All posts by Janina Ander

Classroom activities to discuss machine learning accuracy and ethics | Hello World #18

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/classroom-activity-machine-learning-accuracy-ethics-hello-world-18/

In Hello World issue 18, available as a free PDF download, teacher Michael Jones shares how to use Teachable Machine with learners aged 13–14 in your classroom to investigate issues of accuracy and ethics in machine learning models.

Machine learning: Accuracy and ethics

The landscape for working with machine learning/AI/deep learning has grown considerably over the last couple of years. Students are now able to develop their understanding from the hard-coded end via resources such as Machine Learning for Kids, get their hands dirty using relatively inexpensive hardware such as the Nvidia Jetson Nano, and build a classification machine using the Google-driven Teachable Machine resources. I have used all three of the above with my students, and this article focuses on Teachable Machine.

For this module, I’m more concerned with the fuzzy end of AI, including how credible AI decisions are, and the elephant-in-the-room aspect of bias and potential for harm.

Michael Jones

For the worried, there is absolutely no coding involved in this resource; the ‘machine’ behind the portal does the hard work for you. For my Year 9 classes (students aged 13 to 14) undertaking a short, three-week module, this was ideal. The coding is important, but was not my focus. For this module, I’m more concerned with the fuzzy end of AI, including how credible AI decisions are, and the elephant-in-the-room aspect of bias and potential for harm.

Getting started with Teachable Machine activities

There are three possible routes to use in Teachable Machine, and my focus is the ‘Image Project’, and within this, the ‘Standard image model’. From there, you are presented with a basic training scenario template — see Hello World issue 16 (pages 84–86) for a step-by-step set-up and training guide. For this part of the project, my students trained the machine to recognise different breeds of dog, with border collie, labrador, saluki, and so on as classes. Any AI system devoted to recognition requires a substantial set of training data. Fortunately, there are a number of freely available data sets online (for example, download a folder of dog photos separated by breed by accessing helloworld.cc/dogdata). Be warned, these can be large, consisting of thousands of images. If you have more time, you may want to set students off to collect data to upload using a camera (just be aware that this can present safeguarding considerations). This is a key learning point with your students and an opportunity to discuss the time it takes to gather such data, and variations in the data (for example, images of dogs from the front, side, or top).

Drawing of a machine learning ars rover trying to decide whether it is seeing an alien or a rock.
Image recognition is a common application of machine learning technology.

Once you have downloaded your folders, upload the images to your Teachable Machine project. It is unlikely that you will be able to upload a whole subfolder at once — my students have found that the optimum number of images seems to be twelve. Remember to build this time for downloading and uploading into your lesson plan. This is a good opportunity to discuss the need for balance in the training data. Ask questions such as, “How likely would the model be to identify a saluki if the training set contained 10 salukis and 30 of the other dogs?” This is a left-field way of dropping the idea of bias into the exploration of AI — more on that later!

Accuracy issues in machine learning models

If you have got this far, the heavy lifting is complete and Google’s training engine will now do the work for you. Once you have set your model on its training, leave the system to complete its work — it takes seconds, even on large sets of data. Once it’s done, you should be ready to test you model. If all has gone well and a webcam is attached to your computer, the Output window will give a prediction of what is being viewed. Again, the article in Hello World issue 16 takes you through the exact steps of this process. Make sure you have several images ready to test. See Figure 1a for the response to an image of a saluki presented to the model. As you might expect, it is showing as a 100 percent prediction.

Screenshots from Teachable Machine showing photos of dogs classified as specific breeds with different degrees of confidence by a machine learning model.
Figure 1: Outputs of a Teachable Machine model classifying photos of dog breeds. 1a (left): Photo of a saluki. 1b (right): Photo of a Samoyed and two people.

It will spark an interesting discussion if you now try the same operation with an image with items other than the one you’re testing in it. For example see Figure 1b, in which two people are in the image along with the Samoyed dog. The model is undecided, as the people are affecting the outcome. This raises the question of accuracy. Which features are being used to identify the dogs as border collie and saluki? Why are the humans in the image throwing the model off the scent?

Getting closer to home, training a model on human faces provides an opportunity to explore AI accuracy through the question of what might differentiate a female from a male face. You can find a model at helloworld.cc/maleorfemale that contains 5418 images almost evenly spread across male and female faces (see Figure 2). Note that this model will take a little longer to train.

Screenshot from Teachable Machine showing two datasets of photos of faces labeled either male or female.
Figure 2: Two photo sets of faces labeled either male or female, uploaded to Teachable Machine.

Once trained, try the model out. Props really help — a top hat, wig, and beard give the model a testing time (pun intended). In this test (see Figure 3), I presented myself to the model face-on and, unsurprisingly, I came out as 100 percent male. However, adding a judge’s wig forces the model into a rethink, and a beard produces a variety of results, but leaves the model unsure. It might be reasonable to assume that our model uses hair length as a strong feature. Adding a top hat to the ensemble brings the model back to a 100 percent prediction that the image is of a male.

Screenshots from Teachable Machine showing two datasets of a model classifying photos of the same face as either male or female with different degrees of confidence, based on the face is wearing a wig, a fake beard, or a tophat.
Figure 3: Outputs of a Teachable Machine model classifying photos of the author’s face as male or female with different degrees of confidence. Click to enlarge.

Machine learning uses a best-fit principle. The outputs, in this case whether I am male or female, have a greater certainty of male (65 percent) versus a lesser certainty of female (35 percent) if I wear a beard (Figure 3, second image from the right). Remove the beard and the likelihood of me being female increases by 2 percent (Figure 3, second image from the left).

Bias in machine learning models

Within a fairly small set of parameters, most human faces are similar. However, when you start digging, the research points to there being bias in AI (whether this is conscious or unconscious is a debate for another day!). You can exemplify this by firstly creating classes with labels such as ‘young smart’, ‘old smart’, ‘young not smart’, and ‘old not smart’. Select images that you think would fit the classes, and train them in Teachable Machine. You can then test the model by asking your students to find images they think fit each category. Run them against the model and ask students to debate whether the AI is acting fairly, and if not, why they think that is. Who is training these models? What images are they receiving? Similarly, you could create classes of images of known past criminals and heroes. Train the model before putting yourself in front of it. How far up the percentage scale are you towards being a criminal? It soon becomes frighteningly worrying that unless you are white and seemingly middle class, AI may prove problematic to you, from decisions on financial products such as mortgages through to mistaken arrest and identification.

It soon becomes frighteningly worrying that unless you are white and seemingly middle class, AI may prove problematic to you, from decisions on financial products such as mortgages through to mistaken arrest and identification.

Michael Jones

Encourage your students to discuss how they could influence this issue of race, class, and gender bias — for example, what rules would they use for identifying suitable images for a data set? There are some interesting articles on this issue that you can share with your students at helloworld.cc/aibias1 and helloworld.cc/aibias2.

Where next with your learners?

In the classroom, you could then follow the route of building models that identify letters for words, for example. One of my students built a model that could identify a range of spoons and forks. You may notice that Teachable Machine can also be run on Arduino boards, which adds an extra dimension. Why not get your students to create their own AI assistant that responds to commands? The possibilities are there to be explored. If you’re using webcams to collect photos yourself, why not create a system that will identify students? If you are lucky enough to have a set of identical twins in your class, that adds just a little more flavour! Teachable Machine offers a hands-on way to demonstrate the issues of AI accuracy and bias, and gives students a healthy opportunity for debate.

Michael Jones is director of Computer Science at Northfleet Technology College in the UK. He is a Specialist Leader of Education and a CS Champion for the National Centre for Computing Education.

More resources for AI and data science education

At the Foundation, AI education is one of our focus areas. Here is how we are supporting you and your learners in this area already:

  • Hello World issue 12 focuses on AI and machine learning education, with many practical resources, insightful interviews, and inspiring features from computer science educators. Download your free copy of issue 12 now.
  • In Hello World issue 16, the focus is on all things data science and data literacy for your learners. As always, you can download a free copy of the issue.
  • On our Hello World podcast, we’ve got episodes where we talk with practicing computing educators about how they bring AI, AI ethics, machine learning, and data science to the young people they teach.
  • If you’d like a practical introduction to the basics of machine learning and how to use it, take our free online course.
An image demonstrating that AI systems for object recognition do not distinguish between a real banana on a desk and the photo of a banana on a laptop screen.
  • Computing education researchers are working to answer the many open questions about what good AI and data science education looks like for young people. To learn more, you can watch the recordings from our research seminar series focused on this. We ourselves are working on research projects in this area and will share the results freely with the computing education community.
  • You can find a list of free educational resources about these topics that we’ve collated based on our research seminars, seminar participants’ recommendations, and our own work.

