All posts by Jeff Barr

Getting Ready for the AWS Quest Finale on Twitch

Post Syndicated from Jeff Barr original

Whew! March has been one crazy month for me and it is only half over. After a week with my wife in the Caribbean, we hopped on a non-stop Seattle to Tokyo flight so that I could speak at JAWS Days, Startup Day, and some internal events. We arrived home last Wednesday and I am now sufficiently clear-headed and recovered from jet lag to do anything more intellectually demanding than respond to emails. The AWS Blogging Team and the great folks at Lone Shark Games have been working on AWS Quest for quite some time and it has been great to see all of the progress made toward solving the puzzles in order to find the orangeprints that I will use to rebuild Ozz.

The community effort has been impressive! There’s a shared spreadsheet with tabs for puzzles and clues, a busy Slack channel, and a leaderboard, all organized and built by a team that spans the globe.

I’ve been checking out the orangeprints as they are uncovered and have been doing a bit of planning and preparation to make sure that I am ready for the live-streamed rebuild on Twitch later this month. Yesterday I labeled a bunch of containers, one per puzzle, and stocked each one with the parts that I will use to rebuild the corresponding component of Ozz. Fortunately, I have at least (my last count may have skipped a few) 119,807 bricks and other parts at hand so this was easy. Here’s what I have set up so far:

The Twitch session will take place on Tuesday, March 27 at Noon PT. In the meantime, you should check out the #awsquest tweets and see what you can do to help me to rebuild Ozz.


AWS Documentation is Now Open Source and on GitHub

Post Syndicated from Jeff Barr original

Earlier this year we made the AWS SDK developer guides available as GitHub repos (all found within the awsdocs organization) and invited interested parties to contribute changes and improvements in the form of pull requests.

Today we are adding over 138 additional developer and user guides to the organization, and we are looking forward to receiving your requests. You can fix bugs, improve code samples (or submit new ones), add detail, and rewrite sentences and paragraphs in the interest of accuracy or clarity. You can also look at the commit history in order to learn more about new feature and service launches and to track improvements to the documents.

Making a Contribution
Before you get started, read the Amazon Open Source Code of Conduct and take a look at the Contributing Guidelines document (generally named for the AWS service of interest. Then create a GitHub account if you don’t already have one.

Once you find something to change or improve, visit the HTML version of the document and click on Edit on GitHub button at the top of the page:

This will allow you to edit the document in source form (typically Markdown or reStructuredText). The source code is used to produce the HTML, PDF, and Kindle versions of the documentation.

Once you are in GitHub, click on the pencil icon:

This creates a “fork” — a separate copy of the file that you can edit in isolation.

Next, make an edit. In general, as a new contributor to an open source project, you should gain experience and build your reputation by making small, high-quality edits. I’ll change “dozens of services” to “over one hundred services” in this document:

Then I summarize my change and click Propose file change:

I examine the differences to verify my changes and then click Create pull request:

Then I review the details and click Create pull request again:

The pull request (also known as a PR) makes its way to the Elastic Beanstalk documentation team and they get to decide if they want to accept it, reject it, or to engage in a conversation with me to learn more. The teams endeavor to respond to PRs within 48 hours, and I’ll be notified via GitHub whenever the status of the PR changes.

As is the case with most open source projects, a steady stream of focused, modest-sized pull requests is preferable to the occasional king-sized request with dozens of edits inside.

If I am interested in tracking changes to a repo over time, I can Watch and/or Star it:

If I Watch a repo, I’ll receive an email whenever there’s a new release, issue, or pull request for that service guide.

Go Fork It
This launch gives you another way to help us to improve AWS. Let me know what you think!


AWS Summit Season is Almost Here – Get Ready to Register!

Post Syndicated from Jeff Barr original

I’m writing this post from my hotel room in Tokyo while doing my best to fight jet lag! I’m here to speak at JAWS Days and Startup Day, and to meet with some local customers.

I do want to remind you that the AWS Global Summit series is just about to start! With events planned for North America, Latin America, Japan and the rest of Asia, Europe, the Middle East, Africa, and Greater China, odds are that there’s one not too far from you. You can register for the San Francisco Summit today and you can ask to be notified as soon as registration for the other 30+ cities opens up.

The Summits are offered at no charge and are an excellent way for you to learn more about AWS. You’ll get to hear from our leaders and tech teams, our partners, and from other customers. You can also participate in hands-on workshops, labs, and team challenges.

Because the events are multi-track, you may want to bring a colleague or two in order to make sure that you don’t miss something of interest to your organization.


PS – I keep meaning to share this cool video that my friend Mike Selinker took at AWS re:Invent. Check it out!

Join the AWS Quest – Help me to Rebuild Ozz!

Post Syndicated from Jeff Barr original

If you have been watching my weekly videos, you may have noticed an orange robot in the background from time to time. That’s Ozz, my robot friend and helper. Built from the ground up in my home laboratory, Ozz is an invaluable part of the AWS blogging process!

Sadly, when we announced we are adding the AWS Podcast to the blog, Ozz literally went to pieces and all I have left is a large pile of bricks and some great memories of our time together. From what I can tell, Ozz went haywire over this new development due to excessive enthusiasm!

