Tag Archives: Cloudflare One

Replace your hardware firewalls with Cloudflare One

Post Syndicated from Ankur Aggarwal original https://blog.cloudflare.com/replace-your-hardware-firewalls-with-cloudflare-one/

Replace your hardware firewalls with Cloudflare One

Replace your hardware firewalls with Cloudflare One

Today, we’re excited to announce new capabilities to help customers make the switch from hardware firewall appliances to a true cloud-native firewall built for next-generation networks. Cloudflare One provides a secure, performant, and Zero Trust-enabled platform for administrators to apply consistent security policies across all of their users and resources. Best of all, it’s built on top of our global network, so you never need to worry about scaling, deploying, or maintaining your edge security hardware.

As part of this announcement, Cloudflare launched the Oahu program today to help customers leave legacy hardware behind; in this post we’ll break down the new capabilities that solve the problems of previous firewall generations and save IT teams time and money.

How did we get here?

In order to understand where we are today, it’ll be helpful to start with a brief history of IP firewalls.

Stateless packet filtering for private networks

The first generation of network firewalls were designed mostly to meet the security requirements of private networks, which started with the castle and moat architecture we defined as Generation 1 in our post yesterday. Firewall administrators could build policies around signals available at layers 3 and 4 of the OSI model (primarily IPs and ports), which was perfect for (e.g.) enabling a group of employees on one floor of an office building to access servers on another via a LAN.

This packet filtering capability was sufficient until networks got more complicated, including by connecting to the Internet. IT teams began needing to protect their corporate network from bad actors on the outside, which required more sophisticated policies.

Better protection with stateful & deep packet inspection

Firewall hardware evolved to include stateful packet inspection and the beginnings of deep packet inspection, extending basic firewall concepts by tracking the state of connections passing through them. This enabled administrators to (e.g.) block all incoming packets not tied to an already present outgoing connection.

These new capabilities provided more sophisticated protection from attackers. But the advancement came at a cost: supporting this higher level of security required more compute and memory resources. These requirements meant that security and network teams had to get better at planning the capacity they’d need for each new appliance and make tradeoffs between cost and redundancy for their network.

In addition to cost tradeoffs, these new firewalls only provided some insight into how the network was used. You could tell users were accessing 198.51.100.10 on port 80, but to do a further investigation about what these users were accessing would require you to do a reverse lookup of the IP address. That alone would only land you at the front page of the provider, with no insight into what was accessed, reputation of the domain/host, or any other information to help answer “Is this a security event I need to investigate further?”. Determining the source would be difficult here as well, it would require correlating a private IP address handed out via DHCP with a device and then subsequently a user (if you remembered to set long lease times and never shared devices).

Application awareness with next generation firewalls

To accommodate these challenges, the industry introduced the Next Generation Firewall (NGFW). These were the long reigning, and in some cases are still the industry standard, corporate edge security device. They adopted all the capabilities of previous generations while adding in application awareness to help administrators gain more control over what passed through their security perimeter. NGFWs introduced the concept of vendor-provided or externally-provided application intelligence, the ability to identify individual applications from traffic characteristics. Intelligence which could then be fed into policies defining what users could and couldn’t do with a given application.

As more applications moved to the cloud, NGFW vendors started to provide virtualized versions of their appliances. These allowed administrators to no longer worry about lead times for the next hardware version and allowed greater flexibility when deploying to multiple locations.

Over the years, as the threat landscape continued to evolve and networks became more complex, NGFWs started to build in additional security capabilities, some of which helped consolidate multiple appliances. Depending on the vendor, these included VPN Gateways, IDS/IPS, Web Application Firewalls, and even things like Bot Management and DDoS protection. But even with these features, NGFWs had their drawbacks — administrators still needed to spend time designing and configuring redundant (at least primary/secondary) appliances, as well as choosing which locations had firewalls and incurring performance penalties from backhauling traffic there from other locations. And even still, careful IP address management was required when creating policies to apply pseudo identity.

Adding user-level controls to move toward Zero Trust

As firewall vendors added more sophisticated controls, in parallel, a paradigm shift for network architecture was introduced to address the security concerns introduced as applications and users left the organization’s “castle” for the Internet. Zero Trust security means that no one is trusted by default from inside or outside the network, and verification is required from everyone trying to gain access to resources on the network. Firewalls started incorporating Zero Trust principles by integrating with identity providers (IdPs) and allowing users to build policies around user groups — “only Finance and HR can access payroll systems” — enabling finer-grained control and reducing the need to rely on IP addresses to approximate identity.

These policies have helped organizations lock down their networks and get closer to Zero Trust, but CIOs are still left with problems: what happens when they need to integrate another organization’s identity provider? How do they safely grant access to corporate resources for contractors? And these new controls don’t address the fundamental problems with managing hardware, which still exist and are getting more complex as companies go through business changes like adding and removing locations or embracing hybrid forms of work. CIOs need a solution that works for the future of corporate networks, instead of trying to duct tape together solutions that address only some aspects of what they need.

The cloud-native firewall for next-generation networks

Cloudflare is helping customers build the future of their corporate networks by unifying network connectivity and Zero Trust security. Customers who adopt the Cloudflare One platform can deprecate their hardware firewalls in favor of a cloud-native approach, making IT teams’ lives easier by solving the problems of previous generations.

Connect any source or destination with flexible on-ramps

Rather than managing different devices for different use cases, all traffic across your network — from data centers, offices, cloud properties, and user devices — should be able to flow through a single global firewall. Cloudflare One enables you to connect to the Cloudflare network with a variety of flexible on-ramp methods including network-layer (GRE or IPsec tunnels) or application-layer tunnels, direct connections, BYOIP, and a device client. Connectivity to Cloudflare means access to our entire global network, which eliminates many of the challenges with physical or virtualized hardware:

  • No more capacity planning: The capacity of your firewall is the capacity of Cloudflare’s global network (currently >100Tbps and growing).
  • No more location planning: Cloudflare’s Anycast network architecture enables traffic to connect automatically to the closest location to its source. No more picking regions or worrying about where your primary/backup appliances are — redundancy and failover are built in by default.
  • No maintenance downtimes: Improvements to Cloudflare’s firewall capabilities, like all of our products, are deployed continuously across our global edge.
  • DDoS protection built in: No need to worry about DoS attacks overwhelming your firewalls; Cloudflare’s network automatically blocks attacks close to their source and sends only the clean traffic on to its destination.

Configure comprehensive policies, from packet filtering to Zero Trust

Cloudflare One policies can be used to secure and route your organizations traffic across all the various traffic ramps. These policies can be crafted using all the same attributes available through a traditional NGFW while expanding to include Zero Trust attributes as well. These Zero Trust attributes can include one or more IdPs or endpoint security providers.

When looking strictly at layers 3 through 5 of the OSI model, policies can be based on IP, port, protocol, and other attributes in both a stateless and stateful manner. These attributes can also be used to build your private network on Cloudflare when used in conjunction with any of the identity attributes and the Cloudflare device client.

Additionally, to help relieve the burden of managing IP allow/block lists, Cloudflare provides a set of managed lists that can be applied to both stateless and stateful policies. And on the more sophisticated end, you can also perform deep packet inspection and write programmable packet filters to enforce a positive security model and thwart the largest of attacks.

Cloudflare’s intelligence helps power our application and content categories for our Layer 7 policies, which can be used to protect your users from security threats, prevent data exfiltration, and audit usage of company resources. This starts with our protected DNS resolver, which is built on top of our performance leading consumer 1.1.1.1 service. Protected DNS allows administrators to protect their users from navigating or resolving any known or potential security risks. Once a domain is resolved, administrators can apply HTTP policies to intercept, inspect, and filter a user’s traffic. And if those web applications are self-hosted or SaaS enabled you can even protect them using a Cloudflare access policy, which acts as a web based identity proxy.

Last but not least, to help prevent data exfiltration, administrators can lock down access to external HTTP applications by utilizing remote browser isolation. And coming soon, administrators will be able to log and filter which commands a user can execute over an SSH session.

Simplify policy management: one click to propagate rules everywhere

Traditional firewalls required deploying policies on each device or configuring and maintaining an orchestration tool to help with this process. In contrast, Cloudflare allows you to manage policies across our entire network from a simple dashboard or API, or use Terraform to deploy infrastructure as code. Changes propagate across the edge in seconds thanks to our Quicksilver technology. Users can get visibility into traffic flowing through the firewall with logs, which are now configurable.

Consolidating multiple firewall use cases in one platform

Firewalls need to cover a myriad of traffic flows to satisfy different security needs, including blocking bad inbound traffic, filtering outbound connections to ensure employees and applications are only accessing safe resources, and inspecting internal (“East/West”) traffic flows to enforce Zero Trust. Different hardware often covers one or multiple use cases at different locations; we think it makes sense to consolidate these as much as possible to improve ease of use and establish a single source of truth for firewall policies. Let’s walk through some use cases that were traditionally satisfied with hardware firewalls and explain how IT teams can satisfy them with Cloudflare One.

Protecting a branch office

Traditionally, IT teams needed to provision at least one hardware firewall per office location (multiple for redundancy). This involved forecasting the amount of traffic at a given branch and ordering, installing, and maintaining the appliance(s). Now, customers can connect branch office traffic to Cloudflare from whatever hardware they already have — any standard router that supports GRE or IPsec will work — and control filtering policies across all of that traffic from Cloudflare’s dashboard.

Step 1: Establish a GRE or IPsec tunnel
The majority of mainstream hardware providers support GRE and/or IPsec as tunneling methods. Cloudflare will provide an Anycast IP address to use as the tunnel endpoint on our side, and you configure a standard GRE or IPsec tunnel with no additional steps — the Anycast IP provides automatic connectivity to every Cloudflare data center.

Step 2: Configure network-layer firewall rules
All IP traffic can be filtered through Magic Firewall, which includes the ability to construct policies based on any packet characteristic — e.g., source or destination IP, port, protocol, country, or bit field match. Magic Firewall also integrates with IP Lists and includes advanced capabilities like programmable packet filtering.

Step 3: Upgrade traffic for application-level firewall rules
After it flows through Magic Firewall, TCP and UDP traffic can be “upgraded” for fine-grained filtering through Cloudflare Gateway. This upgrade unlocks a full suite of filtering capabilities including application and content awareness, identity enforcement, SSH/HTTP proxying, and DLP.

Replace your hardware firewalls with Cloudflare One

Protecting a high-traffic data center or VPC

Firewalls used for processing data at a high-traffic headquarters or data center location can be some of the largest capital expenditures in an IT team’s budget. Traditionally, data centers have been protected by beefy appliances that can handle high volumes gracefully, which comes at an increased cost. With Cloudflare’s architecture, because every server across our network can share the responsibility of processing customer traffic, no one device creates a bottleneck or requires expensive specialized components. Customers can on-ramp traffic to Cloudflare with BYOIP, a standard tunnel mechanism, or Cloudflare Network Interconnect, and process up to terabits per second of traffic through firewall rules smoothly.

Replace your hardware firewalls with Cloudflare One

Protecting a roaming or hybrid workforce

In order to connect to corporate resources or get secure access to the Internet, users in traditional network architectures establish a VPN connection from their devices to a central location where firewalls are located. There, their traffic is processed before it’s allowed to its final destination. This architecture introduces performance penalties and while modern firewalls can enable user-level controls, they don’t necessarily achieve Zero Trust. Cloudflare enables customers to use a device client as an on-ramp to Zero Trust policies; watch out for more updates later this week on how to smoothly deploy the client at scale.

Replace your hardware firewalls with Cloudflare One

What’s next

We can’t wait to keep evolving this platform to serve new use cases. We’ve heard from customers who are interested in expanding NAT Gateway functionality through Cloudflare One, who want richer analytics, reporting, and user experience monitoring across all our firewall capabilities, and who are excited to adopt a full suite of DLP features across all of their traffic flowing through Cloudflare’s network. Updates on these areas and more are coming soon (stay tuned).

Cloudflare’s new firewall capabilities are available for enterprise customers today. Learn more here and check out the Oahu Program to learn how you can migrate from hardware firewalls to Zero Trust — or talk to your account team to get started today.

Announcing Anycast IPsec: a new on-ramp to Cloudflare One

Post Syndicated from Annika Garbers original https://blog.cloudflare.com/anycast-ipsec/

Announcing Anycast IPsec: a new on-ramp to Cloudflare One

Announcing Anycast IPsec: a new on-ramp to Cloudflare One

Today, we’re excited to announce support for IPsec as an on-ramp to Cloudflare One. As a customer, you should be able to use whatever method you want to get your traffic to Cloudflare’s network. We’ve heard from you that IPsec is your method of choice for connecting to us at the network layer, because of its near-universal vendor support and blanket layer of encryption across all traffic. So we built support for it! Read on to learn how our IPsec implementation is faster and easier to use than traditional IPsec connectivity, and how it integrates deeply with our Cloudflare One suite to provide unified security, performance, and reliability across all your traffic.

Using the Internet as your corporate network

With Cloudflare One, customers can connect any traffic source or destination — branch offices, data centers, cloud properties, user devices — to our network. Traffic is routed to the closest Cloudflare location, where security policies are applied before we send it along optimized routes to its destination — whether that’s within your private network or on the Internet. It is good practice to encrypt any traffic that’s sensitive at the application level, but for customers who are transitioning from forms of private connectivity like Multiprotocol Label Switching (MPLS), this often isn’t a reality. We’ve talked to many customers who have legacy file transfer and other applications running across their MPLS circuits unencrypted, and are relying on the fact that these circuits are “private” to provide security. In order to start sending this traffic over the Internet, customers need a blanket layer of encryption across all of it; IPsec tunnels are traditionally an easy way to accomplish this.

Traditional IPsec implementations

IPsec as a technology has been around since 1995, and is broadly implemented across many hardware and software platforms. Many companies have adopted IPsec VPNs for securely transferring corporate traffic over the Internet. These VPNs tend to have one of two main architectures: hub and spoke, or mesh.

Announcing Anycast IPsec: a new on-ramp to Cloudflare One

In the hub and spoke model, each “spoke” node establishes an IPsec tunnel back to a core “hub,” usually a headquarters or data center location. Traffic between spokes flows through the hub for routing and in order to have security policies applied (like by an on-premise firewall). This architecture is simple because each node only needs to maintain one tunnel to get connectivity to other locations, but it can introduce significant performance penalties. Imagine a global network with two “spokes”, one in India and another one in Singapore, but a “hub” located in the United States — traffic needs to travel a round trip thousands of miles back and forth in order to get to its destination.

Announcing Anycast IPsec: a new on-ramp to Cloudflare One

In the mesh model, every node is connected to every other node with a dedicated IPsec tunnel. This improves performance because traffic can take more direct paths, but in practice means an unmanageable number of tunnels after even a handful of locations are added.

Customers we’ve talked to about IPsec know they want it for the blanket layer of encryption and broad vendor support, but they haven’t been particularly excited about it because of the problems with existing architecture models. We knew we wanted to develop something that was easier to use and left those problems in the past, so that customers could get excited about building their next-generation network on Cloudflare. So how are we bringing IPsec out of the 90s? By delivering it on our global Anycast network: customers establish one IPsec tunnel to us and get automatic connectivity to 250+ locations. It’s conceptually similar to the hub and spoke model, but the “hub” is everywhere, blazing fast, and easy to manage.

So how does IPsec actually work?

IPsec was designed back in 1995 to provide authentication, integrity, and confidentiality for IP packets. One of the ways it does this is by creating tunnels between two hosts, encrypting the IP packets, and adding a new IP header onto encrypted packets. To make this happen, IPsec has two components working together: a userspace Internet Key Exchange (IKE) daemon and an IPsec stack in kernel-space. IKE is the protocol which creates Security Associations (SAs) for IPsec. An SA is a collection of all the security parameters, like those for authentication and encryption, that are needed to establish an IPsec tunnel.

When a new IPsec tunnel needs to be set up, one IKE daemon will initiate a session with another and create an SA. All the complexity of configuration, key negotiation, and key generation happens in a handful of packets between the two IKE daemons safely in userspace. Once the IKE Daemons have started their session, they hand off their nice and neat SA to the IPsec stack in kernel-space, which now has all the information it needs to intercept the right packets for encryption and decryption.

