Tag Archives: Raspberry Pi Zero/Zero W

Real-time train station departure board

Post Syndicated from Liz Upton original https://www.raspberrypi.org/blog/real-time-train-station-arrival-board/

All across the UK, you’ll find train departure boards on station platforms that look like this:

They’ve looked this way for as long as I can remember (before they were digital dot-matrix displays, they were made from those flappy bits of plastic with letters of the alphabet and numbers printed on them, which whirled round like a Rolodex; they still look very similar). If you’re a frequent train traveller in the UK, you probably have a weird emotional response to seeing one of these. Mine is largely one of panic about being late.

Some people have a more…benign relationship with trains than I do, like Chris Crocker-White, who has adapted a build tweeted by Chris Hutchinson to make a miniature departure board for his desk. Here’s the tweet that started it all:

Chris Hutchinson on Twitter

Pretty hyped about my most recent @Raspberry_Pi project – a realistic, real-time, train departure board I’ve open sourced the software over at: https://t.co/vGQzagsSpi Next step: find a case and make it a permanent fixture! https://t.co/HEXgzdH8TS

Chris C-W’s build is similar, but has a couple of very neat upgrades, including some back-end software work (his build runs in Docker on balenaCloud, to make configuration easier), and some work on the display, which he’s tweaked to use 1:1 pixel mapping of the fonts and avoid any scaling, so the tiny board looks more like the dot-matrix LED displays you’ll see when you visit the station. You can see the difference in the image below:

 

Chris seems to be using his board as a piece of desktop furniture, where it looks terrific, but model train or narrow-gauge enthusiasts should be all over this project too; it’s a lovely way to inject some realism into a miniature setup. You can find a very complete guide to making your own here.

Now, if you’ll excuse me, I have a train to catch.

 

 

The post Real-time train station departure board appeared first on Raspberry Pi.

Build Demolition Man’s verbal morality ticketing machine

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/build-demolition-mans-verbal-morality-ticketing-machine/

In the 1993 action movie Demolition Man, Sylvester Stallone stars as a 1990s cop transported to the near-future. Technology plays a central role in the film, often bemusing the lead character. In a memorable scene, he is repeatedly punished by a ticketing machine for using bad language (a violation of the verbal morality statute).

In the future of Demolition Man, an always-listening government machine detects every banned word and issues a fine in the form of a receipt from a wall-mounted printer. This tutorial shows you how to build your own version using Raspberry Pi, the Google Voice API, and a thermal printer. Not only can it replicate detecting banned words, but it also doubles as a handy voice-to-paper stenographer (if you want a more serious use).

Prepare the hardware

We built a full ‘boxed’ project, but you can keep it simple if you wish. Your Raspberry Pi needs a method for listening, speaking, and printing. The easiest solution is to use USB for all three.

After prototyping using Raspberry Pi 4 and various USB devices, we settled on Raspberry Pi Zero W with a small USB mic and Pimoroni Speaker pHAT to save space. A Pico HAT Hacker allowed the connection of both the printer and Speaker pHAT, as they don’t share GPIO pins. This bit of space-saving means we could install the full assembly inside the 3D-printed case along with the printer.

Connect the printer

To issue our receipts we used a thermal printer, the kind found in supermarket tills. This particular model is surprisingly versatile, handling text and graphics.

It takes standard 2.25-inch (57mm) receipt paper, available in rolls of 15 metres. When printing, it does draw a lot of current, so we advise using a separate power supply. Do not attempt to power it from your Raspberry Pi. You may need to fit a barrel connector and source a 5V/1.5A power supply. The printer uses a UART/TTL serial connection, which neatly fits on to the GPIO. Although the printer’s connection is listed as being 5V, it is in fact 3.3V, so it can be directly connected to the ground, TX, and RX pins (physical pins 6, 8, 10) on the GPIO.

Install and configure Raspbian

Get yourself a copy of Raspbian Buster Lite and burn it to a microSD card using a tool like Etcher. You can use the full version of Buster if you wish. Perform the usual steps of getting a wireless connection and then updating to the latest version using sudo apt update && sudo apt -y upgrade. From a command prompt, run sudo raspi-config and go to ‘Interfacing options’, then ‘Enable serial’. When asked if you would like the login shell to be accessible, respond ‘No’. To the next question, ‘Would you like the serial port hardware to be enabled?’, reply ‘Yes’. Now reboot your Raspberry Pi.

Test the printer

Make sure the printer is up and running. Double-check you’ve connected the header to the GPIO correctly and power up the printer. The LED on the printer should flash every few seconds. Load in the paper and make sure it’s feeding correctly. We can talk to the printer directly, but the Python ‘thermalprinter‘ library makes coding for it so much easier. To install the library:

sudo apt install python3-pip
pip3 install thermalprinter

Create a file called printer.py and enter in the code in the relevant listing. Run the code using:

python3 printer.py

If you got a nice welcoming message, your printer is all set to go.

Test the microphone

Once your microphone is connected to Raspberry Pi, check the settings by running:

alsamixer

This utility configures your various sound devices. Press F4 to enter ‘capture’ mode (microphones), then press F6 and select your device from the list. Make sure the microphone is not muted (M key) and the levels are high, but not in the red zone.

Back at the command line, run this command:

arecord -l

This shows a list of available recording devices, one of which will be your microphone. Make a note of the card number and subdevice number.

To make a test recording, enter:

arecord --device=hw:1,0 --format S16_LE --rate 44100 -c1 test.wav

If your card and subdevice numbers were not ‘0,1’, you’ll need to change the device parameter in the above command.

Say a few words, then use CTRL+C to stop recording. Check the playback with:

aplay test.wav

Choose your STT provider

STT means speech to text and refers to the code that can take an audio recording and return recognised speech as plain text. Many solutions are available and can be used in this project. For the greatest accuracy, we’re going to use Google Voice API. Rather than doing the complex processing locally, a compressed version of the sound file is uploaded to Google Cloud and the text returned. However, this does mean Google gets a copy of everything ‘heard’ by the project. If this isn’t for you, take a look at Jasper, an open-source alternative that supports local processing.

Create your Google project

To use the Google Cloud API, you’ll need a Google account. Log in to the API Console at console.developers.google.com. We need to create a project here. Next to ‘Google APIs’, click the drop-down menu, then ‘New Project’. Give it a name. You’ll be prompted to enable APIs for the project. Click the link, then search for ‘speech’. Click on ‘Cloud Speech-to-Text API’, then ‘Enable’. At this point you may be prompted for billing information. Don’t worry, you can have up to 60 minutes of audio transcribed for free each month.

