Tag Archives: Big Data

AWS Partner Webinar Series – September & October 2017

Post Syndicated from Sara Rodas original https://aws.amazon.com/blogs/aws/aws-partner-webinar-series-september-october-2017/

The wait is over. September and October’s Partner Webinars have officially arrived! In case you missed the intro last month, the AWS Partner Webinar Series is a selection of live and recorded presentations covering a broad range of topics at varying technical levels and scale. A little different from our AWS Online TechTalks, each AWS Partner Webinar is hosted by an AWS solutions architect and an AWS Competency Partner who has successfully helped customers evaluate and implement the tools, techniques, and technologies of AWS.

 

 

September & October Partner Webinars:

 

SAP Migration
Velocity: How EIS Reduced Costs by 20% and Optimized SAP by Leveraging the Cloud
September 19, 2017 | 10:00 AM PDT

 

Mactores: SAP on AWS: How UCT is Experiencing Better Performance on AWS While Saving 60% in Infrastructure Costs with Mactores
September 19, 2017 | 1:00 PM PDT

 

Accenture: Reduce Operating Costs and Accelerate Efficiency by Migrating Your SAP Applications to AWS with Accenture
September 20, 2017 | 10:00 AM PDT

 

Capgemini: Accelerate your SAP HANA Migration with Capgemini & AWS FAST
September 21, 2017 | 10:00 AM PDT

 

Salesforce
Salesforce IoT: Monetize your IOT Investment with Salesforce and AWS
September 27, 2017 | 10:00 am PDT

 

Salesforce Heroku: Build Engaging Applications with Salesforce Heroku and AWS
October 10, 2017 | 10:00 AM PDT

 

Windows Migration
Cascadeo: How a National Transportation Software Provider Migrated a Mission-Critical Test Infrastructure to AWS with Cascadeo
September 26, 2017 | 10:00 AM PDT

 

Datapipe: Optimize App Performance and Security by Managing Microsoft Workloads on AWS with Datapipe
September 27, 2017 | 10:00 AM PDT

 

Datavail: Datavail Accelerates AWS Adoption for Sony DADC New Media Solutions
September 28, 2017 | 10:00 AM PDT

 

Life Sciences

SAP, Deloitte & Turbot: Life Sciences Compliance on AWS
October 4, 2017 | 10:00 AM PDT

 

Healthcare

AWS, ClearData & Cloudticity: Healthcare Compliance on AWS 
October 5, 2017 | 10:00 AM PDT

 

Storage

N2WS: Learn How Goodwill Industries Ensures 24/7 Data Availability on AWS
October 10, 2017 | 8:00 AM PDT

 

Big Data

Zoomdata: Taking Complexity Out of Data Science with AWS and Zoomdata
October 10, 2017 | 10:00 AM PDT

 

Attunity: Cardinal Health: Moving Data to AWS in Real-Time with Attunity 
October 11, 2017 | 11:00 AM PDT

 

Splunk: How TrueCar Gains Actionable Insights with Splunk Cloud
October 18, 2017 | 9:00 AM PDT

Implement Continuous Integration and Delivery of Apache Spark Applications using AWS

Post Syndicated from Luis Caro Perez original https://aws.amazon.com/blogs/big-data/implement-continuous-integration-and-delivery-of-apache-spark-applications-using-aws/

When you develop Apache Spark–based applications, you might face some additional challenges when dealing with continuous integration and deployment pipelines, such as the following common issues:

  • Applications must be tested on real clusters using automation tools (live test)
  • Any user or developer must be able to easily deploy and use different versions of both the application and infrastructure to be able to debug, experiment on, and test different functionality.
  • Infrastructure needs to be evaluated and tested along with the application that uses it.

In this post, we walk you through a solution that implements a continuous integration and deployment pipeline supported by AWS services. The pipeline offers the following workflow:

  • Deploy the application to a QA stage after a commit is performed to the source code.
  • Perform a unit test using Spark local mode.
  • Deploy to a dynamically provisioned Amazon EMR cluster and test the Spark application on it
  • Update the application as an AWS Service Catalog product version, allowing a user to deploy any version (commit) of the application on demand.

Solution overview

The following diagram shows the pipeline workflow.

The solution uses AWS CodePipeline, which allows users to orchestrate and automate the build, test, and deploy stages for application source code. The solution consists of a pipeline that contains the following stages:

  • Source: Both the Spark application source code in addition to the AWS CloudFormation template file for deploying the application are committed to version control. In this example, we use AWS CodeCommit. For an example of the application source code, see zip. 
  • Build: In this stage, you use Apache Maven both to generate the application .jar binaries and to execute all of the application unit tests that end with *Spec.scala. In this example, we use AWS CodeBuild, which runs the unit tests given that they are designed to use Spark local mode.
  • QADeploy: In this stage, the .jar file built previously is deployed using the CloudFormation template included with the application source code. All the resources are created in this stage, such as networks, EMR clusters, and so on. 
  • LiveTest: In this stage, you use Apache Maven to execute all the application tests that end with *SpecLive.scala. The tests submit EMR steps to the cluster created as part of the QADeploy step. The tests verify that the steps ran successfully and their results. 
  • LiveTestApproval: This stage is included in case a pipeline administrator approval is required to deploy the application to the next stages. The pipeline pauses in this stage until an administrator manually approves the release. 
  • QACleanup: In this stage, you use an AWS Lambda function to delete the CloudFormation template deployed as part of the QADeploy stage. The function does not affect any resources other than those deployed as part of the QADeploy stage. 
  • DeployProduct: In this stage, you use a Lambda function that creates or updates an AWS Service Catalog product and portfolio. Every time the pipeline releases a change to the application, the AWS Service Catalog product gets a new version, with the commit of the change as the version description. 

Try it out!

Use the provided sample template to get started using this solution. This template creates the pipeline described earlier with all of its stages. It performs an initial commit of the sample Spark application in order to trigger the first release change. To deploy the template, use the following AWS CLI command:

aws cloudformation create-stack  --template-url https://s3.amazonaws.com/aws-bigdata-blog/artifacts/sparkAppDemoForPipeline/emrSparkpipeline.yaml --stack-name emr-spark-pipeline --capabilities CAPABILITY_NAMED_IAM

After the template finishes creating resources, you see the pipeline name on the stack Outputs tab. After that, open the AWS CodePipeline console and select the newly created pipeline.

After a couple of minutes, AWS CodePipeline detects the initial commit applied by the CloudFormation stack and starts the first release.

You can watch how the pipeline goes through the Build, QADeploy, and LiveTest stages until it finally reaches the LiveTestApproval stage.

At this point, you can check the results of the test in the log files of the Build and LiveTest stage jobs on AWS CodeBuild. If you check the CloudFormation console, you see that a new template has been deployed as part of the QADeploy stage.

You can also visit the EMR console and view how the LiveTest stage submitted steps to the EMR cluster.

After performing the review, manually approve the revision on the LiveTestApproval stage by using the AWS CodePipeline console.

After the revision is approved, the pipeline proceeds to use a Lambda function that destroys the resources deployed on the QAdeploy stage. Finally, it creates or updates a product and portfolio in AWS Service Catalog. After the final stage of the pipeline is complete, you can check that the product is created successfully on the AWS Service Catalog console.

You can check the product versions and notice that the first version is the initial commit performed by the CloudFormation template.

You can proceed to share the created portfolio with any users in your AWS account and allow them to deploy any version of the Spark application. You can also perform a commit on the AWS CodeCommit repository. The pipeline is triggered automatically and repeats the pipeline execution to deploy a new version of the product.

To destroy all of the resources created by the stack, make sure all the deployed stacks using AWS Service Catalog or the QAdeploy stage are destroyed. Then, destroy the pipeline template using the following AWS CLI command:

 

aws cloudformation delete-stack --stack-name emr-spark-pipeline

Conclusion

You can use the sample template and Spark application shared in this post and adapt them for the specific needs of your own application. The pipeline can have as many stages as needed and it can be used to automatically deploy to AWS Service Catalog or a production environment using CloudFormation.

If you have questions or suggestions, please comment below.


Additional Reading

Learn how to implement authorization and auditing on Amazon EMR using Apache Ranger.

 


About the Authors

Luis Caro is a Big Data Consultant for AWS Professional Services. He works with our customers to provide guidance and technical assistance on big data projects, helping them improving the value of their solutions when using AWS.

 

 

Samuel Schmidt is a Big Data Consultant for AWS Professional Services. He works with our customers to provide guidance and technical assistance on big data projects, helping them improving the value of their solutions when using AWS.

 

 

 

AWS Hot Startups – August 2017

Post Syndicated from Tina Barr original https://aws.amazon.com/blogs/aws/aws-hot-startups-august-2017/

There’s no doubt about it – Artificial Intelligence is changing the world and how it operates. Across industries, organizations from startups to Fortune 500s are embracing AI to develop new products, services, and opportunities that are more efficient and accessible for their consumers. From driverless cars to better preventative healthcare to smart home devices, AI is driving innovation at a fast rate and will continue to play a more important role in our everyday lives.

This month we’d like to highlight startups using AI solutions to help companies grow. We are pleased to feature:

  • SignalBox – a simple and accessible deep learning platform to help businesses get started with AI.
  • Valossa – an AI video recognition platform for the media and entertainment industry.
  • Kaliber – innovative applications for businesses using facial recognition, deep learning, and big data.

