All posts by Janina Ander

Digitising film reels with Pi Film Capture

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/digitising-reels-pi-film-capture/

Joe Herman’s Pi Film Capture project combines old projectors and a stepper motor with a Raspberry Pi and a Raspberry Pi Camera Module, to transform his grandfather’s 8- and 16-mm home movies into glorious digital films.

We chatted to him about his Pi Film Capture build at Maker Faire New York 2016:

Film to Digital Conversion at Maker Faire New York 2016

Uploaded by Raspberry Pi on 2017-08-25.

What inspired Pi Film Capture?

Joe’s grandfather, Leo Willmott, loved recording home movies of his family of eight children and their grandchildren. He passed away when Joe was five, but in 2013 Joe found a way to connect with his legacy: while moving house, a family member uncovered a box of more than a hundred of Leo’s film reels. These covered decades of family history, and some dated back as far as 1939.

Super 8 film reels

Kodachrome film reels of the type Leo used

This provided an unexpected opportunity for Leo’s family to restore some of their shared history. Joe immediately made plans to digitise the material, knowing that the members of his extensive family tree would provide an eager audience.

Building Pi Film Capture

After a failed attempt with a DSLR camera, Joe realised he couldn’t simply re-film the movies — instead, he would have to capture each frame individually. He combined a Raspberry Pi with an old Super 8 projector, and set about rigging up something to do just that.

He went through numerous stages of prototyping, and his final hardware setup works very well. A NEMA 17 stepper motor  moves the film reel forward in the projector. A magnetic reed switch triggers the Camera Module each time the reel moves on to the next frame. Joe hacked the Camera Module so that it has a different focal distance, and he also added a magnifying lens. Moreover, he realised it would be useful to have a diffuser to ‘smooth’ some of the faults in the aged film reel material. To do this, he mounted “a bit of translucent white plastic from an old ceiling fixture” parallel with the film.

Pi Film Capture device by Joe Herman

Joe’s 16-mm projector, with embedded Raspberry Pi hardware

Software solutions

In addition to capturing every single frame (sometimes with multiple exposure settings), Joe found that he needed intensive post-processing to restore some of the films. He settled on sending the images from the Pi to a more powerful Linux machine. To enable processing of the raw data, he had to write Python scripts implementing several open-source software packages. For example, to deal with the varying quality of the film reels more easily, Joe implemented a GUI (written with the help of PyQt), which he uses to change the capture parameters. This was a demanding job, as he was relatively new to using these tools.

Top half of GUI for Pi Film Capture Joe Herman

The top half of Joe’s GUI, because the whole thing is really long and really thin and would have looked weird on the blog…

If a frame is particularly damaged, Joe can capture multiple instances of the image at different settings. These are then merged to achieve a good-quality image using OpenCV functionality. Joe uses FFmpeg to stitch the captured images back together into a film. Some of his grandfather’s reels were badly degraded, but luckily Joe found scripts written by other people to perform advanced digital restoration of film with AviSynth. He provides code he has written for the project on his GitHub account.

For an account of the project in his own words, check out Joe’s guest post on the IEEE Spectrum website. He also described some of the issues he encountered, and how he resolved them, in The MagPi.

What does Pi Film Capture deliver?

Joe provides videos related to Pi Film Capture on two sites: on his YouTube channel, you’ll find videos in which he has documented the build process of his digitising project. Final results of the project live on Joe’s Vimeo channel, where so far he has uploaded 55 digitised home videos.

m093a: Tom Herman Wedding, Detroit 8/10/63

Shot on 8mm by Leo Willmott, captured and restored by Joe Herman (Not a Wozniak film, but placed in that folder b/c it may be of interest to Hermans)

We’re beyond pleased that our tech is part of this amazing project, helping to reconnect the entire Herman/Willmott clan with their past. And it was great to be able to catch up with Joe, and talk about his build at Maker Faire last year!

Maker Faire New York 2017

We’ll be at Maker Faire New York again on the 23-24 September, and we can’t wait to see the amazing makes the Raspberry Pi community will be presenting there!

Are you going to be at MFNY to show off your awesome Pi-powered project? Tweet us, so we can meet up, check it out and share your achievements!

The post Digitising film reels with Pi Film Capture appeared first on Raspberry Pi.

Mod your Nerf gun with a Pi

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/mod-nerf-gun-pi/

Michael Darby, who blogs at 314reactor, has created a new Raspberry Pi build, and it’s pretty darn cool. Though it’s not the first Raspberry Pi-modded Nerf gun we’ve seen, it’s definitely one of the most complex!

Nerf Gun Ammo Counter / Range Finder – Raspberry Pi

An ammo counter and range finder made from a Raspberry Pi for a Nerf Gun.

Nerf guns

Nerf guns are toy dart guns that have been on the market since the early 1990s. They are popular with kids and adults who enjoy playing paintball, laser tag, and first-person shooter video games. Michael loves Nerf guns, and he wanted to give his toy a sci-fi overhaul, making it look and function more like a gun that an avatar might use in Half-Life, Quake, or Doom.

Modding a Nerf gun

A busy and creative member of the Raspberry Pi community, Michael has previously delighted us with his Windows 98 wristwatch. Now, he has upgraded his Nerf gun with a rangefinder and an ammo counter by adding a Pi, a Pimoroni Rainbow HAT, and some sensors.

Setting up a rangefinder was straightforward. Michael fixed an ultrasonic distance sensor pointing in the direction of the gun’s barrel. Live information about how far away he is from his target is shown on the Rainbow HAT’s alphanumeric display.

View of Michael Darby's nerf gun range finder

To create an ammo counter, Michael had to follow a more circuitous route. Since he couldn’t think of a way to read out how many darts are in the Nerf gun’s magazine, he ended up counting how many darts have been shot instead. This data is collected via a proximity sensor, a device that can measure shorter distances than an ultrasonic sensor. Michael aimed the sensor towards the end of the barrel, attaching it with Blu-Tack.

View of Michael Darby's nerf gun proximity sensor

The number of shots left in the magazine is indicated by the seven LEDs above the Rainbow HAT’s alphanumeric display. The countdown works for more than seven darts, thanks to colour coding: the LEDs count down first in red, then in orange, and finally in green.