Get your credentials

Once the Speech API is enabled, the screen will refresh and you’ll be prompted to create credentials. This is the info our code needs to be granted access to the speech-to-text API. Click on ‘Create Credentials’ and on the next screen select ‘Cloud Speech-to-text API’. You’re asked if you’re planning to use the Compute Engine; select ‘no’. Now create a ‘service account’. Give it a different name from the one used earlier, change the role to ‘Project Owner’, leave the type of file as ‘JSON’, and click ‘Continue’. A file will be downloaded to your computer; transfer this to your Raspberry Pi.

Test Google recognition

When you’re happy with the recording levels, record a short piece of speech and save it as test.wav. We’ll send this to Google and check our access to the API is working. Install the Google Speech-To-Text Python library:

sudo apt install python3-pyaudio
pip3 install google-cloud-speech

Now set an environment variable that the libraries will use to locate your credentials JSON:

export GOOGLE_APPLICATION_CREDENTIALS="/home/pi/[FILE_NAME].json"

(Don’t forget to replace [FILE_NAME] with the actual name of the JSON file).

Using a text editor, create a file called speech_to_text.py and enter the code from the relevant listing. Then run it:

python3 speech_to_text.py

If everything is working correctly, you’ll get a text transcript back within a few seconds.

Live transcription

Amazingly, Google’s speech-to-text service can also support streaming recognition, so rather than capture-then-process, the audio can be sent as a stream, and a HTTP stream of the recognised text comes back. When there is a pause in the speech, the results are finalised, so then we can send the results to the printer. If all the code you’ve entered so far is running correctly, all you need to do is download the stenographer.py script and start it using:

python3 stenographer.py

You are limited on how long you can record for, but this could be coupled with a ‘push to talk’ button so you can make notes using only your voice!

Banned word game

Back to Demolition Man. We need to make an alarm sound, so install a speaker (a passive one that connects to the 3.5mm jack is ideal; we used a Pimoroni Speaker pHAT). Download the banned.py code and edit it in your favourite text editor. At the top is a list of words. You can change this to anything you like (but don’t offend anyone!). In our list, the system is listening for a few mild naughty words. In the event anyone mentions one, a buzzer will sound and a fine will be printed.

Make up your list and start the game by running:

python3 banned.py

Now try one of your banned words.

Package it up

Whatever you decide to use this project for, why not finish it up with a 3D-printed case so you package up the printer and Raspberry Pi with the recording and playback devices and create a portable unit? Ideal for pranking friends or taking notes on the move!

See if you can invent any other games using voice recognition, or investigate the graphics capability of the printer. Add a Raspberry Pi Camera Module for retro black and white photos. Combine it with facial recognition to print out an ID badge just using someone’s face. Over to you.

The MagPi magazine issue 84

This project was created by PJ Evans for The MagPi magazine issue 84, available now online, from your local newsagents, or as a free download from The MagPi magazine website.

The post Build Demolition Man’s verbal morality ticketing machine appeared first on Raspberry Pi.

Raspberry Pi internet kill switch

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/internet-kill-switch/

Control the internet in your home with this handy Raspberry Pi Zero W internet kill switch.

Internet Kill Switch!

It’s every teenager’s worst nightmare… no WIFI! I built a standalone wireless Internet Kill Switch that lets me turn the Internet off whenever I want. A Raspberry Pi Zero W monitors the switch and sends an alert via SSH over WIFI to my firewall where another script watches for the alert and turns the external interface off or on.

Internet in my home wasn’t really a thing until I was in my late teens, and even then, there wasn’t that much online fun to be had. Not like there is now, with social media and online gaming and the YouTubes.

If I’d had access to the internet of today in my teens, I’m pretty sure I’d have never been off the thing. And that’s where a button like this would have been a godsend for my mother.

Shared by Nick Donaldson on his YouTube account, the Internet Kill Switch is a Raspberry Pi Zero W–powered emergency button that turns off all internet access in the house — perfect for keeping online activities to a reasonable level. Nick explains:

It’s every teenager’s worst nightmare… no WiFi! I built a standalone wireless Internet Kill Switch that lets me turn the internet off whenever I want. A Raspberry Pi Zero W monitors the switch and sends an alert via SSH over WiFi to my firewall, where another script watches for the alert and turns the external interface off or on. I have challenged the boys to hack it…

The Raspberry Pi Zero W sits snug within the button casing and is powered by a battery. And so that the battery can be continuously recharged, the device sits on a wireless charging pad. Hence, the button is juiced up and ready to go at any time.

I can pick it up, walk around at any time, threaten the teenagers, and shut down the internet whenever I want, hahaha!

While internet service providers are starting to roll out smartphone apps that offer similar functionality, we like the physicality of this button.

Great job, Nick! Please don’t turn off our internet.

The post Raspberry Pi internet kill switch appeared first on Raspberry Pi.

Raspberry Pi Zero white noise night light

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/raspberry-pi-zero-white-noise-night-light/

Many members of the Raspberry Pi team have small children. As such, many members of the Raspberry Pi team are constantly tired and walking around like zombies — loving, productive zombies humming Baby Shark while scrubbing food stains off their clothing.

Whenever a Raspberry Pi project appears on social media that aids parents do the simple things in life — such as getting sleep or finding time to eat, breathe, shower, etc. — it’s an instant hit around the office.

White noise night light for unrelenting children

This is why, while setting up my desk this morning, I heard an “Oooo, white noise nightlight!” cheer from behind me and turned to find Liz checking out this new project from Instructables maker Cary Ciavolella.

This is a project I made for my 1-year-old for Christmas. Honestly, though, it was a sanity present for me and my wife. It’s a white noise machine that can play multiple different sounds selected through a web interface, and also incorporates lights that change color based on the time (red lights mean be in bed, yellow mean you can play in your room, and green means it’s ok to come out). Since my son is too young to tell time, a color-based night light seemed like a really good idea.

As Cary has kindly provided all the code for the project, it’s a fairly easy build to replicate at home and looks like it’ll do the trick.

The device uses a Raspberry Pi Zero W, Blinkt, and Speaker pHAT from Pimoroni, and a handful of wires. Building it requires some basic soldering skills. If you’re unsure about your soldering skills, our handy video guide is all you need to get started.

How to solder your Raspberry Pi header pins

Learn the basics of how to solder components together, and the safety precautions you need to take.

The white noise files are selectable via a flask webserver hosted on the Raspberry Pi that parents can control via their smart device. Cary’s write-up for the project is so wonderfully detailed that any parent looking to build their own device can easily replace the white noise files with any MP3s of their choice.

Here’s the Instructables tutorial to help you get started on your own.

