Tag Archives: Equity

Running a workshop with teachers to create culturally relevant Computing lessons

Post Syndicated from Katharine Childs original https://www.raspberrypi.org/blog/research-teacher-workshop-culturally-relevant-computing-lessons/

Who chooses to study Computing? In England, data from GCSE and A level Computer Science entries in 2019 shows that the answer is complex. Black Caribbean students were one of the most underrepresented groups in the subject, while pupils from other ethnic backgrounds, such as White British, Chinese, and Asian Indian, were well-represented. This picture is reflected in the STEM workforce in England, where Black people are also underrepresented.

Two young girls, one of them with a hijab, do a Scratch coding activity together at a desktop computer.

That’s why one of our areas of academic research aims to support Computing teachers to use culturally relevant pedagogy to design and deliver equitable learning experiences that enable all learners to enjoy and succeed in Computing and Computer Science at school. Our previous research projects within this area have involved developing guidelines for culturally relevant and responsive teaching, and exploring how a small group of primary and secondary Computing teachers used these guidelines in their teaching.

A tree symbolising culturally relevant pedagogy,with the roots labeled 'curriculum, the trunk labeled 'teaching approaches', and the crown labeled 'learning materials'.
Learning materials, teaching approaches, and the curriculum as a whole are three areas where culturally relevance is important.

In our latest research study, funded by Cognizant, we worked with 13 primary school teachers in England on adapting computing lessons to incorporate culturally relevant and responsive principles and practices. Here’s an insight into the workshop we ran with them, and what the teachers and we have taken away from it.

Adapting lesson materials based on culturally relevant pedagogy

In the group of 13 England-based primary school Computing teachers we worked with for this study:

  • One third were specialist primary Computing teachers, and the other two thirds were class teachers who taught a range of subjects
  • Some acted as Computing subject lead or coordinator at their school
  • Most had taught Computing for between three and five years 
  • The majority worked in urban areas of England, at schools with culturally diverse catchment areas 

In November 2022, we held a one-day workshop with the teachers to introduce culturally relevant pedagogy and explore how to adapt two six-week units of computing resources.

An example of a collaborative activity from a teacher-focused workshop around culturally relevant pedagogy.
An example of a collaborative activity from the workshop

The first part of the workshop was a collaborative, discussion-based professional development session exploring what culturally relevant pedagogy is. This type of pedagogy uses equitable teaching practices to:

  • Draw on the breadth of learners’ experiences and cultural knowledge
  • Facilitate projects that have personal meaning for learners
  • Develop learners’ critical consciousness

The rest of the workshop day was spent putting this learning into practice while planning how to adapt two units of computing lessons to make them culturally relevant for the teachers’ particular settings. We used a design-based approach for this part of the workshop, meaning researchers and teachers worked collaboratively as equal stakeholders to decide on plans for how to alter the units.

We worked in four groups, each with three or four teachers and one or two researchers, focusing on one of two units of work from The Computing Curriculum for teaching digital skills: a unit on photo editing for Year 4 (ages 8–9), and a unit about vector graphics for Year 5 (ages 9–10).

Descriptions of a classroom unit of teaching materials about photo editing for Year 4 (ages 8–9), and a unit about vector graphics for Year 5 (ages 9–10).
We based the workshop around two Computing Curriculum units that cover digital literacy skills.

In order to plan how the resources in these units of work could be made culturally relevant for the participating teachers’ contexts, the groups used a checklist of ten areas of opportunity. This checklist is a result of one of our previous research projects on culturally relevant pedagogy. Each group used the list to identify a variety of ways in which the units’ learning objectives, activities, learning materials, and slides could be adapted. Teachers noted down their ideas and then discussed them with their group to jointly agree a plan for adapting the unit.

By the end of the day, the groups had designed four really creative plans for:

  • A Year 4 unit on photo editing that included creating an animal to represent cultural identity
  • A Year 4 unit on photo editing that included creating a collage all about yourself 
  • A Year 5 unit on vector graphics that guided learners to create their own metaverse and then add it to the class multiverse
  • A Year 5 unit on vector graphics that contextualised the digital skills by using them in online activities and in video games

Outcomes from the workshop

Before and after the workshop, we asked the teachers to fill in a survey about themselves, their experiences of creating computing resources, and their views about culturally relevant resources. We then compared the two sets of data to see whether anything had changed over the course of the workshop.

A teacher attending a training workshop laughs as she works through an activity.
The workshop was a positive experience for the teachers.

After teachers had attended the workshop, they reported a statistically significant increase in their confidence levels to adapt resources to be culturally relevant for both themselves and others. 

Teachers explained that the workshop had increased their understanding of culturally relevant pedagogy and of how it could impact on learners. For example, one teacher said:

“The workshop has developed my understanding of how culturally adapted resources can support pupil progress and engagement. It has also highlighted how contextual appropriateness of resources can help children to access resources.” – Participating teacher

Some teachers also highlighted how important it had been to talk to teachers from other schools during the workshop, and how they could put their new knowledge into practice in the classroom:

“The dedicated time and value added from peer discourse helped make this authentic and not just token activities to check a box.” – Participating teacher

“I can’t wait to take some of the work back and apply it to other areas and subjects I teach.” – Participating teacher

What you can expect to see next from this project

After our research team made the adaptations to the units set out in the four plans made during the workshop, the adapted units were delivered by the teachers to more than 500 Year 4 and 5 pupils. We visited some of the teachers’ schools to see the units being taught, and we have interviewed all the teachers about their experience of delivering the adapted materials. This observational and interview data, together with additional survey responses, will be analysed by us, and we’ll share the results over the coming months.

A computing classroom filled with learners
As part of the project, we observed teachers delivering the adapted units to their learners.