The post Classroom activities to discuss machine learning accuracy and ethics | Hello World #18 appeared first on Raspberry Pi.

I belong in computer science

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/i-belong-in-computer-science-isaac-computer-science/

At the Raspberry Pi Foundation, we believe everyone belongs in computer science, and that it is a much more varied field than is commonly assumed. One of the ways we want to promote inclusivity and highlight the variety of skills and interests needed in computer science is through our ‘I belong’ campaign. We do this because the tech sector lacks diversity. Similarly, in schools, there is underrepresentation of students in computing along the axes of gender, ethnicity, and economic situation. (See how researchers describe data from England, and data from the USA.)

Woman teacher and female students at a computer

The ‘I belong’ campaign is part of our work on Isaac Computer Science, our free online learning platform for GCSE and A level students (ages 14 to 18) and their teachers, funded by the Department for Education. The campaign celebrates young computer scientists and how they came to love the subject, what their career journey has been so far, and what their thoughts are about inclusivity and belonging in their chosen field.

These people are role models who demonstrate that everyone belongs in computer science, and that everyone can bring their interests and skills to bear in the field. In this way, we want to show young people that they can do much more with computing than they might think, and to inspire them to consider how computing could be part of their own life and career path.

Meet Salome

Salome is studying Computer Science with Digital Technology Solutions at the University of Leeds and doing a degree apprenticeship with PricewaterhouseCoopers (PwC).

Salome smiling. The text says I belong in computer science.

“I was quite lucky, as growing up I saw a lot about women in STEM which inspired me to take this path. I think to improve the online community, we need to keep challenging stereotypes and getting more and more people to join, thereby improving the diversity. This way, a larger number of people can have role models and identify themselves with someone currently there.”

“Another thing is the assumption that computer science is just coding and not a wide and diverse field. I still have to explain to my friends what computer science involves and can become, and then they will say, ‘Wow, that’s really interesting, I didn’t know that.’”

Meet Devyani

Devyani is a third-year degree apprentice at Cisco. 

Devyani smiling. The text says I belong in computer science.

“It was at A level where I developed my programming skills, and it was more practical rather than theoretical. I managed to complete a programming project where I utilised PHP, JavaScript, and phpMyAdmin (which is a database). It was after this that I started looking around and applying for degree apprenticeships. I thought that university wasn’t for me, because I wanted a more practical and hands-on approach, as I learn better that way.”

“At the moment, I’m currently doing a product owner role, which is where I hope to graduate into. It’s a mix between both a business role and a technical role. I have to stay up to speed with the current technologies we are using and developing for our clients and customers, but also I have to understand business needs and ensure that the team is able to develop and deliver on time to meet those needs.”

Meet Omar

Omar is a Mexican palaeontologist who uses computer science to study dinosaur bones.

Omar. The text says I belong in computer science.

“I try to bring aspects that are very well developed in computer science and apply them in palaeontology. For instance, when digitising the vertebrae, I use a lot of information theory. I also use a lot of data science and integrity to make sure that what we have captured is comparable with what other people have found.”

“What drove me to computers was the fact you are always learning. That’s what keeps me interested in science: that I can keep growing, learn from others, and I can teach people. That’s the other thing that makes me feel like I belong, which is when I am able to communicate the things I know to someone else and I can see the face of the other person when they start to grasp a theory.”

Meet Tasnima

Tasnima is a computer science graduate from Queen Mary University of London, and is currently working as a software engineer at Credit Suisse.

Tasnima smiling. The text says I belong in computer science.

“During the pandemic, one of the good things to come out of it is that I could work from home, and that means working with people all over the world, bringing together every race, religion, gender, etc. Even though we are all very different, the one thing we all have in common is that we’re passionate about technology and computer science. Another thing is being able to work in technology in the real world. It has allowed me to work in an environment that is highly collaborative. I always feel like you’re involved from the get-go.”

“I think we need to also break the image that computer science is all about coding. I’ve had friends that have stayed away from any tech jobs because they think that they don’t want to code, but there’s so many other roles within technology and jobs that actually require no coding whatsoever.”

Meet Aleena

Aleena is a software engineer who works at a health tech startup in London and is also studying for a master’s degree in AI ethics at the University of Cambridge.

Aleena smiling. The text says I belong in computer science.

“I do quite a lot of different things as an engineer. It’s not just coding, which is part of it but it is a relatively small percentage, compared to a lot of other things. […] There’s a lot of collaborative time and I would say a quarter or third of the week is me by myself writing code. The other time is spent collaborating and working with other people and making sure that we’re all aligned on what we are working on.”

“I think it’s actually a very diverse field of tech to work in, once you actually end up in the industry. When studying STEM subjects at a college or university level it is often not very diverse. The industry is the opposite. A lot of people come from self-taught or bootcamp backgrounds, there’s a lot of ways to get into tech and software engineering, and I really like that aspect of it. Computer science isn’t the only way to go about it.”

Meet Alice

Alice is a final-year undergraduate student of Computer Science with Artificial Intelligence at the University of Brighton. She is also the winner of the Global Challenges COVID-19 Research Scholarship offered by Santander Universities.

Alice wearing a mask over her face and mouth. The text says I belong in computer science.

“[W]e need to advertise computer science as more than just a room full of computers, and to advertise computer sciences as highly collaborative. It’s very creative. If you’re on a team of developers, there’s a lot of communication involved.”

“There’s something about computer science that I think is so special: the fact that it is a skill anybody can learn, regardless of who they are. With the right idea, anybody can build anything.”

Share these stories to inspire

Help us spread the message that everyone belongs in computer science: share this blog with schools, teachers, STEM clubs, parents, and young people you want to inspire.

You can learn computer science with us

Whether you’re studying or teaching computer science GCSE or A levels in the UK (or thinking about doing so!), or you’re a teacher or student in another part of the world, Isaac Computer Science is here to help you achieve your computer science goals. Our high-quality learning platform is free to use and open to all. As a student, you can register to keep track of your progress. As a teacher, you can sign up to guide your students’ learning.

Two teenage boys do coding at a shared computer during a computer science lesson while their woman teacher observes them.

And for younger learners, we have lots of fun project guides to try out coding and creating with digital technologies.

Three teenage girls at a laptop

The post I belong in computer science appeared first on Raspberry Pi.

Code Club in Wales with translations, teacher training and a country-wide codealong

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/code-club-wales-translations-codealong/

Since the inception of Code Club in 2012, teachers in Wales have been part of the Code Club community, running extracurricular Code Club sessions for learners in their schools. As of late 2021, there are 84 active clubs in Wales. With our new Code Club Community Coordinator for Wales, Sarah Eve Roberts, on board, we are thrilled to be able to offer more dedicated support to the community in Wales.

A computing classroom filled with learners

Support and engagement for Welsh Code Clubs

Sarah introduced herself to the Welsh education community by running a Code Club training workshop for teachers. Educators from 32 Welsh schools joined her to learn how to start their own Code Club and then tried one of the free coding projects we provide for club sessions for themselves.

A tweet about a Code Club codealong in Wales.

The Welsh Code Club network had a chance to meet Sarah at a country-wide online codealong on 11 March, just in time to kick off British Science Week 2022. In this one-hour codealong event, we took beginner coders through the first project of our new ‘Introduction to Scratch’ pathway, Space Talk. Space Talk is a fantastic project for Code Clubs: it provides beginners with a simple introduction to coding in Scratch, and also gives plenty of opportunity for more experienced learners to get creative and make the project their own.

The codealong was fantastically popular, with 90 teachers and 2900 learners from 59 schools participating. Several of the schools shared their excitement with us on Twitter, posting pictures and videos of their Space Talk projects.

Tamasin Greenough Graham, Head of Code Club, says: “It was wonderful to see so many children and teachers from Wales coding with us. I really loved the creativity they showed in all their projects!”

Welsh translations of Code Club learning materials

Although the codealong took place in English, Space Talk and the whole ‘Introduction to Scratch’ pathway are available in the Welsh language. The pathway includes a total of six projects, bringing the total number of Welsh-language coding projects we offer to 37. It’s really important to us to offer our learning materials in Welsh, especially because we know it helps young people engage with our free coding activities.

A child codes a Spiderman project at a laptop during a Code Club session.

The translation of learning materials is a collaborative effort at the Raspberry Pi Foundation: we work with a team of 1465 volunteer translators, who translate our materials into  33 languages, making them accessible for more children and educators around the world.