In a Python script running on the Pi, Michael has included a default number of shots per magazine. When he changes a magazine, he uses one of the HAT’s buttons as a ‘Reload’ button, resetting the counter. He has also set up the HAT so that the number of available shots can be entered manually instead.

Nerf gun modding tutorial

On Michael’s blog you will find a thorough step-by-step guide to how he created this build. He has also included his code, and links to all the components, software installation guides, and test scripts he has used. So head on over there if you’re keen to mod your own nerf gun like this, and take a look at some of his other projects while you’re there!

Michael welcomes suggestions for how to improve upon his mods, especially for how to count shots in a magazine automatically. Do you have an idea? Let usand himknow in the comments!

Toy mods

Over the years, we’ve covered quite a few fun toy upgrades, and some that may have to be approached with caution. The Pi-powered busy board for babies, the ‘weaponized’ teddy bear, and the inevitable smart Fisher Price phone are just a few from our archives.

What’s your favourite childhood toy, and how could it be improved by the addition of a Pi? Share your ideas with us in the comments below.

The post Mod your Nerf gun with a Pi appeared first on Raspberry Pi.

Darth Beats: Star Wars LEGO gets a musical upgrade

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/darth-beats/

Dan Aldred, Raspberry Pi Certified Educator and creator of the website TeCoEd, has built Darth Beats by managing to fit a Pi Zero W and a Pimoroni Speaker pHAT into a LEGO Darth Vader alarm clock! The Pi force is strong with this one.

Darth Beats MP3 Player

Pimoroni Speaker pHAT and Raspberry Pi Zero W embedded into a Lego Darth Vader Alarm clock to create – “Darth Beats MP3 Player”. Video demonstrating all the features and functions of the project. Alarm Clock – https://goo.gl/VSMhG4 Speaker pHAT – https://shop.pimoroni.com/products/speaker-phat

Darth Beats inspiration: I have a very good feeling about this!

As we all know, anything you love gets better when you add something else you love: chocolate ice cream + caramel sauce, apple tart + caramel sauce, pizza + caramel sau— okay, maybe not anything, but you get what I’m saying.

The formula, in the form of “LEGO + Star Wars”, applies to Dan’s LEGO Darth Vader alarm clock. His Darth Vader, however, was sitting around on a shelf, just waiting to be hacked into something even cooler. Then one day, inspiration struck: Dan decided to aim for exponential awesomeness by integrating Raspberry Pi and Pimoroni technology to turn Vader into an MP3 player.

Darth Beats assembly: always tell me the mods!

The space inside the LEGO device measures a puny 6×3×3 cm, so cramming in the Zero W and the pHAT was going to be a struggle. But Dan grabbed his dremel and set to work, telling himself to “do or do not. There is no try.”

Darth Beats dremel

I find your lack of space disturbing.

He removed the battery compartment, and added two additional buttons in its place. Including the head, his Darth Beats has seven buttons, which means it is fully autonomous as a music player.

Darth Beats back buttons

Almost ready to play a silly remix of Yoda quotes

Darth Beats can draw its power from a wall socket, or from a portable battery pack, as shown in Dan’s video. Dan used the GPIO Zero Python library to set up ‘on’ and ‘off’ switches, and buttons for skipping tracks and controlling volume.

For more details on the build process, read his blog, and check out his video log:

Making Darth Beats

Short video showing you how I created the “Darth Beats MP3 Player”.

Accessing Darth Beats: these are the songs you’re looking for

When you press the ‘on’ switch, the Imperial March sounds before Darth Beats asks “What is thy bidding, my master?”. Then the device is ready to play music. Dan accomplished this by using Cron to run his scripts as soon as the Zero W boots up. MP3 files are played with the help of the Pygame library.

Of course, over time it would become boring to only be able to listen to songs that are stored on the Zero W. However, Dan got around this issue by accessing the Zero W remotely. He set up an online file upload system to add and remove MP3 files from the player. To do this, he used Droopy, an file sharing server software package written by Pierre Duquesne.

IT’S A TRAP!

There’s no reason to use this quote, but since it’s the Star Wars line I use most frequently, I’m adding it here anyway. It’s my post, and I can do what I want!

As you can imagine, there’s little that gets us more excited at Pi Towers than a Pi-powered Star Wars build. Except maybe a Harry Potter-themed project? What are your favourite geeky builds? Are you maybe even working on one yourself? Be sure to send us nerdy joy by sharing your links in the comments!

The post Darth Beats: Star Wars LEGO gets a musical upgrade appeared first on Raspberry Pi.

Landmine-clearing Pi-powered C-Turtle

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/landmine-c-turtle/

In an effort to create a robot that can teach itself to navigate different terrains, scientists at Arizona State University have built C-Turtle, a Raspberry Pi-powered autonomous cardboard robot with turtle flippers. This is excellent news for people who live in areas with landmines: C-Turtle is a great alternative to current landmine-clearing robots, since it is much cheaper, and much easier to assemble.

C-Turtle ASU

Photo by Charlie Leight/ASU Now

Why turtle flippers?

As any user of Python will tell you*, turtles are amazing. Moreover, as the evolutionary biologist of the C-Turtle team, Andrew Jansen, will tell you, considering their bulk** turtles move very well on land with the help of their flippers. Consequently, the team tried out prototypes with cardboard flippers imitating the shape of turtle flippers. Then they compared their performance to that of prototypes with rectangular or oval ‘flippers’. And 157 million years of evolution*** won out: the robots with turtle flippers were best at moving forward.

C-Turtle ASU

Field testing with Assistant Professor Heni Ben Amor, one of the C-Turtle team’s leaders (Photo by Charlie Leight/ASU Now)

If it walks like a C-Turtle…

But the scientists didn’t just slap turtle flippers on their robot and then tell it to move like a turtle! Instead, they implemented machine learning algorithms on the Pi Zero that serves as C-Turtle’s brain, and then simply let the robot do its thing. Left to its own devices, it used the reward and punishment mechanisms of its algorithms to learn the most optimal way of propelling itself forward. And lo and behold, C-Turtle taught itself to move just like a live turtle does!

Robotic C-Turtle

This is “Robotic C-Turtle” by ASU Now on Vimeo, the home for high quality videos and the people who love them.