Ozz, perhaps anticipating that this could happen at some point, buried a set of clues (each pointing to carefully protected plans) in this blog, in the AWS Podcast, and in other parts of the AWS site. If we can find and decode these plans, we can rebuild Ozz, better, stronger, and faster. Unfortunately, due to concerns about the ultra-competitive robot friend market, Ozz concealed each of the plans inside a set of devious, brain-twisting puzzles. You are going to need to look high, low, inside, outside, around, and through the clues in order to figure this one out. You may even need to phone a friend or two.

Your mission, should you choose to accept it, is to find these clues, decode the plans, and help me to rebuild Ozz. The information that I have is a bit fuzzy, but I think there are 20 or so puzzles, each one describing one part of Ozz. If we can solve them all, we’ll get together on Twitch later this month and put Ozz back together.

Are you with me on this? Let’s do it!


Attending Mobile World Congress? Check Out Our Connected Car Demo!

Post Syndicated from Jeff Barr original

Are you planning to attend Mobile World Congress 2018 in Barcelona (one of my favorite cities)? If so, please be sure to check out the connected car demo in Hall 5 Booth 5E41.

The AWS Greengrass team has been working on a proof of concept with our friends at Vodafone and Saguna to show you how connected cars can change the automotive industry. The demo is built around the emerging concept of multi-access edge computing, or MEC.

Car manufacturers want to provide advanced digital technology in their vehicles but don’t want to make significant upgrades to the on-board computing resources due to cost, power, and time-to-market considerations, not to mention the issues that arise when attempting to retrofit cars that are already on the road. MEC offloads processing resources to the edge of the mobile network, for instance a hub site in the access network. This model helps car manufacturers to take advantage of low-latency compute resources while building features that can evolve and improve over the lifetime of the vehicle, often 20 years or more. It also reduces the complexity and the cost of the on-board components.

The MWC demo streams a live video feed over Vodafone’s 4G LTE network, with Saguna’s AI-powered MEC solution that leverages AWS Greengrass. The demo focuses on driver safety, with the goal of helping to detect drivers that are distracted by talking to someone or something in the car. With an on-board camera aimed at the driver, backed up by AI-powered movement tracking and pattern detection running at the edge of the mobile network, distractions can be identified and the driver can be alerted. This architecture also allows manufacturers to enhance existing cars since most of the computing is handled at the edge of the mobile network.

If you couldn’t make it to Mobile World Congress, you can also check out the video for this solution, here.


Amazon GameLift FleetIQ and Spot Instances – Save up to 90% On Game Server Hosting

Post Syndicated from Jeff Barr original

Amazon GameLift is a scalable, cloud-based runtime environment for session-based multiplayer games. You simply upload a build of your game, tell Amazon GameLift which type of EC2 instances you’d like to host it on, and sit back while Amazon GameLift takes care of setting up sessions and maintaining a suitably-sized fleet of EC2 instances. This automatic scaling allows you to accommodate demand that varies over time without having to keep compute resources in reserve during quiet periods.

Use Spot Instances
Last week we added a new feature to further decrease your per-player, per-hour costs when you host your game on Amazon GameLift. Before that launch, Amazon GameLift instances were always launched in On-Demand form. Instances of this type are always billed at fixed prices, as detailed on the Amazon GameLift Pricing page.

You can now make use Amazon GameLift Spot Instances in your GameLift fleets. These instances represent unused capacity and have prices that rise and fall over time. While your results will vary, you may see savings of up to 90% when compared to On-Demand Instances.

While you can use Spot Instances as a simple money-saving tool, there are other interesting use cases as well. Every game has a life cycle, along with a cadre of loyal players who want to keep on playing until you finally unplug and decommission the servers. You could create an Amazon GameLift fleet comprised of low-cost Spot Instances and keep that beloved game up and running as long as possible without breaking the bank. Behind the scenes, an Amazon GameLift Queue will make use of both Spot and On-Demand Instances, balancing price and availability in an attempt to give you the best possible service at the lowest price.

As I mentioned earlier, Spot Instances represent capacity that is not in use by On-Demand Instances. When this capacity decreases, existing Spot Instances could be interrupted with two minutes of notification and then terminated. Fortunately, there’s a lot of capacity and terminations are, statistically speaking, quite rare. To reduce the frequency even further, Amazon GameLift Queues now include a new feature that we call FleetIQ.

FleetIQ is powered by historical pricing and termination data for Spot Instances. This data, in combination with a very conservative strategy for choosing instance types, further reduces the odds that any particular game will be notified and then interrupted. The onProcessTerminate callback in your game’s server process will be activated if the underlying Spot Instance is about to be interrupted. At that point you have two minutes to close out the game, save any logs, free up any resources, and otherwise wrap things up. While you are doing this, you can call GetTerminationTime to see how much time remains.

Creating a Fleet
To take advantage of Spot Instances and FleetIQ, you can use the Amazon GameLift console or API to set up Queues with multiple fleets of Spot and On-Demand Instances. By adding more fleets into each Queue, you give FleetIQ more options to improve latency, interruption rate, and cost. To start a new game session on an instance, FleetIQ first selects the region with the lowest latency for each player, then chooses the fleet with the lowest interruption rate and cost.