SignalBox (UK)

In 2016, SignalBox founder Alain Richardt was hearing the same comments being made by developers, data scientists, and business leaders. They wanted to get into deep learning but didn’t know where to start. Alain saw an opportunity to commodify and apply deep learning by providing a platform that does the heavy lifting with an easy-to-use web interface, blueprints for common tasks, and just a single-click to productize the models. With SignalBox, companies can start building deep learning models with no coding at all – they just select a data set, choose a network architecture, and go. SignalBox also offers step-by-step tutorials, tips and tricks from industry experts, and consulting services for customers that want an end-to-end AI solution.

SignalBox offers a variety of solutions that are being used across many industries for energy modeling, fraud detection, customer segmentation, insurance risk modeling, inventory prediction, real estate prediction, and more. Existing data science teams are using SignalBox to accelerate their innovation cycle. One innovative UK startup, Energi Mine, recently worked with SignalBox to develop deep networks that predict anomalous energy consumption patterns and do time series predictions on energy usage for businesses with hundreds of sites.

SignalBox uses a variety of AWS services including Amazon EC2, Amazon VPC, Amazon Elastic Block Store, and Amazon S3. The ability to rapidly provision EC2 GPU instances has been a critical factor in their success – both in terms of keeping their operational expenses low, as well as speed to market. The Amazon API Gateway has allowed for operational automation, giving SignalBox the ability to control its infrastructure.

To learn more about SignalBox, visit here.

Valossa (Finland)

As students at the University of Oulu in Finland, the Valossa founders spent years doing research in the computer science and AI labs. During that time, the team witnessed how the world was moving beyond text, with video playing a greater role in day-to-day communication. This spawned an idea to use technology to automatically understand what an audience is viewing and share that information with a global network of content producers. Since 2015, Valossa has been building next generation AI applications to benefit the media and entertainment industry and is moving beyond the capabilities of traditional visual recognition systems.

Valossa’s AI is capable of analyzing any video stream. The AI studies a vast array of data within videos and converts that information into descriptive tags, categories, and overviews automatically. Basically, it sees, hears, and understands videos like a human does. The Valossa AI can detect people, visual and auditory concepts, key speech elements, and labels explicit content to make moderating and filtering content simpler. Valossa’s solutions are designed to provide value for the content production workflow, from media asset management to end-user applications for content discovery. AI-annotated content allows online viewers to jump directly to their favorite scenes or search specific topics and actors within a video.

Valossa leverages AWS to deliver the industry’s first complete AI video recognition platform. Using Amazon EC2 GPU instances, Valossa can easily scale their computation capacity based on customer activity. High-volume video processing with GPU instances provides the necessary speed for time-sensitive workflows. The geo-located Availability Zones in EC2 allow Valossa to bring resources close to their customers to minimize network delays. Valossa also uses Amazon S3 for video ingestion and to provide end-user video analytics, which makes managing and accessing media data easy and highly scalable.

To see how Valossa works, check out www.WhatIsMyMovie.com or enable the Alexa Skill, Valossa Movie Finder. To try the Valossa AI, sign up for free at www.valossa.com.

Kaliber (San Francisco, CA)

Serial entrepreneurs Ray Rahman and Risto Haukioja founded Kaliber in 2016. The pair had previously worked in startups building smart cities and online privacy tools, and teamed up to bring AI to the workplace and change the hospitality industry. Our world is designed to appeal to our senses – stores and warehouses have clearly marked aisles, products are colorfully packaged, and we use these designs to differentiate one thing from another. We tell each other apart by our faces, and previously that was something only humans could measure or act upon. Kaliber is using facial recognition, deep learning, and big data to create solutions for business use. Markets and companies that aren’t typically associated with cutting-edge technology will be able to use their existing camera infrastructure in a whole new way, making them more efficient and better able to serve their customers.

Computer video processing is rapidly expanding, and Kaliber believes that video recognition will extend to far more than security cameras and robots. Using the clients’ network of in-house cameras, Kaliber’s platform extracts key data points and maps them to actionable insights using their machine learning (ML) algorithm. Dashboards connect users to the client’s BI tools via the Kaliber enterprise APIs, and managers can view these analytics to improve their real-world processes, taking immediate corrective action with real-time alerts. Kaliber’s Real Metrics are aimed at combining the power of image recognition with ML to ultimately provide a more meaningful experience for all.

Kaliber uses many AWS services, including Amazon Rekognition, Amazon Kinesis, AWS Lambda, Amazon EC2 GPU instances, and Amazon S3. These services have been instrumental in helping Kaliber meet the needs of enterprise customers in record time.

Learn more about Kaliber here.

Thanks for reading and we’ll see you next month!

-Tina

 

Analyzing Salesforce Data with Amazon QuickSight

Post Syndicated from David McAmis original https://aws.amazon.com/blogs/big-data/analyzing-salesforce-data-with-amazon-quicksight/

Salesforce Sales Cloud is a powerful platform for managing customer data. One of the key functions that the platform provides is the ability to track customer opportunities. Opportunities in Salesforce are used to track revenue, sales pipelines, and other activities from the very first contact with a potential customer to a closed sale.

Amazon QuickSight is a rich data visualization tool that provides the ability to connect to Salesforce data and use it as a data source for creating analyses, stories, and dashboards  and easily share them with others in the organization. This post focuses on how to connect to Salesforce as a data source and create a useful opportunity dashboard, incorporating Amazon QuickSight features like relative date filters, Key Performance Indicator (KPI) charts, and more.

Walkthrough

In this post, you walk through the following tasks:

  • Creating a new data set based on Salesforce data
  • Creating your analysis and adding visuals
  • Creating an Amazon QuickSight dashboard
  • Working with filters

Note: For this walkthrough, I am using my own Salesforce.com Developer Edition account. You can sign up for your own free developer account at https://developer.salesforce.com/.

Creating a new Amazon QuickSight data set based on Salesforce data

To start, you need to create a new Amazon QuickSight data set. Sign in to Amazon QuickSight at https://quicksight.aws using the link from the home page. Enter your Amazon QuickSight account name and choose Continue. Next, enter your Email address or user name and password, then choose Sign In.

On the Amazon QuickSight start page, choose Manage Data, which takes you to a list of your data sets. Choose New Data Set, and choose Salesforce as your data source. Enter a data source name—in this example, I called mine “SFDC Opportunity.” Choose Create Data Source to open the Salesforce authentication page, where you can enter your Salesforce user name and password.

After you are authenticated to Salesforce, you are presented with a drop-down list that lets you select data from Reports or Objects. For this tutorial, choose Object. Scroll down in the list to choose the Opportunity object, and then choose Select.

To finish creating your data set, choose Visualize to go to where you can create a new Amazon QuickSight analysis from this data.

Creating your analysis and adding visuals

Now that you have acquired your data, it’s time to start working with your analysis. In Amazon Quicksight, an analysis is a container for a set of related visual stories. When you chose Visualize, a new analysis was created for you. This is where you start to create the visuals (charts, graphs, etc.) that will be the building blocks for your dashboard.

In Amazon QuickSight, Salesforce objects look like database tables. In the analysis that you just created, you can see the columns in the Fields list for the Opportunity object.

The Opportunity object in Salesforce has a number of default fields. Salesforce administrators can extend this object by adding other custom fields as required—these custom fields are usually marked with a “_c” at the end.

In the Fields List, you can see that Amazon QuickSight has divided the fields into Dimensions and Measures.  You use these to create your visualizations and dashboard. For this particular dashboard, you create five different visuals to display the data in a few different ways.

Opportunity by Stage

For the first visualization, you create a horizontal bar chart showing “Opportunity by Stage”. In the Fields List, choose the StageName dimension and the ExpectedRevenue measure. By default, this should create a horizontal bar chart for you, as shown in the following image.

Notice that this chart includes the Closed Won category, which we aren’t interested in showing. Choose the bar for Closed Won, and in the pop-up menu, choose Exclude Closed Won. This filters the chart to show only opportunities that are in progress.

It’s important to note that for this dashboard, we only want to show the opportunities that are not Closed Won. So in the menu bar on the left side, choose Filter.

By default, the filter that you just created was only applied to a single visualization. To change this, choose the filter, and then choose All Visuals from the drop-down list. This applies the filter to all visuals in the analysis.

To finish, select the chart title and rename the chart to Opportunity by Stage.

Opportunity by Month

Next, you need to create a new visual to show “Opportunity by Month.” You use a vertical bar chart to display the data. On the Amazon QuickSight toolbar, choose Add, and then choose Add visual. For this visual, choose CloseDate from the dimensions and ExpectedRevenue from the measures.

Using the Visual Types menu, change the chart type to a Vertical Bar Chart. By default, the chart displays the revenue by year, but we want to break it down a bit further. Choose Field Wells, and using the CloseDate drop-down menu, change the Aggregate to Month.

With the change to a monthly aggregate, your chart should look something like the following:

Select the chart title and rename the chart to Opportunity by Month.

Expected Revenue

When working with Salesforce opportunities, there are two measures that are important to most sales managers—the first is the total amount associated with the opportunity, and the second is what the actual expected revenue will be. For the next visual, you use the KPI chart to display these measures.

Choose Add on the Amazon QuickSight toolbar, and then choose Add visual. From the measures, choose ExpectedRevenue, and then Amount. To change your visualization, go to the Visual Types menu and choose the Key Performance Indicator (KPI). Your visualization should change and be similar to the following:

Select the chart title and rename the chart to Expected Revenue.

Opportunity by Lead Source

Next, you need to look at where the opportunity actually came from. This helps your dashboard users understand where the leads are being generated from and their value to the business. For this visual, you use a Horizontal Bar Chart.