Two of these translators, Marcus and Julia Davage, are based in Wales. They help to make our projects accessible to Welsh-speaking learners. Marcus and Julia have been part of the community for 6 years, volunteering at Code Club and running their own club:

“I started volunteering for Code Club in 2016 when my daughter was in a Welsh-medium primary school and her teacher had started a Code Club. This lasted until 2019. Last year I started my own Code Club at the Welsh-medium primary school at which my wife Julia teaches. Since helping out, she has taught Scratch in her own lessons!”

– Marcus Davage, Code Club volunteer & Welsh translation volunteer

Marcus and Julia have translated numerous learning resources and communications for our Welsh community. Marcus describes the experience of translating:

“I noticed that several of the projects hadn’t been completely translated into Welsh, so when my company, BMC Software, promoted a Volunteering Day for all of its staff, I jumped at the opportunity to spend the whole day finishing off many of the missing translations! I must admit, I did laugh at a few terms, like ’emoji’ (which has no official translation), ’emoticon’ (‘gwenoglun’ or ‘smiley face’), and ‘wearable tech’ (‘technoleg gwisgadwy’).”

– Marcus Davage, Code Club volunteer & Welsh translation volunteer

We’re thankful to Marcus and Julia and to all the teachers and volunteers in Wales who bring coding skills to the young people in their schools.

Get involved in Code Club, in Wales or elsewhere

Keen readers may have noticed that this year marks the tenth anniversary of Code Club! We have lots of celebrations planned for the worldwide community of volunteers and learners, in long-running clubs as well as in brand-new ones.

A group of smiling children hold up large cardboard Code Club logos.

So now is an especially great time to get involved by starting a Code Club at your school, or by signing up to volunteer at an up-and-running club. Find out more at codeclub.org.

And if you’re interested in learning more about Code Club in Wales, email us at [email protected] so Sarah can get in touch.

The post Code Club in Wales with translations, teacher training and a country-wide codealong appeared first on Raspberry Pi.

Create 3D worlds with code on our first-ever Unity livestream

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/unity-introduction-livestream/

We are super excited to host a livestream to introduce young coders to creating 3D worlds with Unity. Tune in at 18:30 GMT on Thursday 24 March 2022 on YouTube to find out all about our free online learning path for getting started with Unity.

If you know young coders who love gaming, digital art, or storytelling and need a new programming challenge, this is the event for them. So mark your calendars!

Our free Unity project path, in partnership with Unity Technologies

In January, we launched an all-new online learning path of Unity projects, in partnership with Unity. With this path, youth who enjoy writing code will learn how to start using the free Unity Real-Time Development Platform to build their own digital 3D games and worlds.

A teenage girl presenting a digital making project on a tablet

Professional developers are using Unity to create well-known games such as Mario Kart Tour and Pokémon Mystery Dungeon: Rescue Team DX. We’ve partnered with Unity to offer any young person, anywhere, the opportunity to take their first steps in creating virtual worlds using real-time 3D. The five-part Unity path we offer is educational and shows young people that if they can imagine something, then they can create it digitally with Unity. 

Who is the Unity livestream for? Why should young people join?

For young people, coding in Unity can be a fun experience of creating their own 3D worlds. And it also helps them learn skills that can be useful and desirable in the tech sector.

Unity is a step up for young people who have coded in a text-based language before and are interested in creating interactive 3D games and stories. In Unity, they’ll write code in the programming language C# — pronounced ‘cee sharp’. It’s a great opportunity to build on their existing coding and problem-solving skills.

Four young coders show off their tech project for Coolest Projects.

Introducing young people to Unity means that they will begin to use the same tools as professional 3D developers. Maybe attending the Unity livestream is going to be your coders’ first step towards creating the next videogame sensation.

What will happen on the livestream? 

The livestream will run for around 45 minutes. It will be the perfect introduction to Unity and our project path for you and your experienced coders.  

The livestream will include: 

  1. A ‘question and answer’ section with Unity expert Thomas Winkley. Thomas is a Unity Certified Programmer and product evangelist. He’s passionate about helping others learn new skills and follow their interests. Thomas will be answering your questions about Unity and what you can do with it, as well as talking about some of the cool creations he’s made. 
  2. An introduction to the Unity project path with Liz from our team: You’ll get to ask your questions about our Unity project path, and you’ll learn what you can make with each project and see an example of a final project — like what you’ll create by completing the project path. 
  3. A live coding section with Rebecca and Mr C: Your young people get to join in coding their first characters and objects in the 3D environment of Unity.  

By joining the livestream, your young people will: 

  • Learn more about Unity and get inspired to start creating
  • See what our free online Unity learning path is all about and understand what they’ll get from completing it
  • Have the chance to see what it’s like to make their own creations with Unity, and code along if they want to      

Do you need to do anything before the livestream? 

The livestream takes place on Thursday 24 March at 18:30 GMT on our YouTube channel. Everyone can tune in without signing up, wherever you are in the world. If you have a Google account, you can click the ‘Set a reminder’ button to make sure you and your keen coders don’t miss a thing.

Unity is free for anyone to use. If your young people want to code along during the livestream, they need to prepare by downloading and installing all the free software beforehand. Young people will need to:

We cannot wait for you to join us and our special guests on our Unity livestream!

Share Unity creations at Coolest Projects Global

Whatever your young people create with Unity — or other digital tech —, they can register to share it for the world to see in the online gallery of Coolest Projects Global. This is our free and completely online tech showcase, for young people up to age 18 all over the world.

Coolest Projects logo.

Registering to showcase their tech creation means young people will get cool swag, feedback on what they’ve made, and a chance to win recognition from our special judges. And above all, they’ll become part of a worldwide community of young tech creators who celebrate and inspire each other.

Find out more at coolestprojects.org.

The post Create 3D worlds with code on our first-ever Unity livestream appeared first on Raspberry Pi.

Computer science education for what purpose? Some perspectives

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/computer-science-education-equity-change-purpose/

As we’re coming to the end of Black History Month in the USA this year, we’ve been amazed by the variety of work the computing education community is doing to address inequities in their classrooms. For our part, we have learned a huge amount about equitable STEM and computer science (CS) education from the community, and through our own research.

A group of young people in a computer science classroom pose for a group photo.

In this post, we want to highlight two particular pieces of work that have influenced our work over the last year, shared by Dr Tia C. Madkins (University of Texas at Austin), Dr Nicol R. Howard (University of Redlands), and Dr Jakita O. Thomas (Auburn University, blackcomputeHER.org) at our research seminars.

Moving beyond access and achievement, towards equity and justice

Tia C. Madkins and Nicol R. Howard described that educators in schools (and associated professionals) need to build an awareness of how the learning in their classrooms might be affected by:

  • Personal beliefs, ways of knowing or thinking, stereotypes, and the cultural lens of the educator and the learners
  • Power dynamics and intersectional identities

They say: “Instead of viewing learners as deficient individuals who we need to ‘fix’ in our classrooms, we use strengths-based approaches where we as educators learn to recognise, draw on, and build upon learners’ strengths and lived experiences.”

The researchers encourage educators to connect with learners’ cultural practices and lived experiences, and to foster and maintain relationships with learners’ families and communities, in order to work together to facilitate equitable, social justice–oriented CS learning

To hear from Tia, Nicol, and their collaborator Shomari Jones, watch their seminar. You can also read Tia and Nicol’s article in our seminar proceedings, where you’ll find a list of their recommended resources to explore this thinking further.

Valuing existing knowledge and lived experience as expertise

Jakita O. Thomas described findings from her research project based on a free enrichment programme exploring how Black middle-school girls develop computational algorithmic thinking skills in the context of game design.

The programme was intentionally designed to position Black girls as knowledge holders with valuable experiences, and to offer them opportunities to shape their identities as producers, innovators, and people who challenge deficit perspectives. These are perspectives that include implicit assumptions that privilege the values, beliefs, and practices of one group over another, especially where the groups are racially, ethnically, or culturally different.

Jakita emphasised that it’s very important for educators to ask the questions “STEM learning for what?”, “For whom?”, “How?”, and “To what ends?” when they consider how to bring STEM learning experiences to Black girls (or other young people with multiple marginal identities). Educators need an awareness that the economic reasons of STEM learning, which are commonly spotlighted, may not be sufficient to convince young people who are marginalised to engage in these subjects.

To hear more about this from Jakita directly, watch her seminar:

Empowering learners to be agents of change

One thing these researchers’ work makes clear is that the reasons for why learners choose to engage in CS education are many, and that gaining CS skills to prepare for the job market is only one of them.