Let’s walk through the process. I’ll create a fleet of On-Demand Instances and a fleet of Spot Instances, in that order:


I take a quick break while the fleets are validated and activated:

Then I create a queue for my game. I select the fleets as the destinations for the queue:

If I am building a game that will have a global user base, I can create fleets in additional AWS Regions and use a player latency policy so that game sessions will be created in a suitable region:

To learn more about how to use this feature, take a look at the Spot Fleet Integration Guide.

Now Available
You can use Amazon GameLift Spot Instance fleets to host your session-based games now! Take a look, give it a try, and let me know what you think.

If you are planning to attend GDC this year, be sure to swing by booth 1001. Check out our GDC 2018 site for more information on our dev day talks, classroom sessions, and in-booth demos.



Now Available – AWS Serverless Application Repository

Post Syndicated from Jeff Barr original

Last year I suggested that you Get Ready for the AWS Serverless Application Repository and gave you a sneak peek. The Repository is designed to make it as easy as possible for you to discover, configure, and deploy serverless applications and components on AWS. It is also an ideal venue for AWS partners, enterprise customers, and independent developers to share their serverless creations.

Now Available
After a well-received public preview, the AWS Serverless Application Repository is now generally available and you can start using it today!

As a consumer, you will be able to tap in to a thriving ecosystem of serverless applications and components that will be a perfect complement to your machine learning, image processing, IoT, and general-purpose work. You can configure and consume them as-is, or you can take them apart, add features, and submit pull requests to the author.

As a publisher, you can publish your contribution in the Serverless Application Repository with ease. You simply enter a name and a description, choose some labels to increase discoverability, select an appropriate open source license from a menu, and supply a README to help users get started. Then you enter a link to your existing source code repo, choose a SAM template, and designate a semantic version.

Let’s take a look at both operations…

Consuming a Serverless Application
The Serverless Application Repository is accessible from the Lambda Console. I can page through the existing applications or I can initiate a search:

A search for “todo” returns some interesting results:

I simply click on an application to learn more:

I can configure the application and deploy it right away if I am already familiar with the application:

I can expand each of the sections to learn more. The Permissions section tells me which IAM policies will be used:

And the Template section displays the SAM template that will be used to deploy the application:

I can inspect the template to learn more about the AWS resources that will be created when the template is deployed. I can also use the templates as a learning resource in preparation for creating and publishing my own application.

The License section displays the application’s license:

To deploy todo, I name the application and click Deploy:

Deployment starts immediately and is done within a minute (application deployment time will vary, depending on the number and type of resources to be created):

I can see all of my deployed applications in the Lambda Console:

There’s currently no way for a SAM template to indicate that an API Gateway function returns binary media types, so I set this up by hand and then re-deploy the API:

Following the directions in the Readme, I open the API Gateway Console and find the URL for the app in the API Gateway Dashboard:

I visit the URL and enter some items into my list:

Publishing a Serverless Application
Publishing applications is a breeze! I visit the Serverless App Repository page and click on Publish application to get started:

Then I assign a name to my application, enter my own name, and so forth:

I can choose from a long list of open-source friendly SPDX licenses:

I can create an initial version of my application at this point, or I can do it later. Either way, I simply provide a version number, a URL to a public repository containing my code, and a SAM template:

Available Now
The AWS Serverless Application Repository is available now and you can start using it today, paying only for the AWS resources consumed by the serverless applications that you deploy.

You can deploy applications in the US East (Ohio), US East (N. Virginia), US West (N. California), US West (Oregon), Asia Pacific (Tokyo), Asia Pacific (Seoul), Asia Pacific (Mumbai), Asia Pacific (Singapore), Asia Pacific (Sydney), Canada (Central), EU (Frankfurt), EU (Ireland), EU (London), and South America (São Paulo) Regions. You can publish from the US East (N. Virginia) or US East (Ohio) Regions for global availability.



Amazon Relational Database Service – Looking Back at 2017

Post Syndicated from Jeff Barr original

The Amazon RDS team launched nearly 80 features in 2017. Some of them were covered in this blog, others on the AWS Database Blog, and the rest in What’s New or Forum posts. To wrap up my week, I thought it would be worthwhile to give you an organized recap. So here we go!

Certification & Security


Engine Versions & Features

Regional Support

Instance Support

Price Reductions

And That’s a Wrap
I’m pretty sure that’s everything. As you can see, 2017 was quite the year! I can’t wait to see what the team delivers in 2018.



New – Encryption at Rest for DynamoDB

Post Syndicated from Jeff Barr original

At AWS re:Invent 2017, Werner encouraged his audience to “Dance like nobody is watching, and to encrypt like everyone is:

The AWS team is always eager to add features that make it easier for you to protect your sensitive data and to help you to achieve your compliance objectives. For example, in 2017 we launched encryption at rest for SQS and EFS, additional encryption options for S3, and server-side encryption of Kinesis Data Streams.

