Tag Archives: Publications

Latest Raspberry Pi OS update – May 2020

Post Syndicated from Simon Long original https://www.raspberrypi.org/blog/latest-raspberry-pi-os-update-may-2020/

Along with yesterday’s launch of the new 8GB Raspberry Pi 4, we launched a beta 64-bit ARM version of Debian with the Raspberry Pi Desktop, so you could use all those extra gigabytes. We also updated the 32-bit version of Raspberry Pi OS (the new name for Raspbian), so here’s a quick run-through of what has changed.

NEW Raspberry Pi OS update (May 2020)

An update to the Raspberry Pi Desktop for all our operating system images is also out today, and we’ll have more on that in tomorrow’s blog post. For now, fi…

Bookshelf

As many of you know, we have our own publishing company, Raspberry Pi Press, who publish a variety of magazines each month, including The MagPi, HackSpace magazine, and Wireframe. They also publish a wide range of other books and magazines, which are released either to purchase as a physical product (from their website) or as free PDF downloads.

To make all this content more visible and easy to access, we’ve added a new Bookshelf application – you’ll find it in the Help section of the main menu.

Bookshelf shows the entire current catalogue of free magazines – The MagPi, HackSpace magazine and Wireframe, all with a complete set of back issues – and also all the free books from Raspberry Pi Press. When you run the application, it automatically updates the catalogue and shows any new titles which have been released since you last ran it with a little “new” flash in the corner of the cover.

To read any title, just double-click on it – if it is already on your Raspberry Pi, it will open in Chromium (which, it turns out, is quite a good PDF viewer); if it isn’t, it will download and then open automatically when the download completes. You can see at a glance which titles are downloaded and which are not by the “cloud” icon on the cover of any file which has not been downloaded.

All the PDF files you download are saved in the “Bookshelf” directory in your home directory, so you can also access the files directly from there.

There’s a lot of excellent content produced by Raspberry Pi Press – we hope this makes it easier to find and read.

Edit – some people have reported that Bookshelf incorrectly gives a “disk full” error when running on a system in which the language is not English; a fix for that is being uploaded to apt at the moment, so updating from apt (“sudo apt update” followed by “sudo apt upgrade”) should get the fixed version.

Magnifier

As mentioned in my last blog post (here), one of the areas we are currently trying to improve is accessibility to the Desktop for people with visual impairments. We’ve already added the Orca screen reader (which has had a few bug fixes since the last release which should make it work more reliably in this image), and the second recommendation we had from AbilityNet was to add a screen magnifier.

This proved to be harder than it should have been! I tried a lot of the existing screen magnifier programs that were available for Debian desktops, but none of them really worked that well; I couldn’t find one that worked the way the magnifiers in the likes of MacOS and Ubuntu did, so I ended up writing one (almost) from scratch.

To install it, launch Recommended Applications in the new image and select Magnifier under Universal Access. Once it has installed, reboot.

You’ll see a magnifying glass icon at the right-hand end of the taskbar – to enable the magnifier, click this icon, or use the keyboard shortcut Ctrl-Alt-M. (To turn the magnifier off, just click the icon again or use the same keyboard shortcut.)

Right-clicking the magnifier icon brings up the magnifier options. You can choose a circular or rectangular window of whatever size you want, and choose by how much you want to zoom the image. The magnifier window can either follow the mouse pointer, or be a static window on the screen. (To move the static window, just drag it with the mouse.)

Also, in some applications, you can have the magnifier automatically follow the text cursor, or the button focus. Unfortunately, this depends on the application supporting the required accessibility toolkit, which not all applications do, but it works reasonably well in most included applications. One notable exception is Chromium, which is adding accessibility toolkit support in a future release; for now, if you want a web browser which supports the accessibility features, we recommend Firefox, which can be installed by entering the following into a terminal window:

sudo apt install firefox-esr

(Please note that we do not recommend using Firefox on Raspberry Pi OS unless you need accessibility features, as, unlike Chromium, it is not able to use the Raspberry Pi’s hardware to accelerate video playback.)

I don’t have a visual impairment, but I find the magnifier pretty useful in general for looking at the finer details of icons and the like, so I recommend installing it and having a go yourself.

User research

We already know a lot of the things that people are using Raspberry Pi for, but we’ve recently been wondering if we’re missing anything… So we’re now including a short optional questionnaire to ask you, the users, for feedback on what you are doing with your Raspberry Pi in order to make sure we are providing the right support for what people are actually doing.

This questionnaire will automatically be shown the first time you launch the Chromium browser on a new image. There are only four questions, so it won’t take long to complete, and the results are sent to a Google Form which collates the results.

You’ll notice at the bottom of the questionnaire there is a field which is automatically filled in with a long string of letters and numbers. This is a serial number which is generated from the hardware in your particular Raspberry Pi which means we can filter out multiple responses from the same device (if you install a new image at some point in future, for example). It does not allow us to identify anything about you or your Raspberry Pi, but if you are concerned, you can delete the string before submitting the form.

As above, this questionnaire is entirely optional – if you don’t want to fill it in, just close Chromium and re-open it and you won’t see it again – but it would be very helpful for future product development if we can get this information, so we’d really appreciate it if as many people as possible would fill it in.

Other changes

There is also the usual set of bug fixes and small tweaks included in the image, full details of which can be found in the release notes on the download page.

One particular change which it is worth pointing out is that we have made a small change to audio. Raspberry Pi OS uses what is known as ALSA (Advanced Linux Sound Architecture) to control audio devices. Up until now, both the internal audio outputs on Raspberry Pi – the HDMI socket and the headphone jack – have been treated as a single ALSA device, with a Raspberry Pi-specific command used to choose which is active. Going forward, we are treating each output as a separate ALSA device; this makes managing audio from the two HDMI sockets on Raspberry Pi 4 easier and should be more compatible with third-party software. What this means is that after installing the updated image, you may need to use the audio output selector (right-click the volume icon on the taskbar) to re-select your audio output. (There is a known issue with Sonic Pi, which will only use the HDMI output however the selector is set – we’re looking at getting this fixed in a future release.)

Some people have asked how they can switch the audio output from the command line without using the desktop. To do this, you will need to create a file called .asoundrc in your home directory; ALSA looks for this file to determine which audio device it should use by default. If the file does not exist, ALSA uses “card 0” – which is HDMI – as the output device. If you want to set the headphone jack as the default output, create the .asoundrc file with the following contents:

defaults.pcm.card 1
defaults.ctl.card 1

This tells ALSA that “card 1” – the headphone jack – is the default device. To switch back to the HDMI output, either change the ‘1’s in the file to ‘0’s, or just delete the file.

How do I get it?

The new image is available for download from the usual place: our Downloads page.

To update an existing image, use the usual terminal command:

sudo apt update
sudo apt full-upgrade

To just install the bookshelf app:

sudo apt update
sudo apt install rp-bookshelf

To just install the magnifier, either find it under Universal Access in Recommended Software, or:

sudo apt update
sudo apt install mage

You’ll need to add the magnifier plugin to the taskbar after installing the program itself. Once you’ve installed the program and rebooted, right-click the taskbar and choose Add/Remove Panel Items; click Add, and select the Magnifier option.

We hope you like the changes — as ever, all feedback is welcome, so please leave a comment below!

The post Latest Raspberry Pi OS update – May 2020 appeared first on Raspberry Pi.

The Raspberry Pi Press store is looking mighty fine

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/the-raspberry-pi-press-store-is-looking-mighty-fine/

Eagle-eyed Raspberry Pi Press fans might have noticed some changes over the past few months to the look and feel of our website. Today we’re pleased to unveil a new look for the Raspberry Pi Press website and its online store.

Did you know?

Raspberry Pi Press is the publishing imprint of Raspberry Pi (Trading) Ltd, which is part of the Raspberry Pi Foundation, a UK-based charity that does loads of cool stuff with computers and computer education.

Did you also know?

Raspberry Pi Press publishes five monthly magazines: The MagPi, HackSpace Magazine, Wireframe, Custom PC, and Digital SLR Photography. It also produces a plethora of project books and gorgeous hardback beauties, such as retro gamers’ delight Code the Classics, as well as Hello World, the computing and digital making magazine for educators! Phew!

And did you also, also know?

The Raspberry Pi Press online store ships around the globe, with copies of our publications making their way to nearly every single continent on planet earth. Antarctica, we’re looking at you, kid.

It’s upgrade time!

With all this exciting work going on, it seemed only fair that Raspberry Pi Press should get itself a brand new look. We hope you’ll enjoy skimming the sparkling shelves of our online newsagents and bookshop.

Ain’t nothin’ wrong with a little tsundoku

You can pick up all the latest issues of your favourite magazines or treat yourself to a book or three, and you can also subscribe to all our publications with ease. We’ve even added a few new payment options to boot.

New delivery options

We’ve made a few changes to our shipping options, with additional choices for some regions to make sure that you can easily track your purchases and receive timely and reliable deliveries, even if you’re a long way from the Raspberry Pi Press printshop.

Customers in the UK, the EU, North America, Australia, and New Zealand won’t see any changes to delivery options. We continue to work to make sure we’re offering the best price and service we can for everyone, no matter where you are.

Have a look and see what you think!

So hop on over to the new and improved Raspberry Pi Press website to see the changes for yourself. And if you have any feedback, feel free to drop Oli and the team an email at [email protected].

The post The Raspberry Pi Press store is looking mighty fine appeared first on Raspberry Pi.

New book: The Official Raspberry Pi Camera Guide

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/new-book-the-official-raspberry-pi-camera-guide/

To coincide with yesterday’s launch of the Raspberry Pi High Quality Camera, Raspberry Pi Press has created a new Official Camera Guide to help you get started and inspire your future projects.

The Raspberry Pi High Quality Camera

Connecting a High Quality Camera turns your Raspberry Pi into a powerful digital camera. This 132-page book tells you everything you need to know to set up the camera, attach a lens, and start capturing high-resolution photos and video footage.

Make those photos snazzy

The book tells you everything you need to know in order to use the camera by issuing commands in a terminal window or via SSH. It also demonstrates how to control the camera with Python using the excellent picamera library.

You’ll discover the many image modes and effects available – our favourite is ‘posterise’.

Build some amazing camera-based projects

Once you’ve got the basics down, you can start using your camera for a variety of exciting Raspberry Pi projects showcased across the book’s 17 packed chapters. Want to make a camera trap to monitor the wildlife in your garden? Build a smart door with a video doorbell? Try out high-speed and time-lapse photography? Or even find out which car is parked in your driveway using automatic number-plate recognition? The book has all this covered, and a whole lot more.