In both seminars, the speakers emphasised how important it is for educators to contribute to their learners’ self-view as agents of change, not only by demonstrating how CS can be used to solve problems, but also by being open and direct about existing technological inequities. This teaches learners to use CS as a tool, and to also examine the social context in which CS is being applied, and the positive and negative consequences of these applications. Learning CS can empower young people to address challenges their communities face, and educators, learners, and families can work together through CS on social justice issues.

Putting the power of computing into the hands of young people is the core of our mission, and we have a research project underway right now that looks at equitable computing education in UK schools. Find out more about it here, and download our practical guide for teachers.

The post Computer science education for what purpose? Some perspectives appeared first on Raspberry Pi.

It’s back: The Hello World podcast for the computing education community

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/hello-world-podcast-season-3-computing-education/

We set out last year to gather more stories, ideas, and inspiration from and for the computing education community in between Hello World magazine issues: we launched the Hello World podcast. On the podcast, we dive deeper into articles from Hello World, and we speak with people from all over the world who work as teachers, educators, and other computing education professionals.

Hello World logo.

Season 3 of the Hello World podcast starts on Monday

The Hello World podcast helps connect the global community of computing educators and Hello World readers, and lets them share their experiences. After two seasons and a short pause during the autumn, we are finally back with a brand-new Hello World podcast season. Regular listeners will also notice a new theme music!

Each episode, we explore computing, coding, and digital making education by delving into an exciting topic together with our guests: experts, practitioners, and other members of the Hello World community.

 In season 3, we’re exploring:

  • The role of makerspaces, both within schools and the wider community 
  • The relevance of imagination and storytelling to computing 
  • Computing in the context of science and ecology
  • How learners can promote and support computing as digital leaders
  • And much more…
A phone with headphones plugged in next to a cup of coffee on a table.

Meet our guests for episode 1 of the new season

In our first episode, which will be available from 7 February, your hosts Carrie Anne and James ask the question “What role do makerspaces play in the classroom?”. We talk to two fantastic guests, each with a wealth of experience in designing and developing makerspaces:

Nick Provenzano.
Nick Provenzano

Nick Provenzano, who is a Teacher and Makerspace Director at University Liggett School in Michigan. He is also an author, makerspace builder, international keynote speaker and Raspberry Pi Certified Educator.

Chris Hillidge
Chris Hillidge

Chris Hillidge, who established FabLab Warrington in 2016 and manages the STEM strategy for students aged 4 to 19 across The Challenge Academy Trust. Chris is a Specialist Leader of Education, consultant, and Raspberry Pi Certified Educator.

If you’ve not tried out the Hello World podcast yet, why not get started by diving into one of our most popular episodes?

You’ll find the upcoming season and past episodes on your favourite podcast platform, where you can also subscribe to never miss an episode. Alternatively, you can listen via your browser at helloworld.cc/podcast.

The post It’s back: The Hello World podcast for the computing education community appeared first on Raspberry Pi.

New free resources for young people to create 3D worlds with code in Unity

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/free-resources-unity-game-development-3d-worlds/

Today we’re releasing an exciting new path of projects for young people who want to create 3D worlds, stories, and games. We’ve partnered with Unity to offer any young person, anywhere, the opportunity to take their first steps in creating virtual worlds using real-time 3D.

A teenage girl participating in Coolest Projects shows off her tech project.

The Unity Charitable Fund, a fund of the Tides Foundation, has awarded us a generous grant for $50,000 to help underrepresented youth learn to use Unity, upleveling their skills for future career success.

Create a world, don’t just explore it

Our new path of six projects for Unity is a learning journey for young people who have some experience of text-based programming and now want to try out building digital 3D creations.

Unity is the world’s leading platform for creating and operating real-time 3D and is hugely popular for creating 3D video games and virtual, interactive worlds and stories. The best thing about it for young people? While professional developers use Unity to create well-known games such as Pokémon Brilliant Diamond and Shining Pearl and Among Us, it is also free for anyone to use.

A boy participating in Coolest Projects shows off his tech project together with an adult.

Young people who learn to use Unity can do more and more complex things with it as they gain experience. Many successful indie games have been made in Unity — maybe a young person you know will create the next indie game sensation!

For young people, our new project path is the ideal introduction to Unity. The new project path:

  • Is for learners who have already coded some projects in Python or another text-based language.
  • Introduces the Unity software and how to write code for it in the programming language C# (pronounced ‘cee sharp’).
  • Guides learners to create a 3D role playing game or interactive story that they can tailor to suit their imaginations. Learners gain more and more independence with each project in the path.
  • Covers common elements such as non-playable characters, mini games, and bonuses.
A young person at a laptop

After young people have completed the path, they’ll have:

  • Created their very own 3D video game or interactive story they can share with their friends and family.
  • Gained familiarity with key functions of Unity.
  • Built the independence and confidence to explore Unity further and create more advanced games and 3D worlds.

Young people gain real-world skills while creating worlds in Unity

Since Unity is a platform used by professional digital creators, young people who follow our new Unity path gain real-world skills that are sought after in the tech sector. While they learn to express their creativity with Unity, young people improve their coding and problem-solving skills and feel empowered because they get to use their imagination to bring their ideas to life.

Two teenage girls participating in Coolest Projects shows off their tech project.

“Providing opportunities for underrepresented youth to learn critical tech skills is essential to Unity Social Impact’s mission,” said Jessica Lindl, Vice President, Social Impact at Unity. “We’re thrilled that the Raspberry Pi Foundation’s Unity path will allow thousands of student learners to take part in game design in an accessible way, setting them up for future career success.”

What you need to support young people with Unity Real-Time 3D

The project path includes instructions for how to download and install all the necessary software to start creating with Unity.

Before they can start, young people will need to:

  • Have access to a computer with enough processing power (find out more from Unity directly)
  • Have downloaded and installed Unity Hub, from where they need to install Unity Editor and Visual Studio Community Edition

For club volunteers who support young people attending Code Clubs and CoderDojos with the new path, we are going to run two free online workshops in February. During the workshops, volunteers will be introduced to the path and the software setup, and we’ll try out Unity together. Keep your eyes on the CoderDojo and Code Club blogs for details!

Three young people learn coding at laptops supported by a volunteer at a CoderDojo session.

Club volunteers, if your participants are creating Blender projects, they can import these into Unity too.

Young people can share their Unity creations with the world through Coolest Projects

It’s really exciting for us that we can bring this new project path to young people who dream about creating interactive 3D worlds. We hope to see many of their creations in this year’s Coolest Projects Global, our free online tech showcase for young creators all over the world!

The post New free resources for young people to create 3D worlds with code in Unity appeared first on Raspberry Pi.

Snapshots from the history of AI, plus AI education resources

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/machine-learning-education-snapshots-history-ai-hello-world-12/

In Hello World issue 12, our free magazine for computing educators, George Boukeas, DevOps Engineer for the Astro Pi Challenge here at the Foundation, introduces big moments in the history of artificial intelligence (AI) to share with your learners:

The story of artificial intelligence (AI) is a story about humans trying to understand what makes them human. Some of the episodes in this story are fascinating. These could help your learners catch a glimpse of what this field is about and, with luck, compel them to investigate further.                   

The imitation game

In 1950, Alan Turing published a philosophical essay titled Computing Machinery and Intelligence, which started with the words: “I propose to consider the question: Can machines think?” Yet Turing did not attempt to define what it means to think. Instead, he suggested a game as a proxy for answering the question: the imitation game. In modern terms, you can imagine a human interrogator chatting online with another human and a machine. If the interrogator does not successfully determine which of the other two is the human and which is the machine, then the question has been answered: this is a machine that can think.

A statue of Alan Turing on a park bench in Manchester.
The Alan Turing Memorial in Manchester

This imitation game is now a fiercely debated benchmark of artificial intelligence called the Turing test. Notice the shift in focus that Turing suggests: thinking is to be identified in terms of external behaviour, not in terms of any internal processes. Humans are still the yardstick for intelligence, but there is no requirement that a machine should think the way humans do, as long as it behaves in a way that suggests some sort of thinking to humans.

In his essay, Turing also discusses learning machines. Instead of building highly complex programs that would prescribe every aspect of a machine’s behaviour, we could build simpler programs that would prescribe mechanisms for learning, and then train the machine to learn the desired behaviour. Turing’s text provides an excellent metaphor that could be used in class to describe the essence of machine learning: “Instead of trying to produce a programme to simulate the adult mind, why not rather try to produce one which simulates the child’s? If this were then subjected to an appropriate course of education one would obtain the adult brain. We have thus divided our problem into two parts: the child-programme and the education process.”

A chess board with two pieces of each colour left.
Chess was among the games that early AI researchers like Alan Turing developed algorithms for.