Today we are giving you another data protection option with the introduction of encryption at rest for Amazon DynamoDB. You simply enable encryption when you create a new table and DynamoDB takes care of the rest. Your data (tables, local secondary indexes, and global secondary indexes) will be encrypted using AES-256 and a service-default AWS Key Management Service (KMS) key. The encryption adds no storage overhead and is completely transparent; you can insert, query, scan, and delete items as before. The team did not observe any changes in latency after enabling encryption and running several different workloads on an encrypted DynamoDB table.

Creating an Encrypted Table
You can create an encrypted table from the AWS Management Console, API (CreateTable), or CLI (create-table). I’ll use the console! I enter the name and set up the primary key as usual:

Before proceeding, I uncheck Use default settings, scroll down to the Encrypytion section, and check Enable encryption. Then I click Create and my table is created in encrypted form:

I can see the encryption setting for the table at a glance:

When my compliance team asks me to show them how DynamoDB uses the key to encrypt the data, I can create a AWS CloudTrail trail, insert an item, and then scan the table to see the calls to the AWS KMS API. Here’s an extract from the trail:

  "eventTime": "2018-01-24T00:06:34Z",
  "eventSource": "",
  "eventName": "Decrypt",
  "awsRegion": "us-west-2",
  "sourceIPAddress": "",
  "userAgent": "",
  "requestParameters": {
    "encryptionContext": {
      "aws:dynamodb:tableName": "reg-users",
      "aws:dynamodb:subscriberId": "1234567890"
  "responseElements": null,
  "requestID": "7072def1-009a-11e8-9ab9-4504c26bd391",
  "eventID": "3698678a-d04e-48c7-96f2-3d734c5c7903",
  "readOnly": true,
  "resources": [
      "ARN": "arn:aws:kms:us-west-2:1234567890:key/e7bd721d-37f3-4acd-bec5-4d08c765f9f5",
      "accountId": "1234567890",
      "type": "AWS::KMS::Key"

Available Now
This feature is available now in the US East (N. Virginia), US East (Ohio), US West (Oregon), and EU (Ireland) Regions and you can start using it today.

There’s no charge for the encryption; you will be charged for the calls that DynamoDB makes to AWS KMS on your behalf.



Give Your WordPress Blog a Voice With Our New Amazon Polly Plugin

Post Syndicated from Jeff Barr original

I first told you about Polly in late 2016 in my post Amazon Polly – Text to Speech in 47 Voices and 24 Languages. After that AWS re:Invent launch, we added support for Korean, five new voices, and made Polly available in all Regions in the aws partition. We also added whispering, speech marks, a timbre effect, and dynamic range compression.

New WordPress Plugin
Today we are launching a WordPress plugin that uses Polly to create high-quality audio versions of your blog posts. You can access the audio from within the post or in podcast form using a feature that we call Amazon Pollycast! Both options make your content more accessible and can help you to reach a wider audience. This plugin was a joint effort between the AWS team our friends at AWS Advanced Technology Partner WP Engine.

As you will see, the plugin is easy to install and configure. You can use it with installations of WordPress that you run on your own infrastructure or on AWS. Either way, you have access to all of Polly’s voices along with a wide variety of configuration options. The generated audio (an MP3 file for each post) can be stored alongside your WordPress content, or in Amazon Simple Storage Service (S3), with optional support for content distribution via Amazon CloudFront.

Installing the Plugin
I did not have an existing WordPress-powered blog, so I begin by launching a Lightsail instance using the WordPress 4.8.1 blueprint:

Then I follow these directions to access my login credentials:

Credentials in hand, I log in to the WordPress Dashboard:

The plugin makes calls to AWS, and needs to have credentials in order to do so. I hop over to the IAM Console and created a new policy. The policy allows the plugin to access a carefully selected set of S3 and Polly functions (find the full policy in the README):

Then I create an IAM user (wp-polly-user). I enter the name and indicate that it will be used for Programmatic Access:

Then I attach the policy that I just created, and click on Review:

I review my settings (not shown) and then click on Create User. Then I copy the two values (Access Key ID and Secret Access Key) into a secure location. Possession of these keys allows the bearer to make calls to AWS so I take care not to leave them lying around.

Now I am ready to install the plugin! I go back to the WordPress Dashboard and click on Add New in the Plugins menu:

Then I click on Upload Plugin and locate the ZIP file that I downloaded from the WordPress Plugins site. After I find it I click on Install Now to proceed:

WordPress uploads and installs the plugin. Now I click on Activate Plugin to move ahead:

With the plugin installed, I click on Settings to set it up:

I enter my keys and click on Save Changes:

The General settings let me control the sample rate, voice, player position, the default setting for new posts, and the autoplay option. I can leave all of the settings as-is to get started:

The Cloud Storage settings let me store audio in S3 and to use CloudFront to distribute the audio:

The Amazon Pollycast settings give me control over the iTunes parameters that are included in the generated RSS feed:

Finally, the Bulk Update button lets me regenerate all of the audio files after I change any of the other settings:

With the plugin installed and configured, I can create a new post. As you can see, the plugin can be enabled and customized for each post:

I can see how much it will cost to convert to audio with a click:

When I click on Publish, the plugin breaks the text into multiple blocks on sentence boundaries, calls the Polly SynthesizeSpeech API for each block, and accumulates the resulting audio in a single MP3 file. The published blog post references the file using the <audio> tag. Here’s the post:

I can’t seem to use an <audio> tag in this post, but you can download and play the MP3 file yourself if you’d like.

