Tag Archives: exploits

Epic Games Sues Cheater Over ‘Stealing’ Fortnite V-Bucks

Post Syndicated from Ernesto original https://torrentfreak.com/epic-games-sues-cheater-over-stealing-fortnite-v-bucks-180112/

Last fall, Epic Games released Fortnite’s free-to-play “Battle Royale” game mode for the PC and other platforms, generating massive interest among gamers.

This also included thousands of cheaters, many of whom were subsequently banned. Epic Games then went a step further by taking several cheaters to court for copyright infringement.

While the initial targets were people who coded, used or promoted cheats to gain a clear competitive advantage, this week Epic sued a different type of cheater. In a complaint filed at a California Federal court, the game publisher accuses a New Zealander of creating an exploit that allows users to get free V-bucks.

V-bucks are the game’s currency and can be bought through an online store, starting at $9.99. The virtual coins allow players to purchase skins for their characteras well as other game tools.

According to Epic, people who create and use these kinds of free-money exploits are stealing from the game publisher.

“Players who search for and promote exploits ruin the game experience for others and undermine the integrity of Fortnite. Players who use exploits to avoid paying for items in Fortnite are stealing from Epic,” the complaint reads.

V-bucks

The alleged perpetrator is identified as Yash Gosai, who’s a resident of Auckland, New Zealand. Epic believes that Gosai developed the exploit which was then promoted through YouTube.

“On information and belief, Gosai developed an exploit for Fortnite’s Battle Royale mode that enables players to obtain V-bucks without paying for them. Gosai created and posted a video on YouTube to advertise, promote and demonstrate the exploit,” the complaint reads.

While the game company managed to get the video taken down, they’re not done with the New Zealander. They accuse Gosai of copyright infringement, breach of contract, as well as conversion.

“Defendant’s videos demonstrating the exploit infringe Epic’s copyrights in Fortnite by copying, reproducing, preparing derivative works from, and/or displaying Fortnite
publicly without Epic’s permission, the company writes.

Epic asks the court for damages and wants the defendant to destroy all Fortnite copies and any related works.

As mentioned before, this is not the first lawsuit Epic has filed against a cheater. Thus far, it has reached at least three settlements behind closed doors. Minnesota resident Charles Vraspir signed an agreement early December. Philip Josefsson from Sweden and Artem Yakovenko from Russia followed soon after.

A copy of the complaint against Gosai is available here (pdf).

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Kroah-Hartman: Meltdown and Spectre Linux Kernel Status

Post Syndicated from corbet original https://lwn.net/Articles/743383/rss

Here’s an
update from Greg Kroah-Hartman
on the kernel’s response to Meltdown and
Spectre. “If you rely on any other kernel tree other than 4.4, 4.9, or 4.14 right now, and you do not have a distribution supporting you, you are out of luck. The lack of patches to resolve the Meltdown problem is so minor compared to the hundreds of other known exploits and bugs that your kernel version currently contains. You need to worry about that more than anything else at this moment, and get your systems up to date first.

Also, go yell at the people who forced you to run an obsoleted and insecure
kernel version, they are the ones that need to learn that doing so is a
totally reckless act.”

Spectre and Meltdown Attacks

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/01/spectre_and_mel.html

After a week or so of rumors, everyone is now reporting about the Spectre and Meltdown attacks against pretty much every modern processor out there.

These are side-channel attacks where one process can spy on other processes. They affect computers where an untrusted browser window can execute code, phones that have multiple apps running at the same time, and cloud computing networks that run lots of different processes at once. Fixing them either requires a patch that results in a major performance hit, or is impossible and requires a re-architecture of conditional execution in future CPU chips.

I’ll be writing something for publication over the next few days. This post is basically just a link repository.

EDITED TO ADD: Good technical explanation. And a Slashdot thread.

EDITED TO ADD (1/5): Another good technical description. And how the exploits work through browsers. A rundown of what vendors are doing. Nicholas Weaver on its effects on individual computers.

EDITED TO ADD (1/7): xkcd.

EDITED TO ADD (1/10): Another good technical description.

Why Meltdown exists

Post Syndicated from Robert Graham original http://blog.erratasec.com/2018/01/why-meltdown-exists.html

So I thought I’d answer this question. I’m not a “chipmaker”, but I’ve been optimizing low-level assembly x86 assembly language for a couple of decades.

The tl;dr version is this: the CPUs have no bug. The results are correct, it’s just that the timing is different. CPU designers will never fix the general problem of undetermined timing.
CPUs are deterministic in the results they produce. If you add 5+6, you always get 11 — always. On the other hand, the amount of time they take is non-deterministic. Run a benchmark on your computer. Now run it again. The amount of time it took varies, for a lot of reasons.
That CPUs take an unknown amount of time is an inherent problem in CPU design. Even if you do everything right, “interrupts” from clock timers and network cards will still cause undefined timing problems. Therefore, CPU designers have thrown the concept of “deterministic time” out the window.
The biggest source of non-deterministic behavior is the high-speed memory cache on the chip. When a piece of data is in the cache, the CPU accesses it immediately. When it isn’t, the CPU has to stop and wait for slow main memory. Other things happening in the system impacts the cache, unexpectedly evicting recently used data for one purpose in favor of data for another purpose.
Hackers love “non-deterministic”, because while such things are unknowable in theory, they are often knowable in practice.
That’s the case of the granddaddy of all hacker exploits, the “buffer overflow”. From the programmer’s perspective, the bug will result in just the software crashing for undefinable reasons. From the hacker’s perspective, they reverse engineer what’s going on underneath, then carefully craft buffer contents so the program doesn’t crash, but instead continue to run the code the hacker supplies within the buffer. Buffer overflows are undefined in theory, well-defined in practice.
Hackers have already been exploiting this defineable/undefinable timing problems with the cache for a long time. An example is cache timing attacks on AES. AES reads a matrix from memory as it encrypts things. By playing with the cache, evicting things, timing things, you can figure out the pattern of memory accesses, and hence the secret key.
Such cache timing attacks have been around since the beginning, really, and it’s simply an unsolvable problem. Instead, we have workarounds, such as changing our crypto algorithms to not depend upon cache, or better yet, implement them directly in the CPU (such as the Intel AES specialized instructions).
What’s happened today with Meltdown is that incompletely executed instructions, which discard their results, do affect the cache. We can then recover those partial/temporary/discarded results by measuring the cache timing. This has been known for a while, but we couldn’t figure out how to successfully exploit this, as this paper from Anders Fogh reports. Hackers fixed this, making it practically exploitable.
As a CPU designer, Intel has few good options.
Fixing cache timing attacks is an impossibility. They can do some tricks, such as allowing some software to reserve part of the cache for private use, for special crypto operations, but the general problem is unsolvable.
Fixing the “incomplete results” problem from affecting the cache is also difficult. Intel has the fastest CPUs, and the reason is such speculative execution. The other CPU designers have the same problem: fixing the three problems identified today would cause massive performance issues. They’ll come up with improvements, probably, but not complete solutions.
Instead, the fix is within the operating system. Frankly, it’s a needed change that should’ve been done a decade ago. They’ve just been putting it off because of the performance hit. Now that the change has been forced to happen, CPU designers will probably figure out ways to mitigate the performance cost.
Thus, the Intel CPU you buy a year from now will have some partial fixes for these exactly problems without addressing the larger security concerns. They will also have performance enhancements to make the operating system patches faster.
But the underlying theoretical problem will never be solved, and is essentially unsolvable.

The disclosure on the processor bugs

Post Syndicated from corbet original https://lwn.net/Articles/742744/rss

The rumored bugs in Intel (and beyond) processors have now been disclosed:
they are called Meltdown and
Spectre
, and have the requisite cute logos. Stay tuned for more.

See also: this Project
Zero
blog post. “Variants of this issue are known to affect many
modern processors, including certain processors by Intel, AMD and ARM. For
a few Intel and AMD CPU models, we have exploits that work against real
software. We reported this issue to Intel, AMD and ARM on
2017-06-01.

See also: this
Google blog posting
on how it affects users of Google products in
particular. “[Android] devices with the latest security update are
protected. Furthermore, we are unaware of any successful reproduction of
this vulnerability that would allow unauthorized information disclosure on
ARM-based Android devices. Supported Nexus and Pixel devices with the
latest security update are protected.

A press release from Intel

Post Syndicated from corbet original https://lwn.net/Articles/742714/rss

Intel has responded
to reports of security issues in its processors:

Recent reports that these exploits are caused by a “bug” or a
“flaw” and are unique to Intel products are incorrect. Based on the
analysis to date, many types of computing devices — with many
different vendors’ processors and operating systems — are
susceptible to these exploits.

Intel is committed to product and customer security and is working
closely with many other technology companies, including AMD, ARM
Holdings and several operating system vendors, to develop an
industry-wide approach to resolve this issue promptly and
constructively. Intel has begun providing software and firmware
updates to mitigate these exploits. Contrary to some reports, any
performance impacts are workload-dependent, and, for the average
computer user, should not be significant and will be mitigated over
time.

Stay tuned, there is certainly more to come.