In our next blog post about this work, we will delve into the fascinating realm of parental attitudes to culturally relevant computing, and we’ll explore how embracing diversity in the digital landscape is shaping the future for both children and their families. 

We’ve also written about this professional development activity in more detail in a paper to be published at the UKICER conference in September, and we’ll share the paper once it’s available.

Finally, we are grateful to Cognizant for funding this academic research, and to our cohort of primary computing teachers for their enthusiasm, energy, and creativity, and their commitment to this project.

The post Running a workshop with teachers to create culturally relevant Computing lessons appeared first on Raspberry Pi Foundation.

How can computing education promote an equitable digital future? Ideas from research

Post Syndicated from Katharine Childs original https://www.raspberrypi.org/blog/computing-education-gender-equality-equitable-digital-future-iwd-23/

This year’s International Women’s Day (IWD) focuses on innovation and technology for gender equality. This cause aligns closely with our mission as a charity: to enable young people to realise their full potential through the power of computing and digital technologies. An important part of our mission is to shift the gender balance in computing education.

Learners in a computing classroom.

Gender inequality in the digital and computing sector

As the UN Women’s announcement for IWD 2023 says: “Growing inequalities are becoming increasingly evident in the context of digital skills and access to technologies, with women being left behind as the result of this digital gender divide. The need for inclusive and transformative technology and digital education is therefore crucial for a sustainable future.”

According to the UN, women currently hold only 2 in every 10 science, engineering, and information and communication technology jobs globally. Women are a minority of university-level students in science, technology, engineering, and mathematics (STEM) courses, at only 35%, and in information and communication technology courses, at just 3%. This is especially concerning since the WEF predicts that by 2050, 75% of jobs will relate to STEM.

We see this situation reflected in England: computer science is the secondary school subject with the largest gender gap at A level, with girls accounting for only 15% of students. That’s why over the past three years, we have run a research programme to trial ways to encourage more young women to study Computer Science. The programme, Gender Balance in Computing, has produced useful insights for designing equitable computing education around the world.

Who belongs in computing?

The UN says that “across countries, girls are systematically steered away from science and math careers. Teachers and parents, intentionally or otherwise, perpetuate biases around areas of education and work best ‘suited’ for women and men.” There is strong evidence to suggest that the representation of women and girls in computing can be improved by introducing them to computing role models such as female computing students or women in tech careers.

A learner and educator at a desktop computer.

Presenting role models was central to the Belonging trial in our Gender Balance in Computing programme. One arm of this trial used resources developed by WISE called My Skills My Life to explore the effect of introducing role models into computing lessons for primary school learners. The trial provided opportunities for learners to speak to women who work in technology. It also offered a quiz to help learners identify their strengths and characteristics and to match them with role models who were similar to them, which research shows is more effective for increasing learners’ confidence.

Teachers who used the resources reported learners’ increased understanding of the types and range of technology jobs, and a widening of learners’ career aspirations. 

“Learning about computing makes me feel good because it helps me think more about what I want to be.” — Primary school learner in the Belonging trial

“When [the resources were] showing all of the females in the jobs, nobody went ‘Oh, I didn’t know that a female could do that’, but I think they were amazed by the role of jobs and the fact it was all females doing it.“ — Primary school teacher in the Belonging trial

Learning together to give everyone a voice

When teachers and students enter a computing classroom, they bring with them diverse social identities that affect the dynamics of the classroom. Although these dynamics are often unspoken, they can become apparent in which students answer questions or succeed visibly in activities. Without intervention, a dominant group of confident speakers can emerge, and students who are not in this dominant group may lose confidence in their abilities. When teachers set collaborative learning activities that use defined roles or structured discussions, this gives a wider range of students the opportunity to speak up and participate.

In a computing classroom, a smiling girl raises her hand.

Pair programming is one such activity that has been used in research studies to improve learner attitudes and confidence towards computing. In pair programming, one learner is the ‘driver’.  They control the keyboard and mouse to write the code. The other learner is the ‘navigator’. They read out the instructions and monitor the code for errors. Learners swap roles regularly, so that both can participate equitably. The Pair Programming trial we conducted as part of Gender Balance in Computing explored the use of this teaching approach with students aged 8 to 11. Feedback from the teachers showed that learners found working in structured pairs engaging. 

“Even those who are maybe a little bit more reluctant… those who put their hands up today and said they still prefer to work independently, they are still all engaging quite clearly in that with their pair and doing it really, really well. However much they say they prefer working independently, I think they clearly showed how much they enjoy it, engage with it. And you know they’re achieving with it — so we should be doing this.” – Primary school teacher in the Pair Programming trial

Another collaborative teaching approach is peer instruction. In lessons that use peer instruction, students work in small groups to discuss the answer to carefully constructed multiple choice questions. A whole-class discussion then follows. In the Peer Instruction trial with learners aged 12 to 13 in our Gender Balance in Computing programme, we found that this approach was welcomed by the learners, and that it changed which learners offered answers and ideas. 

“I prefer talking in a group because then you get the other side of other people’s thoughts.” – Secondary school learner (female) in the Peer Instruction trial

“[…] you can have a bit of time to think for yourself then you can bounce ideas off other people.” – Secondary school learner (male) in the Peer Instruction trial

“I was very pleased that a lot of the girls were doing a lot of the talking.” – Secondary school teacher in the Peer Instruction trial

We need to do more, and sooner

Our Gender Balance in Computing research programme showed that no single intervention we trialled significantly increased girls’ engagement in computing or their intention to study it further. Combining several of the approaches we tested may be more impactful. If you’re part of an educational setting where you’d like to adopt multiple approaches at the same time, you can freely access the materials associated with the research programme (see our blog posts about the trails for links).