The Pollycast feature generates an RSS file with links to an MP3 file for each post:

The plugin will make calls to Amazon Polly each time the post is saved or updated. Pricing is based on the number of characters in the speech requests, as described on the Polly Pricing page. Also, the AWS Free Tier lets you process up to 5 million characters per month at no charge, for a period of one year that starts when you make your first call to Polly.

Going Further
The plugin is available on GitHub in source code form and we are looking forward to your pull requests! Here are a couple of ideas to get you started:

Voice Per Author – Allow selection of a distinct Polly voice for each author.

Quoted Text – For blogs that make frequent use of embedded quotes, use a distinct voice for the quotes.

Translation – Use Amazon Translate to translate the texts into another language, and then use Polly to generate audio in that language.

Other Blogging Engines – Build a similar plugin for your favorite blogging engine.

SSML Support – Figure out an interesting way to use Polly’s SSML tags to add additional character to the audio.

Let me know what you come up with!



The Floodgates Are Open – Increased Network Bandwidth for EC2 Instances

Post Syndicated from Jeff Barr original

I hope that you have configured your AMIs and your current-generation EC2 instances to use the Elastic Network Adapter (ENA) that I told you about back in mid-2016. The ENA gives you high throughput and low latency, while minimizing the load on the host processor. It is designed to work well in the presence of multiple vCPUs, with intelligent packet routing backed up by multiple transmit and receive queues.

Today we are opening up the floodgates and giving you access to more bandwidth in all AWS Regions. Here are the specifics (in each case, the actual bandwidth is dependent on the instance type and size):

EC2 to S3 – Traffic to and from Amazon Simple Storage Service (S3) can now take advantage of up to 25 Gbps of bandwidth. Previously, traffic of this type had access to 5 Gbps of bandwidth. This will be of benefit to applications that access large amounts of data in S3 or that make use of S3 for backup and restore.

EC2 to EC2 – Traffic to and from EC2 instances in the same or different Availability Zones within a region can now take advantage of up to 5 Gbps of bandwidth for single-flow traffic, or 25 Gbps of bandwidth for multi-flow traffic (a flow represents a single, point-to-point network connection) by using private IPv4 or IPv6 addresses, as described here.

EC2 to EC2 (Cluster Placement Group) – Traffic to and from EC2 instances within a cluster placement group can continue to take advantage of up to 10 Gbps of lower-latency bandwidth for single-flow traffic, or 25 Gbps of lower-latency bandwidth for multi-flow traffic.

To take advantage of this additional bandwidth, make sure that you are using the latest, ENA-enabled AMIs on current-generation EC2 instances. ENA-enabled AMIs are available for Amazon Linux, Ubuntu 14.04 & 16.04, RHEL 7.4, SLES 12, and Windows Server (2008 R2, 2012, 2012 R2, and 2016). The FreeBSD AMI in AWS Marketplace is also ENA-enabled, as is VMware Cloud on AWS.


Recent EC2 Goodies – Launch Templates and Spread Placement

Post Syndicated from Jeff Barr original

We launched some important new EC2 instance types and features at AWS re:Invent. I’ve already told you about the M5, H1, T2 Unlimited and Bare Metal instances, and about Spot features such as Hibernation and the New Pricing Model. Randall told you about the Amazon Time Sync Service. Today I would like to tell you about two of the features that we launched: Spread placement groups and Launch Templates. Both features are available in the EC2 Console and from the EC2 APIs, and can be used in all of the AWS Regions in the “aws” partition:

Launch Templates
You can use launch templates to store the instance, network, security, storage, and advanced parameters that you use to launch EC2 instances, and can also include any desired tags. Each template can include any desired subset of the full collection of parameters. You can, for example, define common configuration parameters such as tags or network configurations in a template, and allow the other parameters to be specified as part of the actual launch.

Templates give you the power to set up a consistent launch environment that spans instances launched in On-Demand and Spot form, as well as through EC2 Auto Scaling and as part of a Spot Fleet. You can use them to implement organization-wide standards and to enforce best practices, and you can give your IAM users the ability to launch instances via templates while withholding the ability to do so via the underlying APIs.

Templates are versioned and you can use any desired version when you launch an instance. You can create templates from scratch, base them on the previous version, or copy the parameters from a running instance.

Here’s how you create a launch template in the Console:

Here’s how to include network interfaces, storage volumes, tags, and security groups:

And here’s how to specify advanced and specialized parameters:

You don’t have to specify values for all of these parameters in your templates; enter the values that are common to multiple instances or launches and specify the rest at launch time.

When you click Create launch template, the template is created and can be used to launch On-Demand instances, create Auto Scaling Groups, and create Spot Fleets:

The Launch Instance button now gives you the option to launch from a template:

Simply choose the template and the version, and finalize all of the launch parameters:

You can also manage your templates and template versions from the Console:

To learn more about this feature, read Launching an Instance from a Launch Template.