It is remarkable how Turing even describes approaches that have since been evolved into established machine learning methods: evolution (genetic algorithms), punishments and rewards (reinforcement learning), randomness (Monte Carlo tree search). He even forecasts the main issue with some forms of machine learning: opacity. “An important feature of a learning machine is that its teacher will often be very largely ignorant of quite what is going on inside, although he may still be able to some extent to predict his pupil’s behaviour.”

The evolution of a definition

The term ‘artificial intelligence’ was coined in 1956, at an event called the Dartmouth workshop. It was a gathering of the field’s founders, researchers who would later have a huge impact, including John McCarthy, Claude Shannon, Marvin Minsky, Herbert Simon, Allen Newell, Arthur Samuel, Ray Solomonoff, and W.S. McCulloch.   

Go has vastly more possible moves than chess, and was thought to remain out of the reach of AI for longer than it did.

The simple and ambitious definition for artificial intelligence, included in the proposal for the workshop, is illuminating: ‘making a machine behave in ways that would be called intelligent if a human were so behaving’. These pioneers were making the assumption that ‘every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it’. This assumption turned out to be patently false and led to unrealistic expectations and forecasts. Fifty years later, McCarthy himself stated that ‘it was harder than we thought’.

Modern definitions of intelligence are of distinctly different flavour than the original one: ‘Intelligence is the quality that enables an entity to function appropriately and with foresight in its environment’ (Nilsson). Some even speak of rationality, rather than intelligence: ‘doing the right thing, given what it knows’ (Russell and Norvig).

A computer screen showing a complicated graph.
The amount of training data AI developers have access to has skyrocketed in the past decade.

Read the whole of this brief history of AI in Hello World #12

In the full article, which you can read in the free PDF copy of the issue, George looks at:

  • Early advances researchers made from the 1950s onwards while developing games algorithms, e.g. for chess.
  • The 1997 moment when Deep Blue, a purpose-built IBM computer, beating chess world champion Garry Kasparov using a search approach.
  • The 2011 moment when Watson, another IBM computer system, beating two human Jeopardy! champions using multiple techniques to answer questions posed in natural language.
  • The principles behind artificial neural networks, which have been around for decades and are now underlying many AI/machine learning breakthroughs because of the growth in computing power and availability of vast datasets for training.
  • The 2017 moment when AlphaGo, an artificial neural network–based computer program by Alphabet’s DeepMind, beating Ke Jie, the world’s top-ranked Go player at the time.
Stacks of server hardware behind metal fencing in a data centre.
Machine learning systems need vast amounts of training data, the collection and storage of which has only become technically possible in the last decade.

More on machine learning and AI education in Hello World #12

In your free PDF of Hello World issue 12, you’ll also find:

  • An interview with University of Cambridge statistician David Spiegelhalter, whose work shaped some of the foundations of AI, and who shares his thoughts on data science in schools and the limits of AI 
  • An introduction to Popbots, an innovative project by MIT to open AI to the youngest learners
  • An article by Ken Kahn, researcher in the Department of Education at the University of Oxford, on using the block-based Snap! language to introduce your learners to natural language processing
  • Unplugged and online machine learning activities for learners age 7 to 16 in the regular ‘Lesson plans’ section
  • And lots of other relevant articles

You can also read many of these articles online on the Hello World website.

Find more resources for AI and data science education

In Hello World issue 16, the focus is on all things data science and data literacy for your learners. As always, you can download a free copy of the issue. And on our Hello World podcast, we chat with practicing computing educators about how they bring AI, AI ethics, machine learning, and data science to the young people they teach.

If you want a practical introduction to the basics of machine learning and how to use it, take our free online course.

Drawing of a machine learning ars rover trying to decide whether it is seeing an alien or a rock.

There are still many open questions about what good AI and data science education looks like for young people. To learn more, you can watch our panel discussion about the topic, and join our monthly seminar series to hear insights from computing education researchers around the world.

We are also collating a growing list of educational resources about these topics based on our research seminars, seminar participants’ recommendations, and our own work. Find the resource list here.

The post Snapshots from the history of AI, plus AI education resources appeared first on Raspberry Pi.

5750 Scottish children code to raise awareness of climate change with Code Club

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/cop26-5750-school-children-scotland-coding-climate-change-code-club/

This month, the team behind our Code Club programme supported nearly 6000 children across Scotland to “code against climate change” during the United Nations Climate Change Conference (COP26) in Glasgow.

“The scale of what we have achieved is outstanding. We have supported over 5750 young learners to code projects that are both engaging and meaningful to their conversations on climate.”

Louise Foreman, Education Scotland (Digital Skills team)

Creative coding to raise awareness of environmental issues

Working with teams from Education Scotland, and with e-Sgoil, our Code Club team hosted two live online code-along events that saw learners from 235 schools across Scotland come together to code and learn about protecting the environment.

“This type of event at this scale would not have been possible before the pandemic. Now joining and learning through live online events is quite normal, thanks to platforms like e-Sgoil’s DYW Live. That said, the success of these code-alongs has been above even our wildest imaginations.”

Peter Murray, Education Scotland (Developing the Young Workforce team)

Classes of young people aged 8 to 14 across Scotland joined the live online code-along through the national GLOW platform and followed Lorna from our Code Club team through a step-by-step project guide to code creative projects with an environmental theme.

At our first session, for beginners, the coding newcomers explored the importance of pollinating insects for the environment. They first learned that a third of the food we eat depends on pollinators such as bees and butterflies, and that these insects are endangered by environmental crises.

Then the young coders celebrated pollinating insects by coding a garden scene filled with butterflies, based on our popular Butterfly garden project guide. This Scratch project introduces beginner coders to loops while they code their animations, and it allows them to get creative and customise the look of their projects. Above are still images of two example animations coded by the young learners.

The second Code Club code-along event was designed for more confident coders. First, learners were asked to consider the impact of plastic in our oceans and reflect on the recent news that around 26,000 tonnes of coronavirus-related plastic waste (such as masks and gloves) has already entered our oceans. To share this message, they then coded a game based on our Save the shark Scratch project guide. In this game, players help a shark swim through the ocean trying to avoid plastic waste, which is dangerous to its health.

Supporting young people’s future together

These two Scotland-wide code-along events for schools were made possible by the long-standing collaboration between Education Scotland and our Code Club team. Over the last five years, our shared mission to grow interest for coding and computer science among children across Scotland has helped Scottish teachers start hundreds of Code Clubs.

A school-age child's written feedback about Code Club: "it was really fun and I enjoyed learning about coding and all of the things i can do in Scratch. I will use Scratch more now."
The school children who participated in the code-along sessions enjoyed themselves a lot, as shown by this note from one of them.

“The code-alongs were the perfect celebration of all the brilliant work we have done together over the years. What better way to demonstrate the importance of computing science to young people than to show them that not only can they use those skills on something important like climate change, but they are also in great company with thousands of other children across Scotland. I am excited about the future.”

Kirsty McFaul, Education Scotland (Technologies team)

Join thousands of teachers around the world who run Code Clubs

We also want to give kudos to the teachers of the 235 schools who helped their learners participate in this Code Club code-along. Thanks to your skills in supporting your learners to participate in online sessions — skills hard-won during school closures — over 5000 young people have been inspired about coding and protecting the planet we all share.

Teachers around the world run Code Clubs for their learners, with the help of our free Code Club resources and support. Find out more about starting a Code Club at your school at www.codeclub.org.

The post 5750 Scottish children code to raise awareness of climate change with Code Club appeared first on Raspberry Pi.

Engaging Black students in computing at UK schools — interview with Joe Arday

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/engaging-black-students-in-computing-uk-schools-joe-arday/

Joe Arday.

On the occasion of Black History Month UK, we speak to Joe Arday, Computer Science teacher at Woodbridge High School in Essex, UK, about his experiences in computing education, his thoughts about underrepresentation of Black students in the subject, and his ideas about what needs to be done to engage more Black students.

To start us off, can you share some of your thoughts about Black History Month as an occasion?

For me personally it’s an opportunity to celebrate our culture, but my view is it shouldn’t be a month — it should be celebrated every day. I am of Ghanaian descent, so Black History Month is an opportunity to share my culture in my school and my community. Black History Month is also an opportunity to educate yourself about what happened to the generations before you. For example, my parents lived through the Brixton riots. I was born in 1984, and I got to secondary school before I heard about the Brixton riots from a teacher. But my mother made sure that, during Black History Month, we went to a lot of extracurricular activities to learn about our culture.