In a computing classroom, a girl looks at a computer screen.

The research programme also showed that age matters: across Gender Balance in Computing, we observed a big difference in intent to study Computing between primary school and secondary school learners (data from ages 8–11 and 12–13). Fewer secondary school learners reported intent to study the subject further, and while this difference was apparent for both girls and boys, it was more marked for girls.

This finding from England is mirrored by a study the UN Women’s Gender Snapshot 2022 refers to: “A 2020 study of Filipina girls demonstrated that loss of interest in STEM subjects started as early as age 10, when girls began perceiving STEM careers as male-dominated and believing that girls are naturally less adept in STEM subjects. The relative lack of female STEM role models reinforced such perceptions.” That’s why it’s necessary that all primary school learners — no matter what their gender is — have a successful start in the computing classroom, that they encounter role models they can relate to, and that they are supported to engage in computing and creating with technology by their parents, teachers, and communities.

An educator teaches students to create with technology.

The Foundation’s vision is that every young person develops the knowledge, skills, and confidence to use digital technologies effectively, and to be able to critically evaluate these technologies and confidently engage with technological change. While making changes inside the computing classroom will be beneficial for gender equality, this is just one aspect of building an equitable digital future. We all need to contribute to creating a world where innovation and technology support gender equity.

What do you think is needed?

In all our work, we make sure gender equity is at the forefront, whether that’s in programmes we run for young people, in resources we create for schools, or in partnerships we have, such as with Pratham Education Foundation in India or Team4Tech and Kenya Connect in Wamunyu, Kenya. Computing education is a global challenge, and we are proud to be part of a community that is committed to making it equitable.

Kenyan educators work on a physical computing project.

This IWD, we invite you to share your thoughts on what equitable computing education means to you, and what you think is needed to achieve it, whether that’s in your school or club, in your local community, or in your country. 

The post How can computing education promote an equitable digital future? Ideas from research appeared first on Raspberry Pi.

Bias in the machine: How can we address gender bias in AI?

Post Syndicated from Sue Sentance original https://www.raspberrypi.org/blog/gender-bias-in-ai-machine-learning-biased-data/

At the Raspberry Pi Foundation, we’ve been thinking about questions relating to artificial intelligence (AI) education and data science education for several months now, inviting experts to share their perspectives in a series of very well-attended seminars. At the same time, we’ve been running a programme of research trials to find out what interventions in school might successfully improve gender balance in computing. We’re learning a lot, and one primary lesson is that these topics are not discrete: there are relationships between them.

We can’t talk about AI education — or computer science education more generally — without considering the context in which we deliver it, and the societal issues surrounding computing, AI, and data. For this International Women’s Day, I’m writing about the intersection of AI and gender, particularly with respect to gender bias in machine learning.

The quest for gender equality

Gender inequality is everywhere, and researchers, activists, and initiatives, and governments themselves, have struggled since the 1960s to tackle it. As women and girls around the world continue to suffer from discrimination, the United Nations has pledged, in its Sustainable Development Goals, to achieve gender equality and to empower all women and girls.

While progress has been made, new developments in technology may be threatening to undo this. As Susan Leahy, a machine learning researcher from the Insight Centre for Data Analytics, puts it:

Artificial intelligence is increasingly influencing the opinions and behaviour of people in everyday life. However, the over-representation of men in the design of these technologies could quietly undo decades of advances in gender equality.

Susan Leavy, 2018 [1]

Gender-biased data

In her 2019 award-winning book Invisible Women: Exploring Data Bias in a World Designed for Men [2], Caroline Ceriado Perez discusses the effects of gender-biased data. She describes, for example, how the designs of cities, workplaces, smartphones, and even crash test dummies are all based on data gathered from men. She also discusses that medical research has historically been conducted by men, on male bodies.

Looking at this problem from a different angle, researcher Mayra Buvinic and her colleagues highlight that in most countries of the world, there are no sources of data that capture the differences between male and female participation in civil society organisations, or in local advisory or decision making bodies [3]. A lack of data about girls and women will surely impact decision making negatively. 

Bias in machine learning

Machine learning (ML) is a type of artificial intelligence technology that relies on vast datasets for training. ML is currently being use in various systems for automated decision making. Bias in datasets for training ML models can be caused in several ways. For example, datasets can be biased because they are incomplete or skewed (as is the case in datasets which lack data about women). Another example is that datasets can be biased because of the use of incorrect labels by people who annotate the data. Annotating data is necessary for supervised learning, where machine learning models are trained to categorise data into categories decided upon by people (e.g. pineapples and mangoes).

A banana, a glass flask, and a potted plant on a white surface. Each object is surrounded by a white rectangular frame with a label identifying the object.
Max Gruber / Better Images of AI / Banana / Plant / Flask / CC-BY 4.0

In order for a machine learning model to categorise new data appropriately, it needs to be trained with data that is gathered from everyone, and is, in the case of supervised learning, annotated without bias. Failing to do this creates a biased ML model. Bias has been demonstrated in different types of AI systems that have been released as products. For example:

Facial recognition: AI researcher Joy Buolamwini discovered that existing AI facial recognition systems do not identify dark-skinned and female faces accurately. Her discovery, and her work to push for the first-ever piece of legislation in the USA to govern against bias in the algorithms that impact our lives, is narrated in the 2020 documentary Coded Bias

Natural language processing: Imagine an AI system that is tasked with filling in the missing word in “Man is to king as woman is to X” comes up with “queen”. But what if the system completes “Man is to software developer as woman is to X” with “secretary” or some other word that reflects stereotypical views of gender and careers? AI models called word embeddings learn by identifying patterns in huge collections of texts. In addition to the structural patterns of the text language, word embeddings learn human biases expressed in the texts. You can read more about this issue in this Brookings Institute report

Not noticing

There is much debate about the level of bias in systems using artificial intelligence, and some AI researchers worry that this will cause distrust in machine learning systems. Thus, some scientists are keen to emphasise the breadth of their training data across the genders. However, other researchers point out that despite all good intentions, gender disparities are so entrenched in society that we literally are not aware of all of them. White and male dominance in our society may be so unconsciously prevalent that we don’t notice all its effects.