On the Amazon QuickSight toolbar, choose Add, and then choose Add visual. From the measures, choose Amount, and for the dimensions, choose LeadSource. To change your visualization, go to the Visual Types menu and choose the Horizontal Bar Chart. Your visualization should change and be similar to the following:

Note: If you can’t read the chart labels for the bars, grab the axis line and drag to resize.

Select the chart title and rename the chart to Opportunity by Lead Source.

Expected Revenue vs. Opportunity Amount

For the last visual, you look at the individual opportunities and how they contribute to the total pipeline. A tree map is a specialized chart type that lets your dashboard users see how each opportunity amount contributes to the whole.  Additionally, you can highlight if there is a difference between the Expected Revenue and the Amount by sizing the marks by the Amount and coloring them by the Expected Amount.

On the Amazon QuickSight toolbar, choose Add, and then choose Add visual. From the measures, choose ExpectedRevenue and Amount. From the dimensions, choose Name. To change your visualization, go to the Visual Types menu and choose the Tree Map. Your visualization should change and be similar to the following:

Select the chart title and rename the chart to Expected Revenue vs Opportunity Amount.

Creating an Amazon QuickSight dashboard

Now that your visuals are created, it’s time to do the fun part—actually putting your Amazon QuickSight dashboard together. To create a dashboard, resize and position your visuals on the page, using the following layout:

To resize a visual, grab the handle in the lower-right corner and drag it to the height and width that you want.

To move your visual, use the grab bar at the top of the visual, as shown here:

When you are done resizing your visuals, your canvas should look something like this:

To create a dashboard, choose Share in the Amazon QuickSight toolbar. Then choose Create Dashboard. For this dashboard, give it a name of SFDC Opportunity Dashboard, and choose Create Dashboard. You are prompted to enter the email address or user name of the users you want to share this dashboard with.

Because we are just concentrating on the design at the moment, you can choose Cancel and share your dashboard later using the Share button on the dashboard toolbar.

Working with filters

There is one more feature that you can use when viewing your dashboard to make it even more useful. Earlier, when you were working with the Analysis, you added a filter to remove any opportunities that were tagged as Closed Won. Now, as you are viewing the dashboard, you add a filter that you can use to filter on a relative date.

This feature in Amazon QuickSight allows you to choose a time period (years, quarters, months, weeks, etc.) and then select from a list of relative time periods. For example, if you choose Year, you could set the filter options to Previous Year, This Year, Year to Date, or Last N Years.

This is especially handy for a Salesforce Opportunity dashboard, as you might want to filter the data using the Close Date field to see when the opportunity is actually set to close.

To create a relative date filter, choose Filter on the toolbar. Choose the filter icon, and then choose CloseDate, as shown in the following image:

At the top of the Edit Filter pane, change the drop-down list to apply the filter to All Visuals. The default filter type is Time Range, so use the drop-down list to change the filter type to Relative Dates.  For the time period, choose Quarters. To view all the current opportunities in your dashboard, choose the option for This Quarter, and choose Apply.

With the date filter in place, you have the final component for your dashboard, which should look something like the following example:

It’s important to note that at this point, you have added the filter when viewing the dashboard. If you think this is something that other users might want to do, you can go back to your Amazon QuickSight Analysis and add the filter there—that way it will be available for all dashboard users.

Summary

In this post, you learned how to connect to Salesforce data and create a basic dashboard. You can apply the same techniques to create analyses and dashboards from all different types of Salesforce data and objects. Whether you want to analyze your Salesforce account demographics or where your leads are coming from, or evaluate any other data stored in Salesforce, Amazon QuickSight helps you quickly connect to and visualize your data with only a few clicks.

 


Additional Reading

Learn how to visualize Amazon S3 analytics data with Amazon QuickSight!


About the Author

David McAmis is a Big Data & Analytics Consultant with Amazon Web Services. He works with customers to develop scalable platforms to gather, process and analyze data on AWS.

 

 

 

 

From Data Lake to Data Warehouse: Enhancing Customer 360 with Amazon Redshift Spectrum

Post Syndicated from Dylan Tong original https://aws.amazon.com/blogs/big-data/from-data-lake-to-data-warehouse-enhancing-customer-360-with-amazon-redshift-spectrum/

Achieving a 360o-view of your customer has become increasingly challenging as companies embrace omni-channel strategies, engaging customers across websites, mobile, call centers, social media, physical sites, and beyond. The promise of a web where online and physical worlds blend makes understanding your customers more challenging, but also more important. Businesses that are successful in this medium have a significant competitive advantage.

The big data challenge requires the management of data at high velocity and volume. Many customers have identified Amazon S3 as a great data lake solution that removes the complexities of managing a highly durable, fault tolerant data lake infrastructure at scale and economically.

AWS data services substantially lessen the heavy lifting of adopting technologies, allowing you to spend more time on what matters most—gaining a better understanding of customers to elevate your business. In this post, I show how a recent Amazon Redshift innovation, Redshift Spectrum, can enhance a customer 360 initiative.

Customer 360 solution

A successful customer 360 view benefits from using a variety of technologies to deliver different forms of insights. These could range from real-time analysis of streaming data from wearable devices and mobile interactions to historical analysis that requires interactive, on demand queries on billions of transactions. In some cases, insights can only be inferred through AI via deep learning. Finally, the value of your customer data and insights can’t be fully realized until it is operationalized at scale—readily accessible by fleets of applications. Companies are leveraging AWS for the breadth of services that cover these domains, to drive their data strategy.

A number of AWS customers stream data from various sources into a S3 data lake through Amazon Kinesis. They use Kinesis and technologies in the Hadoop ecosystem like Spark running on Amazon EMR to enrich this data. High-value data is loaded into an Amazon Redshift data warehouse, which allows users to analyze and interact with data through a choice of client tools. Redshift Spectrum expands on this analytics platform by enabling Amazon Redshift to blend and analyze data beyond the data warehouse and across a data lake.

The following diagram illustrates the workflow for such a solution.

This solution delivers value by:

  • Reducing complexity and time to value to deeper insights. For instance, an existing data model in Amazon Redshift may provide insights across dimensions such as customer, geography, time, and product on metrics from sales and financial systems. Down the road, you may gain access to streaming data sources like customer-care call logs and website activity that you want to blend in with the sales data on the same dimensions to understand how web and call center experiences maybe correlated with sales performance. Redshift Spectrum can join these dimensions in Amazon Redshift with data in S3 to allow you to quickly gain new insights, and avoid the slow and more expensive alternative of fully integrating these sources with your data warehouse.
  • Providing an additional avenue for optimizing costs and performance. In cases like call logs and clickstream data where volumes could be many TBs to PBs, storing the data exclusively in S3 yields significant cost savings. Interactive analysis on massive datasets may now be economically viable in cases where data was previously analyzed periodically through static reports generated by inexpensive batch processes. In some cases, you can improve the user experience while simultaneously lowering costs. Spectrum is powered by a large-scale infrastructure external to your Amazon Redshift cluster, and excels at scanning and aggregating large volumes of data. For instance, your analysts maybe performing data discovery on customer interactions across millions of consumers over years of data across various channels. On this large dataset, certain queries could be slow if you didn’t have a large Amazon Redshift cluster. Alternatively, you could use Redshift Spectrum to achieve a better user experience with a smaller cluster.

Proof of concept walkthrough

To make evaluation easier for you, I’ve conducted a Redshift Spectrum proof-of-concept (PoC) for the customer 360 use case. For those who want to replicate the PoC, the instructions, AWS CloudFormation templates, and public data sets are available in the GitHub repository.

The remainder of this post is a journey through the project, observing best practices in action, and learning how you can achieve business value. The walkthrough involves:

  • An analysis of performance data from the PoC environment involving queries that demonstrate blending and analysis of data across Amazon Redshift and S3. Observe that great results are achievable at scale.
  • Guidance by example on query tuning, design, and data preparation to illustrate the optimization process. This includes tuning a query that combines clickstream data in S3 with customer and time dimensions in Amazon Redshift, and aggregates ~1.9 B out of 3.7 B+ records in under 10 seconds with a small cluster!
  • Guidance and measurements to help assess deciding between two options: accessing and analyzing data exclusively in Amazon Redshift, or using Redshift Spectrum to access data left in S3.

Stream ingestion and enrichment

The focus of this post isn’t stream ingestion and enrichment on Kinesis and EMR, but be mindful of performance best practices on S3 to ensure good streaming and query performance:

  • Use random object keys: The data files provided for this project are prefixed with SHA-256 hashes to prevent hot partitions. This is important to ensure that optimal request rates to support PUT requests from the incoming stream in addition to certain queries from large Amazon Redshift clusters that could send a large number of parallel GET requests.
  • Micro-batch your data stream: S3 isn’t optimized for small random write workloads. Your datasets should be micro-batched into large files. For instance, the “parquet-1” dataset provided batches >7 million records per file. The optimal file size for Redshift Spectrum is usually in the 100 MB to 1 GB range.

If you have an edge case that may pose scalability challenges, AWS would love to hear about it. For further guidance, talk to your solutions architect.