Don’t have a High Quality Camera yet? No problem. All the commands in the book are exactly the same for the standard Raspberry Pi Camera Module, so you can also use this model with the help of our Official Camera Guide.

Snap it up!

The Official Raspberry Pi Camera Guide is available now from the Raspberry Pi Press online store for £10. And, as always, we have also released the book as a free PDF. But the physical book feels so good to hold and looks so handsome on your bookshelf, we don’t think you’ll regret getting your hands on the print edition.

Whichever format you choose, have fun shooting amazing photos and videos with the new High Quality Camera. And do share what you capture with us on social media using #ShotOnRaspberryPi.

The post New book: The Official Raspberry Pi Camera Guide appeared first on Raspberry Pi.

Build low-power, clock-controlled devices

Post Syndicated from Andrew Gregory original https://www.raspberrypi.org/blog/build-low-power-clock-controlled-devices/

Do you want to make a sensor with a battery life you can measure in days rather than hours? Even if it contains a (relatively!) power-hungry device like a Raspberry Pi? By cunning use of a real-time clock module, you can make something that wakes up, does its thing, and then goes back to sleep. While asleep, the sensor will sip a tiny amount of current, making it possible to remotely monitor the temperature of your prize marrow in the greenhouse for days on end from a single battery. Read on to find out how to do it.

A sleeping Raspberry Pi Zero apparently consuming no current!

You’ll need:

  • DS3231 powered real-time clock module with battery backup: make sure it has a battery holder and an INT/SQW output pin
  • P-channel MOSFET: the IRF9540N works well
  • Three resistors: 2.2 kΩ, 4.7 kΩ, and 220 Ω
  • A device you want to control: this can be a PIC, Arduino, ESP8266, ESP32, or Raspberry Pi. My software is written in Python and works in MicroPython or on Raspberry Pi, but you can find DS3231 driver software for lots of devices
  • Sensor you want to use: we’re using a BME280 to get air temperature, pressure, and humidity
  • Breadboard or prototype board to build up the circuit

We’ll be using a DS3231 real-time clock which is sold in a module, complete with a battery. The DS3231 contains two alarms and can produce a trigger signal to control a power switch. To keep our software simple, we are going to implement an interval timer, but there is nothing to stop you developing software that turns on your hardware on particular days of the week or days in the month. The DS3231 is controlled using I2C, which means it can be used with lots of devices.

You can pick up one of these modules from lots of suppliers. Make sure that you get one with the SQW connection, as that provides the alarm signal

MOSFET accompli

The power to our Raspberry Pi Zero is controlled via a P-channel MOSFET device operating as a switch. The 3.3 V output from Raspberry Pi is used to power the DS3231 and our BME280 sensor. The gate on the MOSFET is connected via a resistor network to the SQW output from the DS3231.

You can think of a MOSFET as a kind of switch. It has a source pin (where we supply power), a drain pin (which is the output the MOSFET controls), and a gate pin. If we change the voltage on the gate pin, this will control whether the MOSFET conducts or not.

We use a P-channel MOSFET to switch the power because the gate voltage must be pulled down to cause the MOSFET to conduct, and that is how P-channel devices function.

MOSFET devices are all about voltage. Specifically, when the voltage difference between the source and the gate pin reaches a particular value, called the threshold voltage, the MOSFET will turn on. The threshold voltage is expressed as a negative value because the voltage on the gate must be lower than the voltage on the source. The MOSFET that we’re using turns on at a threshold voltage of around -3.7 volts and off at a voltage of -1.75 volts.

The SQW signal from the DS3231 is controlled by a transistor which is acting as a switch connected to ground inside the DS3231. When the alarm is triggered, this transistor is turned on, connecting the SQW pin to ground. The diagram below shows how this works.

The resistors R1 and R2 are linked to the supply voltage at one end and the SQW pin and the MOSFET gate on the other. When SQW is turned off the voltage on the MOSFET gate is pulled high by the resistors, so the MOSFET turns off. When SQW is turned on, it pulls the voltage on the MOSFET gate down, turning it on.

Unfortunately, current leaking through R1 and R2 to the DN3231 means that we are not going to get zero current consumption when the MOSFET is turned off, but it is much less than 1 milliamp.

We’re using a BME280 environmental sensor on this device. It is connected via I2C to Raspberry Pi. You don’t need this sensor to implement the power saving

Power control

Now that we have our hardware built, we can get some code running to control the power. The DS3231 is connected to Raspberry Pi using I2C. Before you start, you must enable I2C on your Raspberry Pi using the raspi-config tool. Use sudo raspi-config and select Interfacing Options. Next, you need to make sure that you have all the I2C libraries installed by issuing this command at a Raspberry Pi console:

sudo apt-get install python3-smbus python3-dev i2c-tools

The sequence of operation of our sensor is as follows:

  1. The program does whatever it needs to do. This is the action that you want to perform at regular intervals. That may be to read a sensor and send the data onto the network, or write it to a local SD card or USB memory key. It could be to read something and update an e-ink display. You can use your imagination here.
  2. The program then sets an alarm in the DS3231 at a point in the future, when it wants the power to come back on.
  3. Finally, the program acknowledges the alarm in the DS3231, causing the SQW alarm output to change state and turn off the power.

Clock setting

The program below only uses a fraction of the capabilities of the DS3231 device. It creates an interval timer that can time hours, minutes, and seconds. Each time the program runs, the clock is set to zero, and the alarm is configured to trigger when the target time is reached.

Put the program into a file called SensorAction.py on your Raspberry Pi, and put the code that you want to run into the section indicated.

import smbus

bus = smbus.SMBus(1)

DS3231 = 0x68

SECONDS_REG = 0x00
ALARM1_SECONDS_REG = 0x07

CONTROL_REG = 0x0E
STATUS_REG = 0x0F

def int_to_bcd(x):
    return int(str(x)[-2:], 0x10)

def write_time_to_clock(pos, hours, minutes, seconds):
    bus.write_byte_data(DS3231, pos, int_to_bcd(seconds))
    bus.write_byte_data(DS3231, pos + 1, int_to_bcd(minutes))
    bus.write_byte_data(DS3231, pos +2, int_to_bcd(hours))

def set_alarm1_mask_bits(bits):
    pos = ALARM1_SECONDS_REG
    for bit in reversed(bits):
        reg = bus.read_byte_data(DS3231, pos)
        if bit:
            reg = reg | 0x80
        else:
            reg = reg & 0x7F
        bus.write_byte_data(DS3231, pos, reg)
        pos = pos + 1

def enable_alarm1():
    reg = bus.read_byte_data(DS3231, CONTROL_REG)
    bus.write_byte_data(DS3231, CONTROL_REG, reg | 0x05)

def clear_alarm1_flag():
    reg = bus.read_byte_data(DS3231, STATUS_REG)
    bus.write_byte_data(DS3231, STATUS_REG, reg & 0xFE)

def check_alarm1_triggered():
    return bus.read_byte_data(DS3231, STATUS_REG) & 0x01 != 0

def set_timer(hours, minutes, seconds):
    # zero the clock
    write_time_to_clock(SECONDS_REG, 0, 0, 0)
    # set the alarm
    write_time_to_clock(ALARM1_SECONDS_REG, hours, minutes, seconds)
    # set the alarm to match hours minutes and seconds
    # need to set some flags
    set_alarm1_mask_bits((True, False, False, False))
    enable_alarm1()
    clear_alarm1_flag()

#
# Your sensor behaviour goes here
#
set_timer(1,30,0)

The set_timer function is called to set the timer and clear the alarm flag. This resets the alarm signal and powers off the sensor. The example above will cause the sensor to shut down for 1 hour 30 minutes.

You can use any other microcontroller that implements I2C

Power down

The SensorAction program turns off your Raspberry Pi without shutting it down properly, which is something your mother probably told you never to do. The good news is that in extensive testing, we’ve not experienced any problems with this. However, if you want to make your Raspberry Pi totally safe in this situation, you should make its file system ‘read-only’, which means that it never changes during operation and therefore can’t be damaged by untimely power cuts. There are some good instructions from Adafruit here: hsmag.cc/UPgJSZ.

Note: making the operating system file store read-only does not prevent you creating a data logging application, but you would have to log the data to an external USB key or SD card and then dismount the storage device before killing the power.

If you are using a different device, such as an ESP8266 or an Arduino, you don’t need to worry about this as the software in them is inherently read-only.

The SQW output from the DS3231 will pull the gate of the MOSFET low to turn on the power to Raspberry Pi

Always running

To get the program to run when the Raspberry Pi boots, use the Nano editor to add a line at the end of the rc.local file that runs your program.

sudo nano /etc/rc.local

Use the line above at the command prompt to start editing the rc.local file and add the following line at the end of the file:

python3 /home/pi/SensorAction.py &

This statement runs Python 3, opens the SensorAction.py file, and runs it. Don’t forget the ampersand (&) at the end of the command: this starts your program as a separate process, allowing the boot to complete. Now, when Raspberry Pi boots up, it will run your program and then shut itself down. You can find a full sample application on the GitHub pages for this project (hsmag.cc/Yx7q6t). It logs air temperature, pressure, and humidity to an MQTT endpoint at regular intervals. Now, go and start tracking that marrow temperature!

Issue 30 of HackSpace magazine is out now

The latest issue of HackSpace magazine is on sale now, and you can get your copy from the Raspberry Pi Press online store. You can also download it for free to check it out first.

UK readers can take advantage of our special subscriptions offer at the moment.

3 issues for £10 & get a free book worth £10…

If you’re in the UK, get your first three issues of HackSpace magazine, The MagPi, Custom PC, or Digital SLR Photography delivered to your door for £10, and choose a free book (itself worth £10) on top!

The post Build low-power, clock-controlled devices appeared first on Raspberry Pi.

Special offer for magazine readers

Post Syndicated from Russell Barnes original https://www.raspberrypi.org/blog/special-offer-for-magazine-readers/

You don’t need me to tell you about the unprecedented situation that the world is facing at the moment. We’re all in the same boat, so I won’t say anything about it other than I hope you stay safe and take care of yourself and your loved ones.

The other thing I will say is that every year, Raspberry Pi Press produces thousands of pages of exciting, entertaining, and often educational content for lovers of computing, technology, games, and photography.

In times of difficulty, it’s not uncommon for people to find solace in their hobbies. The problem you’ll find yourself with is that it’s almost impossible to buy a magazine at the moment, at least in the UK: most of the shops that sell them are closed (and even most of their online stores are too).