Spread Placement Groups
Spread placement groups indicate that you do not want the instances in the group to share the same underlying hardware. Applications that rely on a small number of critical instances can launch them in a spread placement group to reduce the odds that one hardware failure will impact more than one instance. Here are a couple of things to keep in mind when you use spread placement groups:

  • Availability Zones – A single spread placement group can span multiple Availability Zones. You can have a maximum of seven running instances per Availability Zone per group.
  • Unique Hardware – Launch requests can fail if there is insufficient unique hardware available. The situation changes over time as overall usage changes and as we add additional hardware; you can retry failed requests at a later time.
  • Instance Types – You can launch a wide variety of M4, M5, C3, R3, R4, X1, X1e, D2, H1, I2, I3, HS1, F1, G2, G3, P2, and P3 instances types in spread placement groups.
  • Reserved Instances – Instances launched into a spread placement group can make use of reserved capacity. However, you cannot currently reserve capacity for a placement group and could receive an ICE (Insufficient Capacity Error) even if you have some RI’s available.
  • Applicability – You cannot use spread placement groups in conjunction with Dedicated Instances or Dedicated Hosts.

You can create and use spread placement groups from the AWS Management Console, the AWS Command Line Interface (CLI), the AWS Tools for Windows PowerShell, and the AWS SDKs. The console has a new feature that will help you to learn how to use the command line:

You can specify an existing placement group or create a new one when you launch an EC2 instance:

To learn more, read about Placement Groups.


New AWS Auto Scaling – Unified Scaling For Your Cloud Applications

Post Syndicated from Jeff Barr original

I’ve been talking about scalability for servers and other cloud resources for a very long time! Back in 2006, I wrote “This is the new world of scalable, on-demand web services. Pay for what you need and use, and not a byte more.” Shortly after we launched Amazon Elastic Compute Cloud (EC2), we made it easy for you to do this with the simultaneous launch of Elastic Load Balancing, EC2 Auto Scaling, and Amazon CloudWatch. Since then we have added Auto Scaling to other AWS services including ECS, Spot Fleets, DynamoDB, Aurora, AppStream 2.0, and EMR. We have also added features such as target tracking to make it easier for you to scale based on the metric that is most appropriate for your application.

Introducing AWS Auto Scaling
Today we are making it easier for you to use the Auto Scaling features of multiple AWS services from a single user interface with the introduction of AWS Auto Scaling. This new service unifies and builds on our existing, service-specific, scaling features. It operates on any desired EC2 Auto Scaling groups, EC2 Spot Fleets, ECS tasks, DynamoDB tables, DynamoDB Global Secondary Indexes, and Aurora Replicas that are part of your application, as described by an AWS CloudFormation stack or in AWS Elastic Beanstalk (we’re also exploring some other ways to flag a set of resources as an application for use with AWS Auto Scaling).

You no longer need to set up alarms and scaling actions for each resource and each service. Instead, you simply point AWS Auto Scaling at your application and select the services and resources of interest. Then you select the desired scaling option for each one, and AWS Auto Scaling will do the rest, helping you to discover the scalable resources and then creating a scaling plan that addresses the resources of interest.

If you have tried to use any of our Auto Scaling options in the past, you undoubtedly understand the trade-offs involved in choosing scaling thresholds. AWS Auto Scaling gives you a variety of scaling options: You can optimize for availability, keeping plenty of resources in reserve in order to meet sudden spikes in demand. You can optimize for costs, running close to the line and accepting the possibility that you will tax your resources if that spike arrives. Alternatively, you can aim for the middle, with a generous but not excessive level of spare capacity. In addition to optimizing for availability, cost, or a blend of both, you can also set a custom scaling threshold. In each case, AWS Auto Scaling will create scaling policies on your behalf, including appropriate upper and lower bounds for each resource.

AWS Auto Scaling in Action
I will use AWS Auto Scaling on a simple CloudFormation stack consisting of an Auto Scaling group of EC2 instances and a pair of DynamoDB tables. I start by removing the existing Scaling Policies from my Auto Scaling group:

Then I open up the new Auto Scaling Console and selecting the stack:

Behind the scenes, Elastic Beanstalk applications are always launched via a CloudFormation stack. In the screen shot above, awseb-e-sdwttqizbp-stack is an Elastic Beanstalk application that I launched.

I can click on any stack to learn more about it before proceeding:

I select the desired stack and click on Next to proceed. Then I enter a name for my scaling plan and choose the resources that I’d like it to include:

I choose the scaling strategy for each type of resource:

After I have selected the desired strategies, I click Next to proceed. Then I review the proposed scaling plan, and click Create scaling plan to move ahead:

The scaling plan is created and in effect within a few minutes:

I can click on the plan to learn more:

I can also inspect each scaling policy:

I tested my new policy by applying a load to the initial EC2 instance, and watched the scale out activity take place:

I also took a look at the CloudWatch metrics for the EC2 Auto Scaling group:

Available Now
We are launching AWS Auto Scaling today in the US East (Northern Virginia), US East (Ohio), US West (Oregon), EU (Ireland), and Asia Pacific (Singapore) Regions today, with more to follow. There’s no charge for AWS Auto Scaling; you pay only for the CloudWatch Alarms that it creates and any AWS resources that you consume.