Environment

The project consists of the following environment:

  • Amazon Redshift cluster: 4 X dc1.large
  • Data:
    • Time and customer dimension tables are stored on all Amazon Redshift nodes (ALL distribution style):
      • The data originates from the DWDATE and CUSTOMER tables in the Star Schema Benchmark
      • The customer table contains attributes for 3 million customers.
      • The time data is at the day-level granularity, and spans 7 years, from the start of 1992 to the end of 1998.
    • The clickstream data is stored in an S3 bucket, and serves as a fact table.
      • Various copies of this dataset in CSV and Parquet format have been provided, for reasons to be discussed later.
      • The data is a modified version of the uservisits dataset from AMPLab’s Big Data Benchmark, which was generated by Intel’s Hadoop benchmark tools.
      • Changes were minimal, so that existing test harnesses for this test can be adapted:
        • Increased the 751,754,869-row dataset 5X to 3,758,774,345 rows.
        • Added surrogate keys to support joins with customer and time dimensions. These keys were distributed evenly across the entire dataset to represents user visits from six customers over seven years.
        • Values for the visitDate column were replaced to align with the 7-year timeframe, and the added time surrogate key.

Queries across the data lake and data warehouse 

Imagine a scenario where a business analyst plans to analyze clickstream metrics like ad revenue over time and by customer, market segment and more. The example below is a query that achieves this effect: 

The query part highlighted in red retrieves clickstream data in S3, and joins the data with the time and customer dimension tables in Amazon Redshift through the part highlighted in blue. The query returns the total ad revenue for three customers over the last three months, along with info on their respective market segment.

Unfortunately, this query takes around three minutes to run, and doesn’t enable the interactive experience that you want. However, there’s a number of performance optimizations that you can implement to achieve the desired performance.

Performance analysis

Two key utilities provide visibility into Redshift Spectrum:

  • EXPLAIN
    Provides the query execution plan, which includes info around what processing is pushed down to Redshift Spectrum. Steps in the plan that include the prefix S3 are executed on Redshift Spectrum. For instance, the plan for the previous query has the step “S3 Seq Scan clickstream.uservisits_csv10”, indicating that Redshift Spectrum performs a scan on S3 as part of the query execution.
  • SVL_S3QUERY_SUMMARY
    Statistics for Redshift Spectrum queries are stored in this table. While the execution plan presents cost estimates, this table stores actual statistics for past query runs.

You can get the statistics of your last query by inspecting the SVL_S3QUERY_SUMMARY table with the condition (query = pg_last_query_id()). Inspecting the previous query reveals that the entire dataset of nearly 3.8 billion rows was scanned to retrieve less than 66.3 million rows. Improving scan selectivity in your query could yield substantial performance improvements.

Partitioning

Partitioning is a key means to improving scan efficiency. In your environment, the data and tables have already been organized, and configured to support partitions. For more information, see the PoC project setup instructions. The clickstream table was defined as:

CREATE EXTERNAL TABLE clickstream.uservisits_csv10
…
PARTITIONED BY(customer int4, visitYearMonth int4)

The entire 3.8 billion-row dataset is organized as a collection of large files where each file contains data exclusive to a particular customer and month in a year. This allows you to partition your data into logical subsets by customer and year/month. With partitions, the query engine can target a subset of files:

  • Only for specific customers
  • Only data for specific months
  • A combination of specific customers and year/months

You can use partitions in your queries. Instead of joining your customer data on the surrogate customer key (that is, c.c_custkey = uv.custKey), the partition key “customer” should be used instead:

SELECT c.c_name, c.c_mktsegment, t.prettyMonthYear, SUM(uv.adRevenue)
…
ON c.c_custkey = uv.customer
…
ORDER BY c.c_name, c.c_mktsegment, uv.yearMonthKey  ASC

This query should run approximately twice as fast as the previous query. If you look at the statistics for this query in SVL_S3QUERY_SUMMARY, you see that only half the dataset was scanned. This is expected because your query is on three out of six customers on an evenly distributed dataset. However, the scan is still inefficient, and you can benefit from using your year/month partition key as well:

SELECT c.c_name, c.c_mktsegment, t.prettyMonthYear, SUM(uv.adRevenue)
…
ON c.c_custkey = uv.customer
…
ON uv.visitYearMonth = t.d_yearmonthnum
…
ORDER BY c.c_name, c.c_mktsegment, uv.visitYearMonth ASC

All joins between the tables are now using partitions. Upon reviewing the statistics for this query, you should observe that Redshift Spectrum scans and returns the exact number of rows, 66,270,117. If you run this query a few times, you should see execution time in the range of 8 seconds, which is a 22.5X improvement on your original query!

Predicate pushdown and storage optimizations 

Previously, I mentioned that Redshift Spectrum performs processing through large-scale infrastructure external to your Amazon Redshift cluster. It is optimized for performing large scans and aggregations on S3. In fact, Redshift Spectrum may even out-perform a medium size Amazon Redshift cluster on these types of workloads with the proper optimizations. There are two important variables to consider for optimizing large scans and aggregations:

  • File size and count. As a general rule, use files 100 MB-1 GB in size, as Redshift Spectrum and S3 are optimized for reading this object size. However, the number of files operating on a query is directly correlated with the parallelism achievable by a query. There is an inverse relationship between file size and count: the bigger the files, the fewer files there are for the same dataset. Consequently, there is a trade-off between optimizing for object read performance, and the amount of parallelism achievable on a particular query. Large files are best for large scans as the query likely operates on sufficiently large number of files. For queries that are more selective and for which fewer files are operating, you may find that smaller files allow for more parallelism.
  • Data format. Redshift Spectrum supports various data formats. Columnar formats like Parquet can sometimes lead to substantial performance benefits by providing compression and more efficient I/O for certain workloads. Generally, format types like Parquet should be used for query workloads involving large scans, and high attribute selectivity. Again, there are trade-offs as formats like Parquet require more compute power to process than plaintext. For queries on smaller subsets of data, the I/O efficiency benefit of Parquet is diminished. At some point, Parquet may perform the same or slower than plaintext. Latency, compression rates, and the trade-off between user experience and cost should drive your decision.

To help illustrate how Redshift Spectrum performs on these large aggregation workloads, run a basic query that aggregates the entire ~3.7 billion record dataset on Redshift Spectrum, and compared that with running the query exclusively on Amazon Redshift:

SELECT uv.custKey, COUNT(uv.custKey)
FROM <your clickstream table> as uv
GROUP BY uv.custKey
ORDER BY uv.custKey ASC

For the Amazon Redshift test case, the clickstream data is loaded, and distributed evenly across all nodes (even distribution style) with optimal column compression encodings prescribed by the Amazon Redshift’s ANALYZE command.

The Redshift Spectrum test case uses a Parquet data format with each file containing all the data for a particular customer in a month. This results in files mostly in the range of 220-280 MB, and in effect, is the largest file size for this partitioning scheme. If you run tests with the other datasets provided, you see that this data format and size is optimal and out-performs others by ~60X. 

Performance differences will vary depending on the scenario. The important takeaway is to understand the testing strategy and the workload characteristics where Redshift Spectrum is likely to yield performance benefits. 

The following chart compares the query execution time for the two scenarios. The results indicate that you would have to pay for 12 X DC1.Large nodes to get performance comparable to using a small Amazon Redshift cluster that leverages Redshift Spectrum. 

Chart showing simple aggregation on ~3.7 billion records

So you’ve validated that Spectrum excels at performing large aggregations. Could you benefit by pushing more work down to Redshift Spectrum in your original query? It turns out that you can, by making the following modification:

The clickstream data is stored at a day-level granularity for each customer while your query rolls up the data to the month level per customer. In the earlier query that uses the day/month partition key, you optimized the query so that it only scans and retrieves the data required, but the day level data is still sent back to your Amazon Redshift cluster for joining and aggregation. The query shown here pushes aggregation work down to Redshift Spectrum as indicated by the query plan:

In this query, Redshift Spectrum aggregates the clickstream data to the month level before it is returned to the Amazon Redshift cluster and joined with the dimension tables. This query should complete in about 4 seconds, which is roughly twice as fast as only using the partition key. The speed increase is evident upon reviewing the SVL_S3QUERY_SUMMARY table:

  • Bytes scanned is 21.6X less because of the Parquet data format.
  • Only 90 records are returned back to the Amazon Redshift cluster as a result of the push-down, instead of ~66.2 million, leading to substantially less join overhead, and about 530 MB less data sent back to your cluster.
  • No adverse change in average parallelism.

Assessing the value of Amazon Redshift vs. Redshift Spectrum

At this point, you might be asking yourself, why would I ever not use Redshift Spectrum? Well, you still get additional value for your money by loading data into Amazon Redshift, and querying in Amazon Redshift vs. querying S3.

In fact, it turns out that the last version of our query runs even faster when executed exclusively in native Amazon Redshift, as shown in the following chart:

Chart comparing Amazon Redshift vs. Redshift Spectrum with pushdown aggregation over 3 months of data

As a general rule, queries that aren’t dominated by I/O and which involve multiple joins are better optimized in native Amazon Redshift. For instance, the performance difference between running the partition key query entirely in Amazon Redshift versus with Redshift Spectrum is twice as large as that that of the pushdown aggregation query, partly because the former case benefits more from better join performance.

Furthermore, the variability in latency in native Amazon Redshift is lower. For use cases where you have tight performance SLAs on queries, you may want to consider using Amazon Redshift exclusively to support those queries.