Remix your own

What’s so wonderful about this project is that it’s a great example of a build that is easily hackable to fit your own requirements. If you don’t have a child, it’s still a great notification device for your day-to-day routine, or a nice tool to remind a relative to take medication based on a colour system. There’s so much you can do using Cary’s build as the bare bones, which is why we think it’s awesome, and you should too.

The post Raspberry Pi Zero white noise night light appeared first on Raspberry Pi.

IT’S SO HOT OVER HERE. WE’RE MELTING. SEND HELP.

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/its-so-hot-over-here-were-melting-send-help/

[Today’s temperatures are set to reach a whopping 38ºC/101ºF degrees in the UK, and none of us know what to do with ourselves. This doesn’t happen here and we have nothing prepared: we live in a society devoid of air conditioning, and we’re are unable to comprehend weather conditions more friendly than a slight chill and drizzle.

I can’t handle it. I have desk fan, but it’s in a cupboard somewhere, covered in dust and sadness. My local corner shop is already out of ice pops and ice cube trays. And anyway, I believe the tarmac on the road outside my house has melted and will suck down anything that dares step or drive on it.

I think I’m melting too. I feel sloshy, and, while I’m not 100% sure this is scientifically possible, I believe I may be partly barbequed. If someone presented me at a restaurant, I would probably be described as medium rare.

So yes, it’s hot. Very hot. It only makes sense that we share a Raspberry Pi project that fits with this theme: here’s an article from the latest issue of The MagPi magazine, out today, that shows you how Ishmael Vargas built his own smart fan for his home in hot and humid Chicago.

It’s a very clever idea, and one we wish we’d thought up ourselves before today’s sudden heatwave/opening of the Hell Mouth.

Enjoy — Alex]

When you need to keep your home cool during the summer months, a smart window fan could be just the thing.

Summer days, and nights, can be uncomfortably hot and humid in the Chicago area. As the sun goes down, the outside temperature drops, but homes may remain hot. This is where a window fan comes in useful, blowing cooler air into the house. Last summer, Ishmael Vargas was using a small window fan upstairs and, after turning it on in the afternoon, he found he had to get up in the middle of the night to turn it off. “That is when I thought there must be a better way to control this fan,” he recalls, “and I started putting this project together.”

Viewable via VNC on a smartphone, the program window features temperature data and control buttons.

As he was already using a DHT22 temperature and humidity sensor for another project, he opted to use that, connected to a Raspberry Pi Zero running a Python program, to monitor the room temperature. This is then compared with the external temperature; if the latter is cooler, the window fan is turned on via a smart WiFi power plug (TP-Link HS100) — a much simpler method than wiring the fan up to a relay.

Weather report

To keep things simple, Ishmael opted to source the outdoor temperature from Weather.com (The Weather Channel) using the pywapi Python library, rather than wiring up an external sensor. “The temperature provided by Weather.com as compared to the temperature in my car could differ by one or two degrees. This is close enough for this project,” he explains. “In other parts of the world or rural areas where they do not have as many weather stations, an outdoor sensor might be required.”

A smart WiFi socket is used to turn the window fan on and off.

One issue he discovered was that in the early morning, the fan could end up blowing warm air into the house. “Depending on the size of the fan, the size of the room, and the house materials, the inside temperature might never be as cool as outside,” he says. “For example, if the temperature outside is 65 °F (18°C), the temperature inside might only drop to 67 °F (19.5°C) through the night. As the temperature outside starts to climb, you want to keep the fan off.” This resulted in him adding an ‘inhibit’ mode to turn the fan off at 6am.

Remote control

Rather than having the fan program run automatically on bootup, Ishmael opted to start and control it manually via an Android smartphone. The latter runs the VNC Viewer app, enabling remote access to Raspberry Pi’s desktop, on which there is a shortcut to start the fan application; this then displays a Pygame window with temperature information and control buttons.

The DHT22 sensor is connected to power, ground, and GPIO 4 pins on a Raspberry Pi Zero — a 10kΩ resistor is recommended.

“The fan application has two buttons to change the [desired temperature] set-point up or down,” reveals Ishmael. “Also, the button on the upper right is to close the application and return to the desktop.” His aim is to have more than one project running on his Raspberry Pi, and have a desktop shortcut for each application.

While the original project used a single fan, he has since modified it to add another. “I have been reading that two fans are required for best performance,” he says. “One to blow in and another to blow out.”

This certainly is a cool project, in more than one way. If you’d like to have a go at building a similar system, you can read Ishmael’s Hackster guide and check out his GitHub repo for the code.

You should read The MagPi magazine

The latest edition of The MagPi magazine is out today, packed full of Raspberry Pi goodness. If you’re new to The MagPi magazine, welcome! As with all publications produced by Raspberry Pi Press, today’s new issue is available as a free download on The MagPi website, as well as in physical form from your local newsagent, the Raspberry Pi Store in Cambridge, or the Raspberry Pi Press online store.

Subscribers to The MagPi magazine get discounts and free stuff, and anyone purchasing any of our publications with actual currency will help fund the production of the magazine as well as the charitable work of the Raspberry Pi Foundation.

The post IT’S SO HOT OVER HERE. WE’RE MELTING. SEND HELP. appeared first on Raspberry Pi.

Good Buoy: the Raspberry Pi Smart Buoy

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/good-buoy-the-raspberry-pi-smart-buoy/

As their new YouTube video shows, the team at T3ch Flicks have been hard at work, designing and prototyping a smart buoy for marine conservation research.

Smart-Buoy Series [Summary]

We all love the seaside, right? Whether that’s the English seaside with ice creams and muddy piers or the Caribbean, with white sand beaches fringed by palm trees, people flock to the coast for a bit of rest and relaxation, to enjoy water sports or to make their livelihood.

What does a smart buoy do?

“The sensors onboard the smart buoy enable it to measure wave height, wave period, wave power, water temperature, air temperature, air pressure, voltage, current usage and GPS location,” explain T3ch Flicks on their project tutorial page. “All the data the buoy collects is sent via radio to a base station, which is a Raspberry Pi. We made a dashboard to display them using Vue JS.”

But why build a smart buoy to begin with? “The coast is a dynamic area at the mercy of waves. Rising sea levels nibble at beaches and powerful extreme events like hurricanes completely decimate them,” they go on to explain. “To understand how to save them, we need to understand the forces driving their change.”

The 3D-printed casing of the smaert buoy with tech inside

It’s a pretty big ask of a 3D-printed dome but, with the aid of an on-board Raspberry Pi, Arduino and multiple sensors, their project was a resounding success. So much so that the Grenadian government gave the team approval to set the buoy free along their coast, and even made suggestions of how the project could be improved to aid them in their own research – pretty cool, right?

