a collection of random office shenanigans, short video clips, and the occasional behind-the-scenes snap of projects, events, or the mess on my desk. Come join the party!

When one #AstroPi unit is simply not enough… . Would you like to #3DPrint your own Astro Pi unit? Head to rpf.io/astroprint for the free files and assembly guide . . . . . . #RaspberryPi #Space #ESA @astro_timpeake @thom_astro

1,379 Likes, 9 Comments – Raspberry Pi (@raspberrypifoundation) on Instagram: “When one #AstroPi unit is simply not enough… . Would you like to #3DPrint your own Astro Pi unit?…”

Facebook

Looking to share information on Raspberry Pi with your social community? Maybe catch a live stream or read back through comments on some of our community projects? Then you’ll want to check out Raspberry Pi Facebook page. It brings the world together via a vast collection of interesting articles, images, videos, and discussions. Here you’ll find information on upcoming events we’re visiting, links to our other social media accounts, and projects our community shares via visitor posts. If you have a moment to spare, you may even find you can answer a community question.

Raspberry Pi at the Scottish Learning Festival

No Description

Raspberry Pi forum

The Raspberry Pi forum is the go-to site for posting questions, getting support, and just having a good old chin wag. Whether you have problems setting up your Pi, need advice on how to build a media centre, or can’t figure out how to utilise Scratch for the classroom, the forum has you covered. Head there for absolutely anything Pi-related, and you’re sure to find help with your query – or better yet, the answer may already be waiting for you!

G+

Our G+ community is an ever-growing mix of makers, educators, industry professionals, and those completely new to Pi and eager to learn more about the Foundation and the product. Here you’ll find project shares, tech questions, and conversation. It’s worth stopping by if you use the platform.

Code Club and CoderDojo

You should also check out the social media accounts of our BFFs Code Club and CoderDojo!


On the CoderDojo website, along with their active forum, you’ll find links to all their accounts at the bottom of the page. For UK-focused Code Club information, head to the Code Club UK Twitter account, and for links to accounts of Code Clubs based in your country, use the search option on the Code Club International website.

Connect with us

However you want to connect with us, make sure to say hi. We love how active and welcoming our online community is and we always enjoy engaging in conversation, seeing your builds and events, and sharing Pi Towers mischief as well as useful Pi-related information and links with you!

If you use any other social platform and miss our presence there, let us know in the comments. And if you run your own Raspberry Pi-related forum, online group, or discussion board, share that as well!

The post Get social: connecting with Raspberry Pi appeared first on Raspberry Pi.

Shelfchecker Smart Shelf: build a home library system

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/smart-shelf-home-library/

Are you tired of friends borrowing your books and never returning them? Maybe you’re sure you own 1984 but can’t seem to locate it? Do you find a strange satisfaction in using the supermarket self-checkout simply because of the barcode beep? With the ShelfChecker smart shelf from maker Annelynn described on Instructables, you can be your own librarian and never misplace your books again! Beep!

Shelfchecker smart shelf annelynn Raspberry Pi

Harry Potter and the Aesthetically Pleasing Smart Shelf

The ShelfChecker smart shelf

Annelynn built her smart shelf utilising a barcode scanner, LDR light sensors, a Raspberry Pi, plus a few other peripherals and some Python scripts. She has created a fully integrated library checkout system with accompanying NeoPixel location notification for your favourite books.

This build allows you to issue your book-borrowing friends their own IDs and catalogue their usage of your treasured library. On top of that, you’ll be able to use LED NeoPixels to highlight your favourite books, registering their removal and return via light sensor tracking.

Using light sensors for book cataloguing

Once Annelynn had built the shelf, she drilled holes to fit the eight LDRs that would guard her favourite books, and separated them with corner brackets to prevent confusion.

Shelfchecker smart shelf annelynn Raspberry Pi

Corner brackets keep the books in place without confusion between their respective light sensors

Due to the limitations of the MCP3008 Adafruit microchip, the smart shelf can only keep track of eight of your favourite books. But this limitation won’t stop you from cataloguing your entire home library; it simply means you get to pick your ultimate favourites that will occupy the prime real estate on your wall.

Obviously, the light sensors sense light. So when you remove or insert a book, light floods or is blocked from that book’s sensor. The sensor sends this information to the Raspberry Pi. In response, an Arduino controls the NeoPixel strip along the ‘favourites’ shelf to indicate the book’s status.

Shelfchecker smart shelf annelynn Raspberry Pi

The book you are looking for is temporarily unavailable

Code your own library

While keeping a close eye on your favourite books, the system also allows creation of a complete library catalogue system with the help of a MySQL database. Users of the library can log into the system with a barcode scanner, and take out or return books recorded in the database guided by an LCD screen attached to the Pi.