On the other hand, when you perform large scans, you could benefit from the best of both worlds: higher performance at lower cost. For instance, imagine that you wanted to enable your business analysts to interactively discover insights across a vast amount of historical data. In the example below, the pushdown aggregation query is modified to analyze seven years of data instead of three months:

SELECT c.c_name, c.c_mktsegment, t.prettyMonthYear, uv.totalRevenue
…
WHERE customer <= 3 and visitYearMonth >= 199201
… 
FROM dwdate WHERE d_yearmonthnum >= 199201) as t
…
ORDER BY c.c_name, c.c_mktsegment, uv.visitYearMonth ASC

This query requires scanning and aggregating nearly 1.9 billion records. As shown in the chart below, Redshift Spectrum substantially speeds up this query. A large Amazon Redshift cluster would have to be provisioned to support this use case. With the aid of Redshift Spectrum, you could use an existing small cluster, keep a single copy of your data in S3, and benefit from economical, durable storage while only paying for what you use via the pay per query pricing model.

Chart comparing Amazon Redshift vs. Redshift Spectrum with pushdown aggregation over 7 years of data

Summary

Redshift Spectrum lowers the time to value for deeper insights on customer data queries spanning the data lake and data warehouse. It can enable interactive analysis on datasets in cases that weren’t economically practical or technically feasible before.

There are cases where you can get the best of both worlds from Redshift Spectrum: higher performance at lower cost. However, there are still latency-sensitive use cases where you may want native Amazon Redshift performance. For more best practice tips, see the 10 Best Practices for Amazon Redshift post.

Please visit the Amazon Redshift Spectrum PoC Environment Github page. If you have questions or suggestions, please comment below.

 


Additional Reading

Learn more about how Amazon Redshift Spectrum extends data warehousing out to exabytes – no loading required.


About the Author

Dylan Tong is an Enterprise Solutions Architect at AWS. He works with customers to help drive their success on the AWS platform through thought leadership and guidance on designing well architected solutions. He has spent most of his career building on his expertise in data management and analytics by working for leaders and innovators in the space.

 

 

AWS Partner Webinar Series – August 2017

Post Syndicated from Ana Visneski original https://aws.amazon.com/blogs/aws/aws-partner-webinar-series-august-2017/

We love bringing our customers helpful information and we have another cool series we are excited to tell you about. The AWS Partner Webinar Series is a selection of live and recorded presentations covering a broad range of topics at varying technical levels and scale. A little different from our AWS Online TechTalks, each AWS Partner Webinar is hosted by an AWS solutions architect and an AWS Competency Partner who has successfully helped customers evaluate and implement the tools, techniques, and technologies of AWS.

Check out this month’s webinars and let us know which ones you found the most helpful! All schedule times are shown in the Pacific Time (PDT) time zone.

Security Webinars

Sophos
Seeing More Clearly: ATLO Software Secures Online Training Solutions for Correctional Facilities with SophosUTM on AWS Link.
August 17th, 2017 | 10:00 AM PDT

F5
F5 on AWS: How MailControl Improved their Application Visibility and Security
August 23, 2017 | 10:00 AM PDT

Big Data Webinars

Tableau, Matillion, 47Lining, NorthBay
Unlock Insights and Reduce Costs by Modernizing Your Data Warehouse on AWS
August 22, 2017 | 10:00 AM PDT

Storage Webinars

StorReduce
How Globe Telecom does Primary Backups via StorReduce to the AWS Cloud
August 29, 2017 | 8:00 AM PDT

Commvault
Moving Forward Faster: How Monash University Automated Data Movement for 3500 Virtual Machines to AWS with Commvault
August 29, 2017 | 1:00 PM PDT

Dell EMC
Moving Forward Faster: Protect Your Workloads on AWS With Increased Scale and Performance
August 30, 2017 | 11:00 AM PDT

Druva
How Hatco Protects Against Ransomware with Druva on AWS
September 13, 2017 | 10:00 AM PDT

Turbocharge your Apache Hive queries on Amazon EMR using LLAP

Post Syndicated from Jigar Mistry original https://aws.amazon.com/blogs/big-data/turbocharge-your-apache-hive-queries-on-amazon-emr-using-llap/

Apache Hive is one of the most popular tools for analyzing large datasets stored in a Hadoop cluster using SQL. Data analysts and scientists use Hive to query, summarize, explore, and analyze big data.

With the introduction of Hive LLAP (Low Latency Analytical Processing), the notion of Hive being just a batch processing tool has changed. LLAP uses long-lived daemons with intelligent in-memory caching to circumvent batch-oriented latency and provide sub-second query response times.

This post provides an overview of Hive LLAP, including its architecture and common use cases for boosting query performance. You will learn how to install and configure Hive LLAP on an Amazon EMR cluster and run queries on LLAP daemons.

What is Hive LLAP?

Hive LLAP was introduced in Apache Hive 2.0, which provides very fast processing of queries. It uses persistent daemons that are deployed on a Hadoop YARN cluster using Apache Slider. These daemons are long-running and provide functionality such as I/O with DataNode, in-memory caching, query processing, and fine-grained access control. And since the daemons are always running in the cluster, it saves substantial overhead of launching new YARN containers for every new Hive session, thereby avoiding long startup times.

When Hive is configured in hybrid execution mode, small and short queries execute directly on LLAP daemons. Heavy lifting (like large shuffles in the reduce stage) is performed in YARN containers that belong to the application. Resources (CPU, memory, etc.) are obtained in a traditional fashion using YARN. After the resources are obtained, the execution engine can decide which resources are to be allocated to LLAP, or it can launch Apache Tez processors in separate YARN containers. You can also configure Hive to run all the processing workloads on LLAP daemons for querying small datasets at lightning fast speeds.

LLAP daemons are launched under YARN management to ensure that the nodes don’t get overloaded with the compute resources of these daemons. You can use scheduling queues to make sure that there is enough compute capacity for other YARN applications to run.

Why use Hive LLAP?

With many options available in the market (Presto, Spark SQL, etc.) for doing interactive SQL  over data that is stored in Amazon S3 and HDFS, there are several reasons why using Hive and LLAP might be a good choice:

  • For those who are heavily invested in the Hive ecosystem and have external BI tools that connect to Hive over JDBC/ODBC connections, LLAP plugs in to their existing architecture without a steep learning curve.
  • It’s compatible with existing Hive SQL and other Hive tools, like HiveServer2, and JDBC drivers for Hive.
  • It has native support for security features with authentication and authorization (SQL standards-based authorization) using HiveServer2.
  • LLAP daemons are aware about of the columns and records that are being processed which enables you to enforce fine-grained access control.
  • It can use Hive’s vectorization capabilities to speed up queries, and Hive has better support for Parquet file format when vectorization is enabled.
  • It can take advantage of a number of Hive optimizations like merging multiple small files for query results, automatically determining the number of reducers for joins and groupbys, etc.
  • It’s optional and modular so it can be turned on or off depending on the compute and resource requirements of the cluster. This lets you to run other YARN applications concurrently without reserving a cluster specifically for LLAP.

How do you install Hive LLAP in Amazon EMR?

To install and configure LLAP on an EMR cluster, use the following bootstrap action (BA):

s3://aws-bigdata-blog/artifacts/Turbocharge_Apache_Hive_on_EMR/configure-Hive-LLAP.sh

This BA downloads and installs Apache Slider on the cluster and configures LLAP so that it works with EMR Hive. For LLAP to work, the EMR cluster must have Hive, Tez, and Apache Zookeeper installed.

You can pass the following arguments to the BA.

Argument Definition Default value
--instances Number of instances of LLAP daemon Number of core/task nodes of the cluster
--cache Cache size per instance 20% of physical memory of the node
--executors Number of executors per instance Number of CPU cores of the node
--iothreads Number of IO threads per instance Number of CPU cores of the node
--size Container size per instance 50% of physical memory of the node
--xmx Working memory size 50% of container size
--log-level Log levels for the LLAP instance INFO

LLAP example

This section describes how you can try the faster Hive queries with LLAP using the TPC-DS testbench for Hive on Amazon EMR.

Use the following AWS command line interface (AWS CLI) command to launch a 1+3 nodes m4.xlarge EMR 5.6.0 cluster with the bootstrap action to install LLAP:

aws emr create-cluster --release-label emr-5.6.0 \
--applications Name=Hadoop Name=Hive Name=Hue Name=ZooKeeper Name=Tez \
--bootstrap-actions '[{"Path":"s3://aws-bigdata-blog/artifacts/Turbocharge_Apache_Hive_on_EMR/configure-Hive-LLAP.sh","Name":"Custom action"}]' \ 
--ec2-attributes '{"KeyName":"<YOUR-KEY-PAIR>","InstanceProfile":"EMR_EC2_DefaultRole","SubnetId":"subnet-xxxxxxxx","EmrManagedSlaveSecurityGroup":"sg-xxxxxxxx","EmrManagedMasterSecurityGroup":"sg-xxxxxxxx"}' 
--service-role EMR_DefaultRole \
--enable-debugging \
--log-uri 's3n://<YOUR-BUCKET/' --name 'test-hive-llap' \
--instance-groups '[{"InstanceCount":1,"EbsConfiguration":{"EbsBlockDeviceConfigs":[{"VolumeSpecification":{"SizeInGB":32,"VolumeType":"gp2"},"VolumesPerInstance":1}],"EbsOptimized":true},"InstanceGroupType":"MASTER","InstanceType":"m4.xlarge","Name":"Master - 1"},{"InstanceCount":3,"EbsConfiguration":{"EbsBlockDeviceConfigs":[{"VolumeSpecification":{"SizeInGB":32,"VolumeType":"gp2"},"VolumesPerInstance":1}],"EbsOptimized":true},"InstanceGroupType":"CORE","InstanceType":"m4.xlarge","Name":"Core - 2"}]' 
--region us-east-1

After the cluster is launched, log in to the master node using SSH, and do the following:

  1. Open the hive-tpcds folder:
    cd /home/hadoop/hive-tpcds/
  2. Start Hive CLI using the testbench configuration, create the required tables, and run the sample query:

    hive –i testbench.settings
    hive> source create_tables.sql;
    hive> source query55.sql;

    This sample query runs on a 40 GB dataset that is stored on Amazon S3. The dataset is generated using the data generation tool in the TPC-DS testbench for Hive.It results in output like the following:
  3. This screenshot shows that the query finished in about 47 seconds for LLAP mode. Now, to compare this to the execution time without LLAP, you can run the same workload using only Tez containers:
    hive> set hive.llap.execution.mode=none;
    hive> source query55.sql;


    This query finished in about 80 seconds.