For me it’s about embracing the culture I come from, being proud to be Black, and sharing that culture with the next generation, including my two kids, who are of mixed heritage. They need to know where they come from, and know their two cultures.

Tell us a bit about your own history: how did you come to computing education?

So I was a tech professional in the finance sector, and I was made redundant when the 2008 recession hit. I did a couple of consulting jobs, but I thought to myself, “I love tech, but in five years from now, do I really want to be going from job to job? There must be something else I can do.”

At that time there was a huge drive to recruit more teachers to teach what was called ICT back then and is now Computing. As a result, I started my career as a teacher in 2010. As a former software consultant, I had useful skills for teaching ICT. When Computing was introduced instead, I was fortunate to be at a school that could bring in external CPD (continued professional development) providers to teach us about programming and build our understanding and skills to deliver the new curriculum. I also did a lot of self-study and spoke to lots of teachers at other schools about how to teach the subject.

What barriers or support did you encounter in your teaching career? Did you have role models when you went into teaching?

Not really — I had to seek them out. In my environment, there are very few Black teachers, and I was often the only Black Computer Science teacher. A parent once said to me, “I hope you’re not planning to leave, because my son needs a role model in Computer Science.” And I understood exactly what she meant by that, but I’m not even a role model, I’m just someone who’s contributing to society the best way I can. I just want to pave the way for the next generation, including my children.

My current school is supporting me to lead all the STEM engagement for students, and in that role, some of the things I do are running a STEM club that focuses a lot on computing, and running new programmes to encourage girls into tech roles. I’ve also become a CAS Master Teacher and been part of a careers panel at Queen Mary University London about the tech sector, for hundreds of school students from across London. And I was selected by the National Centre for Computing Education as one of their facilitators in the Computer Science Accelerator CPD programme.

But there’s been a lack of leadership opportunities for me in schools. I’ve applied for middle-leadership roles and have been told my face doesn’t fit in an interview in a previous school. And I’m just as skilled and experienced as other candidates: I’ve been acting Head of Department, acting Head of Year — what more do I need to do? But I’ve not had access to middle-leadership roles. I’ve been told I’m an average teacher, but then I’ve been put onto dealing with “difficult” students if they’re Black, because a few of my previous schools have told me that I was “good at dealing with behaviour”. So that tells you about the role I was pigeonholed into.

It is very important for Black students to have role models, and to have a curriculum that reflects them.

Joe Arday

I’ve never worked for a Black Headteacher, and the proportion of Black teachers in senior leadership positions is very low, only 1%. So I am considering moving into a different area of computing education, such as edtech or academia, because in schools I don’t have the opportunities to progress because of my ethnicity.

Do you think this lack of leadership opportunities is an experience other Black teachers share?

I think it is, that’s why the number of Black teachers is so low. And as a Black student of Computer Science considering a teaching role, I would look around my school and think, if I go into teaching, where are the opportunities going to come from?

Black students are underrepresented in computing. Could you share your thoughts about why that’s the case?

There’s a lack of role models across the board: in schools, but also in tech leadership roles, CEOs and company directors. And the interest of Black students isn’t fostered early on, in Year 8, Year 9 (ages 12–14). If they don’t have a teacher who is able to take them to career fairs or to tech companies, they’re not going to get exposure, they’re not going to think, “Oh, I can see myself doing that.” So unless they have a lot of interest already, they’re not going to pick Computer Science when it comes to choosing their GCSEs, because it doesn’t look like it’s for them.

But we need diverse people in computing and STEM, especially girls. As the father of a boy and a girl of mixed heritage, that’s very important to me. Some schools I’ve worked in, they pushed computer science into the background, and it’s such a shame. They don’t have the money or the time for their teachers to do the CPD to teach it properly. And if attitudes at the top are negative, that’s going to filter down. But even if students don’t go into the tech industry, they still need digital skills to go into any number of sectors. Every young person needs them.

It is very important for Black students to have role models, and to have a curriculum that reflects them. Students need to see themselves in their lessons and not feel ignored by what is being taught. I was very fortunate to be selected for the working group for the Raspberry Pi Foundation’s culturally relevant teaching guidelines, and I’m currently running some CPD for teachers around this. I bet in the future Ofsted will look at how diverse the curriculum of schools is.

What do you think tech organisations can do in order to engage more Black students in computing?

I think tech organisations need to work with schools and offer work experience placements. When I was a student, 20 years ago, I went on a placement, and that set me on the right path. Nowadays, many students don’t do work experience, they are school leavers before they do an internship. So why do so many schools and organisations not help 14- or 15-year-olds spend a week or two doing a placement and learning some real-life skills?

A mentor explains Scratch code using a projector in a coding club session.

And I think it’s very important for teachers to be able to keep up to date with the latest technologies so they can support their students with what they need to know when they start their own careers, and can be convincing doing it. I encourage my GCSE Computer Science students to learn about things like cloud computing and cybersecurity, about the newest types of technologies that are being used in the tech sector now. That way they’re preparing themselves. And if I was a Headteacher, I would help my students gain professional certifications that they can use when they apply for jobs.

What is a key thing that people in computing education can do to engage more Black students?

Teachers could run a STEM or computing club with a Black History Month theme to get Black students interested — and it doesn’t have to stop at Black History Month. And you can make computing cross-curricular, so there could be a project with all teachers, where each one runs a lesson that involves a bit of coding, so that all students can see that computing really is for everyone.

What would you say to teachers to encourage them to take up Computer Science as a subject?

Because of my role working for the NCCE, I always encourage teachers to join the NCCE’s Computer Science Accelerator programme and to retrain to teach Computer Science. It’s a beautiful subject, all you need to do is give it a chance.

Thank you, Joe, for sharing your thoughts with us!

Joe was part of the group of teachers we worked with to create our practical guide on culturally relevant teaching in the computing classroom. You can download it as a free PDF now to help you think about how to reflect all your students in your lessons.

The post Engaging Black students in computing at UK schools — interview with Joe Arday appeared first on Raspberry Pi.

Engaging Black students in computing at school — interview with Lynda Chinaka

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/engaging-black-students-in-computing-school-lynda-chinaka/

Lynda Chinaka.

On the occasion of Black History Month UK, we speak to Lynda Chinaka, Senior Lecturer in Computing in Education at the University of Roehampton, about her experiences in computing education, her thoughts about underrepresentation of Black students in the subject, and her ideas about what needs to be done to engage more Black students.

Lynda, to start us off, can you share your thoughts about Black History Month?

Black history is a really important topic, obviously, and I think that, when Black History Month was first introduced, it was very powerful — and it continues to be in certain places. But I think that, for where we are as a society, it’s time to move past talking about Black history for only one month of the year, albeit an important, focused celebration. And certainly that would include integrating Black history and Black figures across subjects in school. That would be a very useful way to celebrate the contributions that Black people have made, and continue to make, to society. Children need to be taught a history in which they are included and valued. Good history is always a matter of different perspectives. Too often in schools, children experience a single perspective.  

Please tell me a bit about your own history: how did you come to computing education as a field? What were the support or barriers you encountered?

In terms of my journey, I’ve always been passionate about Computing — formerly ICT. I’ve been a Computing subject lead in schools, moving on into senior management. Beyond my career in schools, I have worked as an ICT consultant and as a Teacher Leader for a London authority. During that time, my interest in Computing/ICT led me to undertake an MA in Computing in Education at King’s College London. This led me to become a teacher trainer in my current role. In some sense, I’m carrying on the work I did with the local authorities, but in a university setting. At the University of Roehampton, I teach computing to BA Primary Education and PGCE students. Training teachers is something that I’m very much interested in. It’s about engaging student teachers, supporting them in developing their understanding of Computing in the primary phases. Students learn about the principles of computing, related learning theories, and how children think and learn. Perhaps more importantly, I am keen to instil a love of the subject and broaden their notions about computing.

A teacher attending Picademy laughs as she works through an activity

In terms of the support I’ve received, I’ve worked in certain schools where Computing was really valued by the Headteacher, which enabled me to promote my vision for the subject. Supportive colleagues made a difference in their willingness take on new initiatives that I presented. I have been fortunate to work in local authorities that have been forward-thinking; one school became a test bed for Computing. So in that sense, schools have supported me. But as a Black person, a Black woman in particular, I would say that I faced barriers throughout my career. And those barriers have been there since childhood. In the Black community, people experience all sorts of things, and prejudice and barriers have been at play in my career.