Landmine clearance with C-Turtle

Robots currently used to clear landmines are very expensive, since they are built to withstand multiple mine explosions. Conversely, the total cost of C-Turtle comes to about $70 (~£50) – that’s cheap enough to make it disposable. It is also more easily assembled, it doesn’t need to be remotely controlled, and it can learn to navigate new terrains. All this makes it perfect for clearing minefields.

BBC Click on Twitter

Meet C-Turtle, the landmine detecting robot. VIDEO https://t.co/Kjc6WxRC8I

C-Turtles in space?****

The researchers hope that robots similar to C-Turtle can used for space exploration. They found that the C-Turtle prototypes that had performed very well in the sandpits in their lab didn’t really do as well when they were released in actual desert conditions. By analogy, robots optimized for simulated planetary conditions might not actually perform well on-site. The ASU scientists imagine that C-Turtle materials and a laser cutter for the cardboard body could be carried on board a Mars mission. Then Martian C-Turtle design could be optimized after landing, and the robot could teach itself how best to navigate real Martian terrain.

There are already Raspberry Pis in space – imagine if they actually made it to Mars! Dave would never recover

Congrats to Assistant Professors Heni Ben Amor and Daniel Aukes, and to the rest of the C-Turtle team, on their achievement! We at Pi Towers are proud that our little computer is part of this amazing project.

C-Turtle ASU

Photo by Charlie Leight/ASU Now

* Check out our Turtley amazing resource to find out why!

** At a length of 7ft, leatherback sea turtles can weigh 1,500lb!

*** That’s right: turtles survived the extinction of the dinosaurs!

**** Is anyone else thinking of Great A’Tuin right now? Anyone? Just me? Oh well.

The post Landmine-clearing Pi-powered C-Turtle appeared first on Raspberry Pi.

IoT Sleepbuddy, the robotic babysitter

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/sleepbuddy-robotic-babysitter/

You’re watching the new episode of Game of Thrones, and suddenly you hear your children, up and about after their bedtime! Now you’ll probably miss a crucial moment of the show because you have to put them to bed again. Or you’re out to dinner with friends and longing for the sight of your sleeping small humans. What do you do? Text the babysitter to check on them? Well, luckily for you these issues could soon be things of the past, thanks to Bert Vuylsteke and his Pi-powered Sleepbuddy. This IoT-controlled social robot could fulfil all your remote babysitting needs!

IoT Sleepbuddy – babyphone – Design concept

This is the actual concept of my robot and in what context it can be used.

A social robot?

A social robot fulfils a role normally played by a person, and interacts with humans via human language, gestures, and facial expressions. This is what Bert says about the role of the Sleepbuddy:

[For children, it] is a friend or safeguard from nightmares, but it is so much more for the babysitters or parents. The babysitters or parents connect their smartphone/tablet/PC to the Sleepbuddy. This will give them access to control all his emotions, gestures, microphone, speaker and camera. In the eye is a hidden camera to see the kids sleeping. The speaker and microphone allow communication with the kids through WiFi.

The roots of the Sleepbuddy

As a student at Ghent University, Bert had to build a social robot using OPSORO, the university’s open-source robotics platform. The developers of this platform create social robots for research purposes. They are also making all software, as well as hardware design plans, available on GitHub. In addition, you will soon be able to purchase their robot kits via a Kickstarter. OPSORO robots are designed around the Raspberry Pi, and controlled via a web interface. The interface allows you to customise your robot’s behaviour, using visual or text-based programming languages.

Sleepbuddy Bert Vuylsteke components

The Sleepbuddy’s components

Building the Sleepbuddy

Bert has provided a detailed Instructable describing the process of putting the Sleepbuddy together, complete with video walk-throughs. However, the making techniques he has used include thermoforming, laser cutting, and 3D printing. If you want to recreate this build, you may need to contact your local makerspace to find out whether they have the necessary equipment.

Sleepbuddy Bert Vuylsteke assembly

Assembling the Sleepbuddy

Finally, Bert added an especially cute touch to this project by covering the Sleepbuddy in blackboard paint. Therefore, kids can draw on the robot to really make it their own!

So many robots!

At Pi Towers we are partial to all kinds of robots, be they ones that test medical devices, play chess or Connect 4, or fight other robots. If they twerk, or are cute, tiny, or shoddy, we maybe even like them a tiny bit more.

Do you share our love of robots? Would you like to make your own? Then check out our resource for building a simple robot buggy. Maybe it will kick-start your career as the general of a robot army. A robot army that does good, of course! Let us know your benevolent robot overlord plans in the comments.

The post IoT Sleepbuddy, the robotic babysitter appeared first on Raspberry Pi.

Google Pi Intercom with the AIY Projects kit

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/google-pi-intercom-aiy-projects/

When we released the Google AIY Projects kit with Issue 57 of The MagPi in May, we could hardly wait to see what you in the community would build with it. Being able to add voice interaction to your Raspberry Pi projects opens up a world of possibilities for exciting digital making.

One such project is maker Martin Mander‘s Google Pi Intercom. We love this build for its retro feel and modern functionality, a combination of characteristics shared by many of Martin’s creations.

1986 Google Pi Intercom

This is a 1986 Radio Shack Intercom that I’ve converted into a Google Home style device using a Raspberry Pi and the Google AIY (Artificial Intelligence Yourself) kit that came free with the MagPi magazine (issue 57). It uses the Google Assistant to answer questions and perform actions, using IFTTT to integrate with smart home accessories and other web services.

Inter-com again?

If you’ve paid any attention at all to the world of Raspberry Pi in the last few months, you’ve probably seen the Google AIY Projects kit that came free with The MagPi #57. It includes a practical cardboard housing, but of course makers everywhere have been upgrading their kits, for example by creating a laser-cut wooden box. Martin, however, has taken things to the next level: he’s installed his AIY kit in a wall-mounted intercom from 1986.

Google Pi intercom Martin Mander

The components of the Google Pi Intercom

It’s all (inter)coming together

Martin already had not one, but three vintage intercoms at home. So when he snatched up an AIY Projects kit, there was no doubt in his mind about how he was going to use it:

The moment I scooped the Google AIY kit, I knew that one of these old units would be a perfect match for it – after all, both were essentially based on a button, microphone, and loudspeaker, just with different technology in between.