The difference in query execution time is almost 1.7 times when using just YARN containers in contrast to running the query on LLAP daemons. And with every rerun of the query, you notice that the execution time substantially decreases by the virtue of in-memory caching by LLAP daemons.

Conclusion

In this post, I introduced Hive LLAP as a way to boost Hive query performance. I discussed its architecture and described several use cases for the component. I showed how you can install and configure Hive LLAP on an Amazon EMR cluster and how you can run queries on LLAP daemons.

If you have questions about using Hive LLAP on Amazon EMR or would like to share your use cases, please leave a comment below.


Additional Reading

Learn how to to automatically partition Hive external tables with AWS.


About the Author

Jigar Mistry is a Hadoop Systems Engineer with Amazon Web Services. He works with customers to provide them architectural guidance and technical support for processing large datasets in the cloud using open-source applications. In his spare time, he enjoys going for camping and exploring different restaurants in the Seattle area.

 

 

 

 

AWS CloudFormation Supports Amazon Kinesis Analytics Applications

Post Syndicated from Ryan Nienhuis original https://aws.amazon.com/blogs/big-data/aws-cloudformation-supports-amazon-kinesis-analytics-applications/

You can now provision and manage resources for Amazon Kinesis Analytics applications using AWS CloudFormation.  Kinesis Analytics is the easiest way to process streaming data in real time with standard SQL, without having to learn new programming languages or processing frameworks. Kinesis Analytics enables you to query streaming data or build entire streaming applications using SQL. Using the service, you gain actionable insights and can respond to your business and customer needs promptly.

Customers can create CloudFormation templates that easily create or update Kinesis Analytics applications. Typically, a template is used as a way to manage code across different environments, or to prototype a new streaming data solution quickly.

We have created two sample templates using past AWS Big Data Blog posts that referenced Kinesis Analytics.

For more information about the new feature, see the AWS Cloudformation User Guide.

 

Run Common Data Science Packages on Anaconda and Oozie with Amazon EMR

Post Syndicated from John Ohle original https://aws.amazon.com/blogs/big-data/run-common-data-science-packages-on-anaconda-and-oozie-with-amazon-emr/

In the world of data science, users must often sacrifice cluster set-up time to allow for complex usability scenarios. Amazon EMR allows data scientists to spin up complex cluster configurations easily, and to be up and running with complex queries in a matter of minutes.

Data scientists often use scheduling applications such as Oozie to run jobs overnight. However, Oozie can be difficult to configure when you are trying to use popular Python packages (such as “pandas,” “numpy,” and “statsmodels”), which are not included by default.

One such popular platform that contains these types of packages (and more) is Anaconda. This post focuses on setting up an Anaconda platform on EMR, with an intent to use its packages with Oozie. I describe how to run jobs using a popular open source scheduler like Oozie.

Walkthrough

For this post, you walk through the following tasks:

  • Create an EMR cluster.
  • Download Anaconda on your master node.
  • Configure Oozie.
  • Test the steps.

Create an EMR cluster

Spin up an Amazon EMR cluster using the console or the AWS CLI. Use the latest release, and include Apache Hadoop, Apache Spark, Apache Hive, and Oozie.

To create a three-node cluster in the us-east-1 region, issue an AWS CLI command such as the following. This command must be typed as one line, as shown below. It is shown here separated for readability purposes only.

aws emr create-cluster \ 
--release-label emr-5.7.0 \ 
 --name '<YOUR-CLUSTER-NAME>' \
 --applications Name=Hadoop Name=Oozie Name=Spark Name=Hive \ 
 --ec2-attributes '{"KeyName":"<YOUR-KEY-PAIR>","SubnetId":"<YOUR-SUBNET-ID>","EmrManagedSlaveSecurityGroup":"<YOUR-EMR-SLAVE-SECURITY-GROUP>","EmrManagedMasterSecurityGroup":"<YOUR-EMR-MASTER-SECURITY-GROUP>"}' \ 
 --use-default-roles \ 
 --instance-groups '[{"InstanceCount":1,"InstanceGroupType":"MASTER","InstanceType":"<YOUR-INSTANCE-TYPE>","Name":"Master - 1"},{"InstanceCount":<YOUR-CORE-INSTANCE-COUNT>,"InstanceGroupType":"CORE","InstanceType":"<YOUR-INSTANCE-TYPE>","Name":"Core - 2"}]'

One-line version for reference:

aws emr create-cluster --release-label emr-5.7.0 --name '<YOUR-CLUSTER-NAME>' --applications Name=Hadoop Name=Oozie Name=Spark Name=Hive --ec2-attributes '{"KeyName":"<YOUR-KEY-PAIR>","SubnetId":"<YOUR-SUBNET-ID>","EmrManagedSlaveSecurityGroup":"<YOUR-EMR-SLAVE-SECURITY-GROUP>","EmrManagedMasterSecurityGroup":"<YOUR-EMR-MASTER-SECURITY-GROUP>"}' --use-default-roles --instance-groups '[{"InstanceCount":1,"InstanceGroupType":"MASTER","InstanceType":"<YOUR-INSTANCE-TYPE>","Name":"Master - 1"},{"InstanceCount":<YOUR-CORE-INSTANCE-COUNT>,"InstanceGroupType":"CORE","InstanceType":"<YOUR-INSTANCE-TYPE>","Name":"Core - 2"}]'

Download Anaconda

SSH into your EMR master node instance and download the official Anaconda installer:

wget https://repo.continuum.io/archive/Anaconda2-4.4.0-Linux-x86_64.sh

At the time of publication, Anaconda 4.4 is the most current version available. For the download link location for the latest Python 2.7 version (Python 3.6 may encounter issues), see https://www.continuum.io/downloads.  Open the context (right-click) menu for the Python 2.7 download link, choose Copy Link Location, and use this value in the previous wget command.

This post used the Anaconda 4.4 installation. If you have a later version, it is shown in the downloaded filename:  “anaconda2-<version number>-Linux-x86_64.sh”.

Run this downloaded script and follow the on-screen installer prompts.

chmod u+x Anaconda2-4.4.0-Linux-x86_64.sh
./Anaconda2-4.4.0-Linux-x86_64.sh

For an installation directory, select somewhere with enough space on your cluster, such as “/mnt/anaconda/”.

The process should take approximately 1–2 minutes to install. When prompted if you “wish the installer to prepend the Anaconda2 install location”, select the default option of [no].

After you are done, export the PATH to include this new Anaconda installation:

export PATH=/mnt/anaconda/bin:$PATH

Zip up the Anaconda installation:

cd /mnt/anaconda/
zip -r anaconda.zip .

The zip process may take 4–5 minutes to complete.

(Optional) Upload this anaconda.zip file to your S3 bucket for easier inclusion into future EMR clusters. This removes the need to repeat the previous steps for future EMR clusters.

Configure Oozie

Next, you configure Oozie to use Pyspark and the Anaconda platform.

Get the location of your Oozie sharelibupdate folder. Issue the following command and take note of the “sharelibDirNew” value:

oozie admin -sharelibupdate

For this post, this value is “hdfs://ip-192-168-4-200.us-east-1.compute.internal:8020/user/oozie/share/lib/lib_20170616133136”.

Pass in the required Pyspark files into Oozies sharelibupdate location. The following files are required for Oozie to be able to run Pyspark commands:

  • pyspark.zip
  • py4j-0.10.4-src.zip

These are located on the EMR master instance in the location “/usr/lib/spark/python/lib/”, and must be put into the Oozie sharelib spark directory. This location is the value of the sharelibDirNew parameter value (shown above) with “/spark/” appended, that is, “hdfs://ip-192-168-4-200.us-east-1.compute.internal:8020/user/oozie/share/lib/lib_20170616133136/spark/”.

To do this, issue the following commands:

hdfs dfs -put /usr/lib/spark/python/lib/py4j-0.10.4-src.zip hdfs://ip-192-168-4-200.us-east-1.compute.internal:8020/user/oozie/share/lib/lib_20170616133136/spark/
hdfs dfs -put /usr/lib/spark/python/lib/pyspark.zip hdfs://ip-192-168-4-200.us-east-1.compute.internal:8020/user/oozie/share/lib/lib_20170616133136/spark/

After you’re done, Oozie can use Pyspark in its processes.