We’re a proactive bunch, so we’ve done something about that:


From today, you can subscribe to The MagPi, HackSpace magazine, Custom PC, or Digital SLR Photography at a cost of three issues for £10 in the UK – and we’re giving you a little extra too.

We like to think we produce some of the best-quality magazines on the market today (and you only have to ask our mums if you want a second opinion). In fact, we’d go as far as to say our magazines are exactly the right mix of words and pictures for making the most of all the extra home-time you and your loved ones are having.

Take your pick for three issues at £10 and get a free book worth £10!

If you take us up on this offer, we’ll send the magazines direct to your door in the UK, with free postage. And we’re also adding a gift to thank you for signing up: on top of your magazines, you’ll get to choose a book that’s worth £10 in itself.

In taking up this offer, you’ll get some terrific reading material, and we’ll deliver it all straight to you — no waiting around. You’ll also be actively supporting our print magazines and the charitable work of the Raspberry Pi Foundation.

I hope that among our magazines, you’ll find something that’s of interest to you or, even better yet, something that sparks a new interest. Enjoy your reading!

The post Special offer for magazine readers appeared first on Raspberry Pi.

Build a physical game controller for Infinite Bunner

Post Syndicated from Andrew Gregory original https://www.raspberrypi.org/blog/build-a-physical-game-controller-for-infinite-bunner/

In HackSpace magazine issue 28 we had a look at how to create an ultrasonic controller for a version of Pong called Boing!. This month, we’re going to take a step further forward through video game history and look at the game Frogger. In this classic game, you control a frog as it makes its way across logs, roads, and train tracks, avoiding falling in the water or getting hit.

Infinite Bunner

The tribute to Frogger in the new Code the Classics Volume 1 book is called Infinite Bunner, and works in much the same way, except you control a bunny.

Jump along the logs, dodge the traffic, avoid the trains, and keep your bunny alive for as long as possible

All this hopping got us thinking about a controller. Our initial idea was that since the animals jump, so should the controller. An accelerometer can detect freefall, so it shouldn’t be too hard to convert that into button presses. However, it turns out that computer-controlled frogs and rabbits can jump much, much faster than humans can, and we really struggled to get a working game mechanic, so we compromised a little and worked with ‘flicks’.

The flick controller

The basic idea is that you tilt the controller left or right to move left or right, but you have to flick it up to register a jump (simply holding it upright won’t work).

We’ve used a Circuit Playground Bluefruit as our hardware, but it would work equally well with a Circuit Playground Express. There are two key parts to the software. The first is reading in accelerometer values and use these to know what orientation the board is in, and the second is the board mimicing a USB keyboard and sending keystrokes to any software running on it.

Playing Infinite Bunner

The first step is to get Infinite Bunner working on your machine.

Get your copy of Code the Classics today

You can download the code for all the Code the Classics Volume 1 games here. Click on Clone or Download > Download ZIP. Unzip the download somewhere.

You’ll need Python 3 with Pygame Zero installed. The process for this differs a little between different computers, but there’s a good overview of all the different options on page 186 of Code the Classics.

Subscribe to HackSpace magazine for twelve months and you get a Circuit Playground Express for free! Then you can make your very own Infinite Bunner controller

Once everything’s set up, open a terminal and navigate to the directory you unzipped the code in. Then, inside that, you should find a folder called bunner-master and move into that. You can then run:

python3 bunner.py

Have a few goes playing the game, and you’ll find that you need the left, right, and up arrow keys to play (there is also the down arrow, but we’ve ignored this since we’ve never actually used it in gameplay – if you’re a Frogger/Bunner aficionado, you may wish to implement this as well).

Reading the accelerometer is as easy as importing the appropriate module and running one line:

from adafruit_circuitplayground import cpx, y, z = cp.acceleration

Sending key presses is similarly easy. You can set up a keyboard with the following:

from adafruit_hid.keyboard import Keyboard
from adafruit_hid.keyboard_layout_us import KeyboardLayoutUS
from adafruit_hid.keycode import Keycode

keyboard = Keyboard(usb_hid.devices)

Then send key presses with code such as this:

time.keyboard.press(Keycode.LEFT_ARROW) time.sleep(0.1)
keyboard.release_all()

The only thing left is to slot in our mechanics. The X-axis on the accelerometer can determine if the controller is tilted left or right. The output is between 10 (all the way left) and -10 (all the way right). We chose to threshold it at 7 and -7 to require the user to tilt it most of the way. There’s a little bit of fuzz in the readings, especially as the user flicks the controller up, so having a high threshold helps avoid erroneous readings.

The Y-axis is for jumping. In this case, we require a ‘flap’ where the user first lifts it up (over a threshold of 5), then back down again.

The full code for our controller is:

import time
from adafruit_circuitplayground import cp
import usb_hid
from adafruit_hid.keyboard import Keyboard
from adafruit_hid.keyboard_layout_us import KeyboardLayoutUS
from adafruit_hid.keycode import Keycode

keyboard = Keyboard(usb_hid.devices)

jumping = 0
up=False
while True:
    x, y, z = cp.acceleration
    if abs(y) > 5:
        up=True
    if y < 5 and up:
        keyboard.press(Keycode.UP_ARROW)
        time.sleep(0.3)
        keyboard.release_all()
        up=False
    if x < -7 :
        keyboard.press(Keycode.LEFT_ARROW)
        time.sleep(0.1)
        keyboard.release_all()
    if x < 7 : keyboard.press(Keycode.RIGHT_ARROW)
        time.sleep(0.1)
        keyboard.release_all()
        time.sleep(0.1)
    if jumping > 0:
        jumping=jumping-1

It doesn’t take much CircuitPython to convert a microcontroller into a games controller

The final challenge we had was that there’s a bit of wobble when moving the controller around – especially when trying to jump repeatedly and quickly. After fiddling with thresholds for a while, we found that there’s a much simpler solution: increase the weight of the controller. The easiest way to do this is to place it inside a book. If you’ve ever held a copy of Code the Classics, you’ll know that it’s a fairly weighty tome. Just place the board inside and close the book around it, and all the jitter disappears.

That’s all there is to the controller. You can use it to play the game, just as you would any joypad. Start the game as usual, then start flapping the book around to get hopping.

HackSpace magazine is out now

The latest issue of HackSpace magazine is out today and can be purchased from the Raspberry Pi Press online store. You can also download a copy if you want to see what all the fuss is about.


Code the Classics is available from Raspberry Pi Press as well, and comes with free UK shipping. And here’s a lovely video about Code the Classics artist Dan Malone and the gorgeous artwork he created for the book:

Code the Classics: Artist Dan Malone

No Description

The post Build a physical game controller for Infinite Bunner appeared first on Raspberry Pi.

Wireframe’s deep(ish) dive into the glorious double jump

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/wireframes-deepish-dive-into-the-glorious-double-jump/

Yoshi aside, we can’t think of anyone who isn’t a fan of the double jump. In their latest video, the Wireframe magazine team take a deep(ish) dive into one of video gaming’s most iconic moves.

What is the Double Jump | Wireframe Deep Dive

The humble jump got a kick in 1984 with the introduction of the double jump, a physicist’s worst nightmare and one of video gaming’s most iconic moves. Subsc…

Also, HDR!

Are you looking to upgrade your computer monitor? Last week, Custom PC magazine, a publication of Raspberry Pi Press, released their latest video discussing HDR monitors. Are you ready to upgrade, and more importantly, should you?

What is an HDR monitor? High dynamic range explained | Custom PC magazine

High dynamic range (HDR) monitors are all the rage, but what exactly is HDR and which monitors produce the best image quality? Check out our full HDR guide: …

We produce videos for all our Raspberry Pi Press publications, including magazines such as The MagPi and HackSpace magazine, as well as our book releases, such as Code the Classics and Build Your Own First-Person Shooter in Unity.

Subscribe to the Raspberry Pi Press YouTube channel today and click on the bell button to ensure you’re notified of all new releases. And, for our complete publication library, visit the Raspberry Pi Press online store.

The post Wireframe’s deep(ish) dive into the glorious double jump appeared first on Raspberry Pi.

Create Boing!, our Python tribute to Pong

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/create-boing-our-python-tribute-to-pong/

Following on from yesterday’s introduction to Pong, we’re sharing Boing!, the Python-based tribute to Pong created by Eben Upton exclusively for Code the Classics. Read on to get a detailed look at the code for Boing!

You can find the download link for the Boing! code in the Code the Classics book, available now in a variety of formats. Be sure to stick with today’s blog post until the end, for a special Code the Classics offer.

From Pong to Boing!

To show how a game like Pong can be coded, we’ve created Boing! using Pygame Zero, a beginner-friendly tool for making games in Python. It’s a good starting point for learning how games work – it takes place on a single screen without any scrolling, there are only three moving objects in the game (two bats and a ball), and the artificial intelligence for the computer player can be very simple – or even non-existent, if you’re happy for the game to be multiplayer only. In this case, we have both single-player and two-player modes.

The code can be divided into three parts. First, there’s the initial startup code. We import from other Python modules so we can use their code from ours. Then we check to make sure that the player has sufficiently up-to-date versions of Python and Pygame Zero. We set the WIDTH and HEIGHT variables, which are used by Pygame Zero when creating the game window. We also create two small helper functions which are used by the code.



The next section is the largest. We create four classes: Impact, Ball, Bat, and Game. The first three classes inherit from Pygame Zero’s Actor class, which amongst other things keeps track of an object’s location in the game world, and takes care of loading and displaying sprites. Bat and Ball define the behaviour of the corresponding objects in the game, while Impact is used for an animation which is displayed briefly whenever the ball bounces off something. The Game class’s job is to create and keep track of the key game objects, such as the two bats and the ball.

Further down, we find the update and draw functions. Pygame Zero calls these each frame, and aims to maintain a frame rate of 60 frames per second. Gameplay logic, such as updating the position of an object or working out if a point has been scored, should go in update, while in draw we tell each of the Actor objects to draw itself, as well as displaying backgrounds, text, and suchlike.



Our update and draw functions make use of two global variables: state and game. At any given moment, the game can be in one of three states: the main menu, playing the game, or the game-over screen. The update and draw functions read the state variable and run only the code relevant to the current state. So if state is currently State.MENU, for example, update checks to see if the SPACE bar or the up/down arrows are pressed and updates the menu accordingly, and draw displays the menu on the screen. The technical term for this kind of system is ‘finite state machine’.