PS4 4.05 Kernel Exploit Released, Full Jailbreak Round the Corner

Post Syndicated from Andy original https://torrentfreak.com/ps4-4-05-kernel-exploit-released-full-jailbreak-round-the-corner-171227/

Most custom hardware is seriously locked down these days, with many corporations viewing any tinkering with their machines as unacceptable at best, illegal at worst.

When people free computing hardware – so-called jailbreaking – it can be used for almost any purpose. The famous Cydia, for example, created a whole alternative iOS app store, one free of the constraints of Apple.

Of course, jailbreaking has also become synonymous with breaking fundamental copy protection, allowing pirated software to run on a range of devices from cellphones to today’s cutting-edge games consoles. The flip side of that coin is that people are also able to run so-called ‘homebrew’ code, programs developed by hobbyists for purposes that do not breach copyright law.

This ‘dual use’ situation means that two separate sets of communities get excited when exploits are found for key hardware. That’s been the case for some time now with two sets of developers – Team Fail0verflow and Specter – revealing work on a kernel exploit for firmware 4.05 on Playstation 4.

In November, Wololo published an interview with Specter and two days ago received direct confirmation that the exploit would be published soon. That moment has now arrived.

As noted in Specter’s tweet, the release is available on Github, where the developer provides more details.

“In this project you will find a full implementation of the ‘namedobj’ kernel exploit for the PlayStation 4 on 4.05,” Specter writes.

“It will allow you to run arbitrary code as kernel, to allow jailbreaking and kernel-level modifications to the system.”

The news that the exploit can enable a jailbreak is huge news for fans of the scene, who will be eagerly standing by for the next piece of the puzzle which is likely to be just around the corner.

Still, Specter is wisely exercising caution when it comes to the more risky side of his exploit – the potential for running homebrew and, of course, pirate games. He doesn’t personally include code for directly helping either.

“This release however, does not contain any code related to defeating anti-piracy mechanisms or running homebrew,” he notes.

That being said, the exploit clearly has potential and Specter has opened up a direct channel for those wishing to take things to the next level. He reveals that the exploit contains a loader that listens for a payload and once it receives it, executes it automatically.

“I’ve also uploaded a test payload you can use after the kernel exploit runs that jailbreaks and patches the kernel to allow access to debug settings, just needs to be netcatted to the loader via port 9020,” he concludes.

That’s likely to prove very attractive to those with a penchant for tinkering. Let’s see which direction this goes.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Acoustical Attacks against Hard Drives

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/12/acoustical_atta.html

Interesting destructive attack: “Acoustic Denial of Service Attacks on HDDs“:

Abstract: Among storage components, hard disk drives (HDDs) have become the most commonly-used type of non-volatile storage due to their recent technological advances, including, enhanced energy efficacy and significantly-improved areal density. Such advances in HDDs have made them an inevitable part of numerous computing systems, including, personal computers, closed-circuit television (CCTV) systems, medical bedside monitors, and automated teller machines (ATMs). Despite the widespread use of HDDs and their critical role in real-world systems, there exist only a few research studies on the security of HDDs. In particular, prior research studies have discussed how HDDs can potentially leak critical private information through acoustic or electromagnetic emanations. Borrowing theoretical principles from acoustics and mechanics, we propose a novel denial-of-service (DoS) attack against HDDs that exploits a physical phenomenon, known as acoustic resonance. We perform a comprehensive examination of physical characteristics of several HDDs and create acoustic signals that cause significant vibrations in HDDs internal components. We demonstrate that such vibrations can negatively influence the performance of HDDs embedded in real-world systems. We show the feasibility of the proposed attack in two real-world case studies, namely, personal computers and CCTVs.

Why Linus is right (as usual)

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/11/why-linus-is-right-as-usual.html

People are debating this email from Linus Torvalds (maintainer of the Linux kernel). It has strong language, like:

Some security people have scoffed at me when I say that security
problems are primarily “just bugs”.
Those security people are f*cking morons.
Because honestly, the kind of security person who doesn’t accept that
security problems are primarily just bugs, I don’t want to work with.

I thought I’d explain why Linus is right.
Linus has an unwritten manifesto of how the Linux kernel should be maintained. It’s not written down in one place, instead we are supposed to reverse engineer it from his scathing emails, where he calls people morons for not understanding it. This is one such scathing email. The rules he’s expressing here are:
  • Large changes to the kernel should happen in small iterative steps, each one thoroughly debugged.
  • Minor security concerns aren’t major emergencies; they don’t allow bypassing the rules more than any other bug/feature.
Last year, some security “hardening” code was added to the kernel to prevent a class of buffer-overflow/out-of-bounds issues. This code didn’t address any particular 0day vulnerability, but was designed to prevent a class of future potential exploits from being exploited. This is reasonable.
This code had bugs, but that’s no sin. All code has bugs.
The sin, from Linus’s point of view, is that when an overflow/out-of-bounds access was detected, the code would kill the user-mode process or kernel. Linus thinks it should have only generated warnings, and let the offending code continue to run.
Of course, that would in theory make the change of little benefit, because it would no longer prevent 0days from being exploited.
But warnings would only be temporary, the first step. There’s likely to be be bugs in the large code change, and it would probably uncover bugs in other code. While bounds-checking is a security issue, its first implementation will always find existing code having latent bounds bugs. Or, it’ll have “false-positives” triggering on things that aren’t actually the flaws its looking for. Killing things made these bugs worse, causing catastrophic failures in the latest kernel that didn’t exist before. Warnings, however, would have equally highlighted the bugs, but without causing catastrophic failures. My car runs multiple copies of Linux — such catastrophic failures would risk my life.
Only after a year, when the bugs have been fixed, would the default behavior of the code be changed to kill buggy code, thus preventing exploitation.
In other words, large changes to the kernel should happen in small, manageable steps. This hardening hasn’t existed for 25 years of the Linux kernel, so there’s no emergency requiring it be added immediately rather than conservatively, no reason to bypass Linus’s development processes. There’s no reason it couldn’t have been warnings for a year while working out problems, followed by killing buggy code later.
Linus was correct here. No vuln has appeared in the last year that this code would’ve stopped, so the fact that it killed processes/kernels rather than generated warnings was unnecessary. Conversely, because it killed things, bugs in the kernel code were costly, and required emergency patches.
Despite his unreasonable tone, Linus is a hugely reasonable person. He’s not trying to stop changes to the kernel. He’s not trying to stop security improvements. He’s not even trying to stop processes from getting killed That’s not why people are moronic. Instead, they are moronic for not understanding that large changes need to made conservatively, and security issues are no more important than any other feature/bug.

Update: Also, since most security people aren’t developers, they are also a bit clueless how things actually work. Bounds-checking, which they define as purely a security feature to stop buffer-overflows is actually overwhelmingly a debugging feature. When you turn on bounds-checking for the first time, it’ll trigger on a lot of latent bugs in the code — things that never caused a problem in the past (like reading past ends of buffers) but cause trouble now. Developers know this, security “experts” tend not to. These kernel changes were made by security people who failed to understand this, who failed to realize that their changes would uncover lots of bugs in existing code, and that killing buggy code was hugely inappropriate.

Update: Another flaw developers are intimately familiar with is how “hardening” code can cause false-positives, triggering on non-buggy code. A good example is where the BIND9 code crashed on an improper assert(). This hardening code designed to prevent exploitation made things worse by triggering on valid input/code.

Update: No, it’s probably not okay to call people “morons” as Linus does. They may be wrong, but they usually are reasonable people. On the other hand, security people tend to be sanctimonious bastards with rigid thinking, so after he has dealt with that minority, I can see why Linus treats all security people that way.

New White House Announcement on the Vulnerability Equities Process

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/11/new_white_house_1.html

The White House has released a new version of the Vulnerabilities Equities Process (VEP). This is the inter-agency process by which the US government decides whether to inform the software vendor of a vulnerability it finds, or keep it secret and use it to eavesdrop on or attack other systems. You can read the new policy or the fact sheet, but the best place to start is Cybersecurity Coordinator Rob Joyce’s blog post.

In considering a way forward, there are some key tenets on which we can build a better process.

Improved transparency is critical. The American people should have confidence in the integrity of the process that underpins decision making about discovered vulnerabilities. Since I took my post as Cybersecurity Coordinator, improving the VEP and ensuring its transparency have been key priorities, and we have spent the last few months reviewing our existing policy in order to improve the process and make key details about the VEP available to the public. Through these efforts, we have validated much of the existing process and ensured a rigorous standard that considers many potential equities.

The interests of all stakeholders must be fairly represented. At a high level we consider four major groups of equities: defensive equities; intelligence / law enforcement / operational equities; commercial equities; and international partnership equities. Additionally, ordinary people want to know the systems they use are resilient, safe, and sound. These core considerations, which have been incorporated into the VEP Charter, help to standardize the process by which decision makers weigh the benefit to national security and the national interest when deciding whether to disclose or restrict knowledge of a vulnerability.