The smart buoy out at sea along the Grenada coast

The project uses a lot of tech. A lot. So, instead of listing it here, why not head over to the hackster.io project page, where you’ll find all the ingredients you need to build your own smart buoy.

Good luck to the T3ch Flicks team. We look forward to seeing how the project develops.

The post Good Buoy: the Raspberry Pi Smart Buoy appeared first on Raspberry Pi.

The world’s first Raspberry Pi-powered Twitter-activated jelly bean-pooping unicorn

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/raspberry-pi-powered-twitter-activated-jelly-bean-pooping-unicorn/

When eight-year-old Tru challenged the Kids Invent Stuff team to build a sparkly, pooping, rainbow unicorn electric vehicle, they did exactly that. And when Kids Invent Stuff, also known as Ruth and Shawn, got in contact with Estefannie Explains it All, their unicorn ended up getting an IoT upgrade…because obviously.

You tweet and the Unicorn poops candy! | Kids Invent Stuff

We bring kids’ inventions to life and this month we teamed up with fellow youtube Estefannie (from Estefannie Explains It All https://www.youtube.com/user/estefanniegg SHE IS EPIC!) to modify Tru’s incredible sweet pooping unicorn to be activated by the internet! Featuring the AMAZING Allen Pan https://www.youtube.com/channel/UCVS89U86PwqzNkK2qYNbk5A (Thanks Allen for your filming and tweeting!)

Kids Invent Stuff

If you’re looking for an exciting, wholesome, wonderful YouTube channel suitable for the whole family, look no further than Kids Invent Stuff. Challenging kids to imagine wonderful inventions based on monthly themes, channel owners Ruth and Shawn then make these kids’ ideas a reality. Much like the Astro Pi Challenge, Kids Invent Stuff is one of those things we adults wish existed when we were kids. We’re not jealous, we’re just…OK, we’re definitely jealous.

ANYWAY, when eight-year-old Tru’s sparkly, pooping, rainbow unicorn won the channel’s ‘crazy new vehicle’ challenge, the team got to work, and the result is magical.

Riding an ELECTRIC POOPING UNICORN! | Kids Invent Stuff

We built 8-year-old Tru’s sparkly, pooping, rainbow unicorn electric vehicle and here’s what happened when we drove it for the first time and pooped out some jelly beans! A massive THANK YOU to our challenge sponsor The Big Bang Fair: https://www.thebigbangfair.co.uk The Big Bang Fair is the UK’s biggest celebration of STEM for young people!

But could a sparkly, pooping, rainbow unicorn electric vehicle ever be enough? Is anything ever enough if it’s not connected to the internet? Of course not. And that’s where Estefannie came in.

At Maker Central in Birmingham earlier this year, the two YouTube teams got together to realise their shared IoT dream.

They ran out of chairs for their panel, so Allen had to improvise

With the help of a Raspberry Pi Zero W connected to the relay built into the unicorn, the team were able to write code that combs through Twitter, looking for mentions of @mythicalpoops. A positive result triggers the Raspberry Pi to activate the relay, and the unicorn lifts its tail to shoot jelly beans at passers-by.

You can definitely tell this project was invented by an eight-year-old, and we love it!

IoT unicorn

As you can see in the video above, the IoT upgrades to the unicorn allow Twitter users to control when the mythical beast poops its jelly beans. There are rumours that the unicorn may be coming to live with us at Pi Towers, but if these turn out to be true, we’ll ensure that this function is turned off. So no tweeting the unicorn!

You know what to do

Be sure to subscribe to both Kids Invent Stuff and Estefannie Explains It All on YouTube. They’re excellent makers producing wonderful content, and we know you’ll love them.

How to milk a unicorn

The post The world’s first Raspberry Pi-powered Twitter-activated jelly bean-pooping unicorn appeared first on Raspberry Pi.

Penguin Watch — Pi Zeros and Camera Modules in the Antarctic

Post Syndicated from Liz Upton original https://www.raspberrypi.org/blog/penguin-watch/

Long-time readers will remember Penguin Lifelines, one of our very favourite projects from back in the mists of time (which is to say 2014 — we have short memories around here).

Penguins

Click on penguins for fun and conservation

Penguin Lifelines was a programme run by the Zoological Society of London, crowdsourcing the tracking of penguin colonies in Antarctica. It’s since evolved into something called Penguin Watch, now working with the World Wildlife Fund (WWF) and British Antarctic Survey (BAS). It’s citizen science on a big scale: thousands of people from all over the world come together on the internet to…click on penguins. By counting the birds in their colonies, users help penguinologists measure changes in the birds’ behaviour and habitat, and in the larger ecosystem, thus assisting in their conservation.

The penguin people say this about Penguin Watch:

Some of these colonies are so difficult to get to that they haven’t been visited for 50 years! The images contain unprecedented detail, giving us the opportunity to gather new data on the number of penguins in the region. This information will help us understand how they are being affected by climate change, the potential impact of local fisheries, and how we can help conserve these incredible species.

Pis in the coldest, wildest place

And what are those special cameras? The static ones providing time-lapse images are Raspberry Pi Camera Modules, mounted on Raspberry Pi Zeros, and we’re really proud to see just how robust they’ve been in the face of Antarctic winters.

Alasdair Davies on Twitter

Success! The @arribada_i timelapse @Raspberry_Pi Zero cameras built for @penguin_watch survived the Antarctic winter! They captured these fantastic photos of a Gentoo penguin rookery for https://t.co/MEzxbqSyc1 #WorldPenguinDay 🐧@helenlynn @philipcolligan https://t.co/M0TK5NLT6G

These things are incredibly tough. They’re the same cameras that Alasdair and colleagues have been sticking on turtles, at depths of down to 500m; I can’t think of a better set of tests for robustness.

Want to get involved? Head over to Penguin Watch, and get clicking! We warn you, though — it’s a little addictive.

The post Penguin Watch — Pi Zeros and Camera Modules in the Antarctic appeared first on Raspberry Pi.

Portable retro CRT game console: the one-thumb entertainment system

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/portable-retro-ctr-game-console-the-one-thumb-entertainment-system/

OTES is the one-thumb entertainment system that, unsurprisingly, requires only one thumb to play.

One-Thumb Entertainment System

Uploaded by gocivici on 2019-04-29.

Retro handheld gaming

Straight out the bat, I have to admit that had this existed in the 80s, it would have been all I played with. OTES oozes gaming nostalgia, and the constant clicking would have driven my mother mad, as did the tap tap tap of my Game Boy or NES controller.

Designed to play PICO8 games, with its developers eager to see more people create one-button controlled games for the console, OTES replaces the concept of game cartridges with individual SD cards, allowing for players to swap out games as they would have with a Nintendo Game Boy, SEGA Game Gear, Atari Lynx, and other stand-alone cartridge consoles.