Three women discuss something while looking at a laptop screen.

As sociologist Pierre Bourdieu famously asserted in 1977: “What is essential goes without saying because it comes without saying: the tradition is silent, not least about itself as a tradition.” [4]. This view holds that people’s experiences are deeply, or completely, shaped by social conventions, even those conventions that are biased. That means we cannot be sure we have accounted for all disparities when collecting data.

What is being done in the AI sector to address bias?

Developers and researchers of AI systems have been trying to establish rules for how to avoid bias in AI models. An example rule set is given in an article in the Harvard Business Review, which describes the fact that speech recognition systems originally performed poorly for female speakers as opposed to male ones, because systems analysed and modelled speech for taller speakers with longer vocal cords and lower-pitched voices (typically men).

A women looks at a computer screen.

The article recommends four ways for people who work in machine learning to try to avoid gender bias:

  • Ensure diversity in the training data (in the example from the article, including as many female audio samples as male ones)
  • Ensure that a diverse group of people labels the training data
  • Measure the accuracy of a ML model separately for different demographic categories to check whether the model is biased against some demographic categories
  • Establish techniques to encourage ML models towards unbiased results

What can everybody else do?

The above points can help people in the AI industry, which is of course important — but what about the rest of us? It’s important to raise awareness of the issues around gender data bias and AI lest we find out too late that we are reintroducing gender inequalities we have fought so hard to remove. Awareness is a good start, and some other suggestions, drawn out from others’ work in this area are:

Improve the gender balance in the AI workforce

Having more women in AI and data science, particularly in both technical and leadership roles, will help to reduce gender bias. A 2020 report by the World Economic Forum (WEF) on gender parity found that women account for only 26% of data and AI positions in the workforce. The WEF suggests five ways in which the AI workforce gender balance could be addressed:

  1. Support STEM education
  2. Showcase female AI trailblazers
  3. Mentor women for leadership roles
  4. Create equal opportunities
  5. Ensure a gender-equal reward system

Ensure the collection of and access to high-quality and up-to-date gender data

We need high-quality dataset on women and girls, with good coverage, including country coverage. Data needs to be comparable across countries in terms of concepts, definitions, and measures. Data should have both complexity and granularity, so it can be cross-tabulated and disaggregated, following the recommendations from the Data2x project on mapping gender data gaps.

A woman works at a multi-screen computer setup on a desk.

Educate young people about AI

At the Raspberry Pi Foundation we believe that introducing some of the potential (positive and negative) impacts of AI systems to young people through their school education may help to build awareness and understanding at a young age. The jury is out on what exactly to teach in AI education, and how to teach it. But we think educating young people about new and future technologies can help them to see AI-related work opportunities as being open to all, and to develop critical and ethical thinking.

Three teenage girls at a laptop

In our AI education seminars we heard a number of perspectives on this topic, and you can revisit the videos, presentation slides, and blog posts. We’ve also been curating a list of resources that can help to further AI education — although there is a long way to go until we understand this area fully. 

We’d love to hear your thoughts on this topic.


References

[1] Leavy, S. (2018). Gender bias in artificial intelligence: The need for diversity and gender theory in machine learning. Proceedings of the 1st International Workshop on Gender Equality in Software Engineering, 14–16.

[2] Perez, C. C. (2019). Invisible Women: Exploring Data Bias in a World Designed for Men. Random House.

[3] Buvinic M., Levine R. (2016). Closing the gender data gap. Significance 13(2):34–37 

[4] Bourdieu, P. (1977). Outline of a Theory of Practice (No. 16). Cambridge University Press. (p.167)

The post Bias in the machine: How can we address gender bias in AI? appeared first on Raspberry Pi.

Computer science education for what purpose? Some perspectives

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/computer-science-education-equity-change-purpose/

As we’re coming to the end of Black History Month in the USA this year, we’ve been amazed by the variety of work the computing education community is doing to address inequities in their classrooms. For our part, we have learned a huge amount about equitable STEM and computer science (CS) education from the community, and through our own research.

A group of young people in a computer science classroom pose for a group photo.

In this post, we want to highlight two particular pieces of work that have influenced our work over the last year, shared by Dr Tia C. Madkins (University of Texas at Austin), Dr Nicol R. Howard (University of Redlands), and Dr Jakita O. Thomas (Auburn University, blackcomputeHER.org) at our research seminars.

Moving beyond access and achievement, towards equity and justice

Tia C. Madkins and Nicol R. Howard described that educators in schools (and associated professionals) need to build an awareness of how the learning in their classrooms might be affected by:

  • Personal beliefs, ways of knowing or thinking, stereotypes, and the cultural lens of the educator and the learners
  • Power dynamics and intersectional identities

They say: “Instead of viewing learners as deficient individuals who we need to ‘fix’ in our classrooms, we use strengths-based approaches where we as educators learn to recognise, draw on, and build upon learners’ strengths and lived experiences.”

The researchers encourage educators to connect with learners’ cultural practices and lived experiences, and to foster and maintain relationships with learners’ families and communities, in order to work together to facilitate equitable, social justice–oriented CS learning

To hear from Tia, Nicol, and their collaborator Shomari Jones, watch their seminar. You can also read Tia and Nicol’s article in our seminar proceedings, where you’ll find a list of their recommended resources to explore this thinking further.