Prejudice sometimes is very overt. An example I think I can share because it prevented me from getting a job: I went for an interview in a school. It was a very good interview, the Headteacher told me, “It was fantastic, you’re amazing, you’re excellent,” the problem was that there weren’t “enough Black pupils”, so she “didn’t see the need…”. And this is a discussion that was shared with me. Now in 2021 a Headteacher wouldn’t say that, but let’s just wind the clock back 15 years. These are the kinds of experiences that you go through as a Black teacher.

So what happens is, you tend to build up a certain resilience. People’s perceptions and low expectations of me have been a hindrance. This can be debilitating. You get tired of having to go through the same thing, of having to overcome negativity. Yes, I would say this has limited my progress. Obviously, I am speaking about my particular experiences as a Black woman, but I would say that these experiences are shared by many people like me.

An educator teaches students to create with technology.

But it’s my determination and the investment I’ve made that has resulted in me staying in the field. And a source of support for me is always Black colleagues, they understand the issues that are inherent within the profession. 

Black students are underrepresented in Computing as a subject. Drawing on your own work and experiences, could you share your thoughts about why that’s the case?

There need to be more Black teachers, because children need to see themselves represented in schools. As a Black teacher, I know that I have made a difference to Black children in my class who had a Black role model in front of them. When we talk about the poor performance of Black pupils, we need to be careful not to blame them for the failures of the education system. Policy makers, Headteachers, teachers, and practitioners need to be a lot more self-aware and examine the impact of racism in education. People need to examine their own policies and practice, especially people in positions of power.

A lot of collective work needs to be done.

Lynda Chinaka

Some local authorities do better than others, and some Headteachers I’ve worked with have been keen to build a diverse staff team. Black people are not well-represented at all in education. Headteachers need to be more proactive about their staff teams and recruitment. And they need to encourage Black teachers to go for jobs in senior management.

An educator helps a young person with a computing problem.

In all settings I taught in, no matter how many students of colour there were, these students would experience something in my classroom that their white counterparts had experienced all their lives: they would leave their home and come to school and be taught by someone who looks like them and perhaps speaks the same language as them. It’s enormously affirming for children to have that experience. And it’s important for all children actually, white children as well. Seeing a Black person teaching in the classroom, in a position of power or influence — it changes their mindset, and that ultimately changes perspectives.

So in terms of that route into Computing, Black students need to see themselves represented.

Why do you think it’s important to teach young people about Computing?

It’s absolutely vital to teach children about Computing. As adults, they are going to participate in a future that we know very little about, so I think it’s important that they’re taught computer science approaches, problem solving and computational thinking. So children need to be taught to be creators and not simply passive users of technology.

A Coolest Projects participant

One of the things some of my university students say is, “Oh my goodness, I can’t teach Computing, all the children know much more than me.”, but actually, that’s a little bit of a myth, I think. Children are better at using technologies than solving computing problems. They need to learn a range of computational approaches for solving problems. Computing is a life skill; it is the future. We saw during the pandemic the effects of digital inequity on pupils.

What do you think needs to change in computing education, the tech sector, or elsewhere in order to engage more Black students in Computing?

In education, we need to look at the curriculum and how to decolonise it to really engage young people. This also includes looking out for bias and prejudice in the things that are taught. Even when you’re thinking about specific computer science topics. So for example, the traditional example for algorithm design is making a cup of tea. But tea is a universal drink, it originates in China, and as a result of colonialism made its way to India and Kenya. So we drink tea universally, but the method (algorithm) for making tea doesn’t necessarily always include a china tea pot or a tea bag. There are lots of ways to introduce it, thinking about how it’s prepared in different cultures, say Kenya or the Punjab, and using that as a basis for developing children’s algorithmic thinking. This is culturally relevant. It’s about bringing the interests and experiences children have into the classroom.

Young women in a computing lesson.

For children to be engaged in Computing, there needs to be a payoff for them. For example, I’ve seen young people developing their own African emojis. They need to see a point to it! They don’t necessarily have to become computer scientists or software engineers, but Computing should be an avenue that opens for them because they can see it as something to further their own aims, their own causes. Young people are very socially and politically aware. For example, Black communities are very aware of the way that climate change affects the Global South and could use data science to highlight this. Many will have extended family living in these regions that are affected now.

So you don’t compromise on the quality of your teaching, and it require teachers to be more reflective. There is no quick fix. For example, you can’t just insert African masks into a lesson without exploring their meaning in real depth within the culture they originate from.

So in your Computing or Computer Science lessons, you need to include topics young people are interested in: climate change, discrimination, algorithms and algorithmic bias in software, surveillance and facial recognition. Social justice topics are close to their hearts. You can get them interested in AI and data science by talking about the off-the-shelf datasets that Big Tech uses, and about what impact these have in terms of surveillance and on minority communities specifically. 

Can you talk a bit about the different terms used to describe this kind of approach to education, ‘culturally relevant teaching’ and ‘decolonising the curriculum’?

‘Culturally relevant’ is easier to sit with. ‘Decolonising the curriculum’ provokes a reaction, but it’s really about teaching children about histories and perspectives on curricula that affect us all. We need to move towards a curriculum that is fit for purpose where children are taught different perspectives and truth that they recognise. Even if you’re in a school without any Black children at all, the curriculum still needs to be decolonised so that children can actually understand and benefit from the many ways that topics, events, subjects may be taught.

A woman teacher helps a young person with a coding project.

When we think about learning in terms of being culturally relevant and responsive, this is about harnessing children’s heritage, experiences, and viewpoints to engage learners such that the curriculum is meaningful and includes them. The goal here is to promote long-term and consistent engagement with Computing.

What is being missed by current initiatives to increase diversity and Black students’ engagement?

Diversity initiatives are a good step, but we need to give it time. 

The selection process for subjects at GCSE can sometimes affect the uptake of computing. Then there are individual attitudes and experiences of pupils. It has been documented that Black and Asian students have often been in the minority and experience marginalisation, particularly noted in the case of female students in GCSE Computer Science.

ITE (Initial Teacher Education) providers need to consider their partnerships with schools and support schools to be more inclusive. We need more Black teachers, as I said. We also need to democratise pathways for young people getting into computing and STEM careers. Applying to university is one way — there should be others.

Schools could also develop partnerships with organisations that have their roots in the Black community. Research has also highlighted discriminatory practices in careers advice, and in the application and interview processes of Russell Group universities. These need to be addressed.

A students in a computer science lecture.

There are too few Black academics at universities. This can have an impact on student choice and decisions about whether to attend an institution or not. Institutions may seem unwelcoming or unsympathetic. Higher education institutions need to eliminate bias through feedback and measuring course take-up. 

Outside the field of education, tech companies could offer summer schemes, short programmes to stimulate interest amongst young Black people. Really, the people in leadership positions, all the people with the power, need to be proactive.

A lot of collective work needs to be done. It’s a whole pipeline, and everybody needs to play a part.

What in your mind is a key thing right now that people in computing education who want to engage more Black students should do?

You can present children with Black pioneers in computing and tech. They can show Black children how to achieve their goals in life through computing. For example, create podcasts or make lists with various organisations that use data science to further specific causes.

It’s not a one-off, one teacher thing, it’s a project for the whole school.

Lynda Chinaka

Also, it’s not a one-off, one teacher thing, it’s project for the whole school. You need to build it into a whole curriculum map, do all the things you do to build a new curriculum map: get every teacher to contribute, so they take it on, own it, research it, make those links to the national curriculum so it’s relevant. Looking at it in isolation it’s a problem, but it’s a whole school approach that starts as a working group. And it’s senior management that sets the tone, and they really need to be proactive, but you can start by starting a working group. It won’t be implemented overnight. A bit like introducing a school uniform. Do it slowly, have a pilot year group. Get parents in, have a coffee evening, get school governors on board. It’s a whole staff team effort.

People need to recognise the size of the problem and not be discouraged by the fact that things haven’t happened overnight. But people who are in a position of influence need to start by having those conversations, because that’s the only way that change can happen, quite frankly.

Lynda, thank you for sharing your insights with us!

Lynda was one of the advisors in the group we worked with to create our recently published, practical guide on culturally relevant teaching. You can download it as a free PDF now. We hope it will help you kickstart conversations in your setting.

The post Engaging Black students in computing at school — interview with Lynda Chinaka appeared first on Raspberry Pi.

Sue Sentance recognised with Suffrage Science award

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/sue-sentance-suffrage-science-award/

We’re pleased to share that Dr Sue Sentance, our Chief Learning Officer, is receiving a Suffrage Science award for Mathematics and Computing today.

Sue Sentance

The Suffrage Science award scheme celebrates women in science. Sue is being recognised for her achievements in computer science and computing education research, and for her work promoting computing to the next generation.