Accountability of the process and those who operate it is important to establish confidence in those served by it. Our public release of the unclassified portions Charter will shed light on aspects of the VEP that were previously shielded from public review, including who participates in the VEP’s governing body, known as the Equities Review Board. We make it clear that departments and agencies with protective missions participate in VEP discussions, as well as other departments and agencies that have broader equities, like the Department of State and the Department of Commerce. We also clarify what categories of vulnerabilities are submitted to the process and ensure that any decision not to disclose a vulnerability will be reevaluated regularly. There are still important reasons to keep many of the specific vulnerabilities evaluated in the process classified, but we will release an annual report that provides metrics about the process to further inform the public about the VEP and its outcomes.

Our system of government depends on informed and vigorous dialogue to discover and make available the best ideas that our diverse society can generate. This publication of the VEP Charter will likely spark discussion and debate. This discourse is important. I also predict that articles will make breathless claims of “massive stockpiles” of exploits while describing the issue. That simply isn’t true. The annual reports and transparency of this effort will reinforce that fact.

Mozilla is pleased with the new charter. I am less so; it looks to me like the same old policy with some new transparency measures — which I’m not sure I trust. The devil is in the details, and we don’t know the details — and it has giant loopholes that pretty much anything can fall through:

The United States Government’s decision to disclose or restrict vulnerability information could be subject to restrictions by partner agreements and sensitive operations. Vulnerabilities that fall within these categories will be cataloged by the originating Department/Agency internally and reported directly to the Chair of the ERB. The details of these categories are outlined in Annex C, which is classified. Quantities of excepted vulnerabilities from each department and agency will be provided in ERB meetings to all members.

This is me from last June:

There’s a lot we don’t know about the VEP. The Washington Post says that the NSA used EternalBlue “for more than five years,” which implies that it was discovered after the 2010 process was put in place. It’s not clear if all vulnerabilities are given such consideration, or if bugs are periodically reviewed to determine if they should be disclosed. That said, any VEP that allows something as dangerous as EternalBlue — or the Cisco vulnerabilities that the Shadow Brokers leaked last August — to remain unpatched for years isn’t serving national security very well. As a former NSA employee said, the quality of intelligence that could be gathered was “unreal.” But so was the potential damage. The NSA must avoid hoarding vulnerabilities.

I stand by that, and am not sure the new policy changes anything.

More commentary.

Here’s more about the Windows vulnerabilities hoarded by the NSA and released by the Shadow Brokers.

EDITED TO ADD (11/18): More news.

EDITED TO ADD (11/22): Adam Shostack points out that the process does not cover design flaws or trade-offs, and that those need to be covered:

…we need the VEP to expand to cover those issues. I’m not going to claim that will be easy, that the current approach will translate, or that they should have waited to handle those before publishing. One obvious place it gets harder is the sources and methods tradeoff. But we need the internet to be a resilient and trustworthy infrastructure.

IoT Cybersecurity: What’s Plan B?

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/10/iot_cybersecuri.html

In August, four US Senators introduced a bill designed to improve Internet of Things (IoT) security. The IoT Cybersecurity Improvement Act of 2017 is a modest piece of legislation. It doesn’t regulate the IoT market. It doesn’t single out any industries for particular attention, or force any companies to do anything. It doesn’t even modify the liability laws for embedded software. Companies can continue to sell IoT devices with whatever lousy security they want.

What the bill does do is leverage the government’s buying power to nudge the market: any IoT product that the government buys must meet minimum security standards. It requires vendors to ensure that devices can not only be patched, but are patched in an authenticated and timely manner; don’t have unchangeable default passwords; and are free from known vulnerabilities. It’s about as low a security bar as you can set, and that it will considerably improve security speaks volumes about the current state of IoT security. (Full disclosure: I helped draft some of the bill’s security requirements.)

The bill would also modify the Computer Fraud and Abuse and the Digital Millennium Copyright Acts to allow security researchers to study the security of IoT devices purchased by the government. It’s a far narrower exemption than our industry needs. But it’s a good first step, which is probably the best thing you can say about this legislation.

However, it’s unlikely this first step will even be taken. I am writing this column in August, and have no doubt that the bill will have gone nowhere by the time you read it in October or later. If hearings are held, they won’t matter. The bill won’t have been voted on by any committee, and it won’t be on any legislative calendar. The odds of this bill becoming law are zero. And that’s not just because of current politics — I’d be equally pessimistic under the Obama administration.

But the situation is critical. The Internet is dangerous — and the IoT gives it not just eyes and ears, but also hands and feet. Security vulnerabilities, exploits, and attacks that once affected only bits and bytes now affect flesh and blood.

Markets, as we’ve repeatedly learned over the past century, are terrible mechanisms for improving the safety of products and services. It was true for automobile, food, restaurant, airplane, fire, and financial-instrument safety. The reasons are complicated, but basically, sellers don’t compete on safety features because buyers can’t efficiently differentiate products based on safety considerations. The race-to-the-bottom mechanism that markets use to minimize prices also minimizes quality. Without government intervention, the IoT remains dangerously insecure.

The US government has no appetite for intervention, so we won’t see serious safety and security regulations, a new federal agency, or better liability laws. We might have a better chance in the EU. Depending on how the General Data Protection Regulation on data privacy pans out, the EU might pass a similar security law in 5 years. No other country has a large enough market share to make a difference.

Sometimes we can opt out of the IoT, but that option is becoming increasingly rare. Last year, I tried and failed to purchase a new car without an Internet connection. In a few years, it’s going to be nearly impossible to not be multiply connected to the IoT. And our biggest IoT security risks will stem not from devices we have a market relationship with, but from everyone else’s cars, cameras, routers, drones, and so on.

We can try to shop our ideals and demand more security, but companies don’t compete on IoT safety — and we security experts aren’t a large enough market force to make a difference.

We need a Plan B, although I’m not sure what that is. E-mail me if you have any ideas.

This essay previously appeared in the September/October issue of IEEE Security & Privacy.

"Responsible encryption" fallacies

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/10/responsible-encryption-fallacies.html

Deputy Attorney General Rod Rosenstein gave a speech recently calling for “Responsible Encryption” (aka. “Crypto Backdoors”). It’s full of dangerous ideas that need to be debunked.

The importance of law enforcement

The first third of the speech talks about the importance of law enforcement, as if it’s the only thing standing between us and chaos. It cites the 2016 Mirai attacks as an example of the chaos that will only get worse without stricter law enforcement.

But the Mira case demonstrated the opposite, how law enforcement is not needed. They made no arrests in the case. A year later, they still haven’t a clue who did it.

Conversely, we technologists have fixed the major infrastructure issues. Specifically, those affected by the DNS outage have moved to multiple DNS providers, including a high-capacity DNS provider like Google and Amazon who can handle such large attacks easily.

In other words, we the people fixed the major Mirai problem, and law-enforcement didn’t.

Moreover, instead being a solution to cyber threats, law enforcement has become a threat itself. The DNC didn’t have the FBI investigate the attacks from Russia likely because they didn’t want the FBI reading all their files, finding wrongdoing by the DNC. It’s not that they did anything actually wrong, but it’s more like that famous quote from Richelieu “Give me six words written by the most honest of men and I’ll find something to hang him by”. Give all your internal emails over to the FBI and I’m certain they’ll find something to hang you by, if they want.
Or consider the case of Andrew Auernheimer. He found AT&T’s website made public user accounts of the first iPad, so he copied some down and posted them to a news site. AT&T had denied the problem, so making the problem public was the only way to force them to fix it. Such access to the website was legal, because AT&T had made the data public. However, prosecutors disagreed. In order to protect the powerful, they twisted and perverted the law to put Auernheimer in jail.

It’s not that law enforcement is bad, it’s that it’s not the unalloyed good Rosenstein imagines. When law enforcement becomes the thing Rosenstein describes, it means we live in a police state.

Where law enforcement can’t go

Rosenstein repeats the frequent claim in the encryption debate:

Our society has never had a system where evidence of criminal wrongdoing was totally impervious to detection

Of course our society has places “impervious to detection”, protected by both legal and natural barriers.

An example of a legal barrier is how spouses can’t be forced to testify against each other. This barrier is impervious.

A better example, though, is how so much of government, intelligence, the military, and law enforcement itself is impervious. If prosecutors could gather evidence everywhere, then why isn’t Rosenstein prosecuting those guilty of CIA torture?

Oh, you say, government is a special exception. If that were the case, then why did Rosenstein dedicate a precious third of his speech discussing the “rule of law” and how it applies to everyone, “protecting people from abuse by the government”. It obviously doesn’t, there’s one rule of government and a different rule for the people, and the rule for government means there’s lots of places law enforcement can’t go to gather evidence.

Likewise, the crypto backdoor Rosenstein is demanding for citizens doesn’t apply to the President, Congress, the NSA, the Army, or Rosenstein himself.

Then there are the natural barriers. The police can’t read your mind. They can only get the evidence that is there, like partial fingerprints, which are far less reliable than full fingerprints. They can’t go backwards in time.

I mention this because encryption is a natural barrier. It’s their job to overcome this barrier if they can, to crack crypto and so forth. It’s not our job to do it for them.