Valuing existing knowledge and lived experience as expertise

Jakita O. Thomas described findings from her research project based on a free enrichment programme exploring how Black middle-school girls develop computational algorithmic thinking skills in the context of game design.

The programme was intentionally designed to position Black girls as knowledge holders with valuable experiences, and to offer them opportunities to shape their identities as producers, innovators, and people who challenge deficit perspectives. These are perspectives that include implicit assumptions that privilege the values, beliefs, and practices of one group over another, especially where the groups are racially, ethnically, or culturally different.

Jakita emphasised that it’s very important for educators to ask the questions “STEM learning for what?”, “For whom?”, “How?”, and “To what ends?” when they consider how to bring STEM learning experiences to Black girls (or other young people with multiple marginal identities). Educators need an awareness that the economic reasons of STEM learning, which are commonly spotlighted, may not be sufficient to convince young people who are marginalised to engage in these subjects.

To hear more about this from Jakita directly, watch her seminar:

Empowering learners to be agents of change

One thing these researchers’ work makes clear is that the reasons for why learners choose to engage in CS education are many, and that gaining CS skills to prepare for the job market is only one of them.

In both seminars, the speakers emphasised how important it is for educators to contribute to their learners’ self-view as agents of change, not only by demonstrating how CS can be used to solve problems, but also by being open and direct about existing technological inequities. This teaches learners to use CS as a tool, and to also examine the social context in which CS is being applied, and the positive and negative consequences of these applications. Learning CS can empower young people to address challenges their communities face, and educators, learners, and families can work together through CS on social justice issues.

Putting the power of computing into the hands of young people is the core of our mission, and we have a research project underway right now that looks at equitable computing education in UK schools. Find out more about it here, and download our practical guide for teachers.

The post Computer science education for what purpose? Some perspectives appeared first on Raspberry Pi.

Celebrate Black history this month with code!

Post Syndicated from Kevin Johnson original https://www.raspberrypi.org/blog/black-history-month-2022-free-coding-resources/

For those of us living in the USA, February is Black History Month, our month-long celebration of Black history. This is an occasion to highlight the amazing accomplishments of Black Americans through time. Simply put, the possibilities are endless! Black history touches every area of our lives, and it is so important that we seize the opportunity to honor Black freedom fighters who fought for the equality and freedom of ALL people.

That’s why we encourage you to join us in celebrating Black History Month with the help of free, specially chosen coding and computing education resources. We’ve got something for everyone: whether you’re a learner, an educator, a volunteer, or any lover of tech, everyone can participate.

For learners: Celebrate Black History Month with free coding resources

This month, we want to empower young people to think about how they can use code as a tool to celebrate Black history with innovation and creativity. We’ve designed a project card listing the perfect projects to jumpstart young learners’ imagination: 

There are projects for beginner coders, as well as intermediate and advanced coders, in Scratch, Python, HTML/CSS, and Ruby plus Raspberry Pi.

Three young tech creators show off their tech project at Coolest Projects.

For educators: Support Black learners and their communities

We’re working on research to better understand how to support the Black community and other underrepresented communities to engage with computer science.

At Coolest Projects, a group of people explore a coding project.

Take some time this month to explore the following resources to make sure we’re growing into a more diverse and inclusive community: 

  • Culturally relevant pedagogy guide: We’ve worked with a group of teachers and researchers to co-create a guide sharing the key elements of a culturally relevant and responsive teaching approach to curriculum design and teaching in the classroom. Download the guide to see how to teach computing and computer science in a way that values all your learners’ knowledge, ways of learning, and heritage.
A female computing educator with three female students at laptops in a classroom.

For everyone: Listen to Black voices

Uplifting Black voices is one of the best things we can all do this February in observance of Black History Month. We’ve had the privilege of hearing from members in our community about their experiences in tech, and their stories are incredibly insightful and inspiring. 

  • Community stories: Yolanda Payne
    • Meet Yolanda Payne, a highly regarded community member from Atlanta, Georgia who is passionate about connecting young people in her community to opportunities to create with technology.
  • Community stories: Avye 
    • Meet Avye, an accomplished 13-year old girl who is taking the world of robotics by storm and works to help other girls get involved too.

Happy Black History Month! Share with us on Twitter, LinkedIn, Facebook, or Instagram how you’re celebrating in your community.

The post Celebrate Black history this month with code! appeared first on Raspberry Pi.

The Roots project: Implementing culturally responsive computing teaching in schools in England

Post Syndicated from Sue Sentance original https://www.raspberrypi.org/blog/culturally-responsive-computing-teaching-schools-england-roots-research-project/

Since last year, we have been investigating culturally relevant pedagogy and culturally responsive teaching in computing education. This is an important part of our research to understand how to make computing accessible to all young people. We are now continuing our work in this area with a new project called Roots, bridging our research team here at the Foundation and the team at the Raspberry Pi Computing Education Research Centre, which we jointly created with the University of Cambridge in its Department of Computer Science and Technology.

Across both organisations, we’ve got great ambitions for the Centre, and I’m delighted to have been appointed as its Director. It’s a great privilege to lead this work. 

What do we mean by culturally relevant pedagogy?

Culturally relevant pedagogy is a framework for teaching that emphasises the importance of incorporating and valuing all learners’ knowledge, ways of learning, and heritage. It promotes the development of learners’ critical consciousness of the world and encourages them to ask questions about ethics, power, privilege, and social justice. Culturally relevant pedagogy emphasises opportunities to address issues that are important to learners and their communities.