Sue is an experienced teacher and teacher educator with an academic background in artificial intelligence, computer science, and education. She has made a substantial contribution to research in computing education in school over the last ten years, publishing widely on the teaching of programming, teacher professional development, physical computing, and curriculum change. In 2017 Sue received the BERA Public Engagement and Impact Award for her services to computing education. Part of Sue’s role at the Raspberry Pi Foundation is leading our Gender Balance in Computing research programme, which investigates ways to increase the number of girls and young women taking up computing at school level.

Suffrage Science Maths and Computing Brooch and Bangle
The awards are jewellery inspired by computing, mathematics, and the Suffragette movement

As Dr Hannah Dee, the previous award recipient who nominated Sue, says: “[…] The work she does is important — researchers need to look at what happens in schools, particularly when we consider gender. Girls are put off computing long before they get to universities, and an understanding of how children learn about computing and the ways in which we can support girls in tech is going to be vital to reverse this trend.”

Sue says, “I’m delighted and honoured that Hannah nominated me for this award, and to share this honour with other women also dedicated to furthering the fields of mathematics, computing, life sciences, and engineering. It’s been great to see research around computing in school start to gather pace (and also rigour) around the world over the last few years, and to play a part in that. There is still so much to do — many countries have now introduced computing or computer science into their school curricula as a mandatory subject, and we need to understand better how to make the subject fully accessible to all, and to inspire and motivate the next generation.”

A girl doing Scratch coding in a Code Club classroom

Aside from her role in the Gender Balance in Computing research programme, Sue has led our work as part of the consortium behind the National Centre for Computing Education and is now our senior adviser on computing subject knowledge, pedagogy, and the Foundation’s computing education research projects. Sue also leads the programme of our ongoing computing education research seminar series, where academics and educators from all over the world come together online to hear about and discuss some of the latest work in the field. 

We are currently inviting primary and secondary schools in England to take part in the Gender Balance in Computing project.

Congratulations from all your colleagues at the Foundation, Sue!

The post Sue Sentance recognised with Suffrage Science award appeared first on Raspberry Pi.

Take part in the PA Raspberry Pi Competition for UK schools

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/pa-raspberry-pi-competition-uk-2021/

Every year, we support the PA Raspberry Pi Competition for UK schools, run by PA Consulting. In this free competition, teams of students from schools all over the UK imagine, design, and create Raspberry Pi–powered inventions.

Female engineer with Raspberry Pi device. Copyright © University of Southampton
Let’s inspire young people to take up a career in STEM!
© University of Southampton

The PA Raspberry Pi Competition aims to inspire young people aged 8 to 18 to learn STEM skills, teamwork, and creativity, and to move toward a career in STEM.

We invite all UK teachers to register if you have students at your school who would love to take part!

For the first 100 teams to complete registration and submit their entry form, PA Consulting provides a free Raspberry Pi Starter Kit to create their invention.

This year’s competition theme: Innovating for a better world

The theme is deliberately broad so that teams can show off their creativity and ingenuity.

  • All learners aged 8 to 18 can take part, and projects are judged in four age groups
  • The judging categories include team passion; simplicity and clarity of build instructions; world benefit; and commercial potential
  • The proposed budget for a team’s invention is around £100
  • The projects can be part of your students’ coursework
  • Entries must be submitted by Monday 22 March 2021
  • You’ll find more details and inspiration on the PA Raspberry Pi Competition webpage

Among all the entries, judges from the tech sector and the Raspberry Pi Foundation choose the finalists with the most outstanding inventions in their age group.

The Dynamix team, finalists in last round’s Y4–6 group, built a project called SmartRoad+

The final teams get to take part in an exciting awards event to present their creations so that the final winners can be selected. This round’s PA Raspberry Pi Awards Ceremony takes place on Wednesday 28 April 2021, and PA Consulting are currently considering whether this will be a physical or virtual event.

All teams that participate in the competition will be rewarded with certificates, and there’s of course the chance to win trophies and prizes too!

You can prepare with our free online courses

If you would like to boost your skills so you can better support your team, then sign up to one of our free online courses designed for educators:

Take inspiration from the winners of the previous round

All entries are welcome, no matter what your students’ experience is! Here are the outstanding projects from last year’s competition:

A look inside the air quality-monitoring project by Team Tempest, last round’s winners in the Y7–9 group

Find out more at the PA Raspberry Pi Competition webinar!

To support teachers in guiding their teams through the competition, PA Consulting will hold a webinar on 12 November 2020 at 4.30–5.30pm. Sign up to hear first-hand what’s involved in taking part in the PA Raspberry Pi Competition, and use the opportunity to ask questions!

The post Take part in the PA Raspberry Pi Competition for UK schools appeared first on Raspberry Pi.

Congratulations Carrie Anne Philbin, MBE

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/carrie-anne-philbin-mbe/

We are delighted to share the news that Carrie Anne Philbin, Raspberry Pi’s Director of Educator Support, has been awarded an MBE for her services to education in the Queen’s Birthday Honours 2020.

Carrie Anne Philbin MBE
Carrie Anne Philbin, newly minted MBE

Carrie Anne was one of the first employees of the Raspberry Pi Foundation and has helped shape our educational programmes over the past six years. Before joining the Foundation, Carrie Anne was a computing teacher, YouTuber, and author.

She’s also a tireless champion for diversity and inclusion in computing; she co-founded a grassroots movement of computing teachers dedicated to diversity and inclusion, and she has mentored young girls and students from disadvantaged backgrounds. She is a fantastic role model and source of inspiration to her colleagues, educators, and young people. 

From history student to computing teacher and YouTuber

As a young girl, Carrie Anne enjoyed arts and crafts and when her dad bought the family a Commodore 64, she loved the graphics she could make on it. She says, “I vividly remember typing in the BASIC commands to create a train that moved on the screen with my dad.” Being able to express her creativity through digital patterns sparked her interest in technology.

After studying history at university, Carrie Anne followed her passion for technology and became an ICT technician at a secondary school, where she also ran several extra-curricular computing clubs for the students. Her school encouraged and supported her to apply for the Graduate Teacher Programme, and she qualified within two years.

Carrie Anne admits that her first experience in a new school as a newly qualified teacher was “pretty terrifying”, and she says her passion for the subject and her sense of humour are what got her through. The students she taught in her classroom still inspire her today.

Showing that computing is for everyone

As well as co-founding CAS #include, a diversity working group for computing teachers, Carrie Anne started the successful YouTube channel Geek Gurl Diaries. Through video interviews with women working in tech and hands-on computer science tutorials, Carrie Anne demonstrates that computing is fun and that it’s great to be a girl who likes computers.

Carrie Anne Philbin MBE sitting at a disk with physical computing equipment

On the back of her own YouTube channel’s success, Carrie Anne was invited to host the Computer Science video series on Crash Course, the extremely popular educational YouTube channel created by Hank and John Green. There, her 40+ videos have received over 2 million views so far.

Discovering the Raspberry Pi Foundation

Carrie Anne says that the Raspberry Pi computer brought her to the Raspberry Pi Foundation, and that she stayed “because of the community and the Foundation’s mission“. She came across the Raspberry Pi while searching for new ways to engage her students in computing, and joined a long waiting list to get her hands on the single-board computer. After her Raspberry Pi finally arrived, she carried it in her handbag to community meetups to learn how other people were using it in education.

Carrie Anne Philbin
Carrie Anne with her book Adventures in Raspberry Pi

Since joining the Foundation, Carrie Anne has helped to build an incredible team, many of them also former computing teachers. Together they have trained thousands of educators and produced excellent resources that are used by teachers and learners around the world. Most recently, the team created the Teach Computing Curriculum of over 500 hours of free teaching resources for primary and secondary teachers; free online video lessons for students learning at home during the pandemic (in partnership with Oak National Academy); and Isaac Computer Science, a free online learning platform for A level teachers and students.

On what she wants to empower young people to do

Carrie Anne says, “We’re living in an ever-changing world that is facing many challenges right now: climate change, democracy and human rights, oh and a global pandemic. These are issues that young people care about. I’ve witnessed this year after year at our international Coolest Projects technology showcase event for young people, where passionate young creators present the tech solutions they are already building to address today’s and tomorrow’s problems. I believe that equipped with a deeper understanding of technology, young people can change the world for the better, in ways we’ve not even imagined.” 

Carrie Anne has already achieved a huge amount in her career, and we honestly believe that she is only just getting started. On behalf of all your colleagues at the Foundation and all the educators and young people whose lives you’ve changed, congratulations Carrie Anne! 

The post Congratulations Carrie Anne Philbin, MBE appeared first on Raspberry Pi.