Building OTES

As mentioned, OTES uses the PICO-8 environment at its core and runs on a Raspberry Pi Zero W with interchangeable SD cards. And as the games designed for the project only require one button, it makes for a fairly simple setup.

For the body, the project’s maker, govinci, sources an old JVC video camera in order to cannibalise the CRT viewfinder.

The most important thing first. You have to find an old camcorder which has a CRT viewfinder. It’s usually easy to tell if a camcorder has a CRT viewfinder since it’s a bulky part sticking off the side of the camcorder. I found this viewfinder on an old JVC camcorder which I bought from the flea market. To test the viewfinder I used a 9v battery to power up the camcorder. There was no image on the viewfinder but I got a static white noise which is enough to tell if the viewfinder works.

The CRT viewfinder (that’s it to the right of the battery) was then connected to the Raspberry Pi and power source, and nestled snugly into a 3D-printed body.

Close the case up, turn on the Pi, and boom: one working, single-button console game player with a very personal point of view.

Govinci says:

Currently, It has one game called ODEF (Ocean Defender) developed by me and my friends. (You can play it here.) And I hope there will be many others as people develop games that can be played with only one button on this platform.

You heard the man: go get developing. (I can think of plenty of circumstances where only needing one free finger to fit in a spot of gaming would be really, really convenient.) You can make your own console by following the build diary at Instructables. Let us know if you give it a whirl!

The post Portable retro CRT game console: the one-thumb entertainment system appeared first on Raspberry Pi.

Rousseau-inspired Raspberry Pi Zero LED piano visualiser

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/rousseau-raspberry-pi-zero-led-piano-visualiser/

Unlock your inner Rousseau with this gorgeous Raspberry Pi Zero LED piano visualiser.

Piano LED Visualizer

Inspired by Rousseau videos I tried to build my own Piano Visualizer. It is made with Raspberry Pi and WS2812B LED strip. Screen and buttons: Waveshare LCD TFT 1,44” 128x128px.

Pianist Rousseau

Fans of the popular YouTube pianist Rousseau would be forgiven for thinking the thumbnail above is of one of his videos. It’s actually of a Raspberry Pi build by Aleksander Evening, who posted this project on Reddit last week as an homage to Rousseau, who is one of his favourite YouTubers.

Building an LED piano visualiser

After connecting the LED strip to the Raspberry Pi Zero W, and setting up the Pi as a Bluetooth MIDI host, Aleksander was almost good to go. There was just one thing standing in his way…



He wanted to use the Synthesia software for visualisations, and, unmodified, this software doesn’t support the MIDI files Aleksander planned to incorporate. Luckily, he found the workaround:

As of today Synthesia doesn’t support MIDI via Bluetooth, it should be added in next update. There is official workaround: you have to replace dll file. You also have to enable light support in Synthesia. In Visualizer settings you have to change “input” to RPI Bluetooth. After that when learning new song next-to-play keys will be illuminated in corresponding colors, blue for left hand and green for right hand.

Phew!

Homemade Rousseau

The final piece is a gorgeous mix of LEDs, sound, and animation — worthy of the project’s inspiration.

Find more information, including parts, links to the code, and build instructions, on Aleksander’s GitHub repo. And as always, if you build your own, or if you’ve created a Raspberry Pi project in honour of your favourite musician, artist, or YouTuber, we’d love to see it in the comments below.

And now, a little something from Rousseau:

Ludovico Einaudi – Nuvole Bianche

Sheet music: https://mnot.es/2N01Gqt Click the 🔔bell to join the notification squad! ♫ Listen on Spotify: http://spoti.fi/2LdpqK7 ♫ MIDI: https://patreon.com/rousseau ♫ Facebook: http://bit.ly/rousseaufb ♫ Instagram: http://bit.ly/rousseauig ♫ Twitter: http://bit.ly/rousseautw ♫ Buy me a coffee: http://buymeacoff.ee/rousseau Hope you enjoy my performance of Nuvole Bianche by Ludovico Einaudi.

The post Rousseau-inspired Raspberry Pi Zero LED piano visualiser appeared first on Raspberry Pi.

Watch Game of Thrones with a Raspberry Pi-powered Drogon

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/watch-game-of-thrones-with-raspberry-pi-powered-drogon/

Channel your inner Targaryen by building this voice-activated, colour-changing, 3D-printed Drogon before watching the next episode of Game of Thrones.

Winter has come

This is a spoiler-free zone! I’ve already seen the new episode of season 8, but I won’t ruin anything, I promise.

Even if you’ve never watched an episode of Game of Thrones (if so, that’s fine, I don’t judge you), you’re probably aware that the final season has started.

And you might also know that the show has dragons in it — big, hulking, scaley dragons called Rhaegal, Viserion, and Drogon. They look a little something like this:Daenerys-Targaryen-game-of-thrones

Well, not anymore. They look like this now:

04_15_GameOfThrones_S07-920x584

Raspberry Pi voice-responsive dragon!

The creator of this project goes by the moniker Botmation. To begin with, they 3D printed modified a Drogon model they found on Thingiverse. Then, with Dremel in hand, they modified the print, to replace its eyes with RGB LEDs. Before drawing the LEDs through the hollowed-out body of the model, they soldered them to wires connected to a Raspberry Pi Zero W‘s GPIO pins.

Located in the tin beneath Drogon, the Pi Zero W is also equipped with a microphone and runs the Python code for the project. And thanks to Google’s Speech to Text API, Drogon’s eyes change colour whenever a GoT character repeats one of two keywords: white turns the eyes blue, while fire turns them red.

If you’d like more information about building your own interactive Drogon, here’s a handy video. At the end, Botmation asks viewers to help improve their code for a cleaner voice-activation experience.

3D printed Drogon with LED eyes for Game of Thrones

Going into the final season of Game of Thrones with your very own 3D printed Drogron dragon! The eyes are made of LEDs that changes between Red and Blue depending on what happens in the show. When you’re watching the show, Drogon will watch the show with you and listen for cues to change the eye color.

Drogon for the throne!

I’ve managed to bag two of the three dragons in the Pi Towers Game of Thrones fantasy league, so I reckon my chances of winning are pretty good thanks to all the points I’ll rack up by killing White Walker.

Wait — does killing a White Walker count as a kill, since they’re already dead?

Ah, crud.

The post Watch Game of Thrones with a Raspberry Pi-powered Drogon appeared first on Raspberry Pi.

Hacking an Etch-A-Sketch with a Raspberry Pi and camera: Etch-A-Snap!

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/hacking-etch-a-sketch-raspberry-pi-camera-etch-a-snap/

Kids of the 1980s, rejoice: the age of the digital Etch-A-Sketch is now!