The Game class’s job is to create and keep track of the key game objects

The game variable references an instance of the Game class as described above. The __init__ (constructor) method of Game optionally receives a parameter named controls. When we create a new Game object for the main menu, we don’t provide this parameter and so the game will therefore run in attract mode – in other words, while you’re on the main menu, you’ll see two computer-controlled players playing against each other in the background. When the player chooses to start a new game, we replace the existing Game instance with a new one, initialising it with information about the controls to be used for each player – if the controls for the second player are not specified, this indicates that the player has chosen a single-player game, so the second will be computer-controlled.

Two types of movement

In Boing!, the Bat and Ball classes inherit from Pygame Zero’s Actor class, which provides a number of ways to specify an object’s position. In this game, as well as games in later chapters, we’re setting positions using the x and y attributes, which by default specify where the centre of the sprite will be on the screen. Of course, we can’t just set an object’s position at the start and be done with it – if we want it to move as the game progresses, we need to update its position each frame. In the case of a Bat, movement is very simple. Each frame, we check to see if the relevant player (which could be a human or the computer) wants to move – if they do, we either subtract or add 4 from the bat’s Y coordinate, depending on whether they want to move up or down. We also ensure that the bat does not go off the top or bottom of the screen. So, not only are we only moving along a single axis, our Y coordinate will always be an integer (i.e. a whole number). For many games, this kind of simple movement is sufficient. Even in games where an object can move along both the X and Y axes, we can often think of the movement along each axis as being separate. For example, in the next chapter’s game, Cavern, the player might be pressing the right arrow key and therefore moving along the X axis at 4 pixels per frame, while also moving along the Y axis at 10 pixels per frame due to gravity. The movement along each axis is independent of the other.

Able to move at any angle, the ball needs to move at the same speed regardless of its direction

For the Ball, things get a bit more complicated. Not only can it move at any angle, it also needs to move at the same speed regardless of its direction. Imagine the ball moving at one pixel per frame to the right. Now imagine trying to make it move at a 45° angle from that by making it move one pixel right and one pixel up per frame. That’s a longer distance, so it would be moving faster overall. That’s not great, and that’s before we’ve even started to think about movement in any possible direction.

The solution is to make use of vector mathematics and trigonometry. In the context of a 2D game, a vector is simply a pair of numbers: X and Y. There are many ways in which vectors can be used, but most commonly they represent positions or directions.

You’ll notice that the Ball class has a pair of attributes, dx and dy. Together these form a vector representing the direction in which the ball is heading. If dx and dy are 1 and 0.5, then each time the ball moves, it’ll move by one pixel on the X axis and a half a pixel on the Y axis. What does it mean to move half a pixel? When a sprite is drawn, Pygame Zero will round its position to the nearest pixel. So the end result is that our sprite will move down the screen by one pixel every other frame, and one pixel to the right every frame (Figure 1).

We still need to make sure that our object moves at a consistent speed regardless of its direction. What we need to do is ensure that our direction vector is always a ‘unit vector’ – a vector which represents a distance of one (in this case, one means one pixel, but in some games it will represent a different distance, such as one metre). Near the top of the code you’ll notice a function named normalised. This takes a pair of numbers representing a vector, uses Python’s math.hypot function to calculate the length of that vector, and then divides both the X and Y components of the vector by that length, resulting in a vector which points in the same direction but has a length of one (Figure 2).

Vector maths is a big field, and we’ve only scratched the surface here. You can find many tutorials online, and we also recommend checking out the Vector2 class in Pygame (the library on top of which Pygame Zero is built).

Try Boing!

Update Raspbian to try Boing! and other Code the Classics games on your Raspberry Pi.

The full BOING! tutorial, including challenges, further explanations, and a link to the downloadable code can be found in Code the Classics, the latest book from Raspberry Pi Press.

We’re offering £1 off Code the Classics if you order it before midnight tomorrow from the Raspberry Pi Press online store. Visit the store now, or use the discount code PONG at checkout if you make a purchase before midnight tomorrow.

As always, Code the Classics is available as a free PDF from the Wireframe website, but we highly recommend purchasing the physical book, as it’s rather lovely to look at and would make a great gift for any gaming and/or coding enthusiast.

The post Create Boing!, our Python tribute to Pong appeared first on Raspberry Pi.

Raspberry Pi Christmas Shopping Guide 2019

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/raspberry-pi-christmas-shopping-guide-2019/

Stuck for what to buy your friends and family this Christmas? Whether you’re looking to introduce someone to Raspberry Pi and coding, or trying to find the perfect gift for the tech-mad hobbyist in your life, our Christmas Shopping Guide 2019 will help you complete your shopping list. So, let’s get started…

The good ol’ Raspberry Pi

They’ve asked for a Raspberry Pi but not told you which one they want? You know they like coding but don’t know where to start? They’re an avid baker and you think they may have spelt ‘pie’ wrong on their Christmas list? No problem, we’ve got you sorted.

Raspberry Pi 4 Desktop Kit

With everything you need to get started using Raspberry Pi 4, the Raspberry Pi 4 Desktop Kit contains our official mouse, keyboard with an integrated USB hub, USB-C power adapter, case, two micro HDMI leads, our Beginner’s Guide and, of course, the 4GB Raspberry Pi 4. Available from our Approved Resellers and the Raspberry Pi Store, Cambridge, the Desktop Kit is the perfect gift for anyone who’s wanting to get started with coding and digital making, or who’s simply looking to upgrade their current home computer to a smaller, less power-hungry setup.

Visit the Raspberry Pi Store, Cambridge, or find your nearest Approved Reseller online.

Raspberry Pi Zero W

Raspberry Pi Zero WH

The smallest Raspberry Pi still packs a punch despite its size and price. For $10, Raspberry Pi Zero W is perfect for embedding into projects and, with onboard Bluetooth and wireless LAN, there are fewer cables to worry about. Buy a Raspberry Pi Zero W with or without pre-soldered header pins, and pop it in someone’s stocking this Christmas as a great maker surprise.

Visit the Raspberry Pi Store, Cambridge, or find your nearest Approved Reseller online.

Get Started with Raspberry Pi 3A+

 

This isn’t just a book: it’s a book with a computer on the front. Getting Started with Raspberry Pi is a great gift for anyone curious about coding and, at £35, it’s a pretty affordable gift to give this festive season. Alongside the 116-page getting-started guide, the package also contains a Raspberry Pi 3A+, official case, and 16GB micro SD card pre-loaded with NOOBs. Raspberry Pi 3A+ can be powered with a good-quality micro USB phone charger, and it can be connected to any TV or computer display via standard HDMI. Grab a keyboard and mouse — you’ll be surprised how many people have a keyboard and mouse lying around — and you’re good to go!

Order your gift today from the Raspberry Pi Press online store, with international shipping available.

A full range of all Raspberry Pi variants, official accessories, and add-ons can be found on our products page.

A Raspberry Pie

Don’t be lazy, make your own!

Books

Raspberry Pi Press has released a small library’s worth of publications these last few months — have you ordered all your copies yet?





Pre-orders are now open for our glorious Code the Classics, so secure your copy now for the 13 December release date, with free UK shipping. And, while you’re on our Raspberry Pi Press page, check out our latest range of publications to suit all techy interests: Retro Gaming with Raspberry Pi will show the budding gamer in your life how to build their own Raspberry Pi retro arcade to play their Code the Classics favourites on, while Book of Making 2 and Raspberry Pi Projects Book 5 will inspire them to make all manner of amazing projects, from electronics and woodworking to crafts and rockets.


An Introduction to C and GUI programming by Simon Long

If they’re already full to the brim with Raspberry Pi, why not treat them to our Get Started with Arduino guide so they can expand upon their electronics skills. We also offer a host of established publications at discounted prices, including Sophy Wong’s Wearable Tech Projects, An Introduction to C & GUI Programming, and previous volumes of the Book of Making and the Raspberry Pi Projects Book.

Visit the Raspberry Pi Press online store, or head to the Raspberry Pi Store, Cambridge to find all our publications. You may also find a selection in your local WHSmith, Sainsbury’s, or Barnes & Noble.

Magazine subscriptions

Subscriptions are available for all of our magazines. 12-month subscribers to The MagPi magazine will receive a free Raspberry Pi, while a 12-month subscription to HackSpace magazine will net you a free Adafruit Circuit Playground Express.

Subscribers to Wireframe magazine, Custom PC magazine, and Digital SLR Photography will save up to 49% compared to newsstand prices, with many subscription options to choose from.

Babbage Bear

Everyone needs a Babbage Bear. Your new Babs will come complete with their own Raspberry Pi-branded shirt. And, with some felt, stuffing, and a stapler, you can make them as festive as ours in no time!

Order yours online, or buy Babbage at the Raspberry Pi Store, Cambridge.

Great third-party add-ons and essential kit

The Pi Hut’s 3D Xmas Tree

This newest iteration of The Pi Hut 3D Xmas Tree includes programmable RGB LEDs! Simply detach the two halves of the tree from their frame, slot them together, and place them onto the GPIO pins of your Raspberry Pi. With the provided libraries of code, the tree will be lit up and merry before you know it.

How about programming it to flash to your favourite Christmas song? Get yours today from The Pi Hut and the Raspberry Pi Store, Cambridge.

Pimoroni Pirate Radio

“Pirate Audio Speaker,” Pimoroni explain “is perfect for making a Lilliputian radio, sound effect player, or even as a teeny-weeny games console!”

Attach this HAT to any 40-pin Raspberry Pi and start creating a whole host of wonderful audio-visual projects — such as a Christmas #1 jukebox — to get you in the mood for your office party.

Available from the Pimoroni website and the Raspberry Pi Store, Cambridge.

PocketMoneyTronics GPIO Christmas Tree

This super-cute GPIO add-on allows users to write their own light shows via GPIO. Available for £4 from the Raspberry Pi Store, Cambridge, and the PocketMoneyTronics website, it’s a nice festive addition to any coders stocking.

Full instructions are provided with the kit, and are also available online. Buy the kit pre-soldered or loose, depending on your giftee’s soldering skills.

Visit the websites of all our Approved Resellers for more great Raspberry Pi gifts. Find your local Approved Reseller by selecting your country from the dropdown menu on any Raspberry Pi Products page.

Essential kit

Fill their maker kit this festive season, with a whole host of great components and tools. A soldering iron is a great way for coders to start bringing their projects out into the real world, allowing them to permanently add sensors, lights, buttons, etc. to their Raspberry Pi. They’ll also need one if they want to add header pins to the $5 Raspberry Pi Zero and $10 Raspberry Pi Zero W.