Culturally responsive teaching builds on the framework above to identify a range of teaching practices that can be implemented in the classroom. These include:

  • Drawing on learners’ cultural knowledge and experiences to inform the curriculum
  • Providing opportunities for learners to choose personally meaningful projects and express their own cultural identities
  • Exploring issues of social justice and bias

The story so far

The overall objective of our work in this area is to further our understanding of ways to engage underrepresented groups in computing. In 2021, funded by a Special Projects Grant from ACM’s Special Interest Group in Computer Science Education (SIGCSE), we established a working group of teachers and academics who met up over the course of three months to explore and discuss culturally relevant pedagogy. The result was a collaboratively written set of practical guidelines about culturally relevant and responsive teaching for classroom educators.

The video below is an introduction for teachers who may not be familiar with the topic, showing the perspectives of three members of the working group and their students. You can also find other resources that resulted from this first phase of the work, and read our Special Projects Report.

We’re really excited that, having developed the guidelines, we can now focus on how culturally responsive computing teaching can be implemented in English schools through the Roots project, a new, related project supported by funding from Google. This funding continues Google’s commitment to grow the impact of computer science education in schools, which included a £1 million donation to support us and other organisations to develop online courses for teachers.

The next phase of work: Roots

In our new Roots project, we want to learn from practitioners how culturally responsive computing teaching can be implemented in classrooms in England, by supporting teachers to plan activities, and listening carefully to their experiences in school. Our approach is similar to the Research-Practice-Partnership (RPP) approach used extensively in the USA to develop research in computing education; this approach hasn’t yet been used in the UK. In this way, we hope to further develop and improve the guidelines with exemplars and case studies, and to increase our understanding of teachers’ motivations and beliefs with respect to culturally responsive computing teaching.

The pilot phase of the Roots project starts this month and will run until December 2022. During this phase, we will work with a small group of schools around London, Essex, and Cambridgeshire. Longer-term, we aim to scale up this work across the UK.

The project will be centred around two workshops held in participating teachers’ schools during the first half of the year. In the first workshop, teachers will work together with facilitators from the Foundation and the Raspberry Pi Computing Education Research Centre to discuss culturally responsive computing teaching and how to make use of the guidelines in adapting existing lessons and programmes of study. The second workshop will take place after the teachers have implemented the guidelines in their classroom, and it will be structured around a discussion of the teachers’ experiences and suggestions for iteration of the guidelines. We will also be using a visual research methodology to create a number of videos representing the new knowledge gleaned from all participants’ experiences of the project. We’re looking forward to sharing the results of the project later on in the year. 

We’re delighted that Dr Polly Card will be leading the work on this project at the Raspberry Pi Computing Education Research Centre, University of Cambridge, together with Saman Rizvi in the Foundation’s research team and Katie Vanderpere-Brown, Assistant Headteacher, Saffron Walden County High School, Essex and Computing Lead of the NCCE London, Hertfordshire and Essex Computing Hub.

More about equity, diversity, and inclusion in computing education

We hold monthly research seminars here at the Foundation, and in the first half of 2021, we invited speakers who focus on a range of topics relating to equity, diversity, and inclusion in computing education.

As well as holding seminars and building a community of interested people around them, we share the insights from speakers and attendees through video recordings of the sessions, blog posts, and the speakers’ presentation slides. We also publish a series of seminar proceedings with referenced chapters written by the speakers.

You can download your copy of the proceedings of the equity, diversity, and inclusion series now.  

The post The Roots project: Implementing culturally responsive computing teaching in schools in England appeared first on Raspberry Pi.

What does equity-focused teaching mean in computer science education?

Post Syndicated from Sue Sentance original https://www.raspberrypi.org/blog/equity-focused-teaching-in-computer-science-education/

Today, I discuss the second research seminar in our series of six free online research seminars focused on diversity and inclusion in computing education, where we host researchers from the UK and USA together with the Royal Academy of Engineering. By diversity, we mean any dimension that can be used to differentiate groups and people from one another. This might be, for example, age, gender, socio-economic status, disability, ethnicity, religion, nationality, or sexuality. The aim of inclusion is to embrace all people irrespective of difference. 

In this seminar, we were delighted to hear from Prof Tia Madkins (University of Texas at Austin), Dr Nicol R. Howard (University of Redlands), and Shomari Jones (Bellevue School District) (find their bios here), who talked to us about culturally responsive pedagogy and equity-focused teaching in K-12 Computer Science.

Equity-focused computer science teaching

Tia began the seminar with an audience-engaging task: she asked all participants to share their own definition of equity in the seminar chat. Amongst their many suggestions were “giving everybody the same opportunity”, “equal opportunity to access high-quality education”, and “everyone has access to the same resources”. I found Shomari’s own definition of equity very powerful: 

“Equity is the fair treatment, access, opportunity, and advancement of all people, while at the same time striving to identify and eliminate barriers that have prevented the full participation of some groups. Improving equity involves increasing justice and fairness within the procedures and processes of institutions or systems, as well as the distribution of resources. Tackling equity requires an understanding of the root cause of outcome disparity within our society.”

Shomari Jones

This definition is drawn directly from the young people Shomari works with, and it goes beyond access and opportunity to the notion of increasing justice and fairness and addressing the causes of outcome disparity. Justice was a theme throughout the seminar, with all speakers referring to the way that their work looks at equity in computer science education through a justice-oriented lens.

Removing deficit thinking

Using a justice-oriented approach means that learners should be encouraged to use their computer science knowledge to make a difference in areas that are important to them. It means that just having access to a computer science education is not sufficient for equity.