There are plenty of open source IKE daemons, including strongSwan, Libreswan, and Openswan, that we considered using for our IPsec implementation. These “swans” all tie speaking the IKE protocol tightly with configuring the IPsec stack. This is great for establishing point-to-point tunnels — installing one “swan” is all you need to speak IKE and configure an encrypted tunnel. But we’re building the next-generation network that takes advantage of Cloudflare’s entire global Anycast edge. So how do we make it so that a customer sets up one tunnel with Cloudflare with every single edge server capable of exchanging data on it?

Anycast IPsec: an implementation for next-generation networks

The fundamental problem in the way of Anycast IPsec is that the SA needs to be handed off to the kernel-space IPsec stack on every Cloudflare edge server, but the SA is created on only one server — the one running the IKE daemon that the customer’s IKE daemon connects to. How do we solve this problem? The first thing that needs to be true is that every server needs to be able to create that SA.

Every Cloudflare server now runs an IKE daemon, so customers can have a fast, reliable connection to start a tunnel anywhere in the world. We looked at using one of the existing “swans” but that tight coupling of IKE with the IPsec stack meant that the SA was hard to untangle from configuring the dataplane. We needed the SA totally separate and neatly sharable from the server that created it to every other server on our edge. Naturally, we built our own “swan” to do just that.

To send our SA worldwide, we put a new spin on an old trick. With Cloudflare Tunnels, a customer’s cloudflared tunnel process creates connections to a few nearby Cloudflare edge servers. But traffic destined for that tunnel could arrive at any edge server, which needs to know how to proxy traffic to the tunnel-connected edge servers. So, we built technology that enables an edge server to rapidly distribute information about its Cloudflare Tunnel connections to all other edge servers.

Fundamentally, the problem of SA distribution is similar — a customer’s IKE daemon connects to a single Cloudflare edge server’s IKE daemon, and information about that connection needs to be distributed to every other edge server. So, we upgraded the Cloudflare Tunnel technology to make it more general and are now using it to distribute SAs as part of Anycast IPsec support. Within seconds of an SA being created, it is distributed to every Cloudflare edge server where a streaming protocol applies the configuration to the kernel-space IPsec stack. Cloudflare’s Anycast IPsec benefits from the same reliability and resilience we’ve built in Cloudflare Tunnels and turns our network into one massively scalable, resilient IPsec tunnel to your network.

On-ramp with IPsec, access all of Cloudflare One

We built IPsec as an on-ramp to Cloudflare One on top of our existing global system architecture, putting the principles customers care about first. You care about ease of deployment, so we made it possible for you to connect to your entire virtual network on Cloudflare One with a single IPsec tunnel. You care about performance, so we built technology that connects your IPsec tunnel to every Cloudflare location, eliminating hub-and-spoke performance penalties. You care about enforcing security policies across all your traffic regardless of source, so we integrated IPsec with the entire Cloudflare One suite including Magic Transit, Magic Firewall, Zero Trust, and more.

IPsec is in early access for Cloudflare One customers. If you’re interested in trying it out, contact your account team today!

Cloudflare One: One Year Later

Post Syndicated from Rustam Lalkaka original https://blog.cloudflare.com/cloudflare-one-one-year-later/

Cloudflare One: One Year Later

Cloudflare One: One Year Later

Cloudflare One helps enterprises build modern enterprise networks, operate efficiently and securely, and throw out on-premise hardware. It’s been more than a year since we announced the product suite, and we wanted to check in on how things are going.

We’re celebrating Chief Information Officers this week. Regardless of the size of their organization, they’ve had a challenging year. Overnight, their teams became responsible for years of digital transformation to prepare their networks and users to support work-from-home and to adopt new technologies. They worked with partners across security, engineering, and people teams to keep their critical infrastructure running.

Today, we want to focus on the problems that CIOs have been able to solve with Cloudflare One in the last year. Customers are using Cloudflare One at a scale we couldn’t have imagined a year ago to solve interesting problems that we didn’t know existed yet. We’ll walk through some specific use cases later in the post, but first, let’s recap why we built Cloudflare One, what problems it solves, and some of the new things we’re launching this week.

What is Cloudflare One?

Cloudflare One allows companies to purchase, provision, and manage connectivity, security, and analytics tools needed to operate a corporate network from one vendor and one control plane.

Historically, CIOs purchased point solutions from dozens of hardware vendors. They assembled a patchwork of appliances and services to keep their organization connected and secure. The band-aids held together for a while, despite the cost and maintenance burden.

However, the growth of what needed to be connected broke this model. Office locations became more distributed and, more recently, remote work became widespread. Applications that only existed in the corporate data center moved to public cloud providers or SaaS models. As these shifts pushed the limits on what these band-aids could support, the attacks against networks and endpoints became more sophisticated.

We talked to customers who explained that these changes presented a hierarchy of problems: at its base layer, they need their users, offices, data centers and clouds connected to each other and to the Internet. Next, they needed to filter the traffic between these entities. Finally, they needed to log, diagnose, and analyze that traffic. Once those initial needs were met, the solution needed to be fast and reliable, and comply with local laws and regulations.

Cloudflare runs a global, programmable edge network. We use that network to improve the speed and security of some of the largest websites and services on the Internet. We built Cloudflare One to make that network available to corporate customers to solve their new challenges. Today, Cloudflare helps CIOs deliver connectivity, security, and visibility without sacrificing performance, no matter where a customer or their employees work.

How does it work?

Cloudflare One starts with connectivity. Your team can connect offices, data centers, devices and cloud properties to Cloudflare’s network. We’re flexible with how you want to send that traffic to us. Connect your offices and data centers to Cloudflare through SD-WAN partnerships or soon our Cloudflare for Offices infrastructure. New this week, you can start using IPsec Tunnels in addition to our existing GRE Tunnels.

Connect your internal resources and the rest of the Internet with a lightweight agent. Does your team rely on contractors and unmanaged devices? Connect them to internal tools in a fully agentless mode. We’ll also be announcing new improvements to Cloudflare Tunnel and our network interfacing provisioning to keep making it easier to connect your organization to our global network.

Cloudflare One: One Year Later

Once connected, Cloudflare’s network provides a comprehensive suite of security functions to protect your traffic. Customers can rely on our network for everything from IP-layer DDoS mitigation to blocking threats with remote browser isolation. Later this week, we’ll be sharing details of new network firewall features that help your team continue to rip out even more boxes.

Cloudflare One: One Year Later

Beyond securing your organization from threats on the Internet, Cloudflare One also provides your team with comprehensive Zero Trust control over who can access your internal resources and SaaS applications.

Cloudflare One: One Year Later

Now that traffic is connected and secured through Cloudflare, we can help make you faster. Cloudflare is building the fastest network in the world. You can read more about where we are the fastest today and how we’re working to be the fastest in any location. New this week, we’ll be sharing updates to our network performance and new features that intelligently accelerate packets in our network.

Just being faster is not enough. The network that powers your organization should also be reliable, even despite factors out of your control. Cloudflare’s network is peered with over 10,000 networks around the world. With one of the most interconnected networks, we can find lots of paths from point A to point B when disruptions elsewhere on the Internet occur.

Finally, we hear from more and more customers that they need a global network with localized compliance features. Cloudflare One makes compliance with local data protection regulations easy. Customers can choose where Cloudflare’s network applies security functions and how we store and export your logs. As part of CIO week, we’ll be previewing new features that give your team the ability to create metadata boundaries in our network.

All that said, we think the best way to understand how Cloudflare One works is to walk through the problems that our customers no longer have.

Customers defended 5x more traffic

Overall network traffic growth through Cloudflare One has increased by nearly 400% over the last year, with advanced traffic controls and filtering applied at wire-speed to each of those bits.

Cloudflare’s composable traffic filtering stack lets customers pick and choose which security controls to apply to which traffic, allowing for flexibility and specificity in how traffic is managed. Some customers are using simple “4-tuple” rules to allow or deny traffic to their networks based on IP addresses and port numbers, others are writing their own network filters in eBPF (more on this later this week!) to perform custom logic on hundreds of gigabits per second of traffic at a time, and others are using pure Zero Trust architectures with identity-based policy enforcement and endpoint protection integration.

Over a recent (and typical) stretch of 24 hours, customers prevented over 9.3 trillion unwanted packets, requests, and other network “nouns” from reaching their networks with custom rules. These rules can all be managed centrally, impose no performance penalty, and can be enforced on traffic no matter where it is coming from or where it is going, whether that is offices, data centers, or cloud providers.

The same rules and filtering logic are applied to traffic wherever it enters our network. Because our entire edge network is one giant firewall, there is no backhaul required to a central device or network location for a firewall policy to be applied.

We think Cloudflare One’s architectural advantages make for a pretty killer firewall, and the growth in usage we’ve seen bears that out. But what really sets our network and its integrated security functionality apart is our ability to offer Zero Trust controls from the same network, allowing CIOs to think about securing applications and users instead of IP addresses and TCP ports.

Customers protected over 192,000 applications

Legacy private networks and VPN clients provided brittle connectivity without real security. In most deployments, a user in the private network could connect to any resource unless explicitly prohibited. Security teams had no identity-driven controls and lacked visibility into their network while IT teams struggled with help desk tickets.

Cloudflare Access replaces private network security with a Zero Trust model that also makes any internal application feel like the Internet’s fastest SaaS applications. Customers connect their internal resources to Cloudflare’s network without poking holes in their firewall. Once connected, administrators can build global rules and per-resource rules to control who can log in and how they can connect. Users launch applications with a single click while Cloudflare’s network enforces those rules and accelerates their traffic around the world.

In the past year, customers have protected over 192,000 applications with Zero Trust rules in Cloudflare. These applications range from mission-critical tools that power the business to administrative panels that hold the company’s most sensitive data, and the next version of the new marketing website. Since announcing Cloudflare One last year, we’ve also brought non-HTTP use cases to the browser with SSH and VNC clients rendered without any additional client software.

Regardless of what’s being protected, customers can layer rules starting from “only my team can log in” all the way to “only allow access to this group of users, connecting from a corporate device, with a physical hardkey, from these countries.” We also know that sometimes security needs a second opinion. Earlier this year, we introduced new features that prompt users to input why they are connecting to a resource and require a second admin to sign off on the request in real time.

We also believe that security should never require a compromise in performance. The applications that customers secure with our Zero Trust products benefit from the same routing acceleration that some of the Internet’s largest websites use. We also bring security decisions closer to the user to avoid slowing them down — Cloudflare’s network enforces Zero Trust rules in every one of our 250 data centers around the world, made even faster by running on our own serverless compute platform.

Over 10,000 small teams are now safer

We launched Cloudflare One with the goal of making Zero Trust security accessible to organizations of any size. When we first released Cloudflare Access over three years ago, smaller teams had limited or no options to replace their VPN. They were turned away from vendors who only serviced the enterprise and had to stick to a legacy private network.

We’re excited that more than 10,000 organizations are now protecting their resources without the need to sign a contract with Cloudflare. We’ve also made these tools even more accessible to smaller organizations. Last year, we raised the number of free users that customers could add to their plan to 50 seats.

More than 5,500 organizations now secure their outbound Internet traffic

Zero Trust rules do not just apply to your internal applications. When your users connect to the rest of the Internet, attackers work to phish their passwords, get malware on their devices, and steal their data.

Cloudflare One provides customers with multiple layers of security filters and across multiple on-ramps  that keep your organization safe from data loss and threats. Since last year’s Cloudflare One announcement, over 5,500 organizations secure the traffic leaving their devices, offices, and data centers.

In the last year, the security they deploy has improved every month. Customers rely on the world’s fastest DNS resolver and the intelligence from Cloudflare’s visibility into the Internet to filter DNS traffic for security threats and content categories. Cloudflare filters their network traffic with identity-based policies, block file transfers, and inspect HTTP traffic for viruses. Organizations control which tenants of SaaS applications employees can use and Cloudflare’s network generates a comprehensive Shadow IT report.

When organizations don’t trust anything on the Internet, they can connect to Cloudflare’s isolated browser. Customers can isolate all destinations or just specific ones, without requiring users to use a special browser client or to suffer through legacy approaches to browser isolation like pixel pushing and DOM manipulation. Cloudflare’s network can also add data control directly in the browser — blocking copy-paste, printing, or even text input by user and destination.

All this delivered over a growing global network engineered for scale

All of this functionality is delivered from our entire global network, on bare metal hardware Cloudflare owns and operates in over 250 cities around the world. There are no public clouds in the mix here, and all our services run on every server in every location in the world. There is no location selection of sizing of hardware, physical or virtualized. Every server is capable of processing every customer’s packet.

This unique architecture allows us to build reliable products quickly and efficiently. Our network is now handling more than 1.69Tbps of peak forward proxy traffic per day, our largest customers do traffic measured in hundreds of gigabits per second delivered over single virtual interfaces.

Customers are able to get value both from the connectivity, security and visibility products we offer, but also through the network of our customers themselves. Most Cloudflare One customers have significant interactions with other customer networks connected to Cloudflare, many of them through direct physical connections available in 158 peering facilities around the world.

How are customers using it?

Tens of thousands of customers solved problems at scale with Cloudflare One in the last year. We also want to highlight a few organizations and their specific journeys migrating to this model since last year’s announcement.

Protecting the United States Federal Government from attacks

Cloudflare One: One Year Later

Within the United States Department of Homeland Security, the Cybersecurity and Infrastructure Security Agency (CISA) works as “the nation’s risk advisor.” CISA partners with teams across the public and private sector to secure critical infrastructure across the federal government as well as State, Local, Tribal, and Territorial agencies and departments.

One risk that CISA has repeatedly flagged is the threat of malicious hostnames, phishing emails with malicious links, and untrustworthy upstream Domain Name System resolvers. Attackers can compromise devices and users by tricking those endpoints into sending a DNS query to a specific hostname. When users connect to the destination behind that resolved query, attackers can steal passwords, data, and put malware on the devices.

Earlier this year, CISA and the National Security Agency (NSA) recommended that teams deploy protective DNS resolvers to prevent those attacks from becoming incidents. Unlike standard DNS resolvers, protective DNS resolvers check the hostname being queried to determine if the destination is malicious. If the hostname poses a risk, the resolver blocks the connection by not answering the DNS query.

Earlier this year, CISA announced that they are not only recommending a protective DNS resolver — they are delivering one to their partner agencies. CISA selected Cloudflare and Accenture Federal Services to deliver a joint solution to help the government defend itself against cyberattacks.

Keeping the workforce of a hardware manufacturer safe and productive

Cloudflare One: One Year Later

Back in 2018, the developer operations team inside of one of the world’s largest telecom and network equipment companies lost patience with their legacy VPN. Developers in their organization relied on the VPN to connect to the tools they needed to do their jobs. The requirement slowed them down and created user headaches, eventually leading to IT help desk tickets.

The leadership team in that group decided to fix their VPN frustrations by getting rid of it. They signed up to use Cloudflare Access, initially with the personal credit of one of the administrators, to move their development tools to a seamless platform that made their internal applications just feel like SaaS applications for their users.

Over the next three years, more departments in the organization became jealous and asked to also deprecate the VPN usage in their group. As thousands of users across the organization moved to a Zero Trust model, their security team began to take advantage of the rules that could be created, and the logs generated without the need for any server-side code changes.

Last month, that security team began using Cloudflare One to build Zero Trust rules for the rest of the Internet. Their organization chose Cloudflare Gateway to replace their legacy DNS filtering solution with a faster, more manageable platform that keeps the 100,000+ team members safe from phishing attacks, malware, and ransomware in any location.

Securing the team building BlockFi

Cloudflare One: One Year Later

BlockFi’s mission is to bring financial empowerment to traditionally underserved markets. BlockFi’s interest accounts, cryptocurrency-backed loans, rewards cards and crypto trading platforms connect hundreds of thousands of users to new financial tools. As of June 30, 2021, BlockFi supports over 450,000 funded clients and manages more than $10 billion in assets.

Keeping their service available and secure presented new challenges as they grew. BlockFi started their Cloudflare One journey after experiencing a major DDoS attack on its sign-up API. The BlockFi team contacted Cloudflare, and we were able to help mitigate the DDoS and API attacks, getting their systems back up and running within a few hours. BlockFi was then able to block approximately 10 million malicious bots in the first day of the addition of Cloudflare’s Bot Management platform.

Once their public web infrastructure was up and running again, BlockFi started to evaluate how to improve the security of their internal users and applications. BlockFi relied on a private network that used IP addresses to block or allow users to connect, spending engineering time just maintaining IP lists. As users left the office, that model fell apart.