Preparing the intercom housing

First, Martin gutted the intercom and ground away some of the excess plastic inside. This was necessary because integrating all the components was going to be a tight fit. To overhaul its look, he then gave the housing a good scrub and a new paint job. For a splash of colour, Martin affixed a strip of paper in the palette of the Google logo.

Google Pi intercom Martin Mander

BUBBLES!

Building the Google Pi Intercom

The intercom’s speaker wasn’t going to provide good enough sound quality. Moreover, Martin quickly realised that the one included in the AIY kit was too big for this make. He hunted down a small speaker online, and set about wiring everything up.

Google Pi intercom Martin Mander

Assembling the electronics

Martin wanted the build to resemble the original intercom as closely as possible. Consequently, he was keen to use its tilting bar to activate the device’s voice command function. Luckily, it was easy to mount the AIY kit’s button behind the bar.

Google Pi intercom Martin Mander

Using the intercom’s tilting bar switch

Finally it was only a matter of using some hot glue and a few screws and bolts to secure all the components inside the housing. Once he’d done that, Martin just had to set up the software of the Google Assistant, and presto! He had a voice-controlled smart device for home automation.

A pretty snazzy-looking build, isn’t it? If you’d like to learn more about Martin’s Google Pi Intercom, head over to the Instructables page for a complete rundown.

Google Pi intercom Martin Mander

Awaiting your command

The AIY Projects Kit

Didn’t manage to snap up an AIY Projects kit? Find out how to get your hands on one over at The MagPi.

Or do you have an AIY kit at home? Lucky you! You can follow our shiny new learning resource to get started with using it. There are also lots of handy articles about the kit in The MagPi #57 – download the PDF version here. If you’re stuck, or looking for inspiration, check out our AIY Projects subforum. Ask your questions, and help others by answering theirs.

What have you built with your AIY Projects kit? Be sure to share your voice-controlled project with us in the comments.

 

The post Google Pi Intercom with the AIY Projects kit appeared first on Raspberry Pi.

Teaching with Raspberry Pis and PiNet

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/teaching-pinet/

Education is our mission at the Raspberry Pi Foundation, so of course we love tools that help teachers and other educators use Raspberry Pis in a classroom setting. PiNet, which allows teachers to centrally manage a whole classroom’s worth of Pis, makes administrating a fleet of Pis easier. Set up individual student accounts, install updates and software, share files – PiNet helps you do all of this!

Caleb VinCross on Twitter

The new PiNet lab up and running. 30 raspberry pi 3’s running as fat clients for 600 + students. Much thanks to the PiNet team! @PiNetDev.

PiNet developer Andrew

PiNet was built and is maintained by Andrew Mulholland, who started work on this project when he was 15, and who is also one of the organisers of the Northern Ireland Raspberry Jam. Check out what he says about PiNet’s capabilities in his guest post here.

PiNet in class

PiNet running in a classroom

PiNet, teacher’s pet

PiNet has been available for about two years now, and the teachers using it are over the moon. Here’s what a few of them say about their experience:

We wanted a permanently set up classroom with 30+ Raspberry Pis to teach programming. Students wanted their work to be secure and backed up and we needed a way to keep the Pis up to date. PiNet has made both possible and the classroom now required little or no maintenance. PiNet was set up in a single day and was so successful we set up a second Pi room. We now have 60 Raspberry Pis which are used by our students every day. – Rob Jones, Secondary School Teacher, United Kingdom

AKS Computing on Twitter

21xRaspPi+dedicated network+PiNet server+3 geeks = success! Ready to test with a full class.

I teach Computer Science at middle school, so I have 4 classes per day in my lab, sharing 20 Raspberry Pis. PiNet gives each student separate storage space. Any changes to the Raspbian image can be done from my dashboard. We use Scratch, Minecraft Pi, Sonic Pi, and do physical computing. And when I have had issues, or have wanted to try something a little crazy, the support has been fabulous. – Bob Irving, Middle School Teacher, USA

Wolf Math on Twitter

We’re starting our music unit with @deejaydoc. My CS students are going through the @Sonic_Pi turorial on @PiNetDev.

I teach computer classes for about 600 students between the ages of 5 and 13. PiNet has really made it possible to expand our technology curriculum beyond the simple web-based applications that our Chromebooks were limited to. I’m now able to use Arduino boards to do basic physical computing with LEDs and sensors. None of this could have happened without PiNet making it easy to have an affordable, stable, and maintainable way of managing 30 Linux computers in our lab. – Caleb VinCross, Primary School Teacher, USA

More for educators

If you’re involved in teaching computing, be that as a professional or as a volunteer, check out the new free magazine Hello World, brought to you by Computing At School, BCS Academy of Computing, and Raspberry Pi working in partnership. It is written by educators for educators, and available in print and as a PDF download. And if you’d like to keep up to date with what we are offering to educators and learners, sign up for our education newsletter here.

Are you a teacher who uses Raspberry Pis in the classroom, or another kind of educator who has used them in a group setting? Tell us about your experience in the comments below.

The post Teaching with Raspberry Pis and PiNet appeared first on Raspberry Pi.

The Heart of Maker Faire

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/heart-maker-faire/

We at the Raspberry Pi Foundation find it incredibly rewarding to help people make and share things they love. It’s amazing to be part of an incredibly creative community of makers. And we’re not the only ones who feel this way: for this year’s Maker Faire UK, the team over at NUSTEM created the Heart of Maker Faire, a Pi-powered art installation that is a symbol of this unique community. And to be perfectly frank, it’s bloody gorgeous.

The Heart of Maker Faire

NUSTEM’s new installation for Maker Faire UK 2017, held on 1st & 2nd April at the Centre for Life, Newcastle-upon-Tyne. Visitors wrote notes about things they love, and sealed them in jars. They then read their heart rates, and used the control boxes to associate their jar and heart rate with a space on the shelves.

A heart for the community

NUSTEM is a STEM outreach organisation from Northumbria University, and the makers there are always keen to build interactive projects that get people excited about technology. So at this year’s Faire, attendees passing their installation were invited to write down something close to their heart, put that note in a jar, and measure their heart rate. Then they could connect their heart rate, via a QR code, to a space on a shelf lined with LEDs. Once they placed the jar in their space, the LEDs started blinking to imitate their heart beat. With this art piece, the NUSTEM team wants to say something about “how we’re all individuals, but about our similarities too”.