Tia Madkins presents a slide: "A justice-oriented approach to computer science teaching empowers students to use CS knowledge for transformation, moves beyond access and achievement frames, and is an asset- or strengths-based approach centering students and families"

Tia spoke about the need to reject “deficit thinking” (i.e. focusing on what learners lack) and instead focus on learners’ strengths or assets and how they bring these to the school classroom. For researchers and teachers to do this, we need to be aware of our own mindset and perspective, to think about what we value about ethnic and racial identities, and to be willing to reflect and take feedback.

Activities to support computer science teaching

Nicol talked about some of the ways of designing computing lessons to be equity-focused. She highlighted the benefits of pair programming and other peer pedagogies, where students teach and learn from each other through feedback and sharing ideas/completed work. She suggested using a variety of different programs and environments, to ensure a range of different pathways to understanding. Teachers and schools can aim to base teaching around tools that are open and accessible and, where possible, available in many languages. If the software environment and tasks are accessible, they open the doors of opportunity to enable students to move on to more advanced materials. To demonstrate to learners that computer science is applicable across domains, the topic can also be introduced in the context of mathematics and other subjects.

Nicol Howard presents a slide: "Considerations for equity-focused computer science teaching include your beliefs (and your students' beliefs) and how they impact CS classrooms; tiered activities and pair programming; self-expressions versus CS preparation; equity-focused lens"

Learners can benefit from learning computer science regardless of whether they want to become a computer scientist. Computing offers them skills that they can use for self-expression or to be creative in other areas of their life. They can use their knowledge for a specific purpose and to become more autonomous, particularly if their teacher does not have any deficit thinking. In addition, culturally relevant teaching in the classroom demonstrates a teacher’s deliberate and explicit acknowledgment that they value all students in their classroom and expect students to excel.

Engaging family and community

Shomari talked about the importance of working with parents and families of ethnically diverse students in order to hear their voices and learn from their experiences.

Shomari Jones presents a slide: “Parents without backgrounds and insights into the changing landscape of technology struggle to negotiate what roles they can play, such as how to work together in computing activities or how to find learning opportunities for their children.”

He described how the absence of a background in technology of parents and carers can drastically impact the experiences of young people.

“Parents without backgrounds and insights into the changing landscape of technology struggle to negotiate what roles they can play, such as how to work together in computing activities or how to find learning opportunities for their children.”

Betsy DiSalvo, Cecili Reid, and Parisa Khanipour Roshan. 2014

Shomari drew on an example from the Pacific Northwest in the US, a region with many successful technology companies. In this location, young people from wealthy white and Asian communities can engage fully in informal learning of computer science and can have aspirations to enter technology-related fields, whereas amongst the Black and Latino communities, there are significant barriers to any form of engagement with technology. This already existent inequity has been enhanced by the coronavirus pandemic: once so much of education moved online, it became widely apparent that many families had never owned, or even used, a computer. Shomari highlighted the importance of working with pre-service teachers to support them in understanding the necessity of family and community engagement.

Building classroom communities

Building a classroom community starts by fostering and maintaining relationships with students, families, and their communities. Our speakers emphasised how important it is to understand the lives of learners and their situations. Through this understanding, learning experiences can be designed that connect with the learners’ lived experiences and cultural practices. In addition, by tapping into what matters most to learners, teachers can inspire them to be change agents in their communities. Tia gave the example of learning to code or learning to build an app, which provides learners with practical tools they can use for projects they care about, and with skills to create artefacts that challenge and document injustices they see happening in their communities.

Find out more

If you want to learn more about this topic, a great place to start is the recent paper Tia and Nicol have co-authored that lays out more detail on the work described in the seminar: Engaging Equity Pedagogies in Computer Science Learning Environments, by Tia C. Madkins, Nicol R. Howard and Natalie Freed, 2020.

You can access the presentation slides via our seminars page.

Join our next free seminar

In our next seminar on Tuesday 2 March at 17:00–18:30 BST / 12:00–13:30 EDT / 9:00–10:30 PDT / 18:00–19:30 CEST, we’ll welcome Jakita O. Thomas (Auburn University), who is going to talk to us about Designing STEM Learning Environments to Support Computational Algorithmic Thinking and Black Girls: A Possibility Model for Changing Hegemonic Narratives and Disrupting STEM Neoliberal Projects. To join this free online seminar, simply sign up with your name and email address.

Once you’ve signed up, we’ll email you the seminar meeting link and instructions for joining. If you attended Peter’s and Billy’s seminar, the link remains the same.

The post What does equity-focused teaching mean in computer science education? appeared first on Raspberry Pi.

Computing education and underrepresentation: the data from England

Post Syndicated from Sue Sentance original https://www.raspberrypi.org/blog/computing-education-underrepresentation-data-england-schools/

In this blog post, I’ll discuss the first research seminar in our six-part series about diversity and inclusion. Let’s start by defining our terms. Diversity is any dimension that can be used to differentiate groups and people from one another. This might be, for example, age, gender, socio-economic status, disability, ethnicity, religion, nationality, or sexuality. The aim of inclusion is to embrace all people irrespective of difference.

It’s vital that we are inclusive in computing education, because we need to ensure that everyone can access and learn the empowering and enabling technical skills they need to support all aspects of their lives.

One male and two female teenagers at a computer

Between January and June of this year, we’re partnering with the Royal Academy of Engineering to host speakers from the UK and USA for a series of six research seminars focused on diversity and inclusion in computing education.

We kicked off the series with a seminar from Dr Peter Kemp and Dr Billy Wong focused on computing education in England’s schools post-14. Peter is a Lecturer in Computing Education at King’s College London, where he leads on initial teacher education in computing. His research areas are digital creativity and digital equity. Billy is an Associate Professor at the Institute of Education, University of Reading. His areas of research are educational identities and inequalities, especially in the context of higher education and STEM education.