It’s like the camera that increasingly comes with TVs for video conferencing, or the microphone on Alexa-style devices that are always recording. This suddenly creates evidence that the police want our help in gathering, such as having the camera turned on all the time, recording to disk, in case the police later gets a warrant, to peer backward in time what happened in our living rooms. The “nothing is impervious” argument applies here as well. And it’s equally bogus here. By not helping police by not recording our activities, we aren’t somehow breaking some long standing tradit

And this is the scary part. It’s not that we are breaking some ancient tradition that there’s no place the police can’t go (with a warrant). Instead, crypto backdoors breaking the tradition that never before have I been forced to help them eavesdrop on me, even before I’m a suspect, even before any crime has been committed. Sure, laws like CALEA force the phone companies to help the police against wrongdoers — but here Rosenstein is insisting I help the police against myself.

Balance between privacy and public safety

Rosenstein repeats the frequent claim that encryption upsets the balance between privacy/safety:

Warrant-proof encryption defeats the constitutional balance by elevating privacy above public safety.

This is laughable, because technology has swung the balance alarmingly in favor of law enforcement. Far from “Going Dark” as his side claims, the problem we are confronted with is “Going Light”, where the police state monitors our every action.

You are surrounded by recording devices. If you walk down the street in town, outdoor surveillance cameras feed police facial recognition systems. If you drive, automated license plate readers can track your route. If you make a phone call or use a credit card, the police get a record of the transaction. If you stay in a hotel, they demand your ID, for law enforcement purposes.

And that’s their stuff, which is nothing compared to your stuff. You are never far from a recording device you own, such as your mobile phone, TV, Alexa/Siri/OkGoogle device, laptop. Modern cars from the last few years increasingly have always-on cell connections and data recorders that record your every action (and location).

Even if you hike out into the country, when you get back, the FBI can subpoena your GPS device to track down your hidden weapon’s cache, or grab the photos from your camera.

And this is all offline. So much of what we do is now online. Of the photographs you own, fewer than 1% are printed out, the rest are on your computer or backed up to the cloud.

Your phone is also a GPS recorder of your exact position all the time, which if the government wins the Carpenter case, they police can grab without a warrant. Tagging all citizens with a recording device of their position is not “balance” but the premise for a novel more dystopic than 1984.

If suspected of a crime, which would you rather the police searched? Your person, houses, papers, and physical effects? Or your mobile phone, computer, email, and online/cloud accounts?

The balance of privacy and safety has swung so far in favor of law enforcement that rather than debating whether they should have crypto backdoors, we should be debating how to add more privacy protections.

“But it’s not conclusive”

Rosenstein defends the “going light” (“Golden Age of Surveillance”) by pointing out it’s not always enough for conviction. Nothing gives a conviction better than a person’s own words admitting to the crime that were captured by surveillance. This other data, while copious, often fails to convince a jury beyond a reasonable doubt.
This is nonsense. Police got along well enough before the digital age, before such widespread messaging. They solved terrorist and child abduction cases just fine in the 1980s. Sure, somebody’s GPS location isn’t by itself enough — until you go there and find all the buried bodies, which leads to a conviction. “Going dark” imagines that somehow, the evidence they’ve been gathering for centuries is going away. It isn’t. It’s still here, and matches up with even more digital evidence.
Conversely, a person’s own words are not as conclusive as you think. There’s always missing context. We quickly get back to the Richelieu “six words” problem, where captured communications are twisted to convict people, with defense lawyers trying to untwist them.

Rosenstein’s claim may be true, that a lot of criminals will go free because the other electronic data isn’t convincing enough. But I’d need to see that claim backed up with hard studies, not thrown out for emotional impact.

Terrorists and child molesters

You can always tell the lack of seriousness of law enforcement when they bring up terrorists and child molesters.
To be fair, sometimes we do need to talk about terrorists. There are things unique to terrorism where me may need to give government explicit powers to address those unique concerns. For example, the NSA buys mobile phone 0day exploits in order to hack terrorist leaders in tribal areas. This is a good thing.
But when terrorists use encryption the same way everyone else does, then it’s not a unique reason to sacrifice our freedoms to give the police extra powers. Either it’s a good idea for all crimes or no crimes — there’s nothing particular about terrorism that makes it an exceptional crime. Dead people are dead. Any rational view of the problem relegates terrorism to be a minor problem. More citizens have died since September 8, 2001 from their own furniture than from terrorism. According to studies, the hot water from the tap is more of a threat to you than terrorists.
Yes, government should do what they can to protect us from terrorists, but no, it’s not so bad of a threat that requires the imposition of a military/police state. When people use terrorism to justify their actions, it’s because they trying to form a military/police state.
A similar argument works with child porn. Here’s the thing: the pervs aren’t exchanging child porn using the services Rosenstein wants to backdoor, like Apple’s Facetime or Facebook’s WhatsApp. Instead, they are exchanging child porn using custom services they build themselves.
Again, I’m (mostly) on the side of the FBI. I support their idea of buying 0day exploits in order to hack the web browsers of visitors to the secret “PlayPen” site. This is something that’s narrow to this problem and doesn’t endanger the innocent. On the other hand, their calls for crypto backdoors endangers the innocent while doing effectively nothing to address child porn.
Terrorists and child molesters are a clichéd, non-serious excuse to appeal to our emotions to give up our rights. We should not give in to such emotions.

Definition of “backdoor”

Rosenstein claims that we shouldn’t call backdoors “backdoors”:

No one calls any of those functions [like key recovery] a “back door.”  In fact, those capabilities are marketed and sought out by many users.

He’s partly right in that we rarely refer to PGP’s key escrow feature as a “backdoor”.

But that’s because the term “backdoor” refers less to how it’s done and more to who is doing it. If I set up a recovery password with Apple, I’m the one doing it to myself, so we don’t call it a backdoor. If it’s the police, spies, hackers, or criminals, then we call it a “backdoor” — even it’s identical technology.

Wikipedia uses the key escrow feature of the 1990s Clipper Chip as a prime example of what everyone means by “backdoor“. By “no one”, Rosenstein is including Wikipedia, which is obviously incorrect.

Though in truth, it’s not going to be the same technology. The needs of law enforcement are different than my personal key escrow/backup needs. In particular, there are unsolvable problems, such as a backdoor that works for the “legitimate” law enforcement in the United States but not for the “illegitimate” police states like Russia and China.

I feel for Rosenstein, because the term “backdoor” does have a pejorative connotation, which can be considered unfair. But that’s like saying the word “murder” is a pejorative term for killing people, or “torture” is a pejorative term for torture. The bad connotation exists because we don’t like government surveillance. I mean, honestly calling this feature “government surveillance feature” is likewise pejorative, and likewise exactly what it is that we are talking about.

Providers

Rosenstein focuses his arguments on “providers”, like Snapchat or Apple. But this isn’t the question.

The question is whether a “provider” like Telegram, a Russian company beyond US law, provides this feature. Or, by extension, whether individuals should be free to install whatever software they want, regardless of provider.

Telegram is a Russian company that provides end-to-end encryption. Anybody can download their software in order to communicate so that American law enforcement can’t eavesdrop. They aren’t going to put in a backdoor for the U.S. If we succeed in putting backdoors in Apple and WhatsApp, all this means is that criminals are going to install Telegram.

If the, for some reason, the US is able to convince all such providers (including Telegram) to install a backdoor, then it still doesn’t solve the problem, as uses can just build their own end-to-end encryption app that has no provider. It’s like email: some use the major providers like GMail, others setup their own email server.

Ultimately, this means that any law mandating “crypto backdoors” is going to target users not providers. Rosenstein tries to make a comparison with what plain-old telephone companies have to do under old laws like CALEA, but that’s not what’s happening here. Instead, for such rules to have any effect, they have to punish users for what they install, not providers.

This continues the argument I made above. Government backdoors is not something that forces Internet services to eavesdrop on us — it forces us to help the government spy on ourselves.
Rosenstein tries to address this by pointing out that it’s still a win if major providers like Apple and Facetime are forced to add backdoors, because they are the most popular, and some terrorists/criminals won’t move to alternate platforms. This is false. People with good intentions, who are unfairly targeted by a police state, the ones where police abuse is rampant, are the ones who use the backdoored products. Those with bad intentions, who know they are guilty, will move to the safe products. Indeed, Telegram is already popular among terrorists because they believe American services are already all backdoored. 
Rosenstein is essentially demanding the innocent get backdoored while the guilty don’t. This seems backwards. This is backwards.

Apple is morally weak

The reason I’m writing this post is because Rosenstein makes a few claims that cannot be ignored. One of them is how he describes Apple’s response to government insistence on weakening encryption doing the opposite, strengthening encryption. He reasons this happens because:

Of course they [Apple] do. They are in the business of selling products and making money. 

We [the DoJ] use a different measure of success. We are in the business of preventing crime and saving lives. 

He swells in importance. His condescending tone ennobles himself while debasing others. But this isn’t how things work. He’s not some white knight above the peasantry, protecting us. He’s a beat cop, a civil servant, who serves us.

A better phrasing would have been:

They are in the business of giving customers what they want.

We are in the business of giving voters what they want.