As is often the case with our new services, this is just the first step on what we hope to be a long and interesting journey! We have a long roadmap, and we’ll be adding new features and options throughout 2018 in response to your feedback.


Now Open – Third AWS Availability Zone in London

Post Syndicated from Jeff Barr original

We expand AWS by picking a geographic area (which we call a Region) and then building multiple, isolated Availability Zones in that area. Each Availability Zone (AZ) has multiple Internet connections and power connections to multiple grids.

Today I am happy to announce that we are opening our 50th AWS Availability Zone, with the addition of a third AZ to the EU (London) Region. This will give you additional flexibility to architect highly scalable, fault-tolerant applications that run across multiple AZs in the UK.

Since launching the EU (London) Region, we have seen an ever-growing set of customers, particularly in the public sector and in regulated industries, use AWS for new and innovative applications. Here are a couple of examples, courtesy of my AWS colleagues in the UK:

Enterprise – Some of the UK’s most respected enterprises are using AWS to transform their businesses, including BBC, BT, Deloitte, and Travis Perkins. Travis Perkins is one of the largest suppliers of building materials in the UK and is implementing the biggest systems and business change in its history, including an all-in migration of its data centers to AWS.

Startups – Cross-border payments company Currencycloud has migrated its entire payments production, and demo platform to AWS resulting in a 30% saving on their infrastructure costs. Clearscore, with plans to disrupting the credit score industry, has also chosen to host their entire platform on AWS. UnderwriteMe is using the EU (London) Region to offer an underwriting platform to their customers as a managed service.

Public Sector -The Met Office chose AWS to support the Met Office Weather App, available for iPhone and Android phones. Since the Met Office Weather App went live in January 2016, it has attracted more than half a million users. Using AWS, the Met Office has been able to increase agility, speed, and scalability while reducing costs. The Driver and Vehicle Licensing Agency (DVLA) is using the EU (London) Region for services such as the Strategic Card Payments platform, which helps the agency achieve PCI DSS compliance.

The AWS EU (London) Region has achieved Public Services Network (PSN) assurance, which provides UK Public Sector customers with an assured infrastructure on which to build UK Public Sector services. In conjunction with AWS’s Standardized Architecture for UK-OFFICIAL, PSN assurance enables UK Public Sector organizations to move their UK-OFFICIAL classified data to the EU (London) Region in a controlled and risk-managed manner.

For a complete list of AWS Regions and Services, visit the AWS Global Infrastructure page. As always, pricing for services in the Region can be found on the detail pages; visit our Cloud Products page to get started.


AWS IoT, Greengrass, and Machine Learning for Connected Vehicles at CES

Post Syndicated from Jeff Barr original

Last week I attended a talk given by Bryan Mistele, president of Seattle-based INRIX. Bryan’s talk provided a glimpse into the future of transportation, centering around four principle attributes, often abbreviated as ACES:

Autonomous – Cars and trucks are gaining the ability to scan and to make sense of their environments and to navigate without human input.

Connected – Vehicles of all types have the ability to take advantage of bidirectional connections (either full-time or intermittent) to other cars and to cloud-based resources. They can upload road and performance data, communicate with each other to run in packs, and take advantage of traffic and weather data.

Electric – Continued development of battery and motor technology, will make electrics vehicles more convenient, cost-effective, and environmentally friendly.

Shared – Ride-sharing services will change usage from an ownership model to an as-a-service model (sound familiar?).

Individually and in combination, these emerging attributes mean that the cars and trucks we will see and use in the decade to come will be markedly different than those of the past.

On the Road with AWS
AWS customers are already using our AWS IoT, edge computing, Amazon Machine Learning, and Alexa products to bring this future to life – vehicle manufacturers, their tier 1 suppliers, and AutoTech startups all use AWS for their ACES initiatives. AWS Greengrass is playing an important role here, attracting design wins and helping our customers to add processing power and machine learning inferencing at the edge.

AWS customer Aptiv (formerly Delphi) talked about their Automated Mobility on Demand (AMoD) smart vehicle architecture in a AWS re:Invent session. Aptiv’s AMoD platform will use Greengrass and microservices to drive the onboard user experience, along with edge processing, monitoring, and control. Here’s an overview:

Another customer, Denso of Japan (one of the world’s largest suppliers of auto components and software) is using Greengrass and AWS IoT to support their vision of Mobility as a Service (MaaS). Here’s a video:

The AWS team will be out in force at CES in Las Vegas and would love to talk to you. They’ll be running demos that show how AWS can help to bring innovation and personalization to connected and autonomous vehicles.