Computing in England’s schools

Peter began the seminar with a comprehensive look at the history of curriculum change in Computing in England. This was very useful given our very international audience for these seminars, and I will summarise it below. (If you’d like more detail, you can look over the slides from the seminar. Note that these changes refer to England only, as education in the UK is devolved, and England, Northern Ireland, Scotland, and Wales each has a different education system.)

In 2014, England switched from mandatory ICT (Information and Communication Technology) to mandatory Computing (encompassing information technology, computer science, and digital literacy). This shift was complemented by a change in the qualifications for students aged 14–16 and 16–18, where the primary qualifications are GCSEs and A levels respectively:

  • At GCSE, there has been a transition from GCSE ICT to GCSE Computer Science over the last five years, with GCSE ICT being discontinued in 2017
  • At A level before 2014, ICT and Computing were on offer as two separate A levels; now there is only one, A level Computer Science

One of the issues is that in the English education system, there is a narrowing of the curriculum at age 14: students have to choose between Computer Science and other subjects such as Geography, History, Religious Studies, Drama, Music, etc. This means that those students that choose not to take a GCSE Computer Science (CS) may find that their digital education is thereby curtailed from then onwards. Peter’s and Billy’s view is that having a more specialist subject offer for age 14+ (Computer Science as opposed to ICT) means that fewer students take it, and they showed evidence of this from qualifications data. The number of students taking CS at GCSE has risen considerably since its introduction, but it’s not yet at the level of GCSE ICT uptake.

GCSE computer science and equity

Only 64% of schools in England offer GCSE Computer Science, meaning that just 81% of students have the opportunity to take the subject (some schools also add selection criteria). A higher percentage (90%) of selective grammar schools offer GCSE CS than do comprehensive schools (80%) or independent schools (39%). Peter suggested that this was making Computer Science a “little more elitist” as a subject.

Peter analysed data from England’s National Pupil Database (NPD) to thoroughly investigate the uptake of Computer Science post-14 with respect to the diversity of entrants.

He found that the gender gap for GCSE CS uptake is greater than it was for GCSE ICT. Now girls make up 22% of the cohort for GCSE CS (2020 data), whereas for the ICT qualification (2017 data), 43% of students were female.

Peter’s analysis showed that there is also a lower representation of black students and of students from socio-economically disadvantaged backgrounds in the cohort for GCSE CS. In contrast, students with Chinese ancestry are proportionally more highly represented in the cohort. 

Another part of Peter’s analysis related gender data to the Income Deprivation Affecting Children Index (IDACI), which is used as an indicator of the level of poverty in England’s local authority districts. In the graphs below, a higher IDACI decile means more deprivation in an area. Relating gender data of GCSE CS uptake against the IDACI shows that:

  • Girls from more deprived areas are more likely to take up GCSE CS than girls from less deprived areas are
  • The opposite is true for boys
Two bar charts relating gender data of GCSE uptake against the Income Deprivation Affecting Children Index. The graph plotting GCSE ICT data shows that students from areas with higher deprivation are slightly more likely to choose the GCSE, irrespective of gender. The graph plotting GCSE Computer Science data shows that girls from more deprived areas are more likely to take up GCSE CS than girls from less deprived areas, and the opposite is true for boys.

Peter covered much more data in the seminar, so do watch the video recording (below) if you want to learn more.

Peter’s analysis shows a lack of equity (i.e. equality of outcome in the form of proportional representation) in uptake of GCSE CS after age 14. It is also important to recognise, however, that England does mandate — not simply provide or offer — Computing for all pupils at both primary and secondary levels; making a subject mandatory is the only way to ensure that we do give access to all pupils.

What can we do about the lack of equity?

Billy presented some of the potential reasons for why some groups of young people are not fully represented in GCSE Computer Science:

  • There are many stereotypes surrounding the image of ‘the computer scientist’, and young people may not be able to identify with the perception they hold of ‘the computer scientist’
  • There is inequality in access to resources, as indicated by the research on science and STEM capital being carried out within the ASPIRES project

More research is needed to understand the subject choices young people make and their reasons for choosing as they do.

We also need to look at how the way we teach Computing to students aged 11 to 14 (and younger) affects whether they choose CS as a post-14 subject. Our next seminar revolves around equity-focused teaching practices, such as culturally relevant pedagogy or culturally responsive teaching, and how educators can use them in their CS learning environments. 

Meanwhile, our own research project at the Raspberry Pi Foundation, Gender Balance in Computing, investigates particular approaches in school and non-formal learning and how they can impact on gender balance in Computer Science. For an overview of recent research around barriers to gender balance in school computing, look back on the research seminar by Katharine Childs from our team.

Peter and Billy themselves have recently been successful in obtaining funding for a research project to explore female computing performance and subject choice in English schools, a project they will be starting soon!

If you missed the seminar, watch recording here. You can also find Peter and Billy’s presentation slides on our seminars page.

Next up in our seminar series

In our next research seminar on Tuesday 2 February at 17:00–18:30 BST / 12:00–13:30 EDT / 9:00–10:30 PDT / 18:00–19:30 CEST, we’ll welcome Prof Tia Madkins (University of Texas at Austin), Dr Nicol R. Howard (University of Redlands), and Shomari Jones (Bellevue School District), who are going to talk to us about culturally responsive pedagogy and equity-focused teaching in K-12 Computer Science. To join this free online seminar, simply sign up with your name and email address.

Once you’ve signed up, we’ll email you the seminar meeting link and instructions for joining. If you attended Peter’s and Billy’s seminar, the link remains the same.

The post Computing education and underrepresentation: the data from England appeared first on Raspberry Pi.