NUSTEM on Twitter

Still beating. Heart of #MakerFaireUK

Making the heart beat

This is no small build – it uses more than 2,000 NeoPixel LEDs, as well as five Raspberry Pis, among other components. Two Pi 3s are in charge of registering people’s contributions and keeping track of their jars. A Pi Zero W acts as a central hub, connecting its bigger siblings via WiFi, and storing a MySQL database of the jars’ data. Finally, two more Pi 3s control the LEDs of the Heart via a script written in Processing. The NUSTEM team has made the code available here for you “to laugh at” (their words, not mine!)

Heart of Maker Faire shelf

The heart, ready to be filled with love

A heart for art

Processing is an open-source programming language used to create images, graphs, and animations. It can respond to keyboard and mouse input, so you can write games with it as well. Moreover, it runs on the Pi, and you can use it to talk to the Pi’s GPIO pins, as the Heart of Maker Faire team did. Hook up buttons, sensors, and LEDs, and get ready to create amazing interactive pieces of art! If you’d like to learn more, read Matt’s blog post, or watch the talk he gave about Processing at our fifth birthday party earlier this year.

Matt Richardson: Art with Processing on the Raspberry Pi – Raspberry Pi Birthday Event 2017 – Talks

Matt Richardson: Art with Processing on the Raspberry Pi Sunday 5th March 2017 Raspberry Pi Birthday Event 2017 Filmed and edited by David and Andrew Ferguson. This video is not an official video published by the Raspberry Pi Foundation. No copyright infringement intended.

To help you get started, we’re providing a free learning resource introducing you to the basics of Processing. We’d love to see what you create, so do share a link to your masterworks in the comments!

World Maker Faire

We’ll be attending World Maker Faire in New York on the 23rd and 24th of September. Will you be there?

The post The Heart of Maker Faire appeared first on Raspberry Pi.

Ultrasonic pi-ano

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/ultrasonic-piano/

At the Raspberry Pi Foundation, we love a good music project. So of course we’re excited to welcome Andy Grove‘s ultrasonic piano to the collection! It is a thing of beauty… and noise. Don’t let the name fool you – this build can do so much more than sound like a piano.

Ultrasonic Pi Piano – Full Demo

The Ultrasonic Pi Piano uses HC-SR04 ultrasonic sensors for input and generates MIDI instructions that are played by fluidsynth. For more information: http://theotherandygrove.com/projects/ultrasonic-pi-piano/

What’s an ultrasonic piano?

What we have here, people of all genders, is really a theremin on steroids. The build’s eight ultrasonic distance sensors detect hand movements and, with the help of an octasonic breakout board, a Raspberry Pi 3 translates their signals into notes. But that’s not all: this digital instrument is almost endlessly customisable – you can set each sensor to a different octave, or to a different instrument.

octasonic breakout board

The breakout board designed by Andy

Andy has implemented gesture controls to allow you to switch between modes you have preset. In his video, you can see that holding your hands over the two sensors most distant from each other changes the instrument. Say you’re bored of the piano – try a xylophone! Not your jam? How about a harpsichord? Or a clarinet? In fact, there are 128 MIDI instruments and sound effects to choose from. Go nuts and compose a piece using tuba, ocarina, and the noise of a guitar fret!

How to build the ultrasonic piano

If you head over to Instructables, you’ll find the thorough write-up Andy has provided. He has also made all his scripts, written in Rust, available on GitHub. Finally, he’s even added a video on how to make a housing, so your ultrasonic piano can look more like a proper instrument, and less like a pile of electronics.

Ultrasonic Pi Piano Enclosure

Uploaded by Andy Grove on 2017-04-13.

Make your own!

If you follow us on Twitter, you may have seen photos and footage of the Raspberry Pi staff attending a Pi Towers Picademy. Like Andy*, quite a few of us are massive Whovians. Consequently, one of our final builds on the course was an ultrasonic theremin that gave off a sound rather like a dying Dalek. Take a look at our masterwork here! We loved our make so much that we’ve since turned the instructions for building it into a free resource. Go ahead and build your own! And be sure to share your compositions with us in the comments.

Sonic the hedgehog is feeling the beat

Sonic is feeling the groove as well

* He has a full-sized Dalek at home. I know, right?

The post Ultrasonic pi-ano appeared first on Raspberry Pi.

Plane Spotting with Pi and Amazon Alexa

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/plane-spotting/

Plane spotting, like train spotting, is a hobby enjoyed by many a tech enthusiast. Nick Sypteras has built a voice-controlled plane identifier using a Raspberry Pi and an Amazon Echo Dot.

“Look! Up in the sky! It’s a bird! It’s a plane! No, it’s Superm… hang on … it’s definitely a plane.”

What plane is that?

There’s a great write-up on Nick’s blog describing how he went about this. In addition to the Pi and the Echo, all he needed was a radio receiver to pick up signals from individual planes. So he bought an RTL-SDR USB dongle to pick up ADS-B broadcasts.

Alexa Plane Spotting Skill

Demonstrating an Alexa skill for identifying what planes are flying by my window. Ingredients: – raspberry pi – amazon echo dot – rtl-sdr dongle Explanation here: https://www.nicksypteras.com/projects/teaching-alexa-to-spot-airplanes

With the help of open-source software he can convert aircraft broadcasts into JSON data, which is stored on the Pi. Included in the broadcast is each passing plane’s unique ICAO code. Using this identifier, he looks up model, operator, and registration number in a data set of possible aircraft which he downloaded and stored on the Pi as a Mongo database.

Where is that plane going?

His Python script, with the help of the Beautiful Soup package, parses the FlightRadar24 website to find out the origin and destination of each plane. Nick also created a Node.js server in which all this data is stored in human-readable language to be accessed by Alexa.

Finally, it was a matter of setting up a new skill on the Alexa Skills Kit dashboard so that it would query the Pi in response to the right voice command.

Pretty neat, huh?

Plane spotting is serious business

Nick has made all his code available on GitHub, so head on over if this make has piqued your interest. He mentions that the radio receiver he uses picks up most unencrypted broadcasts, so you could adapt his build for other purposes as well.

Boost your hobby with the Pi

We’ve seen many builds by makers who have pushed their hobby to the next level with the help of the Pi, whether it’s astronomy, high-altitude ballooning, or making music. What hobby do you have that the Pi could improve? Let us know in the comments.