What is an Etch-A-Sketch

Introduced in 1960, the Etch-A-Sketch was invented by Frenchman André Cassagnes and manufactured by the Ohio Art Company.

The back of the Etch-A-Sketch screen is covered in very fine aluminium powder. Turning one of the two directional knobs runs a stylus across the back of the screen, displacing the powder and creating a dark grey line visible in the front side.

can it run DOOM?

yes

The Etch-A-Sketch was my favourite childhood toy. So you can imagine how excited I was to see the Etch-A-Snap project when I logged into Reddit this morning!

Digital Etch-A-Sketch

Yesterday, Martin Fitzpatrick shared on Reddit how he designed and built Etch-A-Snap, a Raspberry Pi Zero– and Camera Module–connected Etch-A-Sketch that (slowly) etches photographs using one continuous line.

Etch-A-Snap is (probably) the world’s first Etch-A-Sketch Camera. Powered by a Raspberry Pi Zero (or Zero W), it snaps photos just like any other camera, but outputs them by drawing to an Pocket Etch-A-Sketch screen. Quite slowly.

Unless someone can show us another Etch-A-Sketch camera like this, we’re happy to agree that this is a first!

Raspberry Pi–powered Etch-A-Sketch

Powered by four AA batteries and three 18650 LiPo cells, Etch-A-Snap houses the $5 Raspberry Pi Zero and two 5V stepper motors within a 3D-printed case mounted on the back of a pocket-sized Etch-A-Sketch.

Photos taken using the Raspberry Pi Camera Module are converted into 1-bit, 100px × 60px, black-and-white images using Pillow and OpenCV. Next, these smaller images are turned into plotter commands using networkx. Finally, the Raspberry Pi engages the two 5V stepper motors to move the Etch-A-Sketch control knobs, producing a sketch within 15 minutes to an hour, depending on the level of detail in the image.

Build your own Etch-A-Snap

On his website, Martin goes into some serious detail about Etch-A-Snap, perfect for anyone interested in building their own, or in figuring out how it all works. You’ll find an overview with videos, along with breakdowns of the build, processing, drawing, and plotter.

The post Hacking an Etch-A-Sketch with a Raspberry Pi and camera: Etch-A-Snap! appeared first on Raspberry Pi.

The Junk Drum Machine

Post Syndicated from Liz Upton original https://www.raspberrypi.org/blog/junk-drum-machine/

I do not really have any spare time. (Toddler, job, very demanding cat, lots of LEGO to tidy up.) If I did, I like to imagine that I’d come up with something like this to do with it.

junk drum machine

Want to see this collection of junk animate? Scroll down for video.

From someone calling themselves Banjowise (let me know what your real name is in the comments, please, so I can credit you properly here!), here is a pile of junk turned into a weirdly compelling drum machine.

Mechanically speaking, this isn’t too complicated: just a set of solenoids triggered by a Raspberry Pi. The real clever is in the beauteous, browser-based step sequencer Banjowise has built to program the solenoids to wallop things in beautiful rhythm. And in the beauteous, skip-sourced tchotchkes that Banjowise has found for them to wallop. Generously, they’ve made full instructions on making your own available on Instructables. Use any bits and bobs you can get your hands on if old piano hammers and crocodile castanets are not part of the detritus kicking around your house.

Warning: this video is weirdly compelling.

Automabeat – A Raspberry Pi Mechanical Robotic Junk Drum Machine

My Raspberry Pi based drum / percussion machine. Consisting of 8 12v solenoids, a relay, wooden spoons, a Fullers beer bottle, a crocodile maraca and a few other things. An Instructable on how to build your own is here: https://www.instructables.com/id/A-Raspberry-Pi-Powered-Junk-Drum-Machine/, or take a look at: http://www.banjowise.com/post/automabeat/

The sequencer is lovely: a gorgeously simple user interface that you can run on a tablet, your phone, or anything else with a browser (and it’s very easily adaptable to other projects). The web interface lets Python trigger the GPIO pins over web sockets. There’s a precompiled version available for people who’ve followed Banjowise’s comprehensive wiring instructions, but you can also get the source code from GitHub.

Sequencer UI

I think I’m getting good, but I can handle criticism.

We love it. Now please excuse me. I need a little while to search online for crocodile castanets.

The post The Junk Drum Machine appeared first on Raspberry Pi.

LED Matrix Cylinder — a blinkenlights tube

Post Syndicated from Liz Upton original https://www.raspberrypi.org/blog/led-matrix-cylinder-a-blinkenlights-tube/

We see lots of addressable LED projects, but there was something weirdly charming and very pretty about this cylinder of squares. It’d make for a lovely interactive nightlight in a kids’ room, or for a grown-up lighting feature that you could also use as a news ticker or something that monitors your in-home IoT devices. Once you’ve built something like this, you’re only limited by your imagination — and it’s nice enough to display in your home.

This project is from makeTVee on Instructables. The cleverness is in the layout and the really meticulous execution: vertical strips of LEDs form a cylinder in a laser-cut frame, with a very thin layer of wood veneer glued around the whole thing to act as a diffuser. It’s simple, but really rather beautiful and very effective.

diffuser, diffusing

In the case to the side is the Raspberry Pi Zero that’s driving the whole thing. Here it is doing its thing:

LED matrix cylinder WS2812 Raspberry Pi Zero

LED matrix cylinder based on WS2812 LEDs and some laser cutter parts. https://hackaday.io/project/162035-led-matrix-cylinder https://www.instructables.com/id/LED-Matrix-Cylinder/ #WS2812 #LEDcylinder

makeTVee has built a Pygame-based simulator of the whole matrix so you can program it to do exactly what you want: scroll marquee text, make pretty patterns, twinkle at random, display images: the world’s your (pixellated) oyster. The code’s available at GitHub.

GUI for programming cylinder

Thanks, makeTVee — if you’d like to leave your real name below, we’ll credit you properly here!

The post LED Matrix Cylinder — a blinkenlights tube appeared first on Raspberry Pi.

Laser-engraved Raspberry Pi hologram

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/laser-engraved-raspberry-pi-hologram/

Inspired by an old episode of Pimoroni’s Bilge Tank, and with easy access to the laser cutter at the Raspberry Pi Foundation office, I thought it would be fun to create a light-up multi-layered hologram using a Raspberry Pi and the Pimoroni Unicorn pHAT.

Raspberry Pi layered light

Read more –

Break it to make it

First, I broke down the Raspberry Pi logo into three separate images — the black outline, the green leaves, and the red berry.