You can never have enough LEDs. Available in a variety of sizes and colours, you can find packs of LEDs online or in your local electronics store.

Never underestimate the importance of a cutting mat. Not only will it save your tabletop from craft knife cuts and soldering iron burns, but they also look great in photos for when its time to show of their latest project!

Amazon Smile

If you plan on making online purchases via Amazon, please consider selecting the Raspberry Pi Foundation via Amazon Smile! Your items will still be the same cost to you, but Amazon will donate a portion of the purchase price to help us continue to make free computer science education available to adults  and young people everywhere.

  • Amazon Smile for the UK
  • Amazon Smile for the US
  • For those of you based elsewhere, we’re pretty sure that you just need to add smile. before amazon in the Amazon web address you use in your country, so give that a try. If that doesn’t work, try searching for Amazon Smile via your prefered search engine.

Our gift to you

We wanted to give you a gift this festive season, so we asked the incredibly talented Sam Alder to design an illustration for you to print or use as your desktop wallpaper.

The poster is completely free for you to use and can be opened by clicking on the image above. We just ask that you don’t sell it, print it onto a t-shirt or mug, tattoo it onto your body, or manipulate it. But do feel free to print it as a poster for your home, classroom, or office, or to upload it as your computer wallpaper. And, when you do, be sure to take a photo and share it with us on social media.

You can also download a wider version of the image.

Happy gift-giving this 2019!

The post Raspberry Pi Christmas Shopping Guide 2019 appeared first on Raspberry Pi.

Pre-order Code the Classics today!

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/pre-order-code-the-classics-today/

Today, we are proud to announce Code the Classics, the latest (and long-awaited) publication from Raspberry Pi Press.

Pre-order Code the Classics today

Subscribe to our YouTube channel: http://rpf.io/ytsub Help us reach a wider audience by translating our video content: http://rpf.io/yttranslate Buy a Raspberry Pi from one of our Approved Resellers: http://rpf.io/ytproducts Find out more about the #RaspberryPi Foundation: Raspberry Pi http://rpf.io/ytrpi Code Club UK http://rpf.io/ytccuk Code Club International http://rpf.io/ytcci CoderDojo http://rpf.io/ytcd Check out our free online training courses: http://rpf.io/ytfl Find your local Raspberry Jam event: http://rpf.io/ytjam Work through our free online projects: http://rpf.io/ytprojects Do you have a question about your Raspberry Pi?

Code the Classics

Code the Classics not only tells the stories of some of the seminal video games of the 1970s and 1980s, but shows you how to create your own games inspired by them using Python and Pygame Zero, following examples programmed by Raspberry Pi founder Eben Upton.

Get game design tips and tricks from the masters. Explore the code listings and find out how they work.

Learn how to code your own games with Pygame Zero. Download and play games examples by Eben Upton.

Pre-order Code the Classics today

Code the Classics is available to pre-order now from the Raspberry Pi Press online store, and it will be released in time for Christmas on 13 December. Pre-order today for FREE UK shipping.

Code the Classics is the perfect gift for anyone with fond memories of the video games of the 1970s and 1980s, and it’s also a brilliant way for young coders to get into understanding the code mechanics behind gaming, helping to inspire them to create their own.

The post Pre-order Code the Classics today! appeared first on Raspberry Pi.

Get started with… Arduino?

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/get-started-ardunio/

Yes, you read that title right, and no, you haven’t accidentally stumbled upon the Arduino Foundation’s website. Today, we’re pleased to announce a new addition to the Raspberry Pi Press family: Get Started with Arduino, a complete how-to guide to help you get hands on with the other pocket-sized board.

But why?

Why not? Our mission is to put the power of computing and digital making into the hands of people all over the world. Whether you’re using a Raspberry Pi, an Arduino, or any other piece of digital making kit, if you’re creating with tech, we’re happy. And Raspberry Pi and Arduino make wonderful project partners for all kinds of build.

What’s in the book?

Get Started with Arduino is packed full of how-tos and project tutorials to help you get better acquainted with the little blue microcontroller. Whether you’re brand new to digital making, a die-hard Raspberry Pi fan looking to expand your maker skillset, or simply a bit of a bookworm, Get Started with Arduino is a super addition to your bookshelves.


Aren’t Raspberry Pi and Arduino the same kind of thing?

Arduino is a microcontroller, while Raspberry Pi is a full computer. Microcontrollers don’t usually run a mainstream operating system, but they’re extremely power-efficient, so they can be great for projects that can’t stay plugged into the mains. You need to use a separate computer to set up your Arduino, but you can do everything on a Raspberry Pi itself… including setting up an Arduino. As we said, the two work really well together in some projects: for example, you might build a robot where the Raspberry Pi handles intensive processing tasks and provides you with a friendly environment for developing your code, while the Arduino handles precise real-time control of the motors.

Buy Get Started with Arduino today

Get Started with Arduino is out now! It’s available from the Raspberry Pi Press website with free international shipping, from the Raspberry Pi Store in Cambridge, and from WHSmith in the UK; it’ll reach Barnes & Noble stores in the US in a week or so.

Also out today…

HackSpace magazine issue #25 is also out today, available from the Raspberry Pi Press website, the Raspberry Pi Store in Cambridge, and every newsagent that’s worth its salt.

And, if that’s not enough, Wireframe magazine issue 27 is also out today, and it too is available from Raspberry Pi Press, the Raspberry Pi Store, and newsagents across the UK.

But wait, there’s more!

In case you missed it, on Monday we released Retro Gaming with Raspberry Pi, your one-stop guide to creating and playing classic retro games on your Raspberry Pi.

Did someone say free?

For getting this far in today’s blog, here’s your reward: Get Started with Arduino, HackSpace magazine, Wireframe magazine and Retro Gaming with Raspberry Pi are all available as free PDF downloads. However, when you buy our publications, you’re supporting the work of the Raspberry Pi Foundation to bring computing to everyone, as well as the continued production of even more great magazines and special edition books. So, you know what to do.

The post Get started with… Arduino? appeared first on Raspberry Pi.

What’s inside the Raspberry Pi 4 Desktop Kit?

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/whats-inside-the-raspberry-pi-4-desktop-kit/

The Raspberry Pi 4 Desktop Kit is the perfect gift for any budding maker, coder, or Raspberry Pi fanatic. Get yours today from Raspberry Pi Approved Resellers across the globe, and the Raspberry Pi Store, Cambridge.

What’s inside the Raspberry Pi 4 Desktop Kit?

Subscribe to our YouTube channel: http://rpf.io/ytsub Help us reach a wider audience by translating our video content: http://rpf.io/yttranslate Buy a Raspberry Pi from one of our Approved Resellers: http://rpf.io/ytproducts Find out more about the #RaspberryPi Foundation: Raspberry Pi http://rpf.io/ytrpi Code Club UK http://rpf.io/ytccuk Code Club International http://rpf.io/ytcci CoderDojo http://rpf.io/ytcd Check out our free online training courses: http://rpf.io/ytfl Find your local Raspberry Jam event: http://rpf.io/ytjam Work through our free online projects: http://rpf.io/ytprojects Do you have a question about your Raspberry Pi?

What’s inside?

The Official Raspberry Pi 4 Desktop Kit includes all you need to hook up your Raspberry Pi to an HDMI monitor or TV and get started.

Raspberry Pi Desktop Kit

Raspberry Pi 4 4GB

Released earlier this year, the Raspberry Pi 4 is the latest development from the Raspberry Pi team. Available in 1GB, 2GB and 4GB variants, the Raspberry Pi Desktop Kit is powerful enough to replace your humble desktop computer.

Official Raspberry Pi keyboard

Snazzy Raspberry Pi keyboard

Designed with Raspberry Pi users in mind, the new official keyboard is both aesthetically and functionally pleasing. Available in various language layouts, the keyboard also contains a USB hub, allowing for better cable management on the go.

Official Raspberry Pi mouse

Natty Raspberry Pi mouse

Light-weight and comfortable to use, the official mouse is the perfect pairing for our keyboard.

Official Raspberry Pi case

Or this side?

Protect your Raspberry Pi from dust and tea spills with the newly-designed Raspberry Pi 4 case. How did we design it? Find out more here.

Official Raspberry Pi Beginners Guide

Updated for the new Raspberry Pi 4, our Official Beginners Guide contains all the information needed to get up and running with your new computer and provides several projects to introduce you to the world of coding. It’s great, but don’t take our word for it; Wired said “The beginners guide that comes with the Desktop Kit is the nicest documentation I’ve seen with any hardware, possibly ever. ”

Official Raspberry Pi USB-C Power Adapter

We’ve updated the Raspberry Pis power supply to USB-C, allowing your new computer to receive all the juice it needs to run while supporting add-ons like HATs and other components.

16GB micro SD Card with NOOBS

Plugin and get started. With the NOOBS pre-loaded on a micro SD card, you can get up and running straight away, without the need to spend time installing your OS.

2x Raspberry Pi Micro HDMI leads

Two?! The Raspberry Pi 4 includes two micro HDMI connectors, which means you can run two monitors from one device.

The immense feeling of joy that you’re making a difference in the world

We’re a charity. 100% of the profit we make when you purchase official Raspberry Pi products goes to support the work of the Raspberry Pi Foundation, and its mission to put the power of computing and digital making into the hands of people all over the world. Thank you!

Get your Raspberry Pi 4 Desktop Kit

To find your nearest Raspberry Pi Approved reseller, visit our products page or the Raspberry Pi Store, Cambridge. We’re constantly working with new suppliers to ensure more availability of Raspberry Pi products across the world.

BONUS: Un-unboxing video for Christmas

Un-unboxing the Raspberry Pi 4 Desktop Kit

Subscribe to our YouTube channel: http://rpf.io/ytsub Help us reach a wider audience by translating our video content: http://rpf.io/yttranslate Buy a Raspberry Pi from one of our Approved Resellers: http://rpf.io/ytproducts Find out more about the #RaspberryPi Foundation: Raspberry Pi http://rpf.io/ytrpi Code Club UK http://rpf.io/ytccuk Code Club International http://rpf.io/ytcci CoderDojo http://rpf.io/ytcd Check out our free online training courses: http://rpf.io/ytfl Find your local Raspberry Jam event: http://rpf.io/ytjam Work through our free online projects: http://rpf.io/ytprojects Do you have a question about your Raspberry Pi?

 

The post What’s inside the Raspberry Pi 4 Desktop Kit? appeared first on Raspberry Pi.