Both sides are doing the same, giving people what they want. Yes, voters want safety, but they also want privacy. Rosenstein imagines that he’s free to ignore our demands for privacy as long has he’s fulfilling his duty to protect us. He has explicitly rejected what people want, “we use a different measure of success”. He imagines it’s his job to tell us where the balance between privacy and safety lies. That’s not his job, that’s our job. We, the people (and our representatives), make that decision, and it’s his job is to do what he’s told. His measure of success is how well he fulfills our wishes, not how well he satisfies his imagined criteria.

That’s why those of us on this side of the debate doubt the good intentions of those like Rosenstein. He criticizes Apple for wanting to protect our rights/freedoms, and declare they measure success differently.

They are willing to be vile

Rosenstein makes this argument:

Companies are willing to make accommodations when required by the government. Recent media reports suggest that a major American technology company developed a tool to suppress online posts in certain geographic areas in order to embrace a foreign government’s censorship policies. 

Let me translate this for you:

Companies are willing to acquiesce to vile requests made by police-states. Therefore, they should acquiesce to our vile police-state requests.

It’s Rosenstein who is admitting here is that his requests are those of a police-state.

Constitutional Rights

Rosenstein says:

There is no constitutional right to sell warrant-proof encryption.

Maybe. It’s something the courts will have to decide. There are many 1st, 2nd, 3rd, 4th, and 5th Amendment issues here.
The reason we have the Bill of Rights is because of the abuses of the British Government. For example, they quartered troops in our homes, as a way of punishing us, and as a way of forcing us to help in our own oppression. The troops weren’t there to defend us against the French, but to defend us against ourselves, to shoot us if we got out of line.

And that’s what crypto backdoors do. We are forced to be agents of our own oppression. The principles enumerated by Rosenstein apply to a wide range of even additional surveillance. With little change to his speech, it can equally argue why the constant TV video surveillance from 1984 should be made law.

Let’s go back and look at Apple. It is not some base company exploiting consumers for profit. Apple doesn’t have guns, they cannot make people buy their product. If Apple doesn’t provide customers what they want, then customers vote with their feet, and go buy an Android phone. Apple isn’t providing encryption/security in order to make a profit — it’s giving customers what they want in order to stay in business.
Conversely, if we citizens don’t like what the government does, tough luck, they’ve got the guns to enforce their edicts. We can’t easily vote with our feet and walk to another country. A “democracy” is far less democratic than capitalism. Apple is a minority, selling phones to 45% of the population, and that’s fine, the minority get the phones they want. In a Democracy, where citizens vote on the issue, those 45% are screwed, as the 55% impose their will unwanted onto the remainder.

That’s why we have the Bill of Rights, to protect the 49% against abuse by the 51%. Regardless whether the Supreme Court agrees the current Constitution, it is the sort right that might exist regardless of what the Constitution says. 

Obliged to speak the truth

Here is the another part of his speech that I feel cannot be ignored. We have to discuss this:

Those of us who swear to protect the rule of law have a different motivation.  We are obliged to speak the truth.

The truth is that “going dark” threatens to disable law enforcement and enable criminals and terrorists to operate with impunity.

This is not true. Sure, he’s obliged to say the absolute truth, in court. He’s also obliged to be truthful in general about facts in his personal life, such as not lying on his tax return (the sort of thing that can get lawyers disbarred).

But he’s not obliged to tell his spouse his honest opinion whether that new outfit makes them look fat. Likewise, Rosenstein knows his opinion on public policy doesn’t fall into this category. He can say with impunity that either global warming doesn’t exist, or that it’ll cause a biblical deluge within 5 years. Both are factually untrue, but it’s not going to get him fired.

And this particular claim is also exaggerated bunk. While everyone agrees encryption makes law enforcement’s job harder than with backdoors, nobody honestly believes it can “disable” law enforcement. While everyone agrees that encryption helps terrorists, nobody believes it can enable them to act with “impunity”.

I feel bad here. It’s a terrible thing to question your opponent’s character this way. But Rosenstein made this unavoidable when he clearly, with no ambiguity, put his integrity as Deputy Attorney General on the line behind the statement that “going dark threatens to disable law enforcement and enable criminals and terrorists to operate with impunity”. I feel it’s a bald face lie, but you don’t need to take my word for it. Read his own words yourself and judge his integrity.

Conclusion

Rosenstein’s speech includes repeated references to ideas like “oath”, “honor”, and “duty”. It reminds me of Col. Jessup’s speech in the movie “A Few Good Men”.

If you’ll recall, it was rousing speech, “you want me on that wall” and “you use words like honor as a punchline”. Of course, since he was violating his oath and sending two privates to death row in order to avoid being held accountable, it was Jessup himself who was crapping on the concepts of “honor”, “oath”, and “duty”.

And so is Rosenstein. He imagines himself on that wall, doing albeit terrible things, justified by his duty to protect citizens. He imagines that it’s he who is honorable, while the rest of us not, even has he utters bald faced lies to further his own power and authority.

We activists oppose crypto backdoors not because we lack honor, or because we are criminals, or because we support terrorists and child molesters. It’s because we value privacy and government officials who get corrupted by power. It’s not that we fear Trump becoming a dictator, it’s that we fear bureaucrats at Rosenstein’s level becoming drunk on authority — which Rosenstein demonstrably has. His speech is a long train of corrupt ideas pursuing the same object of despotism — a despotism we oppose.

In other words, we oppose crypto backdoors because it’s not a tool of law enforcement, but a tool of despotism.

New UK IP Crime Report Reveals Continued Focus on ‘Pirate’ Kodi Boxes

Post Syndicated from Andy original https://torrentfreak.com/new-uk-ip-crime-report-reveals-continued-focus-on-pirate-kodi-boxes-170908/

The UK’s Intellectual Property Office has published its annual IP Crime Report, spanning the period 2016 to 2017.

It covers key events in the copyright and trademark arenas and is presented with input from the police and trading standards, plus private entities such as the BPI, Premier League, and Federation Against Copyright Theft, to name a few.

The report begins with an interesting statistic. Despite claims that many millions of UK citizens regularly engage in some kind of infringement, figures from the Ministry of Justice indicate that just 47 people were found guilty of offenses under the Copyright, Designs and Patents Act during 2016. That’s down on the 69 found guilty in the previous year.

Despite this low conviction rate, 15% of all internet users aged 12+ are reported to have consumed at least one item of illegal content between March and May 2017. Figures supplied by the Industry Trust for IP indicate that 19% of adults watch content via various IPTV devices – often referred to as set-top, streaming, Android, or Kodi boxes.

“At its cutting edge IP crime is innovative. It exploits technological loopholes before they become apparent. IP crime involves sophisticated hackers, criminal financial experts, international gangs and service delivery networks. Keeping pace with criminal innovation places a burden on IP crime prevention resources,” the report notes.

The report covers a broad range of IP crime, from counterfeit sportswear to foodstuffs, but our focus is obviously on Internet-based infringement. Various contributors cover various aspects of online activity as it affects them, including music industry group BPI.

“The main online piracy threats to the UK recorded music industry at present are from BitTorrent networks, linking/aggregator sites, stream-ripping sites, unauthorized streaming sites and cyberlockers,” the BPI notes.

The BPI’s website blocking efforts have been closely reported, with 63 infringing sites blocked to date via various court orders. However, the BPI reports that more than 700 related URLs, IP addresses, and proxy sites/ proxy aggregators have also been rendered inaccessible as part of the same action.

“Site blocking has proven to be a successful strategy as the longer the blocks are in place, the more effective they are. We have seen traffic to these sites reduce by an average of 70% or more,” the BPI reports.

While prosecutions against music pirates are a fairly rare event in the UK, the Crown Prosecution Service (CPS) Specialist Fraud Division highlights that their most significant prosecution of the past 12 months involved a prolific music uploader.

As first revealed here on TF, Wayne Evans was an uploader not only on KickassTorrents and The Pirate Bay, but also some of his own sites. Known online as OldSkoolScouse, Evans reportedly cost the UK’s Performing Rights Society more than £1m in a single year. He was sentenced in December 2016 to 12 months in prison.

While Evans has been free for some time already, the CPS places particular emphasis on the importance of the case, “since it provided sentencing guidance for the Copyright, Designs and Patents Act 1988, where before there was no definitive guideline.”

The CPS says the case was useful on a number of fronts. Despite illegal distribution of content being difficult to investigate and piracy losses proving tricky to quantify, the court found that deterrent sentences are appropriate for the kinds of offenses Evans was accused of.

The CPS notes that various factors affect the severity of such sentences, not least the length of time the unlawful activity has persisted and particularly if it has done so after the service of a cease and desist notice. Other factors include the profit made by defendants and/or the loss caused to copyright holders “so far as it can accurately be calculated.”

Importantly, however, the CPS says that beyond issues of personal mitigation and timely guilty pleas, a jail sentence is probably going to be the outcome for others engaging in this kind of activity in future. That’s something for torrent and streaming site operators and their content uploaders to consider.

“[U]nless the unlawful activity of this kind is very amateur, minor or short-lived, or in the absence of particularly compelling mitigation or other exceptional circumstances, an immediate custodial sentence is likely to be appropriate in cases of illegal distribution of copyright infringing articles,” the CPS concludes.