RASPBERRY PI HOLOGRAM
RASPBERRY PI HOLOGRAM
RASPBERRY PI HOLOGRAM

Fun fact: did you know that Pimoroni’s Paul Beech designed this logo as part of the ‘design us a logo’ contest we ran all the way back in August 2011?

Once I had the three separate files, I laser-engraved them onto 4cm-wide pieces of 3mm-thick clear acrylic. As there are four lines of LEDs on the Unicorn pHAT, I cut the fourth piece to illuminate the background.

RASPBERRY PI HOLOGRAM

To keep the engraved acrylic pieces together, I cut out a pair of acrylic brackets (see above) with four 3mm indentations. Then, after a bit of fiddling with the Unicorn pHAT library, I was able to light the pHAT’s rows of LEDs in white, red, green, and white.

RASPBERRY PI HOLOGRAM

The final result looks pretty spectacular, especially in the dark, and you can build on this basic idea to create fun animations — especially if you use a HAT with more rows of LEDs.

Iterations

This is just a prototype. I plan on building a sturdier frame for the pieces that securely fits a Raspberry Pi Zero W and lets users replace layers easily. As with many projects, I’m sure this will grow and grow as each interaction inspires a new add-on.

How would you build upon this basic principle?

Oh…

…we also laser-engraved this Cadbury’s Creme Egg.

The post Laser-engraved Raspberry Pi hologram appeared first on Raspberry Pi.

Handheld text-based adventure gaming with Quest Smith

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/handheld-text-based-adventure-gaming-with-quest-smith/

Play text-based adventure games that print out in real time, with Quest Smith: the Raspberry Pi Zero W–driven handheld gaming device from Bekir Dağ.

Quest Smith

Quest Smith is a raspberry pi zero driven thermal printing text based game. In each level, it gives you options to choose so every game is different than the other one.

Text-based adventure games

Today I learned:

Around 1975, Will Crowther, a programmer and an amateur caver, wrote the first text adventure game, Adventure (originally called ADVENT because a filename could only be six characters long in the operating system he was using, and later named Colossal Cave Adventure).

But I’m sure you already knew that.

According to the internet, text-based games in their most simple form are video games that use text instead of graphics to let players progress. You read the description of your surroundings and choose from a set of options, or you type in your next step and hope the game understands what you’re talking about.

Colossal Cave Adventure

We have a conversation going in our team right now about whether the term ‘text-based games’ is solely used for video games of this nature, or whether choose your own adventure books also fall into the category of text-based games. Leave your thoughts in the comments.

Anyway…

Quest Smith!

After encountering a similar handheld gaming device in a Berlin games museum, Bekir Dağ decided to build his own using a Raspberry Pi Zero W.

Quest Smith text-based game

For Quest Smith’s body, Bekir Dağ designed a 3D print, and he provides the STL files for free on Thingiverse. And for the inner workings?

A Raspberry Pi Zero W fits snugly into the body alongside a thermal printer, a battery, and various tactile buttons. The battery is powered by a solar panel mounted on the outer shell, and all components are connected to a TP4056 board that allows the battery to power the Pi.

Quest Smith text-based game

The Quest Smith software is still somewhat of a work-in-progress. While users can build Quest Smith today and start playing, Bekir has put out the call for the community to submit their own parts of the story.

Each level requires two versions of the story, which makes the possiblities grow exponentially. So it will be very difficult for me to finish a single story by myself. For the player to reach level 9, we will need to have 1023 story parts to be written. If you can help me with that, it would be amazing!

To see more of Quest Smith’s build process, find the files to make your own device, and instructions on how to contribute toward the story, visit the Quest Smith Hackster.io page.

More text-based adventuring with Python

If you’re interested in writing your own text-based adventure game in Python, we’ve got a free online course available in which you can learn about object-oriented programming while creating a text-based game. And for a briefer intro, check out Wireframe magazine issue 6, where game developer Andrew Gillett explains how to make a simple Python text adventure.

The post Handheld text-based adventure gaming with Quest Smith appeared first on Raspberry Pi.

Automatic Calling System using Raspberry Pi

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/automatic-calling-system-using-raspberry-pi/

If like me, you’re awful at remembering birthdays, you need Piyush Charpe’s Automatic Birthday Calling System. It’s the Raspberry Pi device that calls on your behalf – aka Heaven for Introverts.

Building business relationships through niceness

Piyush’s father works as an insurance adviser, and, because he’s a lovely chap, he makes it his mission to wish all of his clients a happy birthday. Nice, right? I hardly remember the birthdays of my closest friends: and here’s Piyush’s father sending his kindest regards to everyone on his client list.

Way to make me feel like a bad friend, Papa Charpe!

So good are Charpe Sr’s customer service skills that he’s unexpectedly built himself an unmanageable amount of birthday wishes to send. So that’s where his son comes in with his idea for an automatic birthday calling system. Huzzah! Take my money, etc. etc.

Automated calling with a Raspberry Pi

Piyush used a Raspberry Pi Zero W, 4G GSM module and Google Firebase for the system, alongside an audio recording of his father wishing a happy birthday, and some help from a friend with experience building Android apps.

Raspberry Pi automatic birthday caller

Acquiring a client list from his father that included names, dates of birth and telephone number (our GDPR manager is weeping into her compliance documents as she reads this), Piyush added the information to Google Firebase, an online real-time database system.

Raspberry Pi automatic birthday caller

The accompanying Android app allows his father to add and remove clients from the list, and updates him on successfully-made calls; it’ll also let him know who he’ll need to follow up with if they were unavailable to receive their birthday greeting.

Raspberry Pi automatic birthday caller
Raspberry Pi automatic birthday caller
Raspberry Pi automatic birthday caller

The system updates at midnight, consolidating a list to be called at 10am the following day. And, at the end of the month, the system’s call history is deleted automatically after sending it in CSV format to his father.

The system has now been working 24/7 for eight months, and has been adopted by other business owners in the area.

You can read more about the project here.

Put down your phone!

What a lovely use of technology with great scope for expansion. Why stop at birthdays? Do I remember my parents’ anniversary? Of course not. And don’t get me started on updating my nearest and dearest on life events, changing address, etc. This system is genius! Introverts need never talk to another human being again! Rejoice!

The post Automatic Calling System using Raspberry Pi appeared first on Raspberry Pi.

Monitoring insects at the Victoria and Albert Museum

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/monitoring-insects-at-the-victoria-and-albert-museum/

A simple Raspberry Pi camera setup is helping staff at the Victoria and Albert Museum track and identify insects that are threatening priceless exhibits.

“Fiacre, I need an image of bug infestation at the V&A!”

The problem with bugs

Bugs: there’s no escaping them. Whether it’s ants in your kitchen or cockroaches in your post-apocalyptic fallout shelter, insects have a habit of inconveniently infesting edifices, intent on damaging beloved belongings.

