Tag Archives: two-way sms

Simplify your SMS setup with the new Amazon Pinpoint SMS console

Post Syndicated from hamzarau original https://aws.amazon.com/blogs/messaging-and-targeting/send-sms-using-the-new-amazon-pinpoint-sms-console/

Amazon Pinpoint is a multichannel communication service that helps application developers engage their customers through communication channels such as SMS or text messaging, email, mobile push, voice, and in-app messaging.

Amazon Pinpoint SMS provides the global scale, resiliency, and flexibility required to deliver SMS and voice messaging in web, mobile, or business applications. SMS messaging is used for use cases like one-time passcode validation, time sensitive alerts, and two-way chat due to its global reach and ubiquity. Today Amazon Pinpoint SMS sends messages to over 240 countries and regions. In this post, we will review how to use the new Pinpoint SMS management console to get your SMS resources setup correctly the first time.

This blog walks through the setup and configuration steps for Pinpoint SMS using the management console. Additionally, all setup and configurations can also be completed using Pinpoint SMS APIs. For more information visit the Pinpoint SMS documentation, or complete the Amazon Pinpoint SMS workshop.

The Pinpoint SMS management console provides control for the existing functionality of the Pinpoint SMS APIs to create, and manage your SMS and voice resources. In addition, the Pinpoint SMS console has a Quick start – SMS setup guide or Request originator flow to guide you through the setup process and for requesting and managing your SMS resources.

If you require additional background on how SMS works using Amazon Pinpoint SMS, refer to How to Manage Global Sending of SMS with Amazon Pinpoint. Below are some important SMS concepts we’ll highlight in this blog post.

Important SMS Concepts and Resources

  • Phone pool: The phone pool resource is a collection of phone numbers and sender IDs that all share the same settings and provide failover if a number becomes unavailable.
  • Originator: An originator refers to either a phone number or sender ID.
  • Phone number: Also called originator number, a phone number is a numeric string of numbers that identifies the sender. This can be a long code, short code, toll-free number (TFN), or 10-digit long code (10DLC). For more information see choosing a phone number or sender ID.
  • Verified destination phone number: When your account is in Sandbox you can only send SMS messages to phone numbers that have gone through the verification process. The phone number receives an SMS message with a verification code. The received code must be entered into the console to complete the process.
  • Simulator phone number: A simulator phone number behaves as any other origination and destination phone number without sending the SMS message to mobile carriers. Simulator phone numbers do not require registration and are used for testing scenarios.
  • Sender ID: Also called originator ID, a sender ID is an alphanumeric string that identifies the sender. For more information see choosing a phone number or sender ID.
  • Registered phone number: Some countries require you to register your company’s identity before you can purchase phone numbers or sender IDs. They also require a review of the messages that you send to recipients in their country. Registrations are processed by external third parties, so the amount of time to process a registration varies by phone number type and country. After all required registrations are complete, the status of your phone numbers changes to Active and is available for use. For more information about which countries require registration see, supported countries and regions (SMS channel).

Getting started

Sign-in to the AWS management console and search for Amazon Pinpoint. If you don’t have an existing AWS account, complete the following steps to create one.

In the Amazon Pinpoint console, you can choose between managing Pinpoint SMS and Pinpoint campaign orchestration. Pinpoint SMS is the place where applications developers go to setup and configure their associated resources for SMS sending through any AWS service. Pinpoint campaign orchestration is for builders who want to manage their customer segments and send messages using campaigns, or multi-step journeys. Campaign orchestration utilizes communication channels like Pinpoint SMS or Amazon SES (simple email service) to deliver its messages. In this blog, we will discuss how to configure Pinpoint SMS using its management console.

Amazon Pinpoint SMS Console

Quick start – SMS setup guide

Once you’ve selected the Amazon Pinpoint SMS console, you will land on the Overview page. On this page, you get a summary of your SMS resources and the Quick start – SMS setup guide. This guide will walk you through creating the appropriate SMS resources to start sending SMS messages. The steps outlined in the Quick start guide are recommended but not required.

Step 1: Create a phone pool

A phone pool is a collection of phone numbers and sender IDs that all share the same settings and provide failover if a number becomes unavailable. Phone pools provide the benefit of managing for number resiliency, removes the complexity from sending applications, and provides a logical grouping to manage phone numbers and sender IDs. For example, phone pools can be grouped by use-case such as having a phone pool for OTP (one-time password) messages.