But while a music-related trial provided the highlight of the year for the CPS, the online infringement world is still dominated by the rise of streaming sites and the now omnipresent “fully-loaded Kodi Box” – set-top devices configured to receive copyright-infringing live TV and VOD.

In the IP Crime Report, the Intellectual Property Office references a former US Secretary of Defense to describe the emergence of the threat.

“The echoes of Donald Rumsfeld’s famous aphorism concerning ‘known knowns’ and ‘known unknowns’ reverberate across our landscape perhaps more than any other. The certainty we all share is that we must be ready to confront both ‘known unknowns’ and ‘unknown unknowns’,” the IPO writes.

“Not long ago illegal streaming through Kodi Boxes was an ‘unknown’. Now, this technology updates copyright infringement by empowering TV viewers with the technology they need to subvert copyright law at the flick of a remote control.”

While the set-top box threat has grown in recent times, the report highlights the important legal clarifications that emerged from the BREIN v Filmspeler case, which found itself before the European Court of Justice.

As widely reported, the ECJ determined that the selling of piracy-configured devices amounts to a communication to the public, something which renders their sale illegal. However, in a submission by PIPCU, the Police Intellectual Property Crime Unit, box sellers are said to cast a keen eye on the legal situation.

“Organised criminals, especially those in the UK who distribute set-top boxes, are aware of recent developments in the law and routinely exploit loopholes in it,” PIPCU reports.

“Given recent judgments on the sale of pre-programmed set-top boxes, it is now unlikely criminals would advertise the devices in a way which is clearly infringing by offering them pre-loaded or ‘fully loaded’ with apps and addons specifically designed to access subscription services for free.”

With sellers beginning to clean up their advertising, it seems likely that detection will become more difficult than when selling was considered a gray area. While that will present its own issues, PIPCU still sees problems on two fronts – a lack of clear legislation and a perception of support for ‘pirate’ devices among the public.

“There is no specific legislation currently in place for the prosecution of end users or sellers of set-top boxes. Indeed, the general public do not see the usage of these devices as potentially breaking the law,” the unit reports.

“PIPCU are currently having to try and ‘shoehorn’ existing legislation to fit the type of criminality being observed, such as conspiracy to defraud (common law) to tackle this problem. Cases are yet to be charged and results will be known by late 2017.”

Whether these prosecutions will be effective remains to be seen, but PIPCU’s comments suggest an air of caution set to a backdrop of box-sellers’ tendency to adapt to legal challenges.

“Due to the complexity of these cases it is difficult to substantiate charges under the Fraud Act (2006). PIPCU have convicted one person under the Serious Crime Act (2015) (encouraging or assisting s11 of the Fraud Act). However, this would not be applicable unless the suspect had made obvious attempts to encourage users to use the boxes to watch subscription only content,” PIPCU notes, adding;

“The selling community is close knit and adapts constantly to allow itself to operate in the gray area where current legislation is unclear and where they feel they can continue to sell ‘under the radar’.”

More generally, pirate sites as a whole are still seen as a threat. As reported last month, the current anti-piracy narrative is that pirate sites represent a danger to their users. As a result, efforts are underway to paint torrent and streaming sites as risky places to visit, with users allegedly exposed to malware and other malicious content. The scare strategy is supported by PIPCU.

“Unlike the purchase of counterfeit physical goods, consumers who buy unlicensed content online are not taking a risk. Faulty copyright doesn’t explode, burn or break. For this reason the message as to why the public should avoid copyright fraud needs to be re-focused.

“A more concerted attempt to push out a message relating to malware on pirate websites, the clear criminality and the links to organized crime of those behind the sites are crucial if public opinion is to be changed,” the unit advises.

But while the changing of attitudes is desirable for pro-copyright entities, PIPCU says that winning over the public may not prove to be an easy battle. It was given a small taste of backlash itself, after taking action against the operator of a pirate site.

“The scale of the problem regarding public opinion of online copyright crime is evidenced by our own experience. After PIPCU executed a warrant against the owner of a streaming website, a tweet about the event (read by 200,000 people) produced a reaction heavily weighted against PIPCU’s legitimate enforcement action,” PIPCU concludes.

In summary, it seems likely that more effort will be expended during the next 12 months to target the set-top box threat, but there doesn’t appear to be an abundance of confidence in existing legislation to tackle all but the most egregious offenders. That being said, a line has now been drawn in the sand – if the public is prepared to respect it.

The full IP Crime Report 2016-2017 is available here (pdf)

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

NoSQLMap – Automated NoSQL Exploitation Tool

Post Syndicated from Darknet original http://feedproxy.google.com/~r/darknethackers/~3/Y4RGC1J9G-U/

NoSQLMap is an open source Python-based automated NoSQL exploitation tool designed to audit for as well as automate injection attacks and exploit default configuration weaknesses in NoSQL databases. It is also intended to attack web applications using NoSQL in order to disclose data from the database. Presently the tool’s exploits are focused…

Read the full post at darknet.org.uk

NSA Collects MS Windows Error Information

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/08/nsa_collects_ms.html

Back in 2013, Der Spiegel reported that the NSA intercepts and collects Windows bug reports:

One example of the sheer creativity with which the TAO spies approach their work can be seen in a hacking method they use that exploits the error-proneness of Microsoft’s Windows. Every user of the operating system is familiar with the annoying window that occasionally pops up on screen when an internal problem is detected, an automatic message that prompts the user to report the bug to the manufacturer and to restart the program. These crash reports offer TAO specialists a welcome opportunity to spy on computers.

When TAO selects a computer somewhere in the world as a target and enters its unique identifiers (an IP address, for example) into the corresponding database, intelligence agents are then automatically notified any time the operating system of that computer crashes and its user receives the prompt to report the problem to Microsoft. An internal presentation suggests it is NSA’s powerful XKeyscore spying tool that is used to fish these crash reports out of the massive sea of Internet traffic.

The automated crash reports are a “neat way” to gain “passive access” to a machine, the presentation continues. Passive access means that, initially, only data the computer sends out into the Internet is captured and saved, but the computer itself is not yet manipulated. Still, even this passive access to error messages provides valuable insights into problems with a targeted person’s computer and, thus, information on security holes that might be exploitable for planting malware or spyware on the unwitting victim’s computer.

Although the method appears to have little importance in practical terms, the NSA’s agents still seem to enjoy it because it allows them to have a bit of a laugh at the expense of the Seattle-based software giant. In one internal graphic, they replaced the text of Microsoft’s original error message with one of their own reading, “This information may be intercepted by a foreign sigint system to gather detailed information and better exploit your machine.” (“Sigint” stands for “signals intelligence.”)

The article talks about the (limited) value of this information with regard to specific target computers, but I have another question: how valuable would this database be for finding new zero-day Windows vulnerabilities to exploit? Microsoft won’t have the incentive to examine and fix problems until they happen broadly among its user base. The NSA has a completely different incentive structure.

I don’t remember this being discussed back in 2013.

EDITED TO ADD (8/6): Slashdot thread.

Top 10 Most Obvious Hacks of All Time (v0.9)

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/07/top-10-most-obvious-hacks-of-all-time.html

For teaching hacking/cybersecurity, I thought I’d create of the most obvious hacks of all time. Not the best hacks, the most sophisticated hacks, or the hacks with the biggest impact, but the most obvious hacks — ones that even the least knowledgeable among us should be able to understand. Below I propose some hacks that fit this bill, though in no particular order.

The reason I’m writing this is that my niece wants me to teach her some hacking. I thought I’d start with the obvious stuff first.

Shared Passwords

If you use the same password for every website, and one of those websites gets hacked, then the hacker has your password for all your websites. The reason your Facebook account got hacked wasn’t because of anything Facebook did, but because you used the same email-address and password when creating an account on “beagleforums.com”, which got hacked last year.

I’ve heard people say “I’m sure, because I choose a complex password and use it everywhere”. No, this is the very worst thing you can do. Sure, you can the use the same password on all sites you don’t care much about, but for Facebook, your email account, and your bank, you should have a unique password, so that when other sites get hacked, your important sites are secure.

And yes, it’s okay to write down your passwords on paper.

Tools: HaveIBeenPwned.com

PIN encrypted PDFs

My accountant emails PDF statements encrypted with the last 4 digits of my Social Security Number. This is not encryption — a 4 digit number has only 10,000 combinations, and a hacker can guess all of them in seconds.
PIN numbers for ATM cards work because ATM machines are online, and the machine can reject your card after four guesses. PIN numbers don’t work for documents, because they are offline — the hacker has a copy of the document on their own machine, disconnected from the Internet, and can continue making bad guesses with no restrictions.
Passwords protecting documents must be long enough that even trillion upon trillion guesses are insufficient to guess.

Tools: Hashcat, John the Ripper

SQL and other injection

The lazy way of combining websites with databases is to combine user input with an SQL statement. This combines code with data, so the obvious consequence is that hackers can craft data to mess with the code.
No, this isn’t obvious to the general public, but it should be obvious to programmers. The moment you write code that adds unfiltered user-input to an SQL statement, the consequence should be obvious. Yet, “SQL injection” has remained one of the most effective hacks for the last 15 years because somehow programmers don’t understand the consequence.
CGI shell injection is a similar issue. Back in early days, when “CGI scripts” were a thing, it was really important, but these days, not so much, so I just included it with SQL. The consequence of executing shell code should’ve been obvious, but weirdly, it wasn’t. The IT guy at the company I worked for back in the late 1990s came to me and asked “this guy says we have a vulnerability, is he full of shit?”, and I had to answer “no, he’s right — obviously so”.