BlockFi solved that challenge by replacing their legacy network with Cloudflare One to bring identity-driven Zero Trust control to their internal resources. Team members connect from any location and authenticate with their single-sign on.

Their security team didn’t stop there. To protect their employees from phishing and malware attacks, BlockFi deployed Cloudflare One’s DNS filtering and Secure Web Gateway to stop attacks that targeted their entire workforce or specific employees.

Keeping phones ringing with Cloudflare’s network reach

Cloudflare One: One Year Later

Our last customer story involves a large VoIP and unified communications infrastructure company that recently came under ransom attack. They quickly (over the course of less than 24 hours) deployed Cloudflare Magic Transit in front of their entire Internet presence, including their corporate and production networks.

Given the nature of Internet telephony, they were very concerned about performance regressions and impact to call quality. Fortunately, deploying Cloudflare actually improved key network quality metrics like latency and jitter, surprising their network administrators.

Cloudflare’s network excels at powering and protecting performance critical workloads where milliseconds matter and reliability is paramount.

What’s next?

Over the course of this week, we’re going to share dozens of new announcements that solve new problems with Cloudflare One. We’re just getting started building the next-generation of the corporate network, so stay tuned to learn more this week.

We’re also grateful for every organization that trusted Cloudflare One to be your corporate network since last year’s launch. For teams who are ready to begin that journey, follow this link to get started today.

PII and Selective Logging controls for Cloudflare’s Zero Trust platform

Post Syndicated from Ankur Aggarwal original https://blog.cloudflare.com/pii-and-selective-logging-controls-for-cloudflares-zero-trust-platform/

PII and Selective Logging controls for Cloudflare’s Zero Trust platform

PII and Selective Logging controls for Cloudflare’s Zero Trust platform

At Cloudflare, we believe that you shouldn’t have to compromise privacy for security. Last year, we launched Cloudflare Gateway — a comprehensive, Secure Web Gateway with built-in Zero Trust browsing controls for your organization. Today, we’re excited to share the latest set of privacy features available to administrators to log and audit events based on your team’s needs.

Protecting your organization

Cloudflare Gateway helps organizations replace legacy firewalls while also implementing Zero Trust controls for their users. Gateway meets you wherever your users are and allows them to connect to the Internet or even your private network running on Cloudflare. This extends your security perimeter without having to purchase or maintain any additional boxes.

Organizations also benefit from improvements to user performance beyond just removing the backhaul of traffic to an office or data center. Cloudflare’s network delivers security filters closer to the user in over 250 cities around the world. Customers start their connection by using the world’s fastest DNS resolver. Once connected, Cloudflare intelligently routes their traffic through our network with layer 4 network and layer 7 HTTP filters.

To get started, administrators deploy Cloudflare’s client (WARP) on user devices, whether those devices are macOS, Windows, iOS, Android, ChromeOS or Linux. The client then sends all outbound layer 4 traffic to Cloudflare, along with the identity of the user on the device.

With proxy and TLS decryption turned on, Cloudflare will log all traffic sent through Gateway and surface this in Cloudflare’s dashboard in the form of raw logs and aggregate analytics. However, in some instances, administrators may not want to retain logs or allow access to all members of their security team.

The reasons may vary, but the end result is the same: administrators need the ability to control how their users’ data is collected and who can audit those records.

Legacy solutions typically give administrators an all-or-nothing blunt hammer. Organizations could either enable or disable all logging. Without any logging, those services did not capture any personally identifiable information (PII). By avoiding PII, administrators did not have to worry about control or access permissions, but they lost all visibility to investigate security events.

That lack of visibility adds even more complications when teams need to address tickets from their users to answer questions like “why was I blocked?”, “why did that request fail?”, or “shouldn’t that have been blocked?”. Without logs related to any of these events, your team can’t help end users diagnose these types of issues.

Protecting your data

Starting today, your team has more options to decide the type of information Cloudflare Gateway logs and who in your organization can review it. We are releasing role-based dashboard access for the logging and analytics pages, as well as selective logging of events. With role-based access, those with access to your account will have PII information redacted from their dashboard view by default.

We’re excited to help organizations build least-privilege controls into how they manage the deployment of Cloudflare Gateway. Security team members can continue to manage policies or investigate aggregate attacks. However, some events call for further investigation. With today’s release, your team can delegate the ability to review and search using PII to specific team members.

We still know that some customers want to reduce the logs stored altogether, and we’re excited to help solve that too. Now, administrators can now select what level of logging they want Cloudflare to store on their behalf. They can control this for each component, DNS, Network, or HTTP and can even choose to only log block events.

That setting does not mean you lose all logs — just that Cloudflare never stores them. Selective logging combined with our previously released Logpush service allows users to stop storage of logs on Cloudflare and turn on a Logpush job to their destination of choice in their location of choice as well.

How to Get Started

To get started, any Cloudflare Gateway customer can visit the Cloudflare for Teams dashboard and navigate to Settings > Network. The first option on this page will be to specify your preference for activity logging. By default, Gateway will log all events, including DNS queries, HTTP requests and Network sessions. In the network settings page, you can then refine what type of events you wish to be logged. For each component of Gateway you will find three options:

  1. Capture all
  2. Capture only blocked
  3. Don’t capture
PII and Selective Logging controls for Cloudflare’s Zero Trust platform

Additionally, you’ll find an option to redact all PII from logs by default. This will redact any information that can be used to potentially identify a user including User Name, User Email, User ID, Device ID, source IP, URL, referrer and user agent.

We’ve also included new roles within the Cloudflare dashboard, which provide better granularity when partitioning Administrator access to Access or Gateway components. These new roles will go live in January 2022 and can be modified on enterprise accounts by visiting Account Home → Members.

If you’re not yet ready to create an account, but would like to explore our Zero Trust services, check out our interactive demo where you can take a self-guided tour of the platform with narrated walkthroughs of key use cases, including setting up DNS and HTTP filtering with Cloudflare Gateway.

What’s Next

Moving forward, we’re excited to continue adding more and more privacy features that will give you and your team more granular control over your environment. The features announced today are available to users on any plan; your team can follow this link to get started today.

Welcome to CIO Week and the future of corporate networks

Post Syndicated from Annika Garbers original https://blog.cloudflare.com/welcome-to-cio-week/

Welcome to CIO Week and the future of corporate networks

Welcome to CIO Week and the future of corporate networks

The world of a CIO has changed — today’s corporate networks look nothing like those of even five or ten years ago — and these changes have created gaps in visibility and security, introduced high costs and operational burdens, and made networks fragile and brittle.

We’re optimistic that CIOs have a brighter future to look forward to. The Internet has evolved from a research project into integral infrastructure companies depend on, and we believe a better Internet is the path forward to solving the most challenging problems CIOs face today. Cloudflare is helping build an Internet that’s faster, more secure, more reliable, more private, and programmable, and by doing so, we’re enabling organizations to build their next-generation networks on ours.

This week, we’ll demonstrate how Cloudflare One, our Zero Trust Network-as-a-Service, is helping CIOs transform their corporate networks. We’ll also introduce new functionality that expands the scope of Cloudflare’s platform to address existing and emerging needs for CIOs. But before we jump into the week, we wanted to spend some time on our vision for the corporate network of the future. We hope this explanation will clarify language and acronyms used by vendors and analysts who have realized the opportunity in this space (what does Zero Trust Network-as-a-Service mean, anyway?) and set context for how our innovative approach is realizing this vision for real CIOs today.

Welcome to CIO Week and the future of corporate networks

Generation 1: Castle and moat

For years, corporate networks looked like this:

Welcome to CIO Week and the future of corporate networks

Companies built or rented space in data centers that were physically located within or close to major office locations. They hosted business applications — email servers, ERP systems, CRMs, etc. — on servers in these data centers. Employees in offices connected to these applications through the local area network (LAN) or over private wide area network (WAN) links from branch locations. A stack of security hardware (e.g., firewalls) in each data center enforced security for all traffic flowing in and out. Once on the corporate network, users could move laterally to other connected devices and hosted applications, but basic forms of network authentication and physical security controls like employee badge systems generally prevented untrusted users from getting access.

Network Architecture Scorecard: Generation 1

Characteristic Score Description
Security ⭐⭐ All traffic flows through perimeter security hardware. Network access restricted with physical controls. Lateral movement is only possible once on network.
Performance ⭐⭐⭐ Majority of users and applications stay within the same building or regional network.
Reliability ⭐⭐ Dedicated data centers, private links, and security hardware present single points of failure. There are cost tradeoffs to purchase redundant links and hardware.
Cost ⭐⭐ Private connectivity and hardware are high cost capital expenditures, creating a high barrier to entry for small or new businesses. However, a limited number of links/boxes are required (trade off with redundancy/reliability). Operational costs are low to medium after initial installation.
Visibility ⭐⭐⭐ All traffic is routed through central location, so it’s possible to access NetFlow/packet captures and more for 100% of flows.
Agility Significant network changes have a long lead time.
Precision Controls are primarily exercised at the network layer (e.g., IP ACLs). Accomplishing “allow only HR to access employee payment data” looks like: IP in range X allowed to access IP in range Y (and requires accompanying spreadsheet to track IP allocation).

Applications and users left the castle

So what changed? In short, the Internet. Faster than anyone expected, the Internet became critical to how people communicate and get work done. The Internet introduced a radical shift in how organizations thought about their computing resources: if any computer can talk to any other computer, why would companies need to keep servers in the same building as employees’ desktops? And even more radical, why would they need to buy and maintain their own servers at all? From these questions, the cloud was born, enabling companies to rent space on other servers and host their applications while minimizing operational overhead. An entire new industry of Software-as-a-Service emerged to simplify things even further, allowing companies to completely abstract away questions of capacity planning, server reliability, and other operational struggles.

This golden, Internet-enabled future — cloud and SaaS everything — sounds great! But CIOs quickly ran into problems. Established corporate networks with castle-and-moat architecture can’t just go down for months or years during a large-scale transition, so most organizations are in a hybrid state, one foot still firmly in the world of data centers, hardware, and MPLS. And traffic to applications still needs to stay secure, so even if it’s no longer headed to a server in a company-owned data center, many companies have continued to send it there (backhauled through private lines) to flow through a stack of firewall boxes and other hardware before it’s set free.

As more applications moved to the Internet, the volume of traffic leaving branches — and being backhauled through MPLS lines through data centers for security — continued to increase. Many CIOs faced an unpleasant surprise in their bandwidth charges the month after adopting Office 365: with traditional network architecture, more traffic to the Internet meant more traffic over expensive private links.

As if managing this first dramatic shift — which created complex hybrid architectures and brought unexpected cost increases — wasn’t enough, CIOs had another to handle in parallel. The Internet changed the game not just for applications, but also for users. Just as servers don’t need to be physically located at a company’s headquarters anymore, employees don’t need to be on the office LAN to access their tools. VPNs allow people working outside of offices to get access to applications hosted on the company network (whether physical or in the cloud).

These VPNs grant remote users access to the corporate network, but they’re slow, clunky to use, and can only support a limited number of people before performance degrades to the point of unusability. And from a security perspective, they’re terrifying — once a user is on the VPN, they can move laterally to discover and gain access to other resources on the corporate network. It’s much harder for CIOs and CISOs to control laptops with VPN access that could feasibly be brought anywhere — parks, public transportation, bars — than computers used by badged employees in the traditional castle-and-moat office environment.

In 2020, COVID-19 turned these emerging concerns about VPN cost, performance, and security into mission-critical, business-impacting challenges, and they’ll continue to be even as some employees return to offices.

Welcome to CIO Week and the future of corporate networks

Generation 2: Smörgåsbord of point solutions

Lots of vendors have emerged to tackle the challenges introduced by these major shifts, often focusing on one or a handful of use cases. Some providers offer virtualized versions of hardware appliances, delivered over different cloud platforms; others have cloud-native approaches that address a specific problem like application access or web filtering. But stitching together a patchwork of point solutions has caused even more headaches for CIOs and most products available focused only on shoring up identity, endpoint, and application security without truly addressing network security.

Gaps in visibility

Compared to the castle and moat model, where traffic all flowed through a central stack of appliances, modern networks have extremely fragmented visibility. IT teams need to piece together information from multiple tools to understand what’s happening with their traffic. Often, a full picture is impossible to assemble, even with the support of tools including SIEM and SOAR applications that consolidate data from multiple sources. This makes troubleshooting issues challenging: IT support ticket queues are full of unsolved mysteries. How do you manage what you can’t see?

Gaps in security

This patchwork architecture — coupled with the visibility gaps it introduced — also creates security challenges. The concept of “Shadow IT” emerged to describe services that employees have adopted and are using without explicit IT permission or integration into the corporate network’s traffic flow and security policies. Exceptions to filtering policies for specific users and use cases have become unmanageable, and our customers have described a general “wild west” feeling about their networks as Internet use grew faster than anyone could have anticipated. And it’s not just gaps in filtering that scare CIOs — the proliferation of Shadow IT means company data can and does now exist in a huge number of unmanaged places across the Internet.

Poor user experience

Backhauling traffic through central locations to enforce security introduces latency for end users, amplified as they work in locations farther and farther away from their former offices. And the Internet, while it’s come a long way, is still fundamentally unpredictable and unreliable, leaving IT teams struggling to ensure availability and performance of apps for users with many factors (even down to shaky coffee shop Wi-Fi) out of their control.

High (and growing) cost

CIOs are still paying for MPLS links and hardware to enforce security across as much traffic as possible, but they’ve now taken on additional costs of point solutions to secure increasingly complex networks. And because of fragmented visibility and security gaps, coupled with performance challenges and rising expectations for a higher quality of user experience, the cost of providing IT support is growing.

Network fragility

All this complexity means that making changes can be really hard. On the legacy side of current hybrid architectures, provisioning MPLS lines and deploying new security hardware come with long lead times, only worsened by recent issues in the global hardware supply chain. And with the medley of point solutions introduced to manage various aspects of the network, a change to one tool can have unintended consequences for another. These effects compound in IT departments often being the bottleneck for business changes, limiting the flexibility of organizations to adapt to an only-accelerating rate of change.

Network Architecture Scorecard: Generation 2

Characteristic Score Description
Security Many traffic flows are routed outside of perimeter security hardware, Shadow IT is rampant, and controls that do exist are enforced inconsistently and across a hodgepodge of tools.
Performance Traffic backhauled through central locations introduces latency as users move further away; VPNs and a bevy of security tools introduce processing overhead and additional network hops.
Reliability ⭐⭐ The redundancy/cost tradeoff from Generation 1 is still present; partial cloud adoption grants some additional resiliency but growing use of unreliable Internet introduces new challenges.
Cost Costs from Generation 1 architecture are retained (few companies have successfully deprecated MPLS/security hardware so far), but new costs of additional tools added, and operational overhead is growing.
Visibility Traffic flows and visibility are fragmented; IT stitches partial picture together across multiple tools.
Agility ⭐⭐ Some changes are easier to make for aspects of business migrated to cloud; others have grown more painful as additional tools introduce complexity.
Precision ⭐⭐ Mix of controls exercised at network layer and application layer. Accomplishing “allow only HR to access employee payment data” looks like: Users in group X allowed to access IP in range Y (and accompanying spreadsheet to track IP allocation)

In summary — to reiterate where we started — modern CIOs have really hard jobs. But we believe there’s a better future ahead.

Generation 3: The Internet as the new corporate network

The next generation of corporate networks will be built on the Internet. This shift is already well underway, but CIOs need a platform that can help them get access to a better Internet — one that’s more secure, faster, more reliable, and preserves user privacy while navigating complex global data regulations.

Zero Trust security at Internet scale

CIOs are hesitant to give up expensive forms of private connectivity because they feel more secure than the public Internet. But a Zero Trust approach, delivered on the Internet, dramatically increases security versus the classic castle and moat model or a patchwork of appliances and point software solutions adopted to create “defense in depth.” Instead of trusting users once they’re on the corporate network and allowing lateral movement, Zero Trust dictates authenticating and authorizing every request into, out of, and between entities on your network, ensuring that visitors can only get to applications they’re explicitly allowed to access. And delivering this authentication and policy enforcement from an edge location close to the user enables radically better performance, rather than forcing traffic to backhaul through central data centers or traverse a huge stack of security tools.