The post Plane Spotting with Pi and Amazon Alexa appeared first on Raspberry Pi.

VästtraPi: your personal bus stop schedule monitor

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/public-transport-vasttrapi/

I get impatient quickly when I’m looking up information on my phone. There’s just something about it that makes me jittery – especially when the information is time-sensitive, like timetables for public transport. If you’re like me, then Dimitris Platis‘s newest build is for you. He has created the VästtraPi, a Pi-powered departure time screen for your home!

No Title

No Description

Never miss the bus again with VästtraPi

Let me set the scene: it’s a weekday morning, and you’ve finally woken up enough to think about taking the bus to work. How much time do you have to catch it, though? You pick up your phone, unlock it, choose the right app, wait for it to update – and realise this took so much time that you’ll probably miss the next bus! Grrrrrr!

Running after a streetcar

Never again!

Now picture this: instead of using your phone, you can glance at  a personalized real-time bus schedule monitor while sipping your tea at breakfast.

Paul Rudd is fairly impressed

That would be pretty neat, wouldn’t it?

Such a device is exactly what Dimitris has created with the VästtraPi, and he has provided instructions so you can make your own. One less stress factor for your morning commute!

Stephen Colbert and Jon Stewart are very impressed.

I agree with Stephen and Jon.

Setting up the VästtraPi

The main pieces of hardware making up the VästtraPi are a Raspberry Pi Zero W, an LCD screen, and a power control board designed by Dimitris which switches the device on and off. He explains where to buy the board’s components, as well as all the other parts of the build, and how to put them together. He’s also 3D-printed a simple case.

On the software side, a Python script accesses the API provided by Dimitris’s local public transportation company, Västtrafik, and repeatedly fetches information about his favourite bus stop. It displays the information using neat graphics, generated with the help of Tkinter, the standard GUI package for Python. The device is set up so that pressing the ‘on’ button starts up the Pi. The script then runs automatically for ten minutes before safely shutting everything down. Very economical!

Dimitris has even foreseen what you’re likely to be thinking right now:

So, is this faster than the mobile app solution? Yes and no. The Raspberry Pi Zero W needs around 30 seconds to boot up and display the GUI. Without any optimizations it is naturally slower than my phone. VästtraPi’s biggest advantage is that it allows me to multitask while it is loading.

Build your own live bus schedule monitor

All the schematics and code are available via Dimitris’s write-up. He says that, for the moment, “the bus station, selected platform and bus line destinations that are displayed are hard-coded” in his script, but that it would be easy to amend for your own purposes. Of course, when recreating this build, you’ll want to use your own local public transport provider’s API, so some tweaking of his code will be required anyway.

What do you think – will this improve your morning routine? Are you up to the challenge of adapting it? Or do you envision modifying the build to display other live information? Let us know how you get on in the comments.

The post VästtraPi: your personal bus stop schedule monitor appeared first on Raspberry Pi.

PiCorder, the miniature camcorder

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/picorder/

The modest dimensions of our Raspberry Pi Zero and its wirelessly connectable sibling, the Pi Zero W, enable makers in our community to build devices that are very small indeed. The PiCorder built by Wayne Keenan is probably the slimmest Pi-powered video-recording device we’ve ever seen.

PiCorder – Pimoroni HyperPixel

A simple Pi-camcorder using @pimoroni #HyperPixel, ZeroLipo, lipo bat, camera and #PiZeroW. All parts from the Pirates, total of ~£85. Project build instructions: https://www.hackster.io/TheBubbleworks/picorder-0eb94d

PiCorder hardware

Wayne’s PiCorder is a very straightforward make. On the hardware side, it features a Pimoroni HyperPixel screen, Pi Zero camera module, and Zero LiPo plus LiPo battery pack. To put it together, he simply soldered header pins onto a Zero W, and connected all the components to it – easy as Pi! (Yes, I went there.)

PiCorder

So sleek as to be almost aerodynamic

Recording with the PiCorder (rePiCording?)

Then it was just a matter of installing the HyperPixel driver on the Pi, and the PiCorder was good to go. In this basic setup, recording is controlled via SSH. However, there’s a discussion about better ways to control the device in the comments on Wayne’s write-up. As the HyperPixel is a touchscreen, adding a GUI would make full use of its capabilities.

Picorder screen

Think about how many screens you’re looking at right now

The PiCorder is a great project to recreate if you’re looking to build a small portable camera. If you’re new to soldering, this build is perfect for you: just follow our ‘How to solder’ video and tutorial, and you’re on your way. This could be the start of your journey into the magical world of physical computing!

You could also check our blog on Alex Ellis‘s implementation of YouTube live-streaming for the Pi, and learn how to share your videos in real time.

Cool camera projects

Our educational resources include plenty of cool projects that could use the PiCorder, or for which the device could be adapted.

Get your head around using the official Raspberry Pi Camera Module with this picamera tutorial. Learn how to set up a stationary or wearable time-lapse camera, and turn your images into animated GIFs. You could also kickstart your career as a director by making an amazing stop-motion film!

No matter which camera project you choose to work on, we’d love to see the results. So be sure to share a link in the comments.

The post PiCorder, the miniature camcorder appeared first on Raspberry Pi.

Pi-powered hands-on statistical model at the Royal Society

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/royal-society-galton-board/

Physics! Particles! Statistical modelling! Quantum theory! How can non-scientists understand any of it? Well, students from Durham University are here to help you wrap your head around it all – and to our delight, they’re using the power of the Raspberry Pi to do it!

At the Royal Society’s Summer Science Exhibition, taking place in London from 4-9 July, the students are presenting a Pi-based experiment demonstrating the importance of statistics in their field of research.

Modelling the invisible – Summer Science Exhibition 2017

The Royal Society Summer Science Exhibition 2017 features 22 exhibits of cutting-edge, hands-on UK science , along with special events and talks. You can meet the scientists behind the research. Find out more about the exhibition at our website: https://royalsociety.org/science-events-and-lectures/2017/summer-science-exhibition/

Ramona, Matthew, and their colleagues are particle physicists keen to bring their science to those of us whose heads start to hurt as soon as we hear the word ‘subatomic’. In their work, they create computer models of subatomic particles to make predictions about real-world particles. Their models help scientists to design better experiments and to improve sensor calibrations. If this doesn’t sound straightforward to you, never fear – this group of scientists has set out to show exactly how statistical models are useful.