Pass the anaconda.zip file into HDFS as follows:

hdfs dfs -put /mnt/anaconda/anaconda.zip /tmp/myLocation/anaconda.zip

(Optional) Verify that it was transferred successfully with the following command:

hdfs dfs -ls /tmp/myLocation/

On your master node, execute the following command:

export PYSPARK_PYTHON=/mnt/anaconda/bin/python

Set the PYSPARK_PYTHON environment variable on the executor nodes. Put the following configurations in your “spark-opts” values in your Oozie workflow.xml file:

–conf spark.executorEnv.PYSPARK_PYTHON=./anaconda_remote/bin/python
–conf spark.yarn.appMasterEnv.PYSPARK_PYTHON=./anaconda_remote/bin/python

This is referenced from the Oozie job in the following line in your workflow.xml file, also included as part of your “spark-opts”:

--archives hdfs:///tmp/myLocation/anaconda.zip#anaconda_remote

Your Oozie workflow.xml file should now look something like the following:

<workflow-app name="spark-wf" xmlns="uri:oozie:workflow:0.5">
<start to="start_spark" />
<action name="start_spark">
    <spark xmlns="uri:oozie:spark-action:0.1">
        <job-tracker>${jobTracker}</job-tracker>
        <name-node>${nameNode}</name-node>
        <prepare>
            <delete path="/tmp/test/spark_oozie_test_out3"/>
        </prepare>
        <master>yarn-cluster</master>
        <mode>cluster</mode>
        <name>SparkJob</name>
        <class>clear</class>
        <jar>hdfs:///user/oozie/apps/myPysparkProgram.py</jar>
        <spark-opts>--queue default
            --conf spark.ui.view.acls=*
            --executor-memory 2G --num-executors 2 --executor-cores 2 --driver-memory 3g
            --conf spark.executorEnv.PYSPARK_PYTHON=./anaconda_remote/bin/python
            --conf spark.yarn.appMasterEnv.PYSPARK_PYTHON=./anaconda_remote/bin/python
            --archives hdfs:///tmp/myLocation/anaconda.zip#anaconda_remote
        </spark-opts>
    </spark>
    <ok to="end"/>
    <error to="kill"/>
</action>
        <kill name="kill">
                <message>Action failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
        </kill>
        <end name="end"/>
</workflow-app>

Test steps

To test this out, you can use the following job.properties and myPysparkProgram.py file, along with the following steps:

job.properties

masterNode ip-xxx-xxx-xxx-xxx.us-east-1.compute.internal
nameNode hdfs://${masterNode}:8020
jobTracker ${masterNode}:8032
master yarn
mode cluster
queueName default
oozie.libpath ${nameNode}/user/oozie/share/lib
oozie.use.system.libpath true
oozie.wf.application.path ${nameNode}/user/oozie/apps/

Note: You can get your master node IP address (denoted as “ip-xxx-xxx-xxx-xxx” here) from the value for the sharelibDirNew parameter noted earlier.

myPysparkProgram.py

from pyspark import SparkContext, SparkConf
import numpy
import sys

conf = SparkConf().setAppName('myPysparkProgram')
sc = SparkContext(conf=conf)

rdd = sc.textFile("/user/hadoop/input.txt")

x = numpy.sum([3,4,5]) #total = 12

rdd = rdd.map(lambda line: line + str(x))
rdd.saveAsTextFile("/user/hadoop/output")

Put the “myPysparkProgram.py” into the location mentioned between the “<jar>xxxxx</jar>” tags in your workflow.xml. In this example, the location is “hdfs:///user/oozie/apps/”. Use the following command to move the “myPysparkProgram.py” file to the correct location:

hdfs dfs -put myPysparkProgram.py /user/oozie/apps/

Put the above workflow.xml file into the “/user/oozie/apps/” location in hdfs:

hdfs dfs –put workflow.xml /user/oozie/apps/

Note: The job.properties file is run locally from the EMR master node.

Create a sample input.txt file with some data in it. For example:

input.txt

This is a sentence.
So is this. 
This is also a sentence.

Put this file into hdfs:

hdfs dfs -put input.txt /user/hadoop/

Execute the job in Oozie with the following command. This creates an Oozie job ID.

oozie job -config job.properties -run

You can check the Oozie job state with the command:

oozie job -info <Oozie job ID>

  1. When the job is successfully finished, the results are located at:
/user/hadoop/output/part-00000
/user/hadoop/output/part-00001

  1. Run the following commands to view the output:
hdfs dfs -cat /user/hadoop/output/part-00000
hdfs dfs -cat /user/hadoop/output/part-00001

The output will be:

This is a sentence. 12
So is this 12
This is also a sentence 12

Summary

The myPysparkProgram.py has successfully imported the numpy library from the Anaconda platform and has produced some output with it. If you tried to run this using standard Python, you’d encounter the following error:

Now when your Python job runs in Oozie, any imported packages that are implicitly imported by your Pyspark script are imported into your job within Oozie directly from the Anaconda platform. Simple!

If you have questions or suggestions, please leave a comment below.


Additional Reading

Learn how to use Apache Oozie workflows to automate Apache Spark jobs on Amazon EMR.

 


About the Author

John Ohle is an AWS BigData Cloud Support Engineer II for the BigData team in Dublin. He works to provide advice and solutions to our customers on their Big Data projects and workflows on AWS. In his spare time, he likes to play music, learn, develop tools and write documentation to further help others – both colleagues and customers alike.

 

 

 

New AWS Training: Building a Serverless Data Lake

Post Syndicated from Sara Snedeker original https://aws.amazon.com/blogs/big-data/new-aws-training-building-a-serverless-data-lake/

AWS Training allows you to learn from the experts so that you can advance your knowledge with practical skills and get more out of the AWS Cloud. We are adding one of our most popular event boot camps, Building a Serverless Data Lake, to our permanent instructor-led training portfolio.

This one-day course is designed to teach you how to design, build, and operate a serverless data lake solution with AWS services. We cover topics such as ingesting data from any data source at large scale, storing the data securely and durably, enabling the capability to use the right tool to process large volumes of data, and understanding the options available for analyzing the data in near-real time.

This course is intended for solution architects, big data developers, data architects and analysts, and other hands-on data analysis practitioners.

You can explore our complete course catalog, or search for a public class near you. You can also request a private onsite training for your team by contacting AWS Training.

 

Amazon Redshift Spectrum Extends Data Warehousing Out to Exabytes—No Loading Required

Post Syndicated from Maor Kleider original https://aws.amazon.com/blogs/big-data/amazon-redshift-spectrum-extends-data-warehousing-out-to-exabytes-no-loading-required/

When we first looked into the possibility of building a cloud-based data warehouse many years ago, we were struck by the fact that our customers were storing ever-increasing amounts of data, and yet only a small fraction of that data ever made it into a data warehouse or Hadoop system for analysis. We saw that this wasn’t just a cloud-specific anomaly. It was also true in the broader industry, where the growth rate of the enterprise storage market segment greatly surpassed that of the data warehousing market segment.

We dubbed this the “dark data” problem. Our customers knew that there was untapped value in the data they collected; why else would they spend money to store it? But the systems available to them to analyze this data were simply too slow, complex, and expensive for them to use on all but a select subset of this data. They were storing it with optimistic hope that, someday, someone would find a solution.

Amazon Redshift became one of the fastest-growing AWS services because it helped solve the dark data problem. It was at least an order of magnitude less expensive and faster than most alternatives available. And Amazon Redshift was fully managed from the start—you didn’t have to worry about capacity, provisioning, patching, monitoring, backups, and a host of other DBA headaches. Many customers, including Vevo, Yelp, Redfin, and Edmunds, migrated to Amazon Redshift to improve query performance, reduce DBA overhead, and lower the cost of analytics.

And our customers’ data continues to grow at a very fast rate. Across the board, gigabytes to petabytes, the average Amazon Redshift customer doubles the data analyzed every year. That’s why we implement features that help customers handle their growing data, for example to double the query throughput or improve the compression ratios from 3x to 4x. That gives our customers some time before they have to consider throwing away data or removing it from their analytic environments. However, there is an increasing number of AWS customers who each generate a petabyte of data every day—that’s an exabyte in only three years. There wasn’t a solution for customers like that. If your data is doubling every year, it’s not long before you have to find new, disruptive approaches that transform the cost, performance, and simplicity curves for managing data.

Let’s look at the options available today. You can use Hadoop-based technologies like Apache Hive with Amazon EMR. This is actually a pretty great solution because it makes it easy and cost-effective to operate directly on data in Amazon S3 without ingestion or transformation. You can spin up clusters as you wish when you need, and size them right for that specific job you’re running. These systems are great at high scale-out processing like scans, filters, and aggregates. On the other hand, they’re not that good at complex query processing. For example, join processing requires data to be shuffled across nodes—for a large amount of data and large numbers of nodes that gets very slow. And joins are intrinsic to any meaningful analytics problem.

You can also use a columnar MPP data warehouse like Amazon Redshift. These systems make it simple to run complex analytic queries with orders of magnitude faster performance for joins and aggregations performed over large datasets. Amazon Redshift, in particular, leverages high-performance local disks, sophisticated query execution. and join-optimized data formats. Because it is just standard SQL, you can keep using your existing ETL and BI tools. But you do have to load data, and you have to provision clusters against the storage and CPU requirements you need.

Both solutions have powerful attributes, but they force you to choose which attributes you want. We see this as a “tyranny of OR.” You can have the throughput of local disks OR the scale of Amazon S3. You can have sophisticated query optimization OR high-scale data processing. You can have fast join performance with optimized formats OR a range of data processing engines that work against common data formats. But you shouldn’t have to choose. At this scale, you really can’t afford to choose. You need “all of the above.”