In order to enable this new model, CIOs need a platform that can:

Connect all the entities on their corporate network.

It has to not just be possible, but also easy and reliable to connect users, applications, offices, data centers, and cloud properties to each other as flexibly as possible. This means support for the hardware and connectivity methods customers have today, from enabling mobile clients to operate across OS versions to compatibility with standard tunneling protocols and network peering with global telecom providers.

Apply comprehensive security policies.

CIOs need a solution that integrates tightly with their existing identity and endpoint security providers and provides Zero Trust protection at all layers of the OSI stack across traffic within their network. This includes end-to-end encryption, microsegmentation, sophisticated and precise filtering and inspection for traffic between entities on their network (“East/West”) and to/from the Internet (“North/South”), and protection from other threats like DDoS and bot attacks.

Visualize and provide insight on traffic.

At a base level, CIOs need to understand the full picture of their traffic: who’s accessing what resources and what does performance (latency, jitter, packet loss) look like? But beyond providing the information necessary to answer basic questions about traffic flows and user access, next-generation visibility tools should help users understand trends and highlight potential problems proactively, and they should provide easy-to-use controls to respond to those potential problems. Imagine logging into one dashboard that provides a comprehensive view of your network’s attack surface, user activity, and performance/traffic health, receiving customized suggestions to tighten security and optimize performance, and being able to act on those suggestions with a single click.

Better quality of experience, everywhere in the world

More classic critiques of the public Internet: it’s slow, unreliable, and increasingly subject to complicated regulations that make operating on the Internet as a CIO of a globally distributed company exponentially challenging. The platform CIOs need will make intelligent decisions to optimize performance and ensure reliability, while offering flexibility to make compliance easy.

Fast, in the ways that matter most.

Traditional methods of measuring network performance, like speed tests, don’t tell the full story of actual user experience. Next-generation platforms will measure performance holistically and consider application-specific factors, along with using real-time data on Internet health, to optimize traffic end-to-end.

Reliable, despite factors out of your control.

Scheduled downtime is a luxury of the past: today’s CIOs need to operate 24×7 networks with as close as possible to 100% uptime and reachability from everywhere in the world. They need a provider that’s resilient in its own services, but also has the capacity to handle massive attacks with grace and flexibility to route around issues with intermediary providers. Network teams should also not need to take action for their provider’s planned or unplanned data center outages, such as needing to manually configure new data center connections. And they should be able to onboard new locations at any time without waiting for vendors to provision additional capacity close to their network.

Localized and compliant with data privacy regulations.

Data sovereignty laws are rapidly evolving. CIOs need to bet on a platform that will give them the flexibility to adapt as new protections are rolled out across the globe, with one interface to manage their data (not fractured solutions in different regions).

A paradigm shift that’s possible starting today

These changes sound radical and exciting. But they’re also intimidating — wouldn’t a shift this large be impossible to execute, or at least take an unmanageably long time, in complex modern networks? Our customers have proven this doesn’t have to be the case.

Meaningful change starting with just one flow

Generation 3 platforms should prioritize ease of use. It should be possible for companies to start their Zero Trust journey with just one traffic flow and grow momentum from there. There’s lots of potential angles to start with, but we think one of the easiest is configuring clientless Zero Trust access for one application. Anyone, from the smallest to the largest organizations, should be able to pick an app and prove the value of this approach within minutes.

A bridge between the old & new world

Shifting from network-level access controls (IP ACLs, VPNs, etc.) to application and user-level controls to enforce Zero Trust across your entire network will take time. CIOs should pick a platform that makes it easy to migrate infrastructure over time by allowing:

  • Upgrading from IP-level to application-level architecture over time: Start by connecting with a GRE or IPsec tunnel, then use automatic service discovery to identify high-priority applications to target for finer-grained connection.
  • Upgrading from more open to more restrictive policies over time: Start with security rules that mirror your legacy architecture, then leverage analytics and logs to implement more restrictive policies once you can see who’s accessing what.
  • Making changes to be quick and easy: Design your next-generation network using a modern SaaS interface.
Welcome to CIO Week and the future of corporate networks

Network Architecture Scorecard: Generation 3

Characteristic Score Description
Security ⭐⭐⭐ Granular security controls are exercised on every traffic flow; attacks are blocked close to their source; technologies like Browser Isolation keep malicious code entirely off of user devices.
Performance ⭐⭐⭐ Security controls are enforced at location closest to each user; intelligent routing decisions ensure optimal performance for all types of traffic.
Reliability ⭐⭐⭐ The platform leverages redundant infrastructure to ensure 100% availability; no one device is responsible for holding policy and no one link is responsible for carrying all critical traffic.
Cost ⭐⭐ Total cost of ownership is reduced by consolidating functions.
Visibility ⭐⭐⭐ Data from across the edge is aggregated, processed and presented along with insights and controls to act on it.
Agility ⭐⭐⭐ Making changes to network configuration or policy is as simple as pushing buttons in a dashboard; changes propagate globally within seconds.
Precision ⭐⭐⭐ Controls are exercised at the user and application layer. Accomplishing “allow only HR to access employee payment data” looks like: Users in HR on trusted devices allowed to access employee payment data

Cloudflare One is the first built-from-scratch, unified platform for next-generation networks

In order to achieve the ambitious vision we’ve laid out, CIOs need a platform that can combine Zero Trust and network services operating on a world-class global network. We believe Cloudflare One is the first platform to enable CIOs to fully realize this vision.

We built Cloudflare One, our combined Zero Trust network-as-a-service platform, on our global network in software on commodity hardware. We initially started on this journey to serve the needs of our own IT and security teams and extended capabilities to our customers over time as we realized their potential to help other companies transform their networks. Every Cloudflare service runs on every server in over 250 cities with over 100 Tbps of capacity, providing unprecedented scale and performance. Our security services themselves are also faster — our DNS filtering runs on the world’s fastest public DNS resolver and identity checks run on Cloudflare Workers, the fastest serverless platform.

We leverage insights from over 28 million requests per second and 10,000+ interconnects to make smarter security and performance decisions for all of our customers. We provide both network connectivity and security services in a single platform with single-pass inspection and single-pane management to fill visibility gaps and deliver exponentially more value than the sum of point solutions could alone. We’re giving CIOs access to our globally distributed, blazing-fast, intelligent network to use as an extension of theirs.

This week, we’ll recap and expand on Cloudflare One, with examples from real customers who are building their next-generation networks on Cloudflare. We’ll dive more deeply into the capabilities that are available today and how they’re solving the problems introduced in Generation 2, as well as introduce some new product areas that will make CIOs’ lives easier by eliminating the cost and complexity of legacy hardware, hardening security across their networks and from multiple angles, and making all traffic routed across our already fast network even faster.

We’re so excited to share how we’re making our dreams for the future of corporate networks reality — we hope CIOs (and everyone!) reading this are excited to hear about it.

Cloudflare for Offices

Post Syndicated from James Allworth original https://blog.cloudflare.com/cloudflare-for-offices/

Cloudflare for Offices

Cloudflare for Offices

Cloudflare’s network is one of the biggest, most connected, and fastest in the world. It extends to more than 250 cities. In those cities, we’re often present in multiple data centers in order to connect to as many networks and bring our services as close to as many users as possible. We’re always asking ourselves: how can we get closer to even more of the world’s Internet users?

Today, we’re taking a big step toward that goal.

Introducing Cloudflare for Offices. We are creating strategic partnerships that will enable us to extend Cloudflare’s network into over 1,000 of the world’s busiest office buildings and multi-dwelling units. These buildings span the globe, and are where millions of people work every day; now, they’re going to be microseconds away from our global network. Our first deployments will include 30 Hudson Yards, 4 Times Square, and 520 Madison in New York; Willis Tower in Chicago; John Hancock Tower in Boston; and the Embarcadero Center and Salesforce Tower in San Francisco.

And we’re not done. We’ve built custom secure hardware and partnered with fiber providers to scale this model globally. It will bring a valuable new resource to the literal doorstep of building tenants.

Cloudflare has built a mutually beneficial relationship with the world’s ISPs by reducing their operational costs and improving customer performance. Similarly, we expect a mutually beneficial relationship as we roll out Cloudflare for Offices. Real estate operators & service offices upgraded with this amenity increase the value and occupancy of their portfolio. IT teams can enforce a consistent security posture while enabling flexible work environments from any location their employees prefer. And employees in these smart spaces, experiencing faster Internet performance, can be more productive, seamlessly working as they choose, be it at the office, at home, or on the go.

Why offices?

There’s no disputing the fact that the nature of work has undergone a tremendous shift over the past 18 months. While we still don’t know what the future of work will look like exactly, here’s what we do know: it’s going to require more flexibility, all while maintaining security and performance standards that are a prerequisite for operating on today’s Internet. Enabling flexibility, and improving performance AND security (as opposed to trading one off for the other) has been a long held belief of Cloudflare. Alongside, of course, driving value for organizations.

Cloudflare for Offices — by connecting directly with enterprises — enables us to now do that for commercial office space.

No More Band-Aid Boxes in the Basement

There are a variety of advantages to Cloudflare for Offices. First and foremost, it eliminates the need to rely on the costly, rigid hardware solutions and multiple, regional, third parties that are often required to provide secure and performant branch office connectivity. Businesses have maintained expensive and hardware-intensive office networks since the dawn of the modern Internet.

Never have they gotten less return on that investment than through the pandemic.

The hybrid future of work will only exacerbate the high costs and complexity of maintaining and securing this outdated infrastructure. MPLS links. WANs. Hardware firewalls. VPNs. All these remain mainstays of the modern office. In the same way that we look back on maintaining server rooms for compute and storage as complete anachronisms, so too will we soon look back on maintaining all these boxes in an office. We’ve spoken to customers who now have over half of their workforce remote, and who are considering giving up their office space or increasing their presence in shared workspaces. Some are being hamstrung because of a need for MPLS to make their network operate securely. But it’s not just customers. This is a problem that we ourselves have been facing. Setting up new offices, or securing and optimizing shared workspaces, is a huge lift, physically as well as technologically.

Cloudflare for Offices simplifies this: a direct connection to Cloudflare’s network puts all office traffic behind Cloudflare’s services. Now, creating an office is as simple as plugging a cable into our box, and all the security and performance features that an office typically needs are microseconds away. It also enables the creation of custom topologies on Cloudflare’s network, dramatically increasing the flexibility of your physical footprint.

“Throughout the pandemic, we’ve supported our over 12,000 employees to work safely and seamlessly from home or from our offices. Cloudflare solutions have been critical, and we’re excited to continue to partner on efficient and strong solutions.”
Mark Papermaster, CTO and Executive Vice President, Technology and Engineering, AMD

Zero (Trust) to 100 performance

COVID-19 hasn’t just driven a paradigm shift in where people work, however. It’s also driven a paradigm shift in how organizations think about IT security.

The old model — castle and moat — was designed during the desktop era, when most computing happened on premises. Everyone within the walls of the enterprise was considered authenticated; if you were outside the office, you needed to “tunnel” in through the moat in the castle of the office. As more and more users entered the portable era — through laptops and smartphones — then more tunnels were created.

The pandemic made it so that everyone was outside the moat, tunneling into an empty castle. Nobody was in the office anymore. The paradigm has been stretched to a parody.

Google was one of the first organizations to start to think about how things could be done differently: it proposed a model called BeyondCorp, which treated internal employees to an organization similar to how it treated external customers or suppliers to an organization. To put it simply: nobody is trusted, no matter if they’re in the office or not. If you want access to something, be prepared to prove you are who you say you are.

Fast-forward to 2021, and this model — otherwise known as Zero Trust — has become the gold standard of enterprise security, to which more and more organizations are implementing. Cloudflare’s Zero Trust solution — Cloudflare for Teams — has become increasingly popular for not just its advanced functionality and its ease of use, but because, when coupled with our enterprise connectivity offerings, allows you to run more and more of your traffic across Cloudflare’s network. We call this holistic solution Cloudflare One, and it provides your organization a virtual private network in the cloud, with all the associated security and visibility benefits.

Cloudflare for Offices

Cloudflare for Offices is the onramp for offices onto Cloudflare One. It’s a fast, private onramp for your office network traffic straight onto the Cloudflare network — with all the security and visibility benefits that running your traffic over our network provides.

We also realize that for many organizations, Zero Trust is a journey. Not every customer is ready to go from MPLS and built-out networks to trusting the public Internet overnight. Cloudflare for Offices is a great start in the journey — by building out your own networks on top of Cloudflare, you reduce your threat vectors while being able to keep your existing topologies. This gives you the privacy and security of Cloudflare One, but with the flexibility to build Zero Trust any way you choose.

But security and visibility are not the only benefits. One of the common complaints we hear from customers about competing solutions is that performance can be extremely variable. The proximity Cloudflare has to so many people around the world is important because when employees connect using a Zero Trust solution, at least a subset (but often all) the traffic going from an end-user device needs to connect to the Zero Trust provider. Having Cloudflare equipment close means that the performance of the user device will be vastly increased as opposed to having to connect to a far off data center. You’ve probably read about what happens when Cloudflare takes control of your Last Mile connectivity and your network to your data centers. And you know that connecting to a Cloudflare data center in the same city increases performance, but imagine what happens when you’re connecting to Cloudflare in your office basement. And when you think about all the employees that you have are running on a zero trust model, that performance difference sums up to a lot of additional employee productivity.

Up until now, something like this has been extremely expensive, complicated, and oftentimes, slow.

“We see a lot of potential in the way Cloudflare is bringing its network directly to our office locations. It’s critical that we empower our employees to work productively and securely, and this makes it that much easier for us to do so no matter where our teams are working from in the future–and reducing our network costs along the way.”
Aaron Dearinger, Edge Architect, Garmin International

Cloudflare for Offices allows for customers to choose their Network as a Service: let us manage your footprint and build your network out however you like.

Living on the Edge

But it’s not just zero trust that gets a boost. Workers, Cloudflare’s serverless platform, runs on the edge from the nearest data center to the user making the request. As you might have already read: it’s fast. With more and more business and application logic being moved to Workers, your end users stand to benefit.

But it does beg the question: just how fast are we talking?

Cloudflare for Offices
Photo by Denys Nevozhai on Unsplash

One example building we’re planning to enable is Salesforce Tower, in San Francisco. It’s 1,070 feet tall. A light signal running from the top of the building to the basement along a single-mode fiber cable would take no more than 6 µs (6 microseconds) to complete its journey. This puts customers fractions of a millisecond away from Cloudflare’s network.

The edge is becoming indistinguishable in performance from local compute.

Built for Purpose

We’ve written many times before about how Cloudflare designs our hardware. But deploying Cloudflare hardware outside of data centers — and into office basements — presented a new set of challenges. Cooling, energy efficiency, and resiliency were even more important in the design. Similarly, these are going to be deployed to offices all over the world; they needed to be cost-effective. Finally, and perhaps most importantly, there is also a security aspect to this: we could not assume the same level of access control inside a building as we could inside a data center.

Cloudflare for Offices

This is where the inherent advantages of designing and owning the hardware come to the fore. Because of it, we’re able to build exactly what we need for the environment: ranging from how resilient these devices need to be, to an appropriate level of security given where they’re going to be operating. In fact, we have been working on hardware security for the last five years in anticipation of the launch of Cloudflare for Offices. We’re starting with switching, and we plan to add compute and storage capabilities in short order. Stay tuned for more details.

Join the Revolution

If you’re an organization (tenant) in a large office building, an owner/operator of multi-tenant (or multi-dwelling) real estate, or a co-working space looking to bring Cloudflare to your doorstep — with all the flexibility, performance and security enhancements, and cost savings that would entail — then we’d love for you to get in touch with us.

Cloudflare Helps K-12s Go Back to School

Post Syndicated from Nandini Jayarajan original https://blog.cloudflare.com/cloudflare-helps-k12-go-back-to-school/

Cloudflare Helps K-12s Go Back to School

Cloudflare Helps K-12s Go Back to School

While Federal funding programs focus on providing connectivity to students and staff, security is often an afterthought and reallocating funds to protect the network can become a challenge. We are excited to announce our Back to School initiative to further support our mission to provide performance and security with no trade-offs.

From start to finish, education customers will work with our dedicated Public Sector team, well-versed in the specific technical environments and business needs for K-12 districts. Your IT team will have access to 24/7/365 technical support, emergency response and support during under attack situations, and ongoing training to continuously help improve your security posture and business continuity plans.