New book (with added computer): Get Started with Raspberry Pi

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/new-book-get-started-with-raspberry-pi/

The Raspberry Pi Press is really excited to announce the release of Get Started with Raspberry Pi. This isn’t just a book about a computer: it’s a book with a computer.

Ideal for beginners, this official guide and starter kit contains everything you need to get started with Raspberry Pi.

Inside you’ll find a Raspberry Pi 3A+, the official case, and a 16GB microSD memory card – preloaded with NOOBS, containing the Raspbian operating system. The accompanying 116-page book is packed with beginner’s guides to help you master your new Raspberry Pi!

  • Set up your new Raspberry Pi 3A+ for the first time.
  • Discover amazing software built for creative learning.
  • Learn how to program in Scratch and Python.
  • Control electronics: buttons, lights, and sensors.

A brilliant Christmas gift idea, it’s available now in the Raspberry Pi Press store. As always, we have also released the guide as a free PDF – minus the 3A+, case and SD card, of course!

Raspberry Pi Beginner’s Guide 3rd Edition

And that’s not all! We have also created a new edition of our popular Raspberry Pi Beginner’s Guide book.

As well as covering Raspberry Pi 4, this 252-page book features programming and physical computing projects updated for Scratch 3, which is available in the latest version of Raspbian.

It’s available now in the Raspberry Pi Press Store, with free worldwide delivery. And, as always, you can also download a free PDF version.

Free downloads: why?

Curious minds should make note that Raspberry Pi Press releases free downloadable PDFs of all publications on launch day. Why? Because, in line with our mission statement, we want to put the power of computing and digital making into the hands of people all over the world, and that includes the wealth of information we publish as part of Raspberry Pi Press.

We publish new issues of Wireframe magazine every two weeks, new issues of HackSpace magazine and The MagPi magazine every month, and project books such as The Book of Making, Wearable Tech Projects, and An Introduction to C & GUI Programming throughout the year.

If you’d like to own a physical copy of any of our publications, we offer free international shipping across our product range. You’ll also find many of our magazines in top UK supermarkets and newsagents, and in Barnes and Noble in the US.

 

The post New book (with added computer): Get Started with Raspberry Pi appeared first on Raspberry Pi.

The NEW Official Raspberry Pi Beginner’s Guide: updated for Raspberry Pi 4

Post Syndicated from Phil King original https://www.raspberrypi.org/blog/the-new-official-raspberry-pi-beginners-guide-updated-for-raspberry-pi-4/

To coincide with the launch of Raspberry Pi 4, Raspberry Pi Press has created a new edition of The Official Raspberry Pi Beginner’s Guide book — as if this week wasn’t exciting enough! Weighing in at 252 pages, the book is even bigger than before, and it’s fully updated for Raspberry Pi 4 and the latest version of the Raspbian operating system, Buster.A picture of the front cover of the Raspberry Pi Beginner's Guide version two

The Official Raspberry Pi Beginner’s Guide

We’ve roped in Gareth Halfacree, full-time technology journalist and technical author, and the wonderful Sam Alder, illustrator of our incredible cartoons and animations, to put together the only guide you’ll ever need to get started with Raspberry Pi.



From setting up your Raspberry Pi on day one to taking your first steps into writing coding, digital making, and computing, The Official Raspberry Beginner’s Guide – 2nd Edition is great for users from age 7 to 107! It’s available now online from the Raspberry Pi Press store, with free international delivery, or from the real-life Raspberry Pi Store in Cambridge, UK.

As always, we have also released the guide as a free PDF, and you’ll soon be seeing physical copies on the shelves of Waterstones, Foyles, and other good bookshops.

The post The NEW Official Raspberry Pi Beginner’s Guide: updated for Raspberry Pi 4 appeared first on Raspberry Pi.

Liverpool MakeFest | HackSpace magazine #19

Post Syndicated from Ben Everard original https://www.raspberrypi.org/blog/liverpool-makefest-hackspace-magazine-19/

The news that UK Maker Faire was to shut its doors came as a bit of a surprise to many. This vibrant weekend of makers meeting, sharing, and learning was absolutely brilliant, and left us fizzing with ideas after our visits there. We’re sad that it’s gone.

Makers being makers though, if there’s demand, it will be filled. And that’s exactly what’s happening in Liverpool with Liverpool MakeFest. On 29 June 2019, the MakeFest will hold its fifth iteration. This is the UK’s biggest free maker event, attracting thousands of visitors, and its vision of a free, maker-focused festival is spreading far and wide.

We visited the mid-Victorian splendour of Liverpool Central Library, the home of MakeFest, to talk to the founders — Denise Jones, Mark Feltham, and Caroline Keep — to find out what makes this event special.

Liverpool MakeFest 2019 is taking place at the Central Library, Saturday 29 June 2019, and it’s completely free to attend

HackSpace magazine: Hello! Thanks for having us over here. How did the three of you come together to start Liverpool MakeFest?

Caroline Keep: I was a geotechnical engineer, Mark’s an academic, and Denise is a librarian. We bumped into each other watching a workshop in lantern making. Mark had all the academic experience. When I came to work with Mark on his makerspace, I was the geeky maker — he didn’t even have a smartphone at that time. I got the education bug and then moved into secondary school teaching.

Mark Feltham: It all started over there, as a chance meeting. We bumped into each other and got chatting. Within six weeks, we’d filled the library. We thought it would be a one-off, but since then it’s taken off.

Caroline is the reigning TES New Teacher Of The Year

HS: So no business plan, no franchising fees, no world domination?

CK: We’ve just winged it. We made all the banners, bunting. The first year my PGCE fund paid for MakeFest! This building reopened again in 2013, and in 2014 we were lucky that they were running a programme of events and initiatives to make it a really vibrant building, so it was the right time as well. We thought we’d have a little room off to the side and get maybe six tables. We’d already done a Mini Maker Faire, and we’ve always been good friends with [local makerspace] DoES Liverpool, so we were confident we’d get at least a few people turning up. And in six weeks we were full.

MF: We pulled the first one off, we’re talking the first three floors of the library and 60 makers, for £850. And that included feeding them and making badges as well.

One of the spin-offs that have come out of MakeFest is Little Sandboxes, which takes making out to deprived areas of the city

HS: For context, this building is huge. It’s bigger than most libraries; it’s probably about the same size as the Life Centre in Newcastle, where UK Maker Faire was held until recently. It must have helped to have a librarian on board to negotiate with the powers that be?

Denise Jones: I had to sell it to the people in charge back then, which were the head of service and the manager of this building. The Department for Culture, Media and Sport has a Taskforce for Libraries, which is funded until next year. We’re close to finishing the national guidance now for the Taskforce — the idea is to get one of these [MakeFests] in every library. We wanted the guidance doc to be inclusive of museums and libraries, because we knew that Manchester had opted to put their MakeFest in a museum. We’ve got Chester and Stoke MakeFest, and there’s one in the pipeline in Wrexham. We were having the same conversations over and over again, so we decided to write a document: how to run a MakeFest.

Liverpool Central Library was renovated a few years ago — the precious books went into temporary storage in a salt mine in Cheshire to keep them dry

HS: What have we got to look forward to this year and beyond?

CK: That’s a good question. We’ve got some corking stuff coming this year. We’ve given it the theme ’Space and time – creativity in the making’. We’ve got events planned for the Apollo anniversary, and [just] before MakeFest we’re going to kick off with a music day, showing people how to make music, and making the instruments to make music. That’s another spin-off that’s come out of MakeFest: the MakerNoise Unconference at Edge Hill University.

MF: We’ve always felt that we hold MakeFest in trust for makers. In terms of where it goes long-term, I don’t see it ever becoming more than a one-day event here, because one day is good. It gives people Sunday to get over things, and get home because they have day jobs on a Monday. We’re always very sensitive to that, we don’t want to take up too much of people’s time. The other thing is that I don’t see it spilling out into a bigger building; it’s always going to be in the library. But the way to grow it is to put it in other libraries. Not to make this one, Liverpool, bigger and take over. Then each maker community gets its own feel, and its own vibe — Stoke MakeFest has a very different feel to ours, because their maker scene is different to ours, and their city is different to ours.

The other way to expand it is that, rather than by just expanding to other cities, you can have more events on throughout the year. Rather than being solely a one-day event, you can have all these spin-offs, so once a month there’s something going on. Rather than it just being about tech and digital, we’ve always liked to have some sort of fantasy element. Things like Doctor Who, Star Wars, Darth Vader, K-9 — the kids love that. We have a lot of friends who are into steampunk; they get roped in to do front-of-house duties. You know what the funny thing was at the first one? Not only did the public enjoy it, but also the makers. It’s kind of like a musician playing an acoustic set. We’ve got a get-together on the Thursday before, we’ve got a Friday night party going, we always do an after-party. The public come on the Saturday, but there’s always stuff going on that week for makers.

In addition to always wanting it to be free for the public, and for the makers to not have to pay for their stand, we feel very strongly that we should give something back. We always give them lunch, we always give them a badge, and there’s always a party. We can’t pay them, but it’s our way of showing our appreciation to the makers who come and make it what it is. The celebration and sharing are big parts of the maker ethos.

People like to show [their projects] not to show off, not to say ‘Look at how clever I am’ — it’s more to say ‘Look at this awesome thing, isn’t this cool?’ Trying to explain that to people can be tricky. You can make this: here’s how you do it. That’s the ethos.

CK: I always feel with MakeFest — you said it’s like an acoustic gig. I always envisioned it as Liverpool’s party for makers. It’s our little get-together, and that’s how I like it.

Read the full interview in HackSpace magazine issue 19, out now! This month we’re looking at building a walking robot, laser cutting LED jewellery, the 55 timer chip, and much more. Download the issue for free, or buy it in print on our website.

Get HackSpace magazine issue 19 from all good newsagents

Special subscription offer

To have 132 pages of making delivered to your doorstep every month, subscribe to HackSpace magazine from just £5 for your first three issues.

The post Liverpool MakeFest | HackSpace magazine #19 appeared first on Raspberry Pi.

Raspberry Pi Press: what’s on our newsstand?

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/raspberry-pi-press-newsstand/

Raspberry Pi Press, the publishing branch of Raspberry Pi Trading, produces a great many magazines and books every month. And in keeping with our mission to make computing and digital making as accessible as possible to everyone across the globe, we make the vast majority of our publications available as free PDFs from the day we release new print versions.