Redshift Spectrum

We built Redshift Spectrum to end this “tyranny of OR.” With Redshift Spectrum, Amazon Redshift customers can easily query their data in Amazon S3. Like Amazon EMR, you get the benefits of open data formats and inexpensive storage, and you can scale out to thousands of nodes to pull data, filter, project, aggregate, group, and sort. Like Amazon Athena, Redshift Spectrum is serverless and there’s nothing to provision or manage. You just pay for the resources you consume for the duration of your Redshift Spectrum query. Like Amazon Redshift itself, you get the benefits of a sophisticated query optimizer, fast access to data on local disks, and standard SQL. And like nothing else, Redshift Spectrum can execute highly sophisticated queries against an exabyte of data or more—in just minutes.

Redshift Spectrum is a built-in feature of Amazon Redshift, and your existing queries and BI tools will continue to work seamlessly. Under the covers, we manage a fleet of thousands of Redshift Spectrum nodes spread across multiple Availability Zones. These are transparently scaled and allocated to your queries based on the data that you need to process, with no provisioning or commitments. Redshift Spectrum is also highly concurrent—you can access your Amazon S3 data from any number of Amazon Redshift clusters.

The life of a Redshift Spectrum query

It all starts when Redshift Spectrum queries are submitted to the leader node of your Amazon Redshift cluster. The leader node optimizes, compiles, and pushes the query execution to the compute nodes in your Amazon Redshift cluster. Next, the compute nodes obtain the information describing the external tables from your data catalog, dynamically pruning nonrelevant partitions based on the filters and joins in your queries. The compute nodes also examine the data available locally and push down predicates to efficiently scan only the relevant objects in Amazon S3.

The Amazon Redshift compute nodes then generate multiple requests depending on the number of objects that need to be processed, and submit them concurrently to Redshift Spectrum, which pools thousands of Amazon EC2 instances per AWS Region. The Redshift Spectrum worker nodes scan, filter, and aggregate your data from Amazon S3, streaming required data for processing back to your Amazon Redshift cluster. Then, the final join and merge operations are performed locally in your cluster and the results are returned to your client.

Redshift Spectrum’s architecture offers several advantages. First, it elastically scales compute resources separately from the storage layer in Amazon S3. Second, it offers significantly higher concurrency because you can run multiple Amazon Redshift clusters and query the same data in Amazon S3. Third, Redshift Spectrum leverages the Amazon Redshift query optimizer to generate efficient query plans, even for complex queries with multi-table joins and window functions. Fourth, it operates directly on your source data in its native format (Parquet, RCFile, CSV, TSV, Sequence, Avro, RegexSerDe and more to come soon). This means that no data loading or transformation is needed. This also eliminates data duplication and associated costs. Fifth, operating on open data formats gives you the flexibility to leverage other AWS services and execution engines across your various teams to collaborate on the same data in Amazon S3. You get all of this, and because Redshift Spectrum is a feature of Amazon Redshift, you get the same level of end-to-end security, compliance, and certifications as with Amazon Redshift.

Designed for performance and cost-effectiveness

With Amazon Redshift Spectrum, you pay only for the queries you run against the data that you actually scan. We encourage you to leverage file partitioning, columnar data formats, and data compression to significantly minimize the amount of data scanned in Amazon S3. This is important for data warehousing because it dramatically improves query performance and reduces cost. Partitioning your data in Amazon S3 by date, time, or any other custom keys enables Redshift Spectrum to dynamically prune nonrelevant partitions to minimize the amount of data processed. If you store data in a columnar format, such as Parquet, Redshift Spectrum scans only the columns needed by your query, rather than processing entire rows. Similarly, if you compress your data using one of Redshift Spectrum’s supported compression algorithms, less data is scanned.

Amazon Redshift and Redshift Spectrum give you the best of both worlds. If you need to run frequent queries on the same data, you can normalize it, store it in Amazon Redshift, and get all of the benefits of a fully featured data warehouse for storing and querying structured data at a flat rate. At the same time, you can keep your additional data in multiple open file formats in Amazon S3, whether it is historical data or the most recent data, and extend your Amazon Redshift queries across your Amazon S3 data lake.

And that is how Amazon Redshift Spectrum scales data warehousing to exabytes—with no loading required. Redshift Spectrum ends the “tyranny of OR,” enabling you to store your data where you want, in the format you want, and have it available for fast processing using standard SQL when you need it, now and in the future.


Additional Reading

10 Best Practices for Amazon Redshift Spectrum
Amazon QuickSight Adds Support for Amazon Redshift Spectrum
Amazon Redshift Spectrum – Exabyte-Scale In-Place Queries of S3 Data

 


 

About the Author

Maor Kleider is a Senior Product Manager for Amazon Redshift, a fast, simple and cost-effective data warehouse. Maor is passionate about collaborating with customers and partners, learning about their unique big data use cases and making their experience even better. In his spare time, Maor enjoys traveling and exploring new restaurants with his family.

 

 

 

New: Server-Side Encryption for Amazon Kinesis Streams

Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/new-server-side-encryption-for-amazon-kinesis-streams/

In this age of smart homes, big data, IoT devices, mobile phones, social networks, chatbots, and game consoles, streaming data scenarios are everywhere. Amazon Kinesis Streams enables you to build custom applications that can capture, process, analyze, and store terabytes of data per hour from thousands of streaming data sources. Since Amazon Kinesis Streams allows applications to process data concurrently from the same Kinesis stream, you can build parallel processing systems. For example, you can emit processed data to Amazon S3, perform complex analytics with Amazon Redshift, and even build robust, serverless streaming solutions using AWS Lambda.

Kinesis Streams enables several streaming use cases for consumers, and now we are making the service more effective for securing your data in motion by adding server-side encryption (SSE) support for Kinesis Streams. With this new Kinesis Streams feature, you can now enhance the security of your data and/or meet any regulatory and compliance requirements for any of your organization’s data streaming needs.
In fact, Kinesis Streams is now one of the AWS Services in Scope for the Payment Card Industry Data Security Standard (PCI DSS) compliance program. PCI DSS is a proprietary information security standard administered by the PCI Security Standards Council founded by key financial institutions. PCI DSS compliance applies to all entities that store, process, or transmit cardholder data and/or sensitive authentication data which includes service providers. You can request the PCI DSS Attestation of Compliance and Responsibility Summary using AWS Artifact. But the good news about compliance with Kinesis Streams doesn’t stop there. Kinesis Streams is now also FedRAMP compliant in AWS GovCloud. FedRAMP stands for Federal Risk and Authorization Management Program and is a U.S. government-wide program that delivers a standard approach to the security assessment, authorization, and continuous monitoring for cloud products and services. You can learn more about FedRAMP compliance with AWS Services here.

Now are you ready to get into the keys? Get it, instead of get into the weeds. Okay a little corny, but it was the best I could do. Coming back to discussing SSE for Kinesis Streams, let me explain the flow of server-side encryption with Kinesis.  Each data record and partition key put into a Kinesis Stream using the PutRecord or PutRecords API is encrypted using an AWS Key Management Service (KMS) master key. With the AWS Key Management Service (KMS) master key, Kinesis Streams uses the 256-bit Advanced Encryption Standard (AES-256 GCM algorithm) to add encryption to the incoming data.

In order to enable server-side encryption with Kinesis Streams for new or existing streams, you can use the Kinesis management console or leverage one of the available AWS SDKs.  Additionally, you can audit the history of your stream encryption, validate the encryption status of a certain stream in the Kinesis Streams console, or check that the PutRecord or GetRecord transactions are encrypted using the AWS CloudTrail service.

 

Walkthrough: Kinesis Streams Server-Side Encryption

Let’s do a quick walkthrough of server-side encryption with Kinesis Streams. First, I’ll go to the Amazon Kinesis console and select the Streams console option.

Once in the Kinesis Streams console, I can add server-side encryption to one of my existing Kinesis streams or opt to create a new Kinesis stream.  For this walkthrough, I’ll opt to quickly create a new Kinesis stream, therefore, I’ll select the Create Kinesis stream button.

I’ll name my stream, KinesisSSE-stream, and allocate one shard for my stream. Remember that the data capacity of your stream is calculated based upon the number of shards specified for the stream.  You can use the Estimate the number of shards you’ll need dropdown within the console or read more calculations to estimate the number of shards in a stream here.  To complete the creation of my stream, now I click the Create Kinesis stream button.

 

With my KinesisSSE-stream created, I will select it in the dashboard and choose the Actions dropdown and select the Details option.


On the Details page of the KinesisSSE-stream, there is now a Server-side encryption section.  In this section, I will select the Edit button.

 

 

Now I can enable server-side encryption for my stream with an AWS KMS master key, by selecting the Enabled radio button. Once selected I can choose which AWS KMS master key to use for the encryption of  data in KinesisSSE-stream. I can either select the KMS master key generated by the Kinesis service, (Default) aws/kinesis, or select one of my own KMS master keys that I have previously generated.  I’ll select the default master key and all that is left is for me to click the Save button.


That’s it!  As you can see from my screenshots below, after only about 20 seconds, server-side encryption was added to my Kinesis stream and now any incoming data into my stream will be encrypted.  One thing to note is server-side encryption only encrypts incoming data after encryption has been enabled. Preexisting data that is in a Kinesis stream prior to server-side encryption being enabled will remain unencrypted.

 

Summary

Kinesis Streams with Server-side encryption using AWS KMS keys makes it easy for you to automatically encrypt the streaming data coming into your  stream. You can start, stop, or update server-side encryption for any Kinesis stream using the AWS management console or the AWS SDK. To learn more about Kinesis Server-Side encryption, AWS Key Management Service, or about Kinesis Streams review the Amazon Kinesis getting started guide, the AWS Key Management Service developer guide, or the Amazon Kinesis product page.

 

Enjoy streaming.

Tara