Attacks Against K-12 Schools On The Rise

Public schools in the United States, especially K-12s, saw a record-breaking increase in cybersecurity attacks. The K-12 Cyber Incident Map cataloged 408 publicly-disclosed school incidents, including a wide range of cyber attacks; from data breaches to ransomware, phishing attacks, and denial-of-service attacks. This is an 18 percent increase over 2019 and continues the upward trend in attacks since the K-12 Cyber Incident Map started tracking incidents in 2016. To support our public education partners, Cloudflare has created a tailored onboarding experience to help education entities receive enterprise-level security services at an affordable price.

Cloudflare Helps K-12s Go Back to School
Source: https://k12cybersecure.com/year-in-review/‌‌

The public school system serves over 50 million students and employs nearly 6.7 million people, making it the largest industry by employment in the United States. This government-funded, free education system creates a market size of nearly $806 billion. Schools partner with technology companies for student resources and overall operations, and use SaaS applications and cloud deployments to control costs. Investing in these products and services allowed schools to transition to remote learning during the pandemic and continue educating students.

Despite their reliance on connectivity and technology, school districts rarely invest enough in cybersecurity to combat the high risk of attacks. Cybercriminals see public schools as ‘soft targets’ as they hold a lot of valuable data.

Ransomware attacks make data vulnerable to exposure and block access to a school district’s network. Baltimore County, Maryland schools experienced an attack in November 2020 that shut down schools for two days for 111,000 students, and cost the school system over $8 million to recover.

In September 2020, Toledo Public Schools in Ohio experienced a data breach by the Maze ransomware cartel. Maze posted 9 GB of compressed data that included sensitive student and employee data from at least 2008 to 2017. Less than six months later, in February 2021, parents received identity theft and credit fraud notifications involving their children.

Phishing attacks also continue to be a headache for K-12 school districts. The median amount stolen in attacks are \$2 million and, in 2020, \$9.8 million was stolen from a single school district.

Between the high rate of cybersecurity attacks in 2020 and into the first half of 2021, things are not slowing down, and education entities will continue to be targeted, whether it be directly or indirectly.

The Move to Modern

As it became a focus for K-12 Districts to modernize and move physical infrastructure into a more flexible, scalable solution, many school districts were looking for a way to offload DNS onto a cloud-based offering. Leveraging Cloudflare’s global anycast network, we’re able to provide a single management console to handle application needs: Managed DNS with built-in DNSSEC, DDoS mitigation, and Web Application Firewall. You can learn more on how Mount Pleasant School District in Texas consolidated their web assets in our case study.

Where The Need Has Shifted

The pandemic has exposed network security gaps in education, leaving a few main areas open to vulnerability — namely open/exposed ports that allow malicious actors to stay under the radar and end-of-life software that no longer receives security updates or bug fixes.

As attackers become more sophisticated, it has become imperative that districts implement comprehensive network layer solutions to prevent outages, data breaches, and other cyber-related incidents. The Federal Bureau of Investigation (FBI), the Cybersecurity and Infrastructure Security Agency (CISA), and the Multi-State Information Sharing and Analysis Center (MS-ISAC) released a Joint Cybersecurity Advisory that provides recommendations for K-12 for stopping threats and attacks.

How Cloudflare One Can Help

Cloudflare One is a network-as-a-service solution designed to replace a patchwork of appliances with a single network that provides cloud-based security, performance, and control through one user interface.

While districts may be receiving DDoS protection from their upstream ISP, there are a few common issues we see with this setup:

  • ISPs typically use the same commodity devices that were being deployed up to 20 years ago in data centers.
  • The devices are typically set up in an “on demand” fashion so that if you begin to experience a DDoS attack they will need to first be notified before assisting. In many cases, if that appliance is overloaded or unable to withstand the size or complexity of an attack, healthy traffic may be dropped as well.
  • There is limited visibility into the source of the attack and a lack of control around putting security measures in place for future incidents.

As compared to hardware boxes and on-premise appliances, Cloudflare’s service is “always on”. This means we’re agile and will proactively take action in the event of an attack, the time to mitigate is as small as possible, and you get the added benefit of other services being layered into the defense in depth strategy (DNS, CDN, WAF).

Within Cloudflare One, our Layer 3 DDos Mitigation solution called Magic Transit, has helped districts like Godwin Heights stay online by blocking hundreds of large DDoS attacks (just within the first few weeks!). Using anycast and BGP to announce your IP space, Cloudflare absorbs traffic destined for your network and mitigates DDoS attacks closest to the source, before sending the filtered traffic back to your network over low latency paths for fast performance.

Another focus during the pandemic has been supporting remote students and staff. This continues to challenge IT security as we think about how to not only keep our networks up and running, but how to protect students and staff while on the network from phishing attacks, malware, and ransomware.

Cloudflare for Teams is composed of Access and Gateway. Access pairs with identity management systems to protect all internal applications. Gateway is designed to secure access to the outbound Internet through DNS and URL filtering, SSL inspection, and file upload/download policies, which ultimately protects users from malware, phishing, and other security threats. This added layer of protection provides your users access to the applications they need without sacrificing security or performance.

Please inquire at [email protected] for our special Education K-12 Pricing. We look forward to supporting you.

How our network powers Cloudflare One

Post Syndicated from Annika Garbers original https://blog.cloudflare.com/our-network-cloudflare-one/

How our network powers Cloudflare One

Earlier this week, we announced Cloudflare One™, a unified approach to solving problems in enterprise networking and security. With Cloudflare One, your organization’s data centers, offices, and devices can all be protected and managed in a single control plane. Cloudflare’s network is central to the value of all of our products, and today I want to dive deeper into how our network powers Cloudflare One.

Over the past ten years, Cloudflare has encountered the same challenges that face every organization trying to grow and protect a global network: we need to protect our infrastructure and devices from attackers and malicious outsiders, but traditional solutions aren’t built for distributed networks and teams. And we need visibility into the activity across our network and applications, but stitching together logging and analytics tools across multiple solutions is painful and creates information gaps.

How our network powers Cloudflare One

We’ve architected our network to meet these challenges, and with Cloudflare One, we’re extending the advantages of these decisions to your company’s network to help you solve them too.

Distribution

Enterprises and some small organizations alike have team members around the world. Legacy models of networking forced traffic back through central choke points, slowing down users and constraining network scale. We keep hearing from our customers who want to stop buying appliances and expensive MPLS links just to try and outpace the increased demand their distributed teams place on their network.

Wherever your users are, we are too

Global companies have enough of a challenge managing widely distributed corporate networks, let alone the additional geographic dispersity introduced as users are enabled to work from home or from anywhere. Because Cloudflare has data centers close to Internet users around the world, all traffic can be processed close to its source (your users), regardless of their location. This delivers performance benefits across all of our products.

We built our network to meet users where they are. Today, we have data centers in over 200 cities and over 100 countries. As the geographical reach of Cloudflare’s network has expanded, so has our capacity, which currently tops 42 Tbps. This reach and capacity is extended to your enterprise with Cloudflare One.

The same Cloudflare, everywhere

Traditional solutions for securing enterprise networks often involve managing a plethora of regional providers with different capabilities. This means that traffic from two users in different parts of the world may be treated completely differently, for example, with respect to quality of DDoS attack detection. With Cloudflare One, you can manage security for your entire global network from one place, consolidating and standardizing control.

Capacity for the good & the bad

With 42 Tbps of network capacity, you can rest assured that Cloudflare can handle all of your traffic – the clean, legitimate traffic you want, and the malicious and attack traffic you don’t.

Scalability

Every product on every server

All of Cloudflare’s services are standardized across our entire network. Every service runs on every server, which means that traffic through all of the products you use can be processed close to its source, rather than being sent around to different locations for different services. This also means that as our network continues to grow, all products benefit: new data centers will automatically process traffic for every service you use.

For example, your users who connect to the Internet through Cloudflare Gateway in South America connect to one of our data centers in the region, rather than backhauling to another location. When those users need to reach an origin located on the other side of the world, we can also route them over our private backbone to get them there faster.

Commodity hardware, software-based functions

We built our network using commodity hardware, which allows us to scale quickly without relying on one single vendor or getting stuck in supply chain bottlenecks. And the services that process your traffic are software-based – no specialized, third-party hardware performing specific functions. This means that the development, maintenance, and support for the products you use all lives within Cloudflare, reducing the complexity of getting help when you need it.

This approach also lets us build efficiency into our network. We use that efficiency to serve customers on our free plan and deliver a more cost-effective platform to our larger customers.

Connectivity

Cloudflare interconnects with over 8,800 networks globally, including major ISPs, cloud services, and enterprises. Because we’ve built one of the most interconnected networks in the world, Cloudflare One can deliver a better experience for your users and applications, regardless of your network architecture or connectivity/transit vendors.

Broad interconnectivity with eyeball networks

Because of our CDN product (among others), being close to end users (“eyeballs”) has always been critical for our network. Now that more people than ever are working from home, eyeball → datacenter connectivity is more crucial than ever. We’ve spoken to customers who, since transitioning to a work-from-home model earlier this year, have had congestion issues with providers who are not well-connected with eyeball networks. With Cloudflare One, your employees can do their jobs from anywhere with Cloudflare smoothly keeping their traffic (and your infrastructure) secure.

Extensive presence in peering facilities

Earlier this year, we announced Cloudflare Network Interconnect (CNI), the ability for you to connect your network with Cloudflare’s via a secure physical or virtual connection. Using CNI means more secure, reliable traffic to your network through Cloudflare One. With our highly-connected network, there’s a good chance we’re colocated with your organization in at least one peering facility, making CNI setup a no-brainer. We’ve also partnered with five interconnect platforms to provide even more flexibility with virtual (software-defined layer 2) connections with Cloudflare. Finally, we peer with major cloud providers all over the world, providing even more flexibility for organizations at any stage of hybrid/cloud transition.

Making the Internet smarter

Traditional approaches to creating secure and reliable network connectivity involve relying on expensive MPLS links to provide point to point connection. Cloudflare is built from the ground-up on the Internet, relying on and improving the same Internet links that customers use today. We’ve built software and techniques that help us be smarter about how we use the Internet to deliver better performance and reliability to our customers. We’ve also built the Cloudflare Global Private Backbone to help us even further enhance our software and techniques to deliver even more performance and reliability where it’s needed the most.

This approach allows us to use the variety of connectivity options in our toolkit intelligently, building toward a more performant network than what we could accomplish with a traditional MPLS solution. And because we use transit from a wide variety of providers, chances are that whoever your ISP is, you already have high-quality connectivity to Cloudflare’s network.

Insight

Diverse traffic workload yields attack intelligence

We process all kinds of traffic thanks to our network’s reach and the diversity of our customer base. That scale gives us unique insight into the Internet. We can analyze trends and identify new types of attacks before they hit the mainstream, allowing us to better prepare and protect customers as the security landscape changes.

We also provide you with visibility into these network and threat intelligence insights with tools like Cloudflare Radar and Cloudflare One Intel. Earlier this week, we launched a feature to block DNS tunneling attempts. We analyze a tremendous number of DNS queries and have built a model of what they should look like. We use that model to block suspicious queries which might leak data from devices.

Unique network visibility enables Smart Routing

In addition to attacks and malicious traffic across our network, we’re paying attention to the state of the Internet. Visibility across carriers throughout the world allows us to identify congestion and automatically route traffic along the fastest and most reliable paths. Contrary to the experience delivered by traditional scrubbing providers, Magic Transit customers experience minimal latency and sometimes even performance improvements with Cloudflare in path, thanks to our extensive connectivity and transit diversity.

Argo Smart Routing, powered by our extensive network visibility, improves performance for web assets by 30% on average; we’re excited to bring these benefits to any traffic through Cloudflare One with Argo Smart Routing for Magic Transit (coming soon!).

What’s next?

Cloudflare’s network is the foundation of the value and vision for Cloudflare One. With Cloudflare One, you can put our network between the Internet and your entire enterprise, gaining the powerful benefits of our global reach, scalability, connectivity, and insight. All of the products we’ve launched this week, like everything we’ve built so far, benefit from the unique advantages of our network.

We’re excited to see these effects multiply as organizations adopt Cloudflare One to protect and accelerate all of their traffic. And we’re just getting started: we’re going to continue to expand our network, and the products that run on it, to deliver an even faster, more secure, more reliable experience across all of Cloudflare One.

Introducing Magic Firewall

Post Syndicated from Achiel van der Mandele original https://blog.cloudflare.com/introducing-magic-firewall/

Introducing Magic Firewall

Introducing Magic Firewall

Today we’re excited to announce Magic Firewall™, a network-level firewall delivered through Cloudflare to secure your enterprise. Magic Firewall covers your remote users, branch offices, data centers and cloud infrastructure. Best of all, it’s deeply integrated with Cloudflare One™, giving you a one-stop overview of everything that’s happening on your network.

Cloudflare Magic Transit™ secures IP subnets with the same DDoS protection technology that we built to keep our own global network secure. That helps ensure your network is safe from attack and available and it replaces physical appliances that have limits with Cloudflare’s network.

That still leaves some hardware onsite, though, for a different function: firewalls. Networks don’t just need protection from DDoS attacks; administrators need a way to set policies for all traffic entering and leaving the network. With Magic Firewall, we want to help your team deprecate those network firewall appliances and move that burden to the Cloudflare global network.

Firewall boxes are miserable to manage

Network firewalls have always been clunky. Not only are they expensive, they are bound by their own hardware constraints. If you need more CPU or memory, you have to buy more boxes. If you lack capacity, the entire network suffers, directly impacting employees that are trying to do their work. To compensate, network operators and security teams are forced to buy more capacity than we need, resulting in having to pay more than necessary.

We’ve heard this problem from our Magic Transit customers who are constantly running into capacity challenges:

“We’re constantly running out of memory and running into connection limits on our firewalls. It’s a huge problem.”

Network operators find themselves piecing together solutions from different vendors, mixing and matching features, and worrying about keeping policies in sync across the network. The result is more headache and added cost.

The solution isn’t more hardware

Some organizations then turn to even more vendors and purchase additional hardware to manage the patchwork firewall hardware they have deployed. Teams then have to balance refresh cycles, updates, and end of life management across even more platforms. These are band-aid solutions that do not solve the fundamental problem: how do we create a single view of the entire network that gives insights into what is happening (good and bad) and apply policy instantaneously, globally?

Introducing Magic Firewall
Traditional Firewall Architecture

Introducing Magic Firewall

Instead of more band-aids, we’re excited to launch Magic Firewall as a single, comprehensive, solution to network filtering. Unlike legacy appliances, Magic Firewall runs in the Cloudflare network. That network scales up or down with a customer’s needs at any given time.

Running in our network delivers an added benefit. Many customers backhaul network traffic to single chokepoints in order to perform firewalling operations, adding latency. Cloudflare operates data centers in 200 cities around the world and each of those points of presence is capable of delivering the same solution. Regional offices and data centers can instead rely on a Cloudflare Magic Firewall engine running within 100 milliseconds of their operation.

Integrated with Cloudflare One

Cloudflare One consists of products that allow you to apply a single filtering engine with consistent security controls to your entire network, not just part of it. The same types of controls that your organization wants to apply to traffic leaving your networks should be applied to traffic leaving your devices.

Magic Firewall will integrate with what you’re already using in Cloudflare. For example, traffic leaving endpoints outside of the network can reach Cloudflare using the Cloudflare WARP client where Gateway will apply the same rules your team configures for network level filtering. Branch offices and data centers can connect through Magic Transit with the same set of rules. This gives you a one-stop overview of your entire network instead of having to hunt down information across multiple devices and vendors.

How does it work?

So what is Magic Firewall? Magic Firewall is a way to replace your antiquated on-premises network firewall with an as-a-service solution, pushing your perimeter out to the edge. We already allow you to apply firewall rules at our edge with Magic Transit, but the process to add or change rules has previously involved working with your account team or Cloudflare support. Our first version, generally available in the next few months, will allow all our Magic Transit customers to apply static OSI Layer 3 & 4 mitigations completely self-service, at Cloudflare scale.