XSS (“Cross Site Scripting”) [*] is another injection issue, but this time at somebody’s web browser rather than a server. It works because websites will echo back what is sent to them. For example, if you search for Cross Site Scripting with the URL https://www.google.com/search?q=cross+site+scripting, then you’ll get a page back from the server that contains that string. If the string is JavaScript code rather than text, then some servers (thought not Google) send back the code in the page in a way that it’ll be executed. This is most often used to hack somebody’s account: you send them an email or tweet a link, and when they click on it, the JavaScript gives control of the account to the hacker.

Cross site injection issues like this should probably be their own category, but I’m including it here for now.

More: Wikipedia on SQL injection, Wikipedia on cross site scripting.
Tools: Burpsuite, SQLmap

Buffer overflows

In the C programming language, programmers first create a buffer, then read input into it. If input is long than the buffer, then it overflows. The extra bytes overwrite other parts of the program, letting the hacker run code.
Again, it’s not a thing the general public is expected to know about, but is instead something C programmers should be expected to understand. They should know that it’s up to them to check the length and stop reading input before it overflows the buffer, that there’s no language feature that takes care of this for them.
We are three decades after the first major buffer overflow exploits, so there is no excuse for C programmers not to understand this issue.

What makes particular obvious is the way they are wrapped in exploits, like in Metasploit. While the bug itself is obvious that it’s a bug, actually exploiting it can take some very non-obvious skill. However, once that exploit is written, any trained monkey can press a button and run the exploit. That’s where we get the insult “script kiddie” from — referring to wannabe-hackers who never learn enough to write their own exploits, but who spend a lot of time running the exploit scripts written by better hackers than they.

More: Wikipedia on buffer overflow, Wikipedia on script kiddie,  “Smashing The Stack For Fun And Profit” — Phrack (1996)
Tools: bash, Metasploit

SendMail DEBUG command (historical)

The first popular email server in the 1980s was called “SendMail”. It had a feature whereby if you send a “DEBUG” command to it, it would execute any code following the command. The consequence of this was obvious — hackers could (and did) upload code to take control of the server. This was used in the Morris Worm of 1988. Most Internet machines of the day ran SendMail, so the worm spread fast infecting most machines.
This bug was mostly ignored at the time. It was thought of as a theoretical problem, that might only rarely be used to hack a system. Part of the motivation of the Morris Worm was to demonstrate that such problems was to demonstrate the consequences — consequences that should’ve been obvious but somehow were rejected by everyone.

More: Wikipedia on Morris Worm

Email Attachments/Links

I’m conflicted whether I should add this or not, because here’s the deal: you are supposed to click on attachments and links within emails. That’s what they are there for. The difference between good and bad attachments/links is not obvious. Indeed, easy-to-use email systems makes detecting the difference harder.
On the other hand, the consequences of bad attachments/links is obvious. That worms like ILOVEYOU spread so easily is because people trusted attachments coming from their friends, and ran them.
We have no solution to the problem of bad email attachments and links. Viruses and phishing are pervasive problems. Yet, we know why they exist.

Default and backdoor passwords

The Mirai botnet was caused by surveillance-cameras having default and backdoor passwords, and being exposed to the Internet without a firewall. The consequence should be obvious: people will discover the passwords and use them to take control of the bots.
Surveillance-cameras have the problem that they are usually exposed to the public, and can’t be reached without a ladder — often a really tall ladder. Therefore, you don’t want a button consumers can press to reset to factory defaults. You want a remote way to reset them. Therefore, they put backdoor passwords to do the reset. Such passwords are easy for hackers to reverse-engineer, and hence, take control of millions of cameras across the Internet.
The same reasoning applies to “default” passwords. Many users will not change the defaults, leaving a ton of devices hackers can hack.

Masscan and background radiation of the Internet

I’ve written a tool that can easily scan the entire Internet in a short period of time. It surprises people that this possible, but it obvious from the numbers. Internet addresses are only 32-bits long, or roughly 4 billion combinations. A fast Internet link can easily handle 1 million packets-per-second, so the entire Internet can be scanned in 4000 seconds, little more than an hour. It’s basic math.
Because it’s so easy, many people do it. If you monitor your Internet link, you’ll see a steady trickle of packets coming in from all over the Internet, especially Russia and China, from hackers scanning the Internet for things they can hack.
People’s reaction to this scanning is weirdly emotional, taking is personally, such as:
  1. Why are they hacking me? What did I do to them?
  2. Great! They are hacking me! That must mean I’m important!
  3. Grrr! How dare they?! How can I hack them back for some retribution!?

I find this odd, because obviously such scanning isn’t personal, the hackers have no idea who you are.

Tools: masscan, firewalls

Packet-sniffing, sidejacking

If you connect to the Starbucks WiFi, a hacker nearby can easily eavesdrop on your network traffic, because it’s not encrypted. Windows even warns you about this, in case you weren’t sure.

At DefCon, they have a “Wall of Sheep”, where they show passwords from people who logged onto stuff using the insecure “DefCon-Open” network. Calling them “sheep” for not grasping this basic fact that unencrypted traffic is unencrypted.

To be fair, it’s actually non-obvious to many people. Even if the WiFi itself is not encrypted, SSL traffic is. They expect their services to be encrypted, without them having to worry about it. And in fact, most are, especially Google, Facebook, Twitter, Apple, and other major services that won’t allow you to log in anymore without encryption.

But many services (especially old ones) may not be encrypted. Unless users check and verify them carefully, they’ll happily expose passwords.

What’s interesting about this was 10 years ago, when most services which only used SSL to encrypt the passwords, but then used unencrypted connections after that, using “cookies”. This allowed the cookies to be sniffed and stolen, allowing other people to share the login session. I used this on stage at BlackHat to connect to somebody’s GMail session. Google, and other major websites, fixed this soon after. But it should never have been a problem — because the sidejacking of cookies should have been obvious.

Tools: Wireshark, dsniff

Stuxnet LNK vulnerability

Again, this issue isn’t obvious to the public, but it should’ve been obvious to anybody who knew how Windows works.
When Windows loads a .dll, it first calls the function DllMain(). A Windows link file (.lnk) can load icons/graphics from the resources in a .dll file. It does this by loading the .dll file, thus calling DllMain. Thus, a hacker could put on a USB drive a .lnk file pointing to a .dll file, and thus, cause arbitrary code execution as soon as a user inserted a drive.
I say this is obvious because I did this, created .lnks that pointed to .dlls, but without hostile DllMain code. The consequence should’ve been obvious to me, but I totally missed the connection. We all missed the connection, for decades.

Social Engineering and Tech Support [* * *]

After posting this, many people have pointed out “social engineering”, especially of “tech support”. This probably should be up near #1 in terms of obviousness.

The classic example of social engineering is when you call tech support and tell them you’ve lost your password, and they reset it for you with minimum of questions proving who you are. For example, you set the volume on your computer really loud and play the sound of a crying baby in the background and appear to be a bit frazzled and incoherent, which explains why you aren’t answering the questions they are asking. They, understanding your predicament as a new parent, will go the extra mile in helping you, resetting “your” password.

One of the interesting consequences is how it affects domain names (DNS). It’s quite easy in many cases to call up the registrar and convince them to transfer a domain name. This has been used in lots of hacks. It’s really hard to defend against. If a registrar charges only $9/year for a domain name, then it really can’t afford to provide very good tech support — or very secure tech support — to prevent this sort of hack.

Social engineering is such a huge problem, and obvious problem, that it’s outside the scope of this document. Just google it to find example after example.

A related issue that perhaps deserves it’s own section is OSINT [*], or “open-source intelligence”, where you gather public information about a target. For example, on the day the bank manager is out on vacation (which you got from their Facebook post) you show up and claim to be a bank auditor, and are shown into their office where you grab their backup tapes. (We’ve actually done this).

More: Wikipedia on Social Engineering, Wikipedia on OSINT, “How I Won the Defcon Social Engineering CTF” — blogpost (2011), “Questioning 42: Where’s the Engineering in Social Engineering of Namespace Compromises” — BSidesLV talk (2016)

Blue-boxes (historical) [*]

Telephones historically used what we call “in-band signaling”. That’s why when you dial on an old phone, it makes sounds — those sounds are sent no differently than the way your voice is sent. Thus, it was possible to make tone generators to do things other than simply dial calls. Early hackers (in the 1970s) would make tone-generators called “blue-boxes” and “black-boxes” to make free long distance calls, for example.

These days, “signaling” and “voice” are digitized, then sent as separate channels or “bands”. This is call “out-of-band signaling”. You can’t trick the phone system by generating tones. When your iPhone makes sounds when you dial, it’s entirely for you benefit and has nothing to do with how it signals the cell tower to make a call.