We recently welcomed Custom PC to the Press family and we’ve just published the new-look Custom PC 190. So this is a perfect time to showcase the full catalogue of Raspberry Pi Press publications, to help you get the most out of what we have on offer.

The MagPi magazine

The MagPi was originally created by a group of Raspberry Pi enthusiasts from the Raspberry Pi forum who wanted to make a magazine that the whole community could enjoy. Packed full of Pi-based projects and tutorials, and Pi-themed news and reviews, The MagPi now sits proudly upon the shelves of Raspberry Pi Press as the official Raspberry Pi magazine.

The MagPi magazine issue 81

Visit The MagPi magazine online, and be sure to follow them on Twitter and subscribe to their YouTube channel.

HackSpace magazine

The maker movement is growing and growing as ever more people take to sheds and makerspaces to hone their skills in woodworking, blacksmithing, crafting, and other creative techniques. HackSpace magazine brings together the incredible builds of makers across the world with how-to guides, tips and advice — and some utterly gorgeous photography.

Visit the HackSpace magazine website, and follow their Twitter account and Instagram account.

Wireframe magazine

“Lifting the lid on video games”, Wireframe is a gaming magazine with a difference. Released bi-weekly, Wireframe reveals to readers the inner workings of the video game industry. Have you ever wanted to create your own video game? Wireframe also walks you through how you can do it, in their ‘The Toolbox’ section, which features tutorials from some of the best devs in the business.

Follow Wireframe magazine on Twitter, and learn more on their website.

Hello World magazine

Hello World is our free magazine for educators who teach computing and digital making, and we produce it in association with Computing at Schools and the BCS Academy of Computing. Full of lesson plans and features from teachers in the field, Hello World is a unique resource for everyone looking to bring computing into the classroom, and for anyone interested in computing and digital making education.

Hello World issue 8

Educators in the UK can subscribe to have Hello World delivered for free to their door; if you’re based somewhere else, you can download the magazine for free from the day of publication, or purchase it via the Raspberry Pi Press online store. Follow Hello World on Twitter and visit the website for more.

Custom PC magazine

New to Raspberry Pi Press, Custom PC is the UK’s best-selling magazine for PC hardware, overclocking, gaming, and modding. With monthly in-depth reviews, special features, and step-by-step guides, Custom PC is the go-to resource for turning your computer up to 11.

Visit the shiny new Custom PC website, and be sure to follow them on Twitter.

Books

Magazines aren’t our only jam: Raspberry Pi Press also publishes a wide variety of books, from introductions to topics like the C programming language and Minecraft on your Pi, to our brand-new Raspberry Pi Beginner’s Guide and the Code Club Book of Scratch.

An Introduction to C and GUI programming by Simon Long


We also bridge the gap between our publications with one-off book/magazine hybrids, such as HackSpace magazine’s Book of Making and Wearable Tech Projects, and The MagPi’s Raspberry Pi Projects Book series.



Getting your copies

If you’d like to support our educational mission at the Raspberry Pi Foundation, you can subscribe to our magazines, and you can purchase copies of all our publications via the Raspberry Pi Press website, from many high street newsagents, or from the Raspberry Pi Store in Cambridge. And most of our publications are available as free PDFs so you can get your hands on our magazines and books instantly.

Whichever of our publications you choose to read, and however you choose to read them, we’d love to hear what you think of our Raspberry Pi Press offerings, and we hope you enjoy them all.

The post Raspberry Pi Press: what’s on our newsstand? appeared first on Raspberry Pi.

How musical game worlds are made | Wireframe #8

Post Syndicated from Ryan Lambie original https://www.raspberrypi.org/blog/how-musical-game-worlds-are-made-wireframe-8/

88 Heroes composer Mike Clark explains how music and sound intertwine to create atmospheric game worlds in this excerpt from Wireframe issue 8, available now.

Music for video games is often underappreciated. When I first started writing music in my bedroom, it took me a while to realise how much I was influenced by the worlds that came from my tiny CRT TV. A couple of years ago, I was lucky enough to be approached by Bitmap Bureau, an indie startup who hired me to compose the music for their first game, 88 Heroes.

88 Heroes is a platformer styled like a Saturday morning cartoon. Interestingly, cartoon soundtracks have a lot in common with those for stage productions: short musical cues accompany the actions on screen, so if someone violently falls downstairs, you hear a piano rolling down the keys. This is called ‘mickey mousing’ in cartoons, but we hear similar things in film soundtracks.

Take Raiders of the Lost Ark, scored by John Williams: for every heroic rope swing, leap of faith, or close encounter with danger, the main theme can be heard powering through the dissonances and changing rhythms. It fills the audience with hope and becomes synonymous with the lead character – we want to see him succeed. Let’s not forget the title theme. Every time you see the Star Wars logo, does that grand title theme play in your head? It’s the same with video games. The challenge here, of course, is that players often leave the title screen after three seconds.

Three seconds is all you need though. Take Super Mario World’s soundtrack, composed by Koji Kondo. Many of its levels have the same leading melody, which changes subtly in tonality and rhythm to create the appropriate mood. The most repeating part of the melody is four bars long, but we hear it in so many forms that we only need the first two bars to know where it’s from. In classical music, this is called ‘variations on a theme’. In video games, we call it a ‘sonic identity’.

Action platformer 88 Heroes, featuring music by Mike Clark.

How a picture should ‘sound’

Sonic identity informed my approach to the 88 Heroes soundtrack. The title screen tells us that an unknown group is going to save the day. I first thought about unlikely heroes who end up on an adventure, and Back to the Future, scored by Alan Silvestri, sprang to mind. The second inspiration came from traditional superheroes, like Superman. I composed a melody which travels between the first and fifth notes in the scale (in this case C and G), with little flourishes of the notes in-between. It’s a triumphant, heroic melody.

This concept helps to connect these worlds beyond their visuals. It took a long time for games to evolve into the cohesive open-world sandboxes or MMOs we see today; the technology that masked loading screens to create a seamless experience was unheard of in the 1990s, so a melody that you hear in different ‘costumes’ gives these games a sense of cohesion.

Intelligent instruments

What if you have levels (or worlds) so big that some areas need to be loaded? That’s where non-linear composition comes in. Banjo-Kazooie, released for the N64 in 1998, was among the first 3D games to feature dynamic music. It used a technique called MIDI channel fading. MIDI stands for Musical Instrument Digital Interface; think of it as a universal language for music that is played back in real time by the hardware. As you walk into caves, fly in the sky, or move near certain characters, instruments fade in and out using the different MIDI channels to mimic the atmosphere, give the player an audio cue, and build and release tension.

Learning how to write music that changes as you play might seem impossible at first, but it becomes second nature once you understand the relationship between every instrument in your composition. Many digital audio workstations, like Logic and FL Studio, let you import MIDI data for a song (so you have all the notes in front of you) and set the instruments yourself. Try slowly fading out or muting certain tracks altogether, and listen to how the mood changes. What could this change represent in a video game? It’s like when you’re riding Yoshi in many of the Mario games; the fast bongos come in to represent the quick-footed dinosaur as he dashes at high speeds.

Undertale’s soundtrack blends analogue synth instruments with a plethora of real instruments to help create emotion.

Music is used to evoke emotions that wouldn’t be possible with visuals alone. Beep: A Documentary History of Game Sound shows a six-second video of a boat accompanied by two soundtracks; one is a light and happy guitar piece, the other a grating, scary, orchestral dissonance. Through these two extremes, the music creates the mood by itself. I remember playing Metroid Prime and finding the Chozo Ghost enemies rather scary, not because of their appearance, but because of the unnerving music that accompanies them. Music and sound design are one and the same. Think about what feelings you can create by taking music away entirely — it’s a great way to create tension before a boss battle or pivotal plot point, and it really works. In Undertale, scored by Toby Fox, there are times when the music stops so abruptly during NPC dialogue that you feel shivers down your spine.

So, what if you’re trying to come up with some game music, and you have writer’s block? Well, the next time you play a new game, turn the sound off. As you’re playing, focus on how the story, art, or characters make you feel, and focus on the emotions the game is trying to convey. Then, think of a time when a song made you feel happy, sad, joyful, anxious, or even frightened. Maybe you can use the music to create the mood you want for that game, as opposed to what the game makes you feel. By finding these emotions and understanding how they can change, you’ll be able to write a score that helps strengthen the immersion, escapism, and player investment in your game.

You can read the rest of the feature in Wireframe issue 8, available now in Tesco, WHSmith, and all good independent UK newsagents.

Or you can buy Wireframe directly from us – worldwide delivery is available. And if you’d like to own a handy digital version of the magazine, you can also download a free PDF.

Markets, moggies, and making in Wireframe issue 8

Make sure to follow Wireframe on Twitter and Facebook for updates and exclusives, and for subcriptions, visit the Wireframe website to save 49% compared to newsstand pricing!

The post How musical game worlds are made | Wireframe #8 appeared first on Raspberry Pi.

Inside the Dreamcast homebrew scene | Wireframe issue 7

Post Syndicated from Ryan Lambie original https://www.raspberrypi.org/blog/wireframe-7-inside-dreamcast-homebrew-scene/

Despite its apparent death 17 years ago, the Sega Dreamcast still has a hardcore group of developers behind it. We uncover their stories in this excerpt from Wireframe issue 7, available now.

In 1998, the release of the Dreamcast gave Sega an opportunity to turn around its fortunes in the home console market. The firm’s earlier system, the Saturn, though host to some beloved titles, was running a distant third in sales behind the Nintendo 64 and PlayStation. The Dreamcast, by contrast, saw a successful launch and quickly became the go-to system for arcade-quality ports of fighting games, among other groundbreaking titles like Seaman and Crazy Taxi.

Unfortunately for fans, it wasn’t to last. The Dreamcast struggled to compete against the PlayStation 2, which launched in 2000, and at the end of March 2001, in the face of the imminent launch of the Nintendo GameCube and Microsoft’s new Xbox, Dreamcast left the stage, and Sega abandoned the console market altogether.

None of this stopped a vibrant homebrew development scene springing up around the console in Sega’s place, and even years later, the Dreamcast remains a thriving venue for indie developers. Roel van Mastbergen codes for Senile Team, the developers of Intrepid Izzy, a puzzle platformer coming soon to the PC, PS4, and Dreamcast.

Of the port to Sega’s ageing console, van Mastbergen tells us, “I started this project with only the PC in mind. I’m more used to developing for older hardware, though, so I tend to write code with low CPU and RAM requirements by force of habit. At some point I decided to see if I could get it running on the Dreamcast, and I was happy to find that it ran almost perfectly on the first try.”