Introducing Magic Firewall Introducing Magic Firewall
Cloudflare applies firewall policies at every data center Meaning you have firewalls applying policies across the globe

Our first version of Magic Firewall will focus on static mitigations, allowing you to set a standard set of rules that apply to your entire network, whether devices or applications are sitting in the cloud, an employee’s device or a branch office. You’ll be able to express rules allowing or blocking based on:

  • Protocol
  • Source or destination IP and port
  • Packet length
  • Bit field match

Rules can be crafted in Wireshark syntax, a domain specific language common in the networking world and the same syntax we use across our other products. With this syntax, you can easily craft extremely powerful rules to precisely allow or deny any traffic in or out of your network. If you suspect there’s a bad actor inside or outside of your perimeter, simply log on to the dashboard and block that traffic. Rules are pushed out globally in seconds, shutting down threats at the edge.

Introducing Magic Firewall

Configuring firewalls should be easy and powerful. With Magic Firewall, rules can be configured using an easy UI that allows for complex logic. Or, just type the filter rule manually using Wireshark filter syntax and configure that way. Don’t want to mess with a UI? Rules can be added just as easily through the API.

What’s next?

Looking at packets is not enough… Even with firewall rules, teams still need visibility into what’s actually happening on their network: what’s happening inside of these datastreams? Is this legitimate traffic or do we have malicious actors either inside or outside of our network doing nefarious things? Deploying Cloudflare to sit between any two actors that interact with any of your assets (be they employee devices or services exposed to the Internet) allows us to enforce any policy, anywhere, either on where the traffic is coming from or what’s inside the traffic. Applying policies based on traffic type is just around the corner and we’re excited to announce that we’re planning to add additional capabilities to automatically detect intrusion events based on what’s happening inside datastreams in the near future.

We’re excited about this new journey. With Cloudflare One, we’re reinventing what the network looks like for corporations. We integrate access management, security features and performance across the board: for your network’s visitors but also for anyone inside it. All of this built on top of a network that was #BuiltForThis.

We’ll be opening up Magic Firewall in a limited beta, starting with existing Magic Transit customers. If you’re interested, please let us know.

How small businesses can start using Cloudflare One today

Post Syndicated from Brian Parks original https://blog.cloudflare.com/zero-trust-week-setting-up-cloudflare-one-as-a-small-business/

How small businesses can start using Cloudflare One today

Earlier this week, we announced Cloudflare One™, our comprehensive, cloud-based network-as-a-service solution. Cloudflare One improves network performance and security while reducing cost and complexity for companies of all sizes.

Cloudflare One is built to handle the scale and complexity of the largest corporate networks. But when it comes to network security and performance, the industry has focused all too often on the largest of customers with significant budgets and technology teams. At Cloudflare, we think it’s our opportunity and responsibility to serve everyone, and help companies of all sizes benefit from a better Internet.

This is Zero Trust Week at Cloudflare, and we’ve already talked about our mantra of Zero Trust for Everyone. As a quick refresher, Zero Trust is a security framework that assumes all networks, devices, and Internet destinations are inherently compromised and therefore should not be trusted. Cloudflare One facilitates Zero Trust security by securing how your users connect to corporate applications and the Internet at large.

As a small business network administrator, there are fundamentally three things you need to protect: devices, applications, and the network itself. Below, I’ll outline how you can secure devices whether they are in your office (DNS Filtering) or remote (WARP+ and Gateway), as well as applications and your network by moving to a Zero Trust model of security (Access).

By design, Cloudflare One is accessible to teams of any size. You shouldn’t need a massive IT department or a Fortune 500 budget to connect to your tools safely.  On Tuesday, we announced a new free plan which provides many of the features of Cloudflare One, including DNS filtering, Zero Trust access, and a management dashboard – for up to 50 users at no cost.

Starting now, your team can begin deploying Cloudflare One in your organization in just a few simple steps.

Step 1: Protect offices from threats on the Internet with DNS Filtering (10 minutes)
Step 2: Secure remote workers connecting to the Internet with Cloudflare WARP+ (30 minutes)
Step 3: Connect users to applications without a VPN with Cloudflare Access (1 hour)
Step 4: Block threats and data loss on devices with a Secure Web Gateway (1 hour)
Step 5: Add Zero Trust to your SaaS applications (2 hours)

1. Start blocking malicious sites and phishing attempts in 10 minutes

The Internet can be a dangerous place with malware and threats lurking everywhere. Protecting employees from threats on the Internet requires a way to inspect and filter their traffic. That starts with DNS-level filtering that can quickly and easily eliminate known malicious sites as well as restrict access to potentially dangerous neighborhoods on the Internet.

When your devices connect to a website, they start by sending a DNS query to a DNS resolver to find the IP address of the hostname for that site. The resolver responds and the device initiates the connection. That initial query creates two challenges for your team’s security:

  • Most DNS queries are unencrypted. ISPs can spy on DNS queries made by your employees and corporate devices while they work from home. Even worse, a malicious actor could modify responses to launch an attack.
  • DNS queries can resolve to malicious hostnames. Team members can click on links that lead to phishing attacks or malware downloads.

Cloudflare One can help keep that first query private and stop devices from inadvertently requesting a known malicious hostname.

Start by signing up for a Cloudflare account and navigating to the Cloudflare for Teams dashboard.

Next, set up a location.  You’ll be prompted to create a location which you can do if you want to protect the DNS queries of an office network. Simply deploy Gateway’s DNS filtering for your office by changing your network’s router to point to the assigned Gateway IP address.

Cloudflare operates 1.1.1.1, the world’s fastest DNS resolver. We’ve built Cloudflare Gateway’s DNS filtering tools on top of that same architecture so that your team has faster and safer DNS.

Now you can easily create a Gateway DNS policy to filter security threats or specific content categories.

How small businesses can start using Cloudflare One today

Then use the Gateway dashboard to monitor queries that are allowed or blocked.

How small businesses can start using Cloudflare One today

Then navigate to the dashboard on the “Overview” tab and see your traffic including what you are blocking and allowing.

How small businesses can start using Cloudflare One today

2.Next, protect all of your remote employees and send all traffic through Cloudflare over an encrypted connection

Employees who used to connect to the Internet through your office network now connect from hundreds or thousands of different home networks or mobile hotspots to do their jobs. That traffic relies on connections that might not be private.

You can use Cloudflare One to route all team member traffic over an encrypted, accelerated path to the Internet with Cloudflare WARP. Cloudflare WARP is available as an application that your team members can install on macOS, Windows, iOS, and Android. The client will route all of their device’s traffic to a nearby Cloudflare data center over Cloudflare’s implementation of a technology called WireGuard.

When they connect, Cloudflare One uses WARP+, our implementation of WARP that uses the Argo Smart Routing service to find the shortest path through our global network of data centers to reach the user’s destination.

How small businesses can start using Cloudflare One today

Your team can begin using Cloudflare WARP today. Navigate to the Cloudflare for Teams dashboard and purchase the Cloudflare Gateway or Cloudflare for Teams Standard plan. Once purchased, you can create a rule to determine who in your organization can use Cloudflare WARP.

Your end users can launch the client, input your team’s organization name, and login to begin using WARP+.  Alternatively, you can deploy the application with settings preconfigured using an device management solution like JAMF or InTune.

Cloudflare WARP seamlessly integrates with Gateway’s DNS filtering to bring secure, encrypted, DNS resolution to roaming devices. Users can input the DoH subdomain of a location in your Cloudflare for Teams account to begin using your organization’s DNS filtering settings wherever they work.

3. Replace your VPN with Cloudflare Access

When we were a smaller team and relied on a VPN, our IT help desk received hundreds of tickets complaining about our VPN. Some of these descriptions might look familiar.

How small businesses can start using Cloudflare One today

We built Cloudflare Access as a way to replace using a VPN as the gatekeeper to applications. Cloudflare Access follows a model known as Zero Trust security where Cloudflare’s network, by default, does not trust any connection. Every user attempting to reach an application has to prove they should be allowed to access that application based on rules that administrators configure. With our new Teams free plan, up to 50 seats of Access are available at no cost.

That sounds like adding a burden, but Cloudflare Access integrates with your team’s identity provider and single sign-on (SSO) options to make any application feel as seamless as a SaaS application with SSO. Even if your team does not have a corporate identity provider, you can integrate Access with free services like GitHub and LinkedIn, so your employees and partners can authenticate without adding cost.

How small businesses can start using Cloudflare One today

For hosted applications, you can connect your origin to Cloudflare’s network without opening holes in your firewall using Argo Tunnel. Cloudflare’s network will accelerate the traffic from that origin to your users along fast lanes using our global private backbone.

When your team members need to connect to an application, they can visit it directly or start from a custom app launcher for your team. When they arrive, they’ll be prompted to login with your identity provider and Access will check their identity, and other characteristics like country of login, against rules that you create in the Cloudflare for Teams dashboard.

How small businesses can start using Cloudflare One today

Cloudflare’s free plan includes up to 50 seats of Cloudflare Access at no cost so that your team can begin

4. Add a Secure Web Gateway to block threats and file loss

With Cloudflare WARP, all of the traffic leaving your devices now routes through Cloudflare’s network. However, threats and data loss can hide inside of that traffic. You can add Cloudflare Gateway’s HTTP filtering to your team’s Cloudflare WARP usage to block threats and file loss. For example, if your team uses Box you can restrict all file uploads to other cloud based storage services to ensure everything stays in one, approved place.

To get started, navigate to the Policies section of the Cloudflare for Teams dashboard. Select the HTTP tab to begin building rules that inspect traffic for potential issues like known malicious URLs or files being uploaded to unapproved destinations.

How small businesses can start using Cloudflare One today

To inspect traffic, you’ll need to download and install a certificate on the enrolled devices. Once installed, you can enable HTTP filtering from the Policies tab to begin enforcing the policies that you created and capturing event logs.

5. Bring Zero Trust rules to your SaaS applications

If you don’t have self-hosted applications, or also use SaaS applications, you can still bring the same Zero Trust rules to the SaaS applications that your team uses with Cloudflare Access for SaaS – wherever they live. With Access for SaaS, companies can now centrally manage user access and security monitoring for all applications.

You can integrate Cloudflare Access as an identity provider to any SaaS application that supports SAML SSO. That integration will send all login attempts through Cloudflare’s network to your configured identity providers and enforce rules that you control.

How small businesses can start using Cloudflare One today

Access for SaaS still includes the ability to run multiple identity providers simultaneously. When users login to the SaaS application, they’ll be prompted to pick the identity provider they need, or we’ll send them directly to the only provider you want to use for that application.

How small businesses can start using Cloudflare One today

Once deployed, Access for SaaS gives your team high visibility, with low effort, into every login to both internal and SaaS applications. You can use the new Access for SaaS feature as part of the Cloudflare for Teams free plan for up to 50 users.

6. Soon: Protect small business office networks

Cloudflare’s Magic Transit™ product takes everything we learned protecting our own network from IP-layer attacks and extends that security to our customers who operate their own IP address space. By protecting that network, customers also benefit from performant and reliable IP connectivity to the Internet.

Today, some of the largest enterprises in the world rely on Magic Transit to keep their business safe from attack. We plan to extend that same protection and connectivity to teams who operate smaller networks in upcoming releases.

What’s next?

Cloudflare One represents our vision for the future of the corporate network, and we’re just getting started adding products and features that help teams move to that model. That said, your team shouldn’t have to wait to begin connecting through Cloudflare and securing your data and applications with our network.

To get started, sign up for a Cloudflare account and follow the steps above.  If you have any questions on setting up Cloudflare One as a small business, or large enterprise, please let us know in this community forum post.

Introducing Cloudflare Browser Isolation beta

Post Syndicated from Tim Obezuk original https://blog.cloudflare.com/browser-beta/

Introducing Cloudflare Browser Isolation beta

Reimagining the Browser

Introducing Cloudflare Browser Isolation beta

Web browsers are the culprit behind 70% of endpoint compromises. The same application that connects users to the entire Internet also connects you to all of the potentially harmful parts of the Internet. It’s an open door to nearly every connected system on the planet, which is powerful and terrifying.

We also rely on browsers more than ever. Most applications that we use live in a browser and that will continue to increase. For more and more organizations, a corporate laptop is just a managed web browser machine.

To keep those devices safe, and the data they hold or access, enterprises have started to deploy “browser isolation” services where the browser itself doesn’t run on the machine. Instead, the browser runs on a virtual machine in a cloud provider somewhere. By running away from the device, threats from the browser stay on that virtual machine somewhere in the cloud.

However, most isolation solutions take one of two approaches that both ruin the convenience and flexibility of a web browser:

  • Record the isolated browser and send a live stream of it to the user, which is slow and makes it difficult to do basic things like input text to a form.
  • Unpack the webpage, inspect it, repack it and send it to the user – sometimes missing threats or more often failing to repack the webpage in a way that it still works.

Today, we’re excited to open up a beta of a third approach to keeping web browsing safe with Cloudflare Browser Isolation. Browser sessions run in sandboxed environments in Cloudflare data centers in 200 cities around the world, bringing the remote browser milliseconds away from the user so it feels like local web browsing.

Instead of streaming pixels to the user, Cloudflare Browser Isolation sends the final output of a browser’s web page rendering. The approach means that the only thing ever sent to the device is a package of draw commands to render the webpage, which also makes Cloudflare Browser Isolation compatible with any HTML5 compliant browser.

The result is a browser that just feels like a browser, while keeping threats far away from the device.

We’re inviting users to sign up for the beta today as part of Zero Trust week at Cloudflare. If you’re interested in signing up now, visit the bottom of this post. If you’d like to find out how this works, keep reading.

The unexpected universal productivity application

While it never quite became the replacement operating system Marc Andreessen predicted in 1995, the web browser is perhaps the most important application today on end-user devices. In the workplace, many people spend the majority of their at-work computer time entirely within a web browser connected to internal apps and external SaaS applications and services. As this has occurred, browsers have needed to become increasingly complex — to address the expanding richness of the web and the demands of modern web applications such as Office 365 and Google Workplace.

However, despite the pivotal and ubiquitous role of web browsers, they are the least controlled application in the enterprise. Businesses struggle to control how users interact with web browsers. It’s all too easy for a user to inadvertently download an infected file, install a malicious extension, upload sensitive company data or click a malicious zero-day link in an email or on a webpage.

Making the problem worse is the growing prevalence of BYOD. It makes it difficult to enforce which browsers are used or if they are properly patched. Mobile device management (MDM) is a step in the right direction, but just like the slow patching cycles of on-premise firewalls, MDM can often be too slow to protect against zero day threats. I’ve been the recipient of many mass emails from CISO’s reminding everyone to patch their browser and to do it right now because this time it’s “really important” (CVE-2019-5786).

Reimagining the browser

Earlier this week we announced Cloudflare One, which is our vision for the future of the corporate network. The fundamental approach we’ve taken is a blank sheet: to zero out all the assumptions of the old model (like castle-and-moat) and usher in a new model based on the complex nature of today’s corporate networking and the shift to Zero Trust, cloud-based networking-as-a-service.

It would be impossible to do this without thinking about the browser. Remote computing technologies have offered the promise of fixing the problems of the browser for some time — a future where anyone can benefit from the security and scale of cloud computing on their personal device. The reality has been that getting a generally performant solution is much more difficult than it sounds. It requires sending a user’s input over the Internet, computing that input, retrieving resources off the web, and then streaming them back to the user. And it all must occur in milliseconds, to create an illusion of using a local piece of software.

The general experience has been terrible, and many implementations have created nothing but angry emails and help-desk tickets for IT folks.

It is a tough problem, and it’s something we’ve been hard at work at solving. By delivering a vector-based stream that scales across any display size without requiring high bandwidth connections we’re able to reproduce the native browser experience remotely. Users experience the website as it was intended, without all the compatibility issues introduced by scrubbing HTML, CSS and JavaScript. And performance issues are aided tremendously by the fact that the managed browser is hosted only milliseconds away on our network.

How secure remote browsing fits in with Cloudflare for Teams

Before Cloudflare Browser Isolation, Cloudflare for Teams consisted of two core services:

Cloudflare Access creates a Zero Trust network perimeter that allows users to access corporate applications without needing to poke holes in their internal network with a legacy VPN appliance.

Cloudflare Gateway creates a Secure Web Gateway that protects users from threats on any website.

These tools are excellent for protecting private Internet properties from unauthorized access and web browsing activity from known malicious websites. But what about unknown and unforeseeable threats?

Cloudflare Browser Isolation answers this question by sandboxing a web browser in a remote container that is easily disposed of at the end of the user’s browsing session or when compromised.