Early hackers, like the founders of Apple, are famous for having started their careers making such “boxes” for tricking the phone system. The problem was obvious back in the day, which is why as the phone system moves from analog to digital, the problem was fixed.

More: Wikipedia on blue box, Wikipedia article on Steve Wozniak.

Thumb drives in parking lots [*]

A simple trick is to put a virus on a USB flash drive, and drop it in a parking lot. Somebody is bound to notice it, stick it in their computer, and open the file.

This can be extended with tricks. For example, you can put a file labeled “third-quarter-salaries.xlsx” on the drive that required macros to be run in order to open. It’s irresistible to other employees who want to know what their peers are being paid, so they’ll bypass any warning prompts in order to see the data.

Another example is to go online and get custom USB sticks made printed with the logo of the target company, making them seem more trustworthy.

We also did a trick of taking an Adobe Flash game “Punch the Monkey” and replaced the monkey with a logo of a competitor of our target. They now only played the game (infecting themselves with our virus), but gave to others inside the company to play, infecting others, including the CEO.

Thumb drives like this have been used in many incidents, such as Russians hacking military headquarters in Afghanistan. It’s really hard to defend against.

More: “Computer Virus Hits U.S. Military Base in Afghanistan” — USNews (2008), “The Return of the Worm That Ate The Pentagon” — Wired (2011), DoD Bans Flash Drives — Stripes (2008)

Googling [*]

Search engines like Google will index your website — your entire website. Frequently companies put things on their website without much protection because they are nearly impossible for users to find. But Google finds them, then indexes them, causing them to pop up with innocent searches.
There are books written on “Google hacking” explaining what search terms to look for, like “not for public release”, in order to find such documents.

More: Wikipedia entry on Google Hacking, “Google Hacking” book.

URL editing [*]

At the top of every browser is what’s called the “URL”. You can change it. Thus, if you see a URL that looks like this:

http://www.example.com/documents?id=138493

Then you can edit it to see the next document on the server:

http://www.example.com/documents?id=138494

The owner of the website may think they are secure, because nothing points to this document, so the Google search won’t find it. But that doesn’t stop a user from manually editing the URL.
An example of this is a big Fortune 500 company that posts the quarterly results to the website an hour before the official announcement. Simply editing the URL from previous financial announcements allows hackers to find the document, then buy/sell the stock as appropriate in order to make a lot of money.
Another example is the classic case of Andrew “Weev” Auernheimer who did this trick in order to download the account email addresses of early owners of the iPad, including movie stars and members of the Obama administration. It’s an interesting legal case because on one hand, techies consider this so obvious as to not be “hacking”. On the other hand, non-techies, especially judges and prosecutors, believe this to be obviously “hacking”.

DDoS, spoofing, and amplification [*]

For decades now, online gamers have figured out an easy way to win: just flood the opponent with Internet traffic, slowing their network connection. This is called a DoS, which stands for “Denial of Service”. DoSing game competitors is often a teenager’s first foray into hacking.
A variant of this is when you hack a bunch of other machines on the Internet, then command them to flood your target. (The hacked machines are often called a “botnet”, a network of robot computers). This is called DDoS, or “Distributed DoS”. At this point, it gets quite serious, as instead of competitive gamers hackers can take down entire businesses. Extortion scams, DDoSing websites then demanding payment to stop, is a common way hackers earn money.
Another form of DDoS is “amplification”. Sometimes when you send a packet to a machine on the Internet it’ll respond with a much larger response, either a very large packet or many packets. The hacker can then send a packet to many of these sites, “spoofing” or forging the IP address of the victim. This causes all those sites to then flood the victim with traffic. Thus, with a small amount of outbound traffic, the hacker can flood the inbound traffic of the victim.
This is one of those things that has worked for 20 years, because it’s so obvious teenagers can do it, yet there is no obvious solution. President Trump’s executive order of cyberspace specifically demanded that his government come up with a report on how to address this, but it’s unlikely that they’ll come up with any useful strategy.

More: Wikipedia on DDoS, Wikipedia on Spoofing

Conclusion

Tweet me (@ErrataRob) your obvious hacks, so I can add them to the list.

Is DefCon Wifi safe?

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/07/is-defcon-wifi-safe.html

DEF CON is the largest U.S. hacker conference that takes place every summer in Las Vegas. It offers WiFi service. Is it safe?

Probably.

The trick is that you need to download the certificate from https://wifireg.defcon.org and import it into your computer. They have instructions for all your various operating systems. For macOS, it was as simple as downloading “dc25.mobileconfig” and importing it.

I haven’t validated the DefCon team did the right thing for all platforms, but I know that safety is possible. If a hacker could easily hack into arbitrary WiFi, then equipment vendors would fix it. Corporations widely use WiFi — they couldn’t do this if it weren’t safe.

The first step in safety is encryption, obviously. WPA does encryption well, you you are good there.

The second step is authentication — proving that the access-point is who it says it is. Otherwise, somebody could setup their own access-point claiming to be “DefCon”, and you’d happily connect to it. Encrypted connect to the evil access-point doesn’t help you. This is what the certificate you download does — you import it into your system, so that you’ll trust only the “DefCon” access-point that has the private key.

That’s not to say you are completely safe. There’s a known vulnerability for the Broadcom WiFi chip imbedded in many devices, including iPhone and Android phones. If you have one of these devices, you should either upgrade your software with a fix or disable WiFi.

There may also be unknown vulnerabilities in WiFi stacks. the Broadcom bug shows that after a couple decades, we still haven’t solved the problem of simple buffer overflows in WiFi stacks/drivers. Thus, some hacker may have an unknown 0day vulnerability they are using to hack you.

Of course, this can apply to any WiFi usage anywhere. Frankly, if I had such an 0day, I wouldn’t use it at DefCon. Along with black-hat hackers DefCon is full of white-hat researchers monitoring the WiFi — looking for hackers using exploits. They are likely to discover the 0day and report it. Thus, I’d rather use such 0-days in international airpots, catching business types, getting into their company secrets. Or, targeting government types.

So it’s impossible to guarantee any security. But what the DefCon network team bas done looks right, the same sort of thing corporations do to secure themselves, so you are probably secure.

On the other hand, don’t use “DefCon-Open” — not only is it insecure, there are explicitly a ton of hackers spying on it at the “Wall of Sheep” to point out the “sheep” who don’t secure their passwords.

Zero-Day Vulnerabilities against Windows in the NSA Tools Released by the Shadow Brokers

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/07/zero-day_vulner.html

In April, the Shadow Brokers — presumably Russia — released a batch of Windows exploits from what is presumably the NSA. Included in that release were eight different Windows vulnerabilities. Given a presumed theft date of the data as sometime between 2012 and 2013 — based on timestamps of the documents and the limited Windows 8 support of the tools:

  • Three were already patched by Microsoft. That is, they were not zero days, and could only be used against unpatched targets. They are EMERALDTHREAD, EDUCATEDSCHOLAR, and ECLIPSEDWING.
  • One was discovered to have been used in the wild and patched in 2014: ESKIMOROLL.

  • Four were only patched when the NSA informed Microsoft about them in early 2017: ETERNALBLUE, ETERNALSYNERGY, ETERNALROMANCE, and ETERNALCHAMPION.

So of the five serious zero-day vulnerabilities against Windows in the NSA’s pocket, four were never independently discovered. This isn’t new news, but I haven’t seen this summary before.

All You Need To Know About Cross-Site Request Forgery (CSRF)

Post Syndicated from Darknet original http://feedproxy.google.com/~r/darknethackers/~3/nBF_Xjl7rQw/

Cross-Site Request Forgery is a term you’ve properly heard in the context of web security or web hacking, but do you really know what it means? The OWASP definition is as follows: Cross-Site Request Forgery (CSRF) is an attack that forces an end user to execute unwanted actions on a web application in which they’re […]

The post All You Need…

Read the full post at darknet.org.uk

A Man-in-the-Middle Attack against a Password Reset System

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/07/a_man-in-the-mi.html

This is nice work: “The Password Reset MitM Attack,” by Nethanel Gelerntor, Senia Kalma, Bar Magnezi, and Hen Porcilan:

Abstract: We present the password reset MitM (PRMitM) attack and show how it can be used to take over user accounts. The PRMitM attack exploits the similarity of the registration and password reset processes to launch a man in the middle (MitM) attack at the application level. The attacker initiates a password reset process with a website and forwards every challenge to the victim who either wishes to register in the attacking site or to access a particular resource on it.

The attack has several variants, including exploitation of a password reset process that relies on the victim’s mobile phone, using either SMS or phone call. We evaluated the PRMitM attacks on Google and Facebook users in several experiments, and found that their password reset process is vulnerable to the PRMitM attack. Other websites and some popular mobile applications are vulnerable as well.

Although solutions seem trivial in some cases, our experiments show that the straightforward solutions are not as effective as expected. We designed and evaluated two secure password reset processes and evaluated them on users of Google and Facebook. Our results indicate a significant improvement in the security. Since millions of accounts are currently vulnerable to the PRMitM attack, we also present a list of recommendations for implementing and auditing the password reset process.

Password resets have long been a weak security link.

BoingBoing Post.