The Galton board model

They’ve built a Pi-powered Galton board, also called a bean machine (much less intimidating, I think). This is an upright board, shaped like an upside-down funnel, with nails hammered into it. Drop a ball in at the top, and it will randomly bounce off the nails on its way down. How the nails are spread out determines where a ball is most likely to land at the bottom of the board.

If you’re having trouble picturing this, you can try out an online Galton board. Go ahead, I’ll wait.

You’re back? All clear? Great!

Now, if you drop 100 balls down the board and collect them at the bottom, the result might look something like this:

Galton board

By Antoine Taveneaux CC BY-SA 3.0

The distribution of the balls is determined by the locations of the nails in the board. This means that, if you don’t know where the nails are, you can look at the distribution of balls to figure out where they are most likely to be located. And you’ll be able to do all this using … statistics!!!

Statistical models

Similarly, how particles behave is determined by the laws of physics – think of the particles as balls, and laws of physics as nails. Physicists can observe the behaviour of particles to learn about laws of physics, and create statistical models simulating the laws of physics to predict the behaviour of particles.

I can hear you say, “Alright, thanks for the info, but how does the Raspberry Pi come into this?” Don’t worry – I’m getting to that.

Modelling the invisible – the interactive exhibit

As I said, Ramona and the other physicists have not created a regular old Galton board. Instead, this one records where the balls land using a Raspberry Pi, and other portable Pis around the exhibition space can access the records of the experimental results. These Pis in turn run Galton board simulators, and visitors can use them to recreate a virtual Galton board that produces the same results as the physical one. Then, they can check whether their model board does, in fact, look like the one the physicists built. In this way, people directly experience the relationship between statistical models and experimental results.

Hurrah for science!

The other exhibit the Durham students will be showing is a demo dark matter detector! So if you decide to visit the Summer Science Exhibition, you will also have the chance to learn about the very boundaries of human understanding of the cosmos.

The Pi in museums

At the Raspberry Pi Foundation, education is our mission, and of course we love museums. It is always a pleasure to see our computers incorporated into exhibits: the Pi-powered visual theremin teaches visitors about music; the Museum in a Box uses Pis to engage people in hands-on encounters with exhibits; and this Pi is itself a museum piece! If you want to learn more about Raspberry Pis and museums, you can listen to this interview with Pi Towers’ social media maestro Alex Bate.

It’s amazing that our tech is used to educate people in areas beyond computer science. If you’ve created a pi-powered educational project, please share it with us in the comments.

The post Pi-powered hands-on statistical model at the Royal Society appeared first on Raspberry Pi.

BackMap, the haptic navigation system

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/backmap-haptic/

At this year’s TechCrunch Disrupt NY hackathon, one team presented BackMap, a haptic feedback system which helps visually impaired people to navigate cities and venues. It is assisted by a Raspberry Pi and integrated into a backpack.

Good vibrations with BackMap

The team, including Shashank Sharma, wrote an iOS phone app in Swift, Apple’s open-source programming language. To convert between addresses and geolocations, they used the Esri APIs offered by PubNub. So far, so standard. However, they then configured their BackMap setup so that the user can input their destination via the app, and then follow the route without having to look at a screen or listen to directions. Instead, vibrating motors have been integrated into the straps of a backpack and hooked up to a Raspberry Pi. Whenever the user needs to turn left or right, the Pi makes the respective motor vibrate.

Disrupt NY 2017 Hackathon | Part 1

Disrupt NY 2017 Hackathon presentations filmed live on May 15th, 2017. Preceding the Disrupt Conference is Hackathon weekend on May 13-14, where developers and engineers descend from all over the world to take part in a 24-hour hacking endurance test.

BackMap can also be adapted for indoor navigation by receiving signals from beacons. This could be used to direct users to toilet facilities or exhibition booths at conferences. The team hopes to upgrade the BackMap device to use a wristband format in the future.

Accessible Pi

Here at Pi Towers, we are always glad to see Pi builds for people with disabilities: we’ve seen Sanskriti and Aman’s Braille teacher Mudra, the audio e-reader Valdema by Finnish non-profit Kolibre, and Myrijam and Paul’s award-winning, eye-movement-controlled wheelchair, to name but a few.

Our mission is to bring the power of coding and digital making to everyone, and we are lucky to be part of a diverse community of makers and educators who have often worked proactively to make events and resources accessible to as many people as possible. There is, for example, the autism- and Tourette’s syndrome-friendly South London Raspberry Jam, organised by Femi Owolade-Coombes and his mum Grace. The Raspberry VI website is a portal to all things Pi for visually impaired and blind people. Deaf digital makers may find Jim Roberts’ video tutorials, which are signed in ASL, useful. And anyone can contribute subtitles in any language to our YouTube channel.

If you create or use accessible tutorials, or run a Jam, Code Club, or CoderDojo that is designed to be friendly to people who are neuroatypical or have a disability, let us know how to find your resource or event in the comments!

The post BackMap, the haptic navigation system appeared first on Raspberry Pi.

Encased in amber: meet the epoxy-embedded Pi

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/epoxy-pi-resin-io/

The maker of one of our favourite projects from this year’s Maker Faire Bay Area took the idea of an ’embedded device’ and ran with it: Ronald McCollam has created a wireless, completely epoxy-encased Pi build – screen included!

Resin.io in resin epoxy-encased Raspberry Pi

*cue epic music theme* “Welcome…to resin in resin.”

Just encase…

Of course, this build is not meant to be a museum piece: Ronald embedded a Raspberry Pi 3 with built-in wireless LAN and Bluetooth to create a hands-on demonstration of the resin.io platform, for which he is a Solution Architect. Resin.io is useful for remotely controlling groups of Linux-based IoT devices. In this case, Ronald used it to connect to the encased Pi. And yes, he named his make Resin-in-resin – we salute you, sir!

resin.io in resin epoxy-encased Raspberry Pi

“Life uh…finds a way.”

Before he started the practical part of his project, he did his research to find a suitable resin. He found that epoxy types specifically designed for encasing electronics are very expensive. In the end, Ronald tried out a cheap type, usually employed to coat furniture, by encasing an LED. It worked perfectly, and he went ahead to use this resin for embedding the Pi.