It runs at a lower resolution than on PC, but Intrepid Izzy still maintains a smooth 60fps on Dreamcast.

One of the pluses of the Dreamcast, van Mastbergen points out, is how easy it is to develop for. “There are free tools and sufficient documentation available, and you can run your own code on a standard Dreamcast without any hardware modifications or hacks.”

Games burned to CD will play in most models of unmodified Dreamcast, usually with no extra software required. While this doesn’t result in a huge market — the customer base for new Dreamcast games is difficult to measure but certainly small — it makes development for original hardware far more viable than on other systems, which often need expensive and difficult-to-install modchips.

Many of the games now being developed for the system are available as digital downloads, but the state of Dreamcast emulation lags behind that of its competitors, with no equivalent to the popular Dolphin and PCSX2 emulators for GameCube and PS2. All this makes boxed games on discs more viable than on other systems — and, in many cases, physical games can also become prized collectors’ items.

Intrepid Izzy is developed with a custom code library that works across multiple systems; it’s simple to downscale PC assets and export a Dreamcast binary.

Kickstarting dreams

By now, you might be asking yourself what the point of developing for these old systems is — especially when creating games for PC is a much easier and potentially more profitable route to take. When it comes to crowdfunding, though, catering to a niche but dedicated audience can pay dividends.

Belgian developer Alice Team, creators of Alice Dreams Tournament, asked for €8000 in funding to complete its Dreamcast exclusive, which began development in 2006. It eventually raised €28,000 — more than treble its goal.

Intrepid Izzy didn’t quite reach such dizzying heights, only just meeting its €35,000 target, but van Mastbergen is clear it wouldn’t have been funded at all without the dedicated Dreamcast base. “The project has been under-funded since the beginning, which is slightly problematic,” van Mastbergen tells us. “Even so, it is true that the Dreamcast community is responsible for the lion’s share of the funding, which is a testament to how well-loved this system still is.”

You can read the rest of the feature in Wireframe issue 7, available in Tesco, WHSmith, and all good independent UK newsagents.

Or you can buy Wireframe directly from us – worldwide delivery is available. And if you’d like to own a handy digital version of the magazine, you can also download a free PDF.

Face your fears in the indie horror, Someday You’ll Return.

Make sure to follow Wireframe on Twitter and Facebook for updates and exclusives, and for subscriptions, visit the Wireframe website to save 49% compared to newsstand pricing!

The post Inside the Dreamcast homebrew scene | Wireframe issue 7 appeared first on Raspberry Pi.

From Wireframe issue 5: Breakthrough Brits in conversation

Post Syndicated from Ryan Lambie original https://www.raspberrypi.org/blog/wireframe-issue-5/

BAFTA-recognised developers Adrienne Law and Harry Nesbitt share their thoughts on making games, work-life balance, and more in this excerpt from Wireframe issue 5, available from today.

It’s certainly ‘woollies and scarf’ weather now, but the low-hanging sun provides a beautiful backdrop as Adrienne and Harry make their daily short walk from home to the ustwo games office. In late 2018, Adrienne Law and Harry Nesbitt were both recognised by BAFTA as Breakthrough Brits: an award given by BAFTA to new and emerging talent across a variety of art and entertainment industries. But that’s not the only thing they have in common — Adrienne and Harry work in the same office and are even housemates.

Monument Valley 2 screenshot

Monument Valley 2

Adrienne is a producer at ustwo games, most recently on the acclaimed puzzler Monument Valley 2. Harry doesn’t work for ustwo, but he’s a regular fixture there, taking a spare desk to work as the lead developer and artist for Alto’s Adventure and its sequel, Alto’s Odyssey.

Alto’s Odyssey screenshot

Alto’s Odyssey

As two professionals early in their careers in an ever-evolving industry, Adrienne and Harry find themselves with much in common, but the routes that led them to working and living together were very different. The pair agreed to take an hour out of their work schedules to speak to Wireframe, and to each other, about their personal experiences of game development, how it feels to release a game, work-life balance, and the potential of games to affect and enrich lives.

Adrienne Law: My route into the games industry was semi-accidental. I played games a lot when I was a kid but didn’t know there was an industry as such to go and work in. I did an English degree thinking that might possibly set me up for going into some kind of creative, story-driven field, which was what interested me. After that, I spent a few years working different jobs — I was a teaching assistant, I worked in finance, retail, marketing, and was circling around trying to get into film and TV industries.

Eventually, I got to the point where I went onto job sites and searched for “production assistant” and that’s where I found a production assistant role going at ustwo games. I thought, “Oh! Production is a thing in games! I didn’t know that.” I decided to just go for it. I ended up having a few interviews with ustwo — I think they were worried because I was quite quiet, and they weren’t sure how much I would step into the role — but they let me through the door and gave me a chance. I’ve been here ever since. I never set out to be in the games industry, but I think I’d been gaining a lot of skills and had an awareness of the medium, so those things combined into making me a good candidate for the role.

I went to an all girls’ school that specialised in maths and science, so there was no reason that I would have thought I couldn’t work in tech, but the school didn’t push the idea of working in tech and coding. I think if I had been aware of it from a younger age, I would have been a programmer.

Harry Nesbitt

Harry Nesbitt: I’ve always thought about working in games. From a young age, I had an interest in how games were made from an artistic standpoint. I would always look up who was responsible for the concept art. Concept art as a job was something I was aware of from a very young age.

Around 2006, when I started at university, indie games weren’t in the mainstream, and making games in your own bedroom wasn’t as popular an idea. When I discovered Unity, I thought “Oh, I can download this for free, and I can learn all the basics online.” I saw examples of illustrators who were downloading it and making cool, interesting little projects — almost like little art pieces — bringing their illustrations to life. It made me realise I could have a play with that. My knowledge of the basics of JavaScript and web development helped me pick up the coding side of things a little bit more easily.

When it came to making Alto’s Adventure, I knew a little bit of Unity and had been playing with it for about 12 months, so I realised I could at least be playing around with it, seeing what’s possible and using it as a way to demonstrate certain ideas.

Within a very short space of time, less than a week maybe, I’d been able to put together a basic prototype of the core systems, such as the terrain generation, basic player physics, even some effects such as particles and Alto’s scarf. It took another year and a half from there to get it finished, but online resources gave me what I needed to eventually get the game made. It’s not necessarily an experience I’d want to repeat though!

You can read the rest of this fantastic feature in Wireframe issue 5, out today, 17 January, in Tesco, WHSmith, and all good independent UK newsagents.

Or you can buy Wireframe directly from us — worldwide delivery is available. And if you’d like to own a handy digital version of the magazine, you can also download a free PDF.

The cutest Wireframe cover to date!

Make sure to follow Wireframe on Twitter and Facebook for updates and exclusives, and for subscriptions, visit the Wireframe website to save 49% compared to newsstand pricing!

The post From Wireframe issue 5: Breakthrough Brits in conversation appeared first on Raspberry Pi.

From HackSpace mag issue 14: DIY Geiger counters

Post Syndicated from Andrew Gregory original https://www.raspberrypi.org/blog/from-hackspace-mag-issue-14-diy-geiger-counters/

In HackSpace magazine issue 14, out today, Cameron Norris writes about how citizen scientists at Tokyo Hackerspace took on the Fukushima nuclear disaster.

Safecast is an independent citizen science project that emerged in the wake of the Fukushima nuclear disaster to provide accurate, unbiased, and credible data on radiation exposure in Japan.

On 11 March 2011, an undersea earthquake off the Pacific coast of Thoku, Japan, caused the second-worst nuclear accident in the history of nuclear power generation, releasing almost 30% more radiation than the Chernobyl disaster in 1986.

The magnitude 9.0–9.1 earthquake resulted in a series of devastating tsunami waves that damaged the backup generator of Fukushima Daiichi Nuclear Power Plant. Without functioning cooling systems, the temperature of the plant’s many nuclear reactors steadily began to rise, eventually leading to a partial meltdown and several hydrogen gas explosions, launching nuclear fallout into the air and sea. Due to concerns over possible radiation exposure, the Japanese government established an 18-mile no-fly zone around the Fukushima plant, and approximately 232 square miles of land was evacuated.

However, citizens of Fukushima Prefecture living outside of the exclusion zone were faced with a serious problem: radiation exposure data wasn’t available to the public until almost two months after the meltdown occurred. Many residents felt they had been left to guess if dangerous levels of ionising radiation had contaminated their communities or not.

Alarmed by the situation, Dutch electrical engineer and computer scientist Pieter Franken, who was living in Tokyo with his family at the time, felt compelled to act. “After the massive wall of water, we had this invisible wall of radiation that was between myself and my family-in-law in the north of Japan, so that kind of triggered the start of Safecast,” says Pieter.

Pieter Franken, a Dutchman living in Japan, who helped start Safecast
Image credit: Joi Ito – CC BY 2.0

Pieter picked up an idea from Ray Ozzie, the former CTO of Microsoft, who suggested quickly gathering data by attaching Geiger counters – used for measuring radioactivity – to the outside of cars before driving around Fukushima. The only problem was that Geiger counters sold out almost globally in a matter of hours after the tsunami hit, making it even more difficult for Pieter and others on the ground to figure out exactly what was going on. The discussion between Pieter and his friends quickly changed from buying devices to instead building and distributing them to the people of Fukushima.

At Tokyo Hackerspace, Pieter – along with several others, including Joi Ito, the director of the MIT Media Lab, and Sean Bonner, an activist and journalist from Los Angeles – built a series of open-source tools for radiation mapping, to enable anyone to build their own pocket Geiger counter and easily share the data they collect. “Six days after having the idea, we had a working system. The next day we were off to Fukushima,” recalls Sean.

A bGeigie Nano removed from its Pelican hardshell
Safecast CC-BY-NC 4.0

A successful Kickstarter campaign raised $36,900 to provide the funding necessary to distribute hundreds of Geiger counters to the people of Japan, while training volunteers on how to use them. Today, Safecast has collected over 100 million data points and is home to the largest open dataset about environmental radiation in the world. All of the data is collected via the Safecast API and published free of charge in the public domain to an interactive map developed by Safecast and MIT Media Lab.

You can read the rest of this feature in HackSpace magazine issue 14, out today in Tesco, WHSmith, and all good independent UK newsagents.

Or you can buy HackSpace mag directly from us — worldwide delivery is available. And if you’d like to own a handy digital version of the magazine, you can also download a free PDF.

The post From HackSpace mag issue 14: DIY Geiger counters appeared first on Raspberry Pi.