Shelfchecker smart shelf annelynn Raspberry Pi

Beep!

I won’t go into an extensive how-to on creating MySQL databases here on the blog, because my glamourous assistant Janina has pulled up these MySQL tutorials to help you get started. Annelynn’s Github scripts are also packed with useful comments to keep you on track.

Raspberry Pi and books

We love books and libraries. And considering the growing number of Code Clubs and makespaces into libraries across the world, and the host of book-based Pi builds we’ve come across, the love seems to be mutual.

We’ve seen the Raspberry Pi introduced into the Wordery bookseller warehouse, a Pi-powered page-by-page book scanner by Jonathon Duerig, and these brilliant text-to-speech and page turner projects that use our Pis!

Did I say we love books? In fact we love them so much that members of our team have even written a few.*

If you’ve set up any sort of digital making event in a library, have in some way incorporated Raspberry Pi into your own personal book collection, or even managed to recreate the events of your favourite story using digital making, make sure to let us know in the comments below.

* Shameless plug**

Fancy adding some Pi to your home library? Check out these publications from the Raspberry Pi staff:

A Beginner’s Guide to Coding by Marc Scott

Adventures in Raspberry Pi by Carrie Anne Philbin

Getting Started with Raspberry Pi by Matt Richardson

Raspberry Pi User Guide by Eben Upton

The MagPi Magazine, Essentials Guides and Project Books

Make Your Own Game and Build Your Own Website by CoderDojo

** Shameless Pug

 

The post Shelfchecker Smart Shelf: build a home library system appeared first on Raspberry Pi.

Mira, tiny robot of joyful delight

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/mira-robot-alonso-martinez/

The staff of Pi Towers are currently melting into puddles while making ‘Aaaawwwwwww’ noises as Mira, the adorable little Pi-controlled robot made by Pixar 3D artist Alonso Martinez, steals their hearts.

Mira the robot playing peek-a-boo

If you want to get updates on Mira’s progress, sign up for the mailing list! http://eepurl.com/bteigD Mira is a desk companion that makes your life better one smile at a time. This project explores human robot interactivity and emotional intelligence. Currently Mira uses face tracking to interact with the users and loves playing the game “peek-a-boo”.

Introducing Mira

Honestly, I can’t type words – I am but a puddle! If I could type at all, I would only produce a stream of affectionate fragments. Imagine walking into a room full of kittens. What you would sound like is what I’d type.

No! I can do this. I’m a professional. I write for a living! I can…

SHE BLINKS OHMYAAAARGH!!!

Mira Alonso Martinez Raspberry Pi

Weebl & Bob meets South Park’s Ike Broflovski in an adorable 3D-printed bundle of ‘Aaawwwww’

Introducing Mira (I promise I can do this)

Right. I’ve had a nap and a drink. I’ve composed myself. I am up for this challenge. As long as I don’t look directly at her, I’ll be fine!

Here I go.

As one of the many über-talented 3D artists at Pixar, Alonso Martinez knows a thing or two about bringing adorable-looking characters to life on screen. However, his work left him wondering:

In movies you see really amazing things happening but you actually can’t interact with them – what would it be like if you could interact with characters?

So with the help of his friends Aaron Nathan and Vijay Sundaram, Alonso set out to bring the concept of animation to the physical world by building a “character” that reacts to her environment. His experiments with robotics started with Gertie, a ball-like robot reminiscent of his time spent animating bouncing balls when he was learning his trade. From there, he moved on to Mira.

Mira Alonso Martinez

Many, many of the views of this Tested YouTube video have come from me. So many.

Mira swivels to follow a person’s face, plays games such as peekaboo, shows surprise when you finger-shoot her, and giggles when you give her a kiss.

Mira’s inner workings

To get Mira to turn her head in three dimensions, Alonso took inspiration from the Microsoft Sidewinder Pro joystick he had as a kid. He purchased one on eBay, took it apart to understand how it works, and replicated its mechanism for Mira’s Raspberry Pi-powered innards.

Mira Alonso Martinez

Alonso used the smallest components he could find so that they would fit inside Mira’s tiny body.

Mira’s axis of 3D-printed parts moves via tiny Power HD DSM44 servos, while a camera and OpenCV handle face-tracking, and a single NeoPixel provides a range of colours to indicate her emotions. As for the blinking eyes? Two OLED screens boasting acrylic domes fit within the few millimeters between all the other moving parts.

More on Mira, including her history and how she works, can be found in this wonderful video released by Tested this week.