Should an unknown threat such as a zero day vulnerability or malicious website exploit any of the hundreds of Web APIs, the attack is limited to a browser running in a supervised cloud environment leaving the end-user’s device unaffected.

The Network is the Computer®

Web browsers are the foundation that the shift to the cloud has been built on. It’s just that they’ve always run in the wrong place.

In the same way that it made no sense for a developer to run and maintain the hardware that their application runs on, the same exact case can be made for the other side of the cloud’s equation: the browser. Funnily enough, the solution is exactly the same: like the developer’s application, the browser needed to move to the cloud. However, as with all disruptions, it takes time and investment for the performance of the new technology to catch up to the old one. When AWS was first launched in 2006, the inherent limitations meant that for most developers, it made sense to continue to run on-premise solutions.

At some point though, the technology improves to the point where the disruption can start taking over from the previous paradigm.

The limiting factor until today for a cloud-based browser has often been the experience of using it. A user’s experience is limited by the speed of light; it limits the time it takes a user’s input to travel to the remote data center and be returned to their display. In a perfect world, this needs to occur within milliseconds to deliver a real time experience.

Cloudflare has one very big advantage in solving that problem.

Introducing Cloudflare Browser Isolation beta

To deliver real-time remote computing experiences, each of our 200+ data centers are capable of serving remote browsing sessions within the blink of an eye of nearly everyone connected to the Internet. This allows us to deliver a low latency, responsive stream of a webpage regardless of where you’re physically located.

What’s next?

But that’s enough talking about it. We’d love for you to try it! Please complete the form here to sign up to be one of the first users of this new technology in our network. We’ll be in touch as we expand the beta to more users.

Introducing Cloudflare One

Post Syndicated from Matthew Prince original https://blog.cloudflare.com/introducing-cloudflare-one/

Introducing Cloudflare One

Introducing Cloudflare One

Today we’re announcing Cloudflare One™. It is the culmination of engineering and technical development guided by conversations with thousands of customers about the future of the corporate network. It provides secure, fast, reliable, cost-effective network services, integrated with leading identity management and endpoint security providers.

Over the course of this week, we’ll be rolling out the components that enable Cloudflare One, including our WARP Gateway Clients for desktop and mobile, our Access for SaaS solution, our browser isolation product, and our next generation network firewall and intrusion detection system.

The old model of the corporate network has been made obsolete by mobile, SaaS, and the public cloud. The events of 2020 have only accelerated the need for a new model. Zero Trust networking is the future and we are proud to be enabling that future. Having worked on the components of what is Cloudflare One for the last two years, we’re excited to unveil today how they’ve come together into a robust SASE solution and share how customers are already using it to deliver the more secure and productive future of the corporate network.

What Is Cloudflare One? Secure, Optimized Global Networking

Cloudflare One is a comprehensive, cloud-based network-as-a-service solution that is designed to be secure, fast, reliable and define the future of the corporate network. It replaces a patchwork of appliances and WAN technologies with a single network that provides cloud-based security, performance, and control through one user interface.

Cloudflare One brings together how users connect, on ramps for branch offices, secure connectivity for applications, and controlled access to SaaS into a single platform.

Cloudflare One reflects the complex nature of corporate networking today: mobile and remote users, SaaS applications, a mix of applications hosted in private data centers and public cloud, as well the challenge of employees using the broader Internet securely from their corporate and personal devices.

Introducing Cloudflare One

Whether you call this SASE or simply the new reality, today’s enterprise needs flexibility at every layer of the network and application stack. Secure and authenticated access is needed for users wherever they are: at the office, on a mobile device or working from home. Corporate network architectures need to reflect the state of modern computing that requires secure, filtered Internet access to get to SaaS or public cloud, secure application connectivity to protect against hackers and DDoS, and fast, reliable branch and home office access.

And the new corporate network needs to be global. No matter where applications are hosted, or employees reside, connectivity needs to be secure and fast. With Cloudflare’s massive global presence, traffic is secured, routed, and filtered over an optimized backbone that uses real time Internet intelligence to protect against the latest threats and route traffic around bad Internet weather and outages.

However, you’re only as strong as your weakest link. It doesn’t matter how secure your network is if you allow the wrong people access, or your end user’s devices are compromised. That is why we’re incredibly excited to announce that Cloudflare One takes the power of Cloudflare’s network and combines it with best-of-breed identity management and device integrity to create a complete solution that encompasses the entire corporate network of today and tomorrow.

Partner ecosystem: Identity Management

Most organizations already have one or more identity management systems. Rather than requiring them to change, we are integrating with all the major providers. This week we’re announcing partnerships with Okta, Ping Identity, and OneLogin. We support nearly all the other leading identity providers including Microsoft Active Directory and Google Workspace, as well as broadly adopted consumer and developer identity platforms like Github, LinkedIn, and Facebook.

Introducing Cloudflare One

Powerfully, Cloudflare One does not require you to standardize on just one identity provider. We see multiple companies that may have one identity provider for full-time employees and another for contractors. Or one they chose themselves and another they inherited from an acquisition. Cloudflare One will integrate with one or more identity providers and allow you to then set consistent policies across all your applications.

The metaphor that makes sense to me is that the identity provider issues passports and Cloudflare One is the border agent that checks that they’re valid. At any particular moment, different passports from different providers may be allowed or forbidden to enter just by updating the instructions the border agent follows.

Partner ecosystem: Device Integrity

In addition to identity, device integrity and endpoint security are an important part of a zero trust solution. This week we’re announcing partnerships with CrowdStrike, VMware Carbon Black, SenitnelOne, and Tanium. These providers run on devices and ensure that they haven’t been compromised. Again, organizations can centralize around a single vendor for device integrity or can mix and match with Cloudflare One providing a consistent control plane.

Introducing Cloudflare One

Extending the border control analogy, it’s like having a temperature screening and COVID-19 test when you enter a country. Even if you have a valid passport, if you’re not healthy then you will be turned away. By partnering with the leading identity and device integrity providers, Cloudflare One provides a robust identity and access management solution that fully delivers on the promise of Zero Trust.

We’re thrilled to partner with these leading identity management and endpoint security companies to make Cloudflare One flexible and robust.

With this as an introduction to Cloudflare One, I wanted to provide some context on why the existing paradigm doesn’t work, what the future of the enterprise network looks like, and where we go from here. In order to understand the power of Cloudflare One, you first have to understand the way we used to build and secure corporate networks and how the transition to mobile, cloud, and remote work have all forced this fundamental change in the paradigm.

The Middle(box) Ages: How Corporate Security Used to Work

The Internet was designed to be a massive, decentralized network. Any computer could connect to that network and route data from one location to another. The model provided resiliency, but did not guarantee fast or available connections. The early Internet also lacked a framework for security.

Introducing Cloudflare One

As a result, enterprises did not trust the Internet as a platform for their businesses. To keep employees productive, network connections had to be fast and available. Those connections also had to be secure. So, businesses built their own shadow versions of the Internet:

  • Companies purchased dedicated, private connections between offices and across their data centers in the form of expensive MPLS links.
  • IT teams managed complex routing across offices, VPN hardware, and clients.
  • Security teams deployed physical firewall boxes and DDoS appliances to keep the private network safe.
  • When employees had to use the Internet, security teams backhauled traffic through a central location to filter outbound connections with yet more hardware: Internet gateways.

Legacy corporate security followed a castle and moat approach. You put all your sensitive applications and data in the castle, you required all your employees to come to work in the castle every day, and then you built a metaphorical moat around the castle using firewalls, DDoS appliances, gateways and more: an unmanageable mess of devices and vendors.

The Middle(box) Ages Are Long Gone

While smarter attackers finding ways to breach moats were always a concern for the castle and moat approach, ultimately they weren’t what caused the approach to fail. Instead the change came from transformation of the technical landscape. Smartphones made workers increasingly mobile, letting them venture outside the moat. SaaS and the public cloud moved data and corporate applications out of the metaphorical castle.

Introducing Cloudflare One

And, in 2020, COVID-19 changed everything by forcing everyone who could to work remotely. If the employees weren’t coming to work in the castle anymore, the whole paradigm completely breaks down. This transition was happening already, but this year poured gasoline on the already smoldering fire. Increasingly companies are realizing that the only way forward is to embrace the fact that employees, servers and applications are now “on the Internet” and not “in the castle.” This new paradigm is known as “Zero Trust.”

Google’s seminal paper, “BeyondCorp: A New Approach to Enterprise Security,” published in 2014, brought the idea of Zero Trust security into the mainstream. Google’s insight in 2014 was that you could solve the challenges of every employee and application being on the Internet by ensuring that every application would inherently distrust every connection. If there was zero trust inherent to what network you were on, then every user of every application would be continuously authenticated. Powerfully, that would simultaneously enhance security while enabling more use of cloud applications as well as mobile and remote work.

The Future LAN: A Secure WAN

What we realized talking to customers was that even the analyst and competitor framing of the future corporate network didn’t fully recognize some challenges that come with a Zero Trust model. One of the benefits of embracing a Zero Trust model is that it makes enabling branch and home offices easier and less expensive. Rather than having to lease expensive MPLS circuits to connect branch offices — something that is literally impossible as people work from home — you instead require every use of every application to be authenticated.

Introducing Cloudflare One

This lines up with something else we’ve heard from our customers over the last six months: “maybe the Internet is almost good enough.” Like physical offices, many MPLS or SD-WAN deployments are currently sitting idle. And yet, employees continue to be productive. If users could move to a model that runs on the Internet, and one that improves the Internet, teams can stop spending money on legacy routing. Rather than trying to build more private networks, the corporate network of the future leverages the Internet but with heightened security, performance, and reliability.

That sounds great, but it opens a whole new can of worms. Inherently to do this you need to expose more of your applications to the Internet. While they may be safe from unauthorized use if you’ve properly implemented Zero Trust, that opens them to many less sophisticated, but highly disruptive challenges.

At the end of 2019 we saw a disturbing new trend begin to emerge. DDoS attackers shifted their focus from embarrassing companies by knocking their websites offline to increasingly targeting internal applications and networks. Unfortunately, we’ve seen more of these attacks launched throughout the pandemic.

It’s not a coincidence. It’s the direct result of companies being forced to expose more of their internal applications to the Internet in order to support remote work. To our surprise, it has turned out that while we anticipated Access and Gateway being the natural pairing of products, equally often customers looking to move to a Zero Trust model are bundling Cloudflare’s DDoS and WAF products.

It makes sense. If you are exposing more of your applications to the Internet, then the problems that Internet-facing applications have had to deal with in the past now become the problems of your internal applications as well. It’s become clear to us that the future of a SASE or Zero Trust network needs to also include DDoS mitigation and WAF as well.

Making the Internet Secure and Reliable Enough for the Enterprise

We agree with the customers we’ve talked to who say that the Internet is almost good enough to replace a corporate network. We’ve been building products to fill in the gaps where it needs to be better. Virtual appliances in regional public cloud providers are not sufficient. Enterprises need a global, distributed network that accelerates traffic in any location.

Introducing Cloudflare One

We’ve spent the last decade building Cloudflare’s network; bringing the Internet closer to users around the world and supporting incredible scale. According to W3Techs, more than 14% of the web already relies on our network. We can also use that to constantly measure the Internet at scale and find faster routes. That scale allows us to deliver Cloudflare One to any organization, no matter where they are located or how global their workforce, and ensure their network and applications are secure, fast, and reliable.

Foreshadowing Cloudflare One

The same lessons we’ve learned handling traffic for the websites on our network can be applied to how enterprises connect to everything else. We started that journey last year when we launched Cloudflare WARP, a consumer product that routes all connections leaving a personal device through Cloudflare’s network, where we can encrypt and accelerate it. This week, we’ll show how the WARP Client is now one of the on-ramps to get employee traffic onto Cloudflare One.

Introducing Cloudflare One

We launched WARP on mobile devices because we knew they would prove to be the most difficult to get right. Traditionally, VPN clients are clunky battery sucks designed for desktops and, if they have mobile versions at all, they’ve been clumsily ported over. We set out to build WARP to work great on mobile, not burning battery life or slowing connections down, because we knew if we could pull that off then it would be easy to port it to the less limited constraints of the desktop.

We also launched it for consumers first because they are the best QA team you could ever assemble. More than 10 million consumers have been putting WARP through its paces for the last year. We’ve seen edge cases from every corner of the Internet and used them to iron the bugs out. We knew that if we could make the WARP Client something that consumers loved to use then it would be a stark contrast to every other enterprise solution in the market.

Meanwhile, we built products to deliver the same improvements to data centers and offices. We announced Magic Transit last year to provide secure, performant, and reliable IP connectivity to the Internet. Earlier this year, we expanded that model when we launched Cloudflare Network Interconnect (CNI) to allow our customers to interconnect branch offices and data centers directly with Cloudflare.

Cloudflare Access starts by introducing identity into Cloudflare’s network. We apply filters based on identity and context to both inbound and outbound connections. Every login, request, and response proxies through Cloudflare’s network regardless of the location of the server or user.

Cloudflare Gateway keeps connections to the rest of the Internet safe. By routing all traffic through Cloudflare’s network first, customers can deprecrate on-premise firewalls eliminating Internet backhaul requirements that slow down users.

Introducing Cloudflare One

Pulling the Pieces Together

We think about the products in Cloudflare One in two categories:

  • On-ramps: the products that connect a user, device, or location to Cloudflare’s edge. WARP for endpoints, Magic Transit and CNI for networks, Argo Smart Routing to accelerate traffic.
  • Filters: the products that shield networks from attacks, inspect traffic for threats, and apply least privilege rules to data and applications. Access for Zero Trust rules, Gateway for traffic filtering, Magic Firewall for network filtering.

Most competitors in this space focus on one area, which loses out on the efficiencies of combining them in a single solution. Cloudflare One brings those together on our network. By integrating both sides of the challenge, we can give administrators a single place to manage and secure their network.

Introducing Cloudflare One

What Differentiates Cloudflare One

Easy to Deploy, Manage, and Use

We’ve always offered free and pay-as-you-go plans that teams of any size could sign up for with a credit card. Those customers lack the systems integrators or IT departments of large enterprises. To serve those teams, we had to build a control plane and dashboard that was accessible and easy to use.

The products in Cloudflare One follow that same approach; comprehensive enough for enterprises but easy to use to make these products accessible to any team. We’ve also extended that to end users; the client application that powers Gateway is built on what we learned creating Cloudflare WARP for consumer users.

Unified Solution

Cloudflare One puts the entire corporate network behind a single pane of glass. By integrating with leading identity providers and endpoint security solutions, Cloudflare One enables companies to enforce a consistent set of policies across all their applications. Since the network is the common denominator of all applications, by building control into the network Cloudflare One ensures consistent policies whether an application is new or legacy, run on-premise or in the cloud, and delivered from your own infrastructure or a multi-tenant SaaS provider.

Cloudflare One also helps rationalize complicated deployments. While it would be great if every app and every employee and contractor used the same identity provider, for example, that isn’t always possible. Acquisitions, skunkworks projects, and internal disagreements can cause multiple different solutions to be present inside one company. Cloudflare One allows you to plug different providers into one unified network control plane to ensure consistent policies.

Significant ROI

Our core tenet of serving the entire Internet has always forced us to obsess over costs. Efficiency is in the DNA of Cloudflare and we use our efficiency to pass along customer-friendly, fixed-rate pricing. Cloudflare One builds on that experience to deliver a platform that is more cost-effective than combining point solution vendors. The differences are especially apparent versus other providers who have tried to build on top of public cloud platforms and inherit their cost and inconsistent network performance.

To achieve the level of efficiency needed to compete with hardware appliances required us to invent a new type of platform. That platform needed to be built our own network where we could drive costs down and ensure the highest level of performance. It needed to be architected so any server in any city that made up Cloudflare’s network could run every one of our services. That means that Cloudflare One runs across Cloudflare’s global network spanning more than 200 cities worldwide. Even your farthest flung branch offices and remote workers are likely within milliseconds of servers powering Cloudflare One, ensuring our service works well wherever your team works.

Leverages Cloudflare’s Scale

Cloudflare already sits in front of a huge portion of the Internet. That allows us to see and respond to new security threats continuously. It also means that Cloudflare One customers’ traffic can be more efficiently routed, even when going to applications that would appear to be on the public Internet.