And museums are as likely as anywhere to be hit by creepy-crawly visitors. Especially when many of their exhibits are old and deliciously dusty. Yum!

Tracking insects at the V&A

As Bhavesh Shah and Maris Ines Carvalho state on the V&A blog, monitoring insect activity has become common practice at their workplace. As part of the Integrated Pest Monitoring (IPM) strategy at the museum, they even have trained staff members who inspect traps and report back their findings.

“But what if we could develop a system that gives more insight into the behaviour of insects and then use this information to prevent future outbreaks?” ask Shah and Carvalho.

The team spent around £50 on a Raspberry Pi and a 160° camera, and used these and Claude Pageau’s PI-TIMOLO software project to build an insect monitoring system. The system is now integrated into the museum, tracking insects and recording their movements — even in low-light conditions.

Emma Ormond, Raspberry Pi Trading Office Manager and Doctor of Bugs, believes this to be a Bristletail or Silverfish.

“The initial results were promising. Temperature, humidity, and light sensors could also be added to find out, for example, what time of day insects are more active or if they favour particular environmental conditions.”

For more information on the project, visit the Victoria & Albert Museum blog. And for more information on the Victoria & Albert Museum, visit the Victoria & Albert Museum, London — it’s delightful. We highly recommend attending their Videogames: Design/Play/Disrupt exhibition, which is running until 24 February.

The post Monitoring insects at the Victoria and Albert Museum appeared first on Raspberry Pi.

Is this the most ‘all-in-one’ a computer can possibly be?

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/electronic-grenade-computer-mouse/

Electronic Grenade’s Computer Mouse is the turducken of the tech world, stuffed so full of computing gubbins that you genuinely don’t need anything else. Don’t believe us? See for yourself:

The “Computer” Mouse: A DIY Project

The computer mouse is an entire laptop computer in mouse form that uses the raspberry pi zero W as its brain. I originally wanted to just put a raspberry pi into a mouse but I soon discovered that that large of a mouse didn’t exist.

See what we mean?

The Computer Mouse

Sure, your laptop may be considered an all-in-one computer, but if you’re not a fan of trackpads, you’ll still need a mouse to complete the experience. Electronic Grenade‘s Computer Mouse truly has everything — a mouse, a screen, a keyboard — and while the screen is tiny, it’s still enough to get started.

A GIF of the Computer Mouse in action

Electronic Grenade designed the device using Autodesk Fusion 360, housing a Raspberry Pi Zero W, the guts of two USB mice, a slideout Bluetooth keyboard, and a flip-up 1.5″ full-colour OLED display. For power, the mouse also plays host to a 500mAh battery, charged by an Adafruit Micro-LiPo charger.

It’s very cool. Very, very cool.

A GIF from the movie Storks

Homemade Raspberry Pi laptops

From cardboard pizza boxes to ornate, wooden creations, our community members love making Raspberry Pi laptops out of whatever they can get their hands on.


Steampunk Raspberry Pi laptop

Variations on a theme include projects such as Jeremy Lee’s wrist computer with onboard gyromouse, perfect for any Captain Jack cosplay; and Scripto, the Raspberry Pi word processor that processes words and nothing more.


Photo: a red-cased Scripto sits open on a white work surface. It is on, and Its screen is filled with text.

Electronic Grenade

If you’re a fan of retrofit Raspberry Pi projects, check out Electronic Grenade’s Xbox controller hack. And while you’re skimming through their YouTube channel (as you should), be sure to subscribe, and watch the videos of their other Raspberry Pi–based projects, such as this wooden Raspberry Pi 3 laptop. You can also help Electronic Grenade design and build more projects such as the Computer Mouse by supporting them on Patreon.

Notes

  • A turducken is a chicken stuffed into a duck, that is then in turn stuffed into a turkey, and it sounds all kinds of wrong. Do you know what doesn’t sound all kinds of wrong? Electronic Grenade’s Computer Mouse.
  • The ‘cool, cool, cool’ GIF is from the movie Storks. If you haven’t watched Storks yet, you really should: it’s very underrated and quite wonderful.
  • I meant this Captain Jack and not this Captain Jack.

The post Is this the most ‘all-in-one’ a computer can possibly be? appeared first on Raspberry Pi.

Send audio messages to your loved ones

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/send-loved-ones-audio-messages/

Valentine’s Day is fast approaching, so why not make this adorable voice message device for your beloved?

Love Birds : a Box to Send and Receive Telegram Audio Message

How to make it: https://www.raspiaudio.com/lovebirds and https://www.instructables.com/id/Love-Birds-a-Box-to-Send-and-Receive-Telegram-Audi/ It’s a standalone device that receives send voice messages to your love, family or friend. Open the box, push the button while you are talking, release to send the audio message.

“Blah blah blah” means “I love you”

“OK, my phone can already do that, why should I bother?” project creator Olivier Ros asks himself in the introduction to his Instructables tutorial. And his response is simple. While you could use a phone, the magic of Love Birds is the intention behind the action. Mobile phones are where your life exists: your banking details, your work conversations, and more. It’s always on your person, probably in your hand right now. But with Love Birds, you have to make the effort to use the device to send that heartfelt message to the recipient.

Love Birds messaging device

He also says the device is easy to use even for those who are not technically inclined or have accessibility issues:

“Love Birds is easier to use than a phone: only one button. This cool for children, old people that don’t like smartphones, long-distance relationships, or just couples who want a private line of communication through a simple, dedicated object.”

Build a Love Bird (or two)

You’ll need one Raspberry Pi per Love Bird device; while Olivier’s version contains a Pi Zero W, a Raspberry Pi 2 or 3 will also do the trick.

You’ll also need a microphone and speakers. And, lucky for us, Raspiaudio offers a HAT that incorporates the two!

Raspiaudio HAT for Raspberry Pi

You can find similar boards from other Raspberry Pi accessory manufacturers, or use a standard USB microphone and speaker, readily available in stores and online.

Tweeting…so to speak

To make the notification birds dance, you also need a servo motor. The full code for the motors and everything else is available on GitHub. As an alternative to the motor, you could try flashing LEDs or playing a sound as a notification; we’re always interested in seeing how people add their own flair to open-source projects.

Telegram

You also need to sign up to Telegram in order to send your voice messages securely over the internet. Again, there are other services available, which you can use by editing the code accordingly.

Make your own

Find the full Instructables tutorial here, and visit the Raspiaudio website for more projects!

How will you be using a Raspberry Pi to celebrate Valentine’s Day?

The post Send audio messages to your loved ones appeared first on Raspberry Pi.