Pixar Artist’s 3D-Printed Animated Robots!

We’re gushing with grins and delight at the sight of these adorable animated robots created by artist Alonso Martinez. Sean chats with Alonso to learn how he designed and engineered his family of robots, using processes like 3D printing, mold-making, and silicone casting. They’re amazing!

You can also sign up for Alonso’s newsletter here to stay up-to-date about this little robot. Hopefully one of these newsletters will explain how to buy or build your own Mira, as I for one am desperate to see her adorable little face on my desk every day for the rest of my life.

The post Mira, tiny robot of joyful delight appeared first on Raspberry Pi.

Making Waves: print out sound waves with the Raspberry Pi

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/printed-sound-wave/

For fun, Eunice Lee, Matthew Zhang, and Bomani McClendon have worked together to create Waves, an audiovisual project that records people’s spoken responses to personal questions and prints them in the form of a sound wave as a gift for being truthful.

Waves

Waves is a Raspberry Pi project centered around transforming the transience of the spoken word into something concrete and physical. In our setup, a user presses a button corresponding to an intimate question (ex: what’s your motto?) and answers it into a microphone while pressing down on the button.

What are you grateful for?

“I’m grateful for finishing this project,” admits maker Eunice Lee as she presses a button and speaks into the microphone that is part of the Waves project build. After a brief moment, her confession appears on receipt paper as a waveform, and she grins toward the camera, happy with the final piece.

Eunice testing Waves

Waves is a Raspberry Pi project centered around transforming the transience of the spoken word into something concrete and physical. In our setup, a user presses a button corresponding to an intimate question (ex: what’s your motto?) and answers it into a microphone while pressing down on the button.

Sound wave machine

Alongside a Raspberry Pi 3, the Waves device is comprised of four tactile buttons, a standard USB microphone, and a thermal receipt printer. This type of printer has become easily available for the maker movement from suppliers such as Adafruit and Pimoroni.

Eunice Lee, Matthew Zhang, Bomani McClendon - Sound Wave Raspberry Pi

Definitely more fun than a polygraph test

The trio designed four colour-coded cards that represent four questions, each of which has a matching button on the breadboard. Press the button that belongs to the question to be answered, and Python code directs the Pi to record audio via the microphone. Releasing the button stops the audio recording. “Once the recording has been saved, the script viz.py is launched,” explains Lee. “This script takes the audio file and, using Python matplotlib magic, turns it into a nice little waveform image.”

From there, the Raspberry Pi instructs the thermal printer to produce a printout of the sound wave image along with the question.

Making for fun

Eunice, Bomani, and Matt, students of design and computer science at Northwestern University in Illinois, built Waves as a side project. They wanted to make something at the intersection of art and technology and were motivated by the pure joy of creating.

Eunice Lee, Matthew Zhang, Bomani McClendon - Sound Wave Raspberry Pi

Making makes people happy

They have noted improvements that can be made to increase the scope of their sound wave project. We hope to see many more interesting builds from these three, and in the meantime we invite you all to look up their code on Eunice’s GitHub to create your own Waves at home.

The post Making Waves: print out sound waves with the Raspberry Pi appeared first on Raspberry Pi.

Estefannie’s GPS-Controlled GoPro Photo Taker

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/estefannie-gopro-selfie/

Are you tired of having to take selfies physically? Do you only use your GoPro for the occasional beach vacation? Are you maybe even wondering what to do with the load of velcro you bought on a whim? Then we have good news for you: Estefannie‘s back to help you out with her Personal Automated GPS-Controlled Portable Photo Taker…PAGCPPT for short…or pagsssspt, if you like.

RASPBERRY PI + GPS CONTROLLED PHOTO TAKER

Hey World! Do you like vacation pictures but don’t like taking them? Make your own Personal Automated GPS Controlled Portable Photo Taker! The code, components, and instructions are in my Hackster.io account: https://www.hackster.io/estefanniegg/automated-gps-controlled-photo-taker-3fc84c For this build, I decided to put together a backpack to take pictures of me when I am close to places that like.

The Personal Automated GPS-Controlled Portable Photo Taker

Try saying that five times in a row.

Go on. I’ll wait.

Using a Raspberry Pi 3, a GPS module, a power pack, and a GoPro plus GoPro Stick, Estefannie created the PAGCPPT as a means of automatically taking selfies at pre-specified tourist attractions across London.

Estefannie Explains it All Raspberry Pi GPS GoPro Camera

There’s pie in my backpack too…but it’s a bit messy

With velcro and hot glue, she secured the tech in place on (and inside) a backpack. Then it was simply a case of programming her set up to take pictures while she walked around the city.