For instance, an employee behind Cloudflare One who is catching up on holiday shopping during their lunch break can have their traffic routed from a corporate branch office, across Cloudflare’s Magic Transit, over Cloudflare’s global backbone, across Cloudflare’s Network Interconnect, and to the ecommerce provider. Because Cloudflare handles the packets end-to-end, we can ensure they are encrypted, optimally routed, and efficiently delivered. As more of the Internet uses Cloudflare, the experience of surfing the Internet for Cloudflare One customers will grow even more exceptional.

What Does Cloudflare One Replace?

Instead of expensive MPLS links or complex SD-WAN deployments, Cloudflare One provides two on-ramps to your applications and the entire Internet: WARP and Magic Transit. WARP connects employees from any device, and any location, to Cloudflare’s network. Magic Transit allows broad deployments across whole offices or data centers.

Cloudflare Access replaces private-networks-as-security with Zero Trust controls. Later this week, we’ll announce how you can extend Access to any application, including SaaS applications.

Finally, Cloudflare One eliminates traditional network firewalls and web gateways. Cloudflare Gateway inspects traffic leaving any device in your organization to block threats on the Internet and prevent data from leaving. Magic Firewall will give your networks the same security, filtering traffic at the transport layer to replace the top-of-rack firewalls that block data exfiltration or attacks from unsecure network protocols.

Introducing Cloudflare One

What Comes Next?

Your team can start using Cloudflare One today. Add Zero Trust control to your applications with Cloudflare Access and secure DNS queries with Cloudflare Gateway. Keep networks safe from DDoS attacks with Magic Transit and connect your applications through Cloudflare with Argo Tunnel.

Over the course of the week, we’ll be launching new features and products to start to complete this vision. On Tuesday, we’ll extend the Zero Trust security of Cloudflare Access to all of your applications. Starting Wednesday, teams will be able to use Cloudflare WARP to proxy all employee traffic to Cloudflare where Gateway will now secure more than just DNS queries. You’ll be invited to sign up for Cloudflare’s browser isolation beta on Thursday and we’ll wrap the week with new APIs to control how Magic Transit secures your network.

It’s going to be a busy week, but we’re just getting started. Replacing a corporate network should not also mean you lose control over how that network operates. Magic WAN is our solution to complex SD-WAN deployments.

Security for that entire network should also work in both directions. Magic Firewall is our alternative to the clunky “next-generation firewall” appliances that secure outbound traffic. Data loss prevention (DLP) is another space that has lacked innovation and where we plan to extend Cloudflare One.

Introducing Cloudflare One

Finally, you should have visibility into that network. We’ll be launching new tools to detect and mitigate intrusion attempts that happen anywhere on your network, including unauthorized access to any SaaS applications you use. Now that we’ve built the on-ramps onto Cloudflare One, we’re excited to continue to innovate to provide more functionality and control to solve our customers biggest network security, performance, and reliability challenges.

Delivering the Network Customers Need Today

Over the last 10 years, Cloudflare has built one of the fastest, most reliable, most secure networks in the world. We’ve seen the power of using that network internally to enable our own teams to innovate quickly and securely. With the launch of Cloudflare One, we’re extending the power of Cloudflare’s network to meet the challenges of any company. The move to Zero Trust is a paradigm shift but the changes to how we work we believe has made it inevitable for every company. We’re proud of how we’ve been able to help some of Cloudflare One’s first customers reinvent their corporate networks. It makes sense to close with their own words.

Introducing Cloudflare One

“JetBlue Travel Products needed a way to give crew-members secure and simple access to internally-managed benefit apps. Cloudflare gave us all that and more — a much more efficient way to connect business partners and crew-members to critical internal tools.” — Vitaliy Faida, General Manager, Data/DevSecOps at JetBlue Travel Products.

Introducing Cloudflare One

“OneTrust relies on Cloudflare to maintain our network perimeter, so we can focus on delivering technology that helps our customers be more trusted. “With Cloudflare, we can easily build context-aware Zero Trust policies for secure access to our developer tools. Employees can connect to the tools they need so simply teams don’t even know Cloudflare is powering the backend. It just works.” — Blake Brannon, CTO of OneTrust.

Introducing Cloudflare One

“Discord is where the world builds relationships. Cloudflare helps us deliver on that mission, connecting our internal engineering team to the tools they need. With Cloudflare, we can rest easy knowing every request to our critical apps is evaluated for identity and context — a true Zero Trust approach.” — Mark Smith, Director of Infrastructure at Discord.

Introducing Cloudflare One

“When you’re a fast-growing, security-focused company like Area 1, anything that slows development down is the enemy. With Cloudflare, we’ve found a simpler, more secure way to connect our employees to the tools they need to keep us growing – and the experience is lightning-fast.” — Blake Darché, CSO at Area 1 Security.

Introducing Cloudflare One

“We launched quickly in April 2020 to bring remote learning to children throughout the UK during the coronavirus pandemic, Cloudflare Access made it fast and simple to authenticate a huge network of teachers and developers into our production sites and we set it up in literally less than an hour. Cloudflare’s WAF helped ensure the security and resilience of our public-facing website from day one.” — John Roberts, Technology Director at Oak National Academy.

Introducing Cloudflare One

“With Cloudflare, we’ve been able to reduce our dependence on VPNs and IP allow-listing for development environments. Our developers and testers aren’t required to login from specific locations, and we’ve been able to deploy an SSO solution to simplify the login process. Access is easier to manage than VPNs and other remote access solutions, which has removed pressure from our IT teams. They can focus on internal projects instead of spending time managing remote access.” — Alexandre Papadopoulos, Director of Cyber Security, INSEAD.

What is Cloudflare One?

Post Syndicated from Rustam Lalkaka original https://blog.cloudflare.com/cloudflare-one/

What is Cloudflare One?

Running a secure enterprise network is really difficult. Employees spread all over the world work from home. Applications are run from data centers, hosted in public cloud, and delivered as services. Persistent and motivated attackers exploit any vulnerability.

Enterprises used to build networks that resembled a castle-and-moat. The walls and moat kept attackers out and data in. Team members entered over a drawbridge and tended to stay inside the walls. Trust folks on the inside of the castle to do the right thing, and deploy whatever you need in the relative tranquility of your secure network perimeter.

The Internet, SaaS, and “the cloud” threw a wrench in that plan. Today, more of the workloads in a modern enterprise run outside the castle than inside. So why are enterprises still spending money building more complicated and more ineffective moats?

Today, we’re excited to share Cloudflare One™, our vision to tackle the intractable job of corporate security and networking.

What is Cloudflare One?

Cloudflare One combines networking products that enable employees to do their best work, no matter where they are, with consistent security controls deployed globally.

Starting today, you can begin replacing traffic backhauls to security appliances with Cloudflare WARP and Gateway to filter outbound Internet traffic. For your office networks, we plan to bring next-generation firewall capabilities to Magic Transit with Magic Firewall to let you get rid of your top-of-shelf firewall appliances.

With multiple on-ramps to the Internet through Cloudflare, and the elimination of backhauled traffic, we plan to make it simple and cost-effective to manage that routing compared to MPLS and SD-WAN models. Cloudflare Magic WAN will provide a control plane for how your traffic routes through our network.

You can use Cloudflare One today to replace the other function of your VPN: putting users on a private network for access control. Cloudflare Access delivers Zero Trust controls that can replace private network security models. Later this week, we’ll announce how you can extend Access to any application – including SaaS applications. We’ll also preview our browser isolation technology to keep the endpoints that connect to those applications safe from malware.

Finally, the products in Cloudflare One focus on giving your team the logs and tools to both understand and then remediate issues. As part of our Gateway filtering launch this week we’re including logs that provide visibility into the traffic leaving your organization. We’ll be sharing how those logs get smarter later this week with a new Intrusion Detection System that detects and stops intrusion attempts.

What is Cloudflare One?

Many of those components are available today, some new features are arriving this week, and other pieces will be launching soon. All together, we’re excited to share this vision and for the future of the corporate network.

Problems in enterprise networking and security

The demands placed on a corporate network have changed dramatically. IT has gone from a back-office function to mission critical. In parallel with networks becoming more integral, users spread out from offices to work from home. Applications left the datacenter and are now being run out of multiple clouds or are being delivered by vendors directly over the Internet.

Direct network paths became hairpin turns

Employees sitting inside of an office could connect over a private network to applications running in a datacenter nearby. When team members left the office, they could use a VPN to sneak back onto the network from outside the walls. Branch offices hopped on that same network over expensive MPLS links.

When applications left the data center and users left their offices, organizations responded by trying to force that scattered world into the same castle-and-moat model. Companies purchased more VPN licenses and replaced MPLS links with difficult SD-WAN deployments. Networks became more complex in an attempt to mimic an older model of networking when in reality the Internet had become the new corporate network.

Defense-in-depth splintered

Attackers looking to compromise corporate networks have a multitude of tools at their disposal, and may execute surgical malware strikes, throw a volumetric kitchen sink at your network, or any number of things in between. Traditionally, defense against each class of attack was provided by a separate, specialized piece of hardware running in a datacenter.

Security controls used to be relatively easy when every user and every application sat in the same place. When employees left offices and workloads left data centers, the same security controls struggled to follow. Companies deployed a patchwork of point solutions, attempting to rebuild their topside firewall appliances across hybrid and dynamic environments.

High-visibility required high-effort

The move to a patchwork model sacrificed more than just defense-in-depth — companies lost visibility into what was happening in their networks and applications. We hear from customers that this capture and standardization of logs has become one of their biggest hurdles. They purchased expensive data ingestion, analysis, storage, and analytics tools.

Enterprises now rely on multiple point solutions that one of the biggest hurdles is the capture and standardization of logs. Increasing regulatory and compliance pressures place more emphasis on data retention and analysis. Splintered security solutions become a data management nightmare.

Fixing issues relied on best guesses

Without visibility into this new networking model, security teams had to guess at what could go wrong. Organizations who wanted to adopt an “assume breach” model struggled to determine what kind of breach could even occur, so they threw every possible solution at the problem.

We talk to enterprises who purchase new scanning and filtering services, delivered in virtual appliances, for problems they are unsure they have. These teams attempt to remediate every possible event manually, because they lack visibility, rather than targeting specific events and adapting the security model.

How does Cloudflare One fit?

Over the last several years, we’ve been assembling the components of Cloudflare One. We launched individual products to target some of these problems one-at-a-time. We’re excited to share our vision for how they all fit together in Cloudflare One.

Flexible data planes

Cloudflare launched as a reverse proxy. Customers put their Internet-facing properties on our network and their audience connected to those specific destinations through our network. Cloudflare One represents years of launches that allow our network to process any type of traffic flowing in either the “reverse” or “forward” direction.

In 2019, we launched Cloudflare WARP — a mobile application that kept Internet-bound traffic private with an encrypted connection to our network while also making it faster and more reliable. We’re now packaging that same technology into an enterprise version launching this week to connect roaming employees to Cloudflare Gateway.

Your data centers and offices should have the same advantage. We launched Magic Transit last year to secure your networks from IP-layer attacks. Our initial focus with Magic Transit has been delivering best-in-class DDoS mitigation to on-prem networks. DDoS attacks are a persistent thorn in network operators’ sides, and Magic Transit effectively diffuses their sting without forcing performance compromises. That rock-solid DDoS mitigation is the perfect platform on which to build higher level security functions that apply to the same traffic already flowing across our network.

Earlier this year, we expanded that model when we launched Cloudflare Network Interconnect (CNI) to allow our customers to interconnect branch offices and data centers directly with Cloudflare. As part of Cloudflare One, we’ll apply outbound filtering to that same connection.

Cloudflare One should not just help your team move to the Internet as a corporate network, it should be faster than the Internet. Our network is carrier-agnostic, exceptionally well-connected and peered, and delivers the same set of services globally. In each of these on-ramps, we’re adding smarter routing based on our Argo Smart Routing technology, which has been shown to reduce latency by 30% or more in the real-world. Security + Performance, because they’re better together.

A single, unified control plane

When users connect to the Internet from branch offices and devices, they skip the firewall appliances that used to live in headquarters altogether. To keep pace, enterprises need a way to secure traffic that no longer lives entirely within their own network. Cloudflare One applies standard security controls to all traffic – regardless of how that connection starts or where in the network stack it lives.

Cloudflare Access starts by introducing identity into Cloudflare’s network. Teams apply filters based on identity and context to both inbound and outbound connections. Every login, request, and response proxies through Cloudflare’s network regardless of the location of the server or user. The scale of our network and its distribution can filter and log enterprise traffic without compromising performance.

Cloudflare Gateway keeps connections to the rest of the Internet safe. Gateway inspects traffic leaving devices and networks for threats and data loss events that hide inside of connections at the application layer. Launching soon, Gateway will bring that same level of control lower in the stack to the transport layer.

You should have the same level of control over how your networks send traffic. We’re excited to announce Magic Firewall, a next-generation firewall for all traffic leaving your offices and data centers. With Gateway and Magic Firewall, you can build a rule once and run it everywhere, or tailor rules to specific use cases in a single control plane.

We know some attacks can’t be filtered because they launch before filters can be built to stop them. Cloudflare Browser, our isolated browser technology gives your team a bulletproof pane of glass from threats that can evade known filters. Later this week, we’ll invite customers to sign up to join the beta to browse the Internet on Cloudflare’s edge without the risk of code leaping out of the browser to infect an endpoint.

Finally, the PKI infrastructure that secures your network should be modern and simpler to manage. We heard from customers who described certificate management as one of the core problems of moving to a better model of security. Cloudflare works with, not against, modern encryption standards like TLS 1.3. Cloudflare made it easy to add encryption to your sites on the Internet with one click. We’re going to bring that ease-of-management to the network functions you run on Cloudflare One.

One place to get your logs, one location for all of your security analysis

Cloudflare’s network serves 18 million HTTP requests per second on average. We’ve built logging pipelines that make it possible for some of the largest Internet properties in the world to capture and analyze their logs at scale. Cloudflare One builds on that same capability.

Cloudflare Access and Gateway capture every request, inbound or outbound, without any server-side code changes or advanced client-side configuration. Your team can export those logs to the SIEM provider of your choice with our Cloudflare Logpush service – the same pipeline that exports HTTP request events at scale for public sites. Magic Transit expands that logging capability to entire networks and offices to ensure you never lose visibility from any location.

We’re going beyond just logging events. Available today for your websites, Cloudflare Web Analytics converts logs into insights. We plan to keep expanding that visibility into how your network operates, as well. Just as Cloudflare has replaced the “band-aid boxes” that performed disparate network functions and unified them into a cohesive, adaptable edge, we intend to do the same for the fragmented, hard to use, and expensive security analytics ecosystem. More to come on this soon.Smarter, faster remediation

Data and analytics should surface events that a team can remediate. Log systems that lead to one-click fixes can be powerful tools, but we want to make that remediation automatic.

Launching into a closed preview later this week, Cloudflare Intrusion Detection System (IDS) will proactively scan your network for anomalous events and recommend actions or, better yet, take actions for you to remediate problems. We plan to bring that same proactive scanning and remediation approach to Cloudflare Access and Cloudflare Gateway.

Run your network on our globally scaled network

Over 25 million Internet properties rely on Cloudflare’s network to reach their audiences. More than 10% of all websites connect through our reverse proxy, including 16% of the Fortune 1000. Cloudflare accelerates traffic for huge chunks of the Internet by delivering services from datacenters around the world.

We deliver Cloudflare One from those same data centers. And critically, every datacenter we operate delivers the same set of services, whether that is Cloudflare Access, WARP, Magic Transit, or our WAF. As an example, when your employees connect through Cloudflare WARP to one of our data centers, there is a real chance they never have to leave our network or that data center to reach the site or data they need. As a result, their entire Internet experience becomes extraordinarily fast, no matter where they are in the world.

We expect that performance bonus to become even more meaningful as browsing moves to Cloudflare’s edge with Cloudflare Browser. The isolated browsers running in Cloudflare’s data centers can request content that sits just centimeters away. Even further, as more web properties rely on Cloudflare Workers to power their applications, entire workflows can stay inside of a data center within 100 ms of your employees.

What’s next?

While many of these features are available today, we’re going to be launching several new features over the next several days as part of Cloudflare’s Zero Trust week. Stay tuned for announcements each day this week that add new pieces to the Cloudflare One featureset.

What is Cloudflare One?