Bubbleshooting epoxy

This was the first time Ronald had worked with resin, so he learned some essential things about casting. He advises other makers to mix the epoxy very, very slowly to minimize the formation of bubbles; to try their hands on some small-scale casting attempts first; and to make sure they’re using a large enough mold for casting. Another thing to keep in mind is that some components of the make will heat up and expand while the device is running.

His first version of an encased Pi was still connected to the outside world by its USB cable:

Ronald McCollam on Twitter

Updates don’t get more “hands off” than a Raspberry Pi encased in epoxy — @resin_io inside resin! Come ask me about it at @DockerCon!

Not satisfied with this, he went on to incorporate an inductive charging coil as a power source, so that the Pi could be totally insulated in epoxy. The Raspberry Pi Foundation’s Matt Richardson got a look the finished project at Maker Faire Bay Area:

MattRichardson🏳️‍🌈 on Twitter

If you’re at @makerfaire, you must check out what @resin_io is showing. A @Raspberry_Pi completely enclosed in resin. Completely wireless. https://t.co/djVjoLz3hI

MAGNETS!

The charging coil delivers enough power to keep the Pi running for several hours, but it doesn’t allow secure booting. After some head-scratching, Ronald came up with a cool solution to this problem: he added a battery and a magnetic reed switch. He explains:

[The] boot process is to use the magnetic switch to turn off the Pi, put it on the charger for a few minutes to allow the battery to charge up, then remove the magnet so the Pi boots.

Pi in resin controlled by resin.io

“God help us, we’re in the hands of engineers.”

He talks about his build on the resin.io blog, and has provided a detailed project log on Hackaday. For those of you who want to recreate this project at home, Ronald has even put together an Adafruit wishlist of the necessary components.

Does this resin-ate with you?

What’s especially great about Ronald’s posts is that they’re full of helpful tips about getting started with using epoxy resin in your digital making projects. So whether you’re keen to build your own wireless Pi, or just generally interested in embedding electronic components in resin, you’ll find his write-ups useful.

If you have experience in working with epoxy and electronic devices and want to share what you’ve learned, please do so in the comments!

The post Encased in amber: meet the epoxy-embedded Pi appeared first on Raspberry Pi.

Tweetponic lavender: nourishing nature with the Twitter API

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/tweetponic-lavender/

In a Manhattan gallery, there is an art installation that uses a Raspberry Pi to control the lights, nourishing an underground field of lavender. The twist: the Pi syncs the intensity of the lights to the activity of a dozen or so Twitter accounts belonging to media personalities and members of the US government.

In May 2017 I cultivated a piece of land in Midtown Manhattan nurtured by tweets.

204 Likes, 5 Comments – Martin Roth (@martinroth02) on Instagram: “In May 2017 I cultivated a piece of land in Midtown Manhattan nurtured by tweets.”

Turning tweets into cellulose

Artist Martin Roth has used the Raspberry Pi to access the accounts via the Twitter API, and to track their behaviour. This information is then relayed to the lights in real time. The more tweets, retweets, and likes there are on these accounts at a given moment, the brighter the lights become, and the better the lavender plants grow. Thus Twitter storms are converted into plant food, and ultimately into a pleasant lavender scent.

Until June 21st @ ACF (11 East 52nd Street)

39 Likes, 1 Comments – Martin Roth (@martinroth02) on Instagram: “Until June 21st @ ACF (11 East 52nd Street)”

Regarding his motivation to create the art installation, Martin Roth says:

[The] Twitter storm is something to be resisted. But I am using it in my exhibition as a force to create growth.

The piece, descriptively titled In May 2017 I cultivated a piece of land in Midtown Manhattan nurtured by tweets, is on show at the Austrian Cultural Forum, New York.

Using the Twitter API as part of digital making

We’ve seen a number of cool makes using the Twitter API. These often involve the posting of tweets in response to real-world inputs. Some of our favourites are the tweeting cat flap Flappy McFlapface, the tweeting dog Oliver Twitch, and of course Pi Towers resident Bert the plant. It’s interesting to see the concept turned on its head.

If you feel inspired by these projects, head on over to our resource introducing the Twitter API using Python. Or do you already have a project, in progress or finished, that uses the API? Let us know about it in the comments!

The post Tweetponic lavender: nourishing nature with the Twitter API appeared first on Raspberry Pi.

Weaponising a teddy bear

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/weaponising-teddy-bear/

At primary school, I loved my Tamagotchi: it moved, it beeped, it was almost like I could talk to it! Nowadays, kids can actually have conversations with their toys, and some toys are IoT devices, capable of accessing online services or of interacting with people via the Internet. And so to one of this week’s news stories: using a Raspberry Pi, an eleven-year-old has demonstrated how to weaponise a teddy bear. This has garnered lots of attention, because he did it at a cybersecurity conference in The Hague, and he used the Bluetooth devices of the assembled experts to do it.

AFP news agency on Twitter

Eleven-year-old “cyber ninja” stuns security experts by hacking into their bluetooth devices to manipulate teddy bear #InternetofThings https://t.co/bx9kTbNUcT

Reuben Paul, from Texas, used a Raspberry Pi together with his laptop to download the numbers of audience members’ smartphones. He then proceeded to use a Python program to manipulate his bear, Bob, using one of the numbers he’d accessed, making him blink one of his lights and record an audio message from the audience.

Reuben has quite of bit of digital making experience, and he’s very concerned about the safety risks of IoT devices. “IoT home appliances, things that can be used in our everyday lives, our cars, lights, refrigerators, everything like this that is connected can be used and weaponised to spy on us or harm us,” he told AFP.

Apparently even his father, software security expert Mano Paul, was unaware of just how unsafe IoT toys can be until Reuben “shocked” him by hacking a toy car.

Reuben is using his computer skills for good: he has already founded an organisation to educate children and adults about cybersecurity. Considering that he is also the youngest Shaolin Kung Fu black belt in the US and reportedly has excellent gymnastics skills, I’m getting serious superhero vibes from this kid!

No Title

No Description

And to think that the toys that were around when I was Reuben’s age could be used for nothing more devious than distracting me from class…

The post Weaponising a teddy bear appeared first on Raspberry Pi.