Estefannie Explains it All Raspberry Pi GPS GoPro Camera

Making the GoPro…go

Estefannie made use of a GoPro API library to connect her GoPro to the Raspberry Pi via WiFi. With the help of this library, she wrote a Python script that made the GoPro take a photograph whenever her GPS module placed her within a ten-metre radius of a pre-selected landmark such as Tower Bridge, Abbey Road, or Platform 9 3/4.

Estefannie Explains it All Raspberry Pi GPS GoPro Camera

“Accio selfie.”

The full script, as well as details regarding the components she used for the project, can be found on her hackster.io page here.

Estefannie Explains it All

You’ll have noticed that we’ve covered Estefannie once or twice before on the Raspberry Pi blog. We love project videos that convey a sense of ‘Oh hey, I can totally build one of those!’, and hers always tick that box. They are imaginative, interesting, quirky, and to be totally honest with you, I’ve been waiting for this particular video since she hinted at it on her visit to Pi Towers in May. I got the inside scoop, yo!

What’s better than taking pictures? Not taking pictures. But STILL having pictures. I made a personal automated GPS controlled Portable Photo Taker ⚡ NEW VIDEO ALERT⚡ Link in bio.

1,351 Likes, 70 Comments – Estefannie Explains It All (@estefanniegg) on Instagram: “What’s better than taking pictures? Not taking pictures. But STILL having pictures. I made a…”

Make sure to follow her on YouTube and Instagram for more maker content and random shenanigans. And if you have your own maker social media channel, YouTube account, blog, etc, this is your chance to share it for the world to see in the comments below!

The post Estefannie’s GPS-Controlled GoPro Photo Taker appeared first on Raspberry Pi.

A rather dandy Pi-assisted Draisine

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/dandy-draisine/

It’s time to swap pedal power for relaxed strides with the Raspberry Pi-assisted Draisine from bicyle-modding pro Prof. Holger Hermanns.

Raspberry PI-powered Dandy Horse Draisine

So dandy…

A Draisine…

If you have children yourself or have seen them in the wild on occasion, you may be aware of how much they like balance bikes – bicycle frames without pedals, propelled by striding while sitting on the seat. It’s a nice way for children to take the first steps (bah-dum tss) towards learning to ride a bicycle. However, between 1817, when the balance bike (also known as a draisine or Dandy Horse) was invented by Karl von Drais, and the introduction of the pedal bike around 1860, this vehicle was the new, fun, and exciting way to travel for everyone.

Raspberry PI-powered Dandy Horse Draisine

We can’t wait for the inevitable IKEA flatpack release

Having previously worked on wireless braking systems for bicycles, Prof. Hermanns is experienced in adding tech to two wheels. Now, he and his team of computer scientists at Germany’s Saarland University have updated the balance bike for the 21st century: they built the Draisine 200.0 to explore pedal-free, power-assisted movement as part of the European Research Council-funded POWVER project.

With this draisine, his team have created a beautiful, fully functional final build that would look rather fetching here on the bicycle-flooded streets of Cambridge.

The frame of the bike, except for the wheel bearings and the various screws, is made of Okoumé wood, which looks somewhat rose, has fine nerves (which means that it is easy to mill) and seems to have excellent weather resistance.

Draisine 200.0

Uploaded by ecomento.tv on 2017-06-08.

…with added Pi!

Within the wooden body of the draisine lies a array of electrical components, including a 200-watt rear hub motor, a battery, an accelerometer, a magnetic sensor, and a Raspberry Pi. Checking the accelerometer and reading wheel-embedded sensors 150 times per second (wow!), the Pi activates the hub motor to assist the draisine, which allows it to reach speeds of up to 16mph (25km/h – wow again!).

Raspberry PI-powered Dandy Horse Draisine

The inner workings of the Draisine 200.0

More detailed information on the Draisine 200.0 build can be found here. Hermanns’s team also plan to release the code for the project once confirmation of no licence infringement has been given.

Take to the road

We’ve seen a variety of bicycle-oriented Pi builds that improve safety and help with navigation. But as for electricity-assisted Pi bikes, this one may be the first, and it’s such a snazzy one at that!

If you’d like to see more cycle-based projects using the Raspberry Pi, check out Matt’s Smart Bike Light, David’s bike computer, and, for the fun of it, the Pi-powered bicycle beer dispenser we covered last month.

The Pi Towers hive mind is constantly discussing fun new ways for its active cycling community to use the Raspberry Pi, and we’d love to hear your ideas as well! So please do share them in the comments below.

The post A rather dandy Pi-assisted Draisine appeared first on Raspberry Pi.