Personalized In-Vehicle Experience – This demo shows how AWS AI and Machine Learning can be used to create a highly personalized and branded in-vehicle experience. It makes use of Amazon Lex, Polly, and Amazon Rekognition, but the design is flexible and can be used with other services as well. The demo encompasses driver registration, login and startup (including facial recognition), voice assistance for contextual guidance, personalized e-commerce, and vehicle control. Here’s the architecture for the voice assistance:

Connected Vehicle Solution – This demo shows how a connected vehicle can combine local and cloud intelligence, using edge computing and machine learning at the edge. It handles intermittent connections and uses AWS DeepLens to train a model that responds to distracted drivers. Here’s the overall architecture, as described in our Connected Vehicle Solution:

Digital Content Delivery – This demo will show how a customer uses a web-based 3D configurator to build and personalize their vehicle. It will also show high resolution (4K) 3D image and an optional immersive AR/VR experience, both designed for use within a dealership.

Autonomous Driving – This demo will showcase the AWS services that can be used to build autonomous vehicles. There’s a 1/16th scale model vehicle powered and driven by Greengrass and an overview of a new AWS Autonomous Toolkit. As part of the demo, attendees drive the car, training a model via Amazon SageMaker for subsequent on-board inferencing, powered by Greengrass ML Inferencing.

To speak to one of my colleagues or to set up a time to see the demos, check out the Visit AWS at CES 2018 page.

Some Resources
If you are interested in this topic and want to learn more, the AWS for Automotive page is a great starting point, with discussions on connected vehicles & mobility, autonomous vehicle development, and digital customer engagement.

When you are ready to start building a connected vehicle, the AWS Connected Vehicle Solution contains a reference architecture that combines local computing, sophisticated event rules, and cloud-based data processing and storage. You can use this solution to accelerate your own connected vehicle projects.


AWS Direct Connect Update – Ten New Locations Added in Late 2017

Post Syndicated from Jeff Barr original

Happy 2018! I am looking forward to getting back to my usual routine, working with our teams to learn about their upcoming launches and then writing blog posts to bring the news to you. Right now I am still catching up on a few launches and announcements from late 2017.

First on the list for today is our most recent round of new cities for AWS Direct Connect. AWS customers all over the world use Direct Connect to create dedicated network connections from their premises to AWS in order to reduce their network costs, increase throughput, and to pursue a more consistent network experience.

We added ten new locations to our Direct Connect roster in December, all of which offer both 1 Gbps and 10 Gbps connectivity, along with partner-supplied options for speeds below 1 Gbps. Here are the newest locations, along withe the data centers and associated AWS Regions:

  • Bangalore, India – NetMagic DC2Asia Pacific (Mumbai).
  • Cape Town, South Africa – Teraco Ct1EU (Ireland).
  • Johannesburg, South Africa – Teraco JB1EU (Ireland).
  • London, UK – Telehouse North TwoEU (London).
  • Miami, Florida, US – Equinix MI1US East (Northern Virginia).
  • Minneapolis, Minnesota, US – Cologix MIN3US East (Ohio)
  • Ningxia, China – Shapotou IDC – China (Ningxia).
  • Ningxia, China – Industrial Park IDC – China (Ningxia).
  • Rio de Janeiro, Brazil – Equinix RJ2South America (São Paulo).
  • Tokyo, Japan – AT Tokyo ChuoAsia Pacific (Tokyo).

You can use these new locations in conjunction with the AWS Direct Connect Gateway to set up connectivity that spans Virtual Private Clouds (VPCs) spread across multiple AWS Regions (this does not apply to the AWS Regions in China).

If you are interested in putting Direct Connect to use, be sure to check out our ever-growing list of Direct Connect Partners.


AWS Training & Certification Update – Free Digital Training + Certified Cloud Practitioner Exam

Post Syndicated from Jeff Barr original

We recently made some updates to AWS Training and Certification to make it easier for you to build your cloud skills and to learn about many of the new services that we launched at AWS re:Invent.

Free AWS Digital Training
You can now find over 100 new digital training classes at, all with unlimited access at no charge.

The courses were built by AWS experts and allow you to learn AWS at your own pace, helping you to build foundational knowledge for dozens of AWS services and solutions. You can also access some more advanced training on Machine Learning and Storage.

Here are some of the new digital training topics:

You can browse through the available topics, enroll in one that interests you, watch it, and track your progress by looking at your transcript:

AWS Certified Cloud Practitioner
Our newest certification exam, AWS Certified Cloud Practitioner, lets you validate your overall understanding of the AWS Cloud with an industry-recognized credential. It covers four domains: cloud concepts, security, technology, and billing and pricing. We recommend that you have at least six months of experience (or equivalent training) with the AWS Cloud in any role, including technical, managerial, sales, purchasing, or financial.

To help you prepare for this exam, take our new AWS Cloud Practitioner Essentials course , one of the new AWS digital training courses. This course will give you an overview of cloud concepts, AWS services, security, architecture, pricing, and support. In addition to helping you validate your overall understanding of the AWS Cloud, AWS Certified Cloud Practitioner also serves as a new prerequisite option for the Big Data Specialty and Advanced Networking Specialty certification exams.

Go For It!
I’d like to encourage you to check out and to enroll in our free digital training in order to learn more about AWS and our newest services. You can strengthen your skills, add to your knowledge base, and set a goal of earning your AWS Certified Cloud Practitioner certification in the new year.