In the navigation pane, under Overview, in the Quick start section, choose Create pool. Under the pool setup section, enter a name for your pool in Pool name. To create a pool, you will need to select an origination identity, either a phone number or sender ID to associate with the pool. Additional origination identities can be added once the pool is created on the Phone pools page. If you don’t have an active phone number or sender ID in your account, we recommend selecting a simulator number, which can be used for testing and does not require any registration. Once you’ve selected an origination identity, you can choose Create phone pool to complete step 1.

Setting up phone pools for sending SMS

Step 2: Create a configuration set

A configuration set is a set of rules that are applied when you send a message. For example, a configuration set can specify a destination for events related to a message. When SMS events occur (such as delivery or failure events), they are routed to the destination associated with the configuration set that you specified when you sent the message. You’re not required to use configuration sets when you send messages, but we recommend that you do. We support sending SMS and voice events to Amazon CloudWatch, Amazon Kinesis DataFirehose, and Amazon SNS.

In the navigation pane, under Overview, in the Quick start section, choose Create set. Under the Configuration set details section, enter a name in Configuration set name. For Event Destination setup, choose either the quick start option to create a Cloud formation stack to automatically create and configure CloudWatch, Kinesis DataFirehose, and SNS to log all events or the advanced option to manually select which event destinations you would like to setup. Once you’ve made the selection, choose Create Configuration set to complete step 2.

How to create a configuration set for sending SMS

Step 3: Test SMS sending

Send a test message using the SMS simulator. Select an originator to send from, and a destination number to send to. To track the status of your message, add a configuration set to publish SMS events.

In the navigation pane, under Overview, in the Quick start section, choose Test SMS sending. Under the Originator section, select either a phone pool, phone number, or sender ID in your account to send test messages from. Next, under the Destination phone number section, select either a simulator number or active destination number to send test messages to. If your account is in Sandbox, you can only send messages to simulator numbers or verified destination numbers. Once your account is in Production you can send messages to simulator numbers or any active destination number. You can (optionally) select a configuration set to track your SMS events. Next, under the Message body section, enter a sample message and send the test message.

Note – If you are sending from a US simulator number (or using a phone pool that only contains a US simulator number) you can only send messages to US simulator destination numbers. A simulator phone number behaves like any other phone number without sending the SMS message to mobile carriers.

SMS simulator in the SMS console

Step 4: Request production Access

Finally, if your account is in Sandbox there are limits to the amount you can spend and can only send to verified destination phone numbers. Request moving your account from Sandbox to Production to remove these limits. To move to Production, open a case with AWS Support Center.

Conclusion

After following the request for Production access, you’ve completed the recommended steps to get your account configuration setup. You have now tested and configured the following resources in your account:

  • Phone pool: A phone pool is a collection of phone numbers and sender IDs that all share the same settings and provide failover if a number becomes unavailable. Phone pools provide the benefit of managing for number resiliency, removes the complexity from sending applications, and provides a logical grouping to manage phone numbers and sender IDs.
    • Originator: As part of the pool setup, you are required to associate at least one originator to the phone pool. An originator refers to either a phone number or sender ID. If you’ve selected a simulator number and would like to now request a new phone number or sender ID, you can do so following Request originator flow.
  • Configuration set: A configuration set allows you to organize, track, and configure logging of your SMS events, specifying where to publish them by adding event destinations.

Next steps

To request additional originators such as phone numbers or sender IDs, you can follow the Request Originator flow in the management console. If your originator requires registrations and is supported, you can self-service the phone number or sender ID registration in the management console.

How to Manage Global Sending of SMS with Amazon Pinpoint

Post Syndicated from Tyler Holmes original https://aws.amazon.com/blogs/messaging-and-targeting/how-to-manage-global-sending-of-sms-with-amazon-pinpoint/

Amazon Pinpoint has a global SMS reach, of 240 countries and regions around the world, enabling companies of all sizes to send SMS globally. Unlike the process of sending a personal message from your phone to someone in another country, sending Application to Person (A2P) messages, also known as bulk SMS, involves many more regulations and requirements that vary from country to country. In this post we will review best practices for sending Global SMS and share a selection of AWS resources to help you send SMS globally.

The first thing to understand about delivering SMS around the world is that it takes a vast network of components working seamlessly together around the globe to deliver an SMS globally. The image below gives a simple example of delivering an SMS in the United States. Mobile devices are at the center of this, connecting to mobile carriers or operators, who operate the infrastructure necessary for SMS transmission. Once you hit that send button from AWS, your message travels to an Aggregator, who has connections to Operators, Partners, and/or other Aggregators. The reason for this is that there is no one vendor who delivers globally. AWS uses many Aggregators that both enable us to send globally as well as improve resiliency and deliverability of your messages. The last stop on the journey is the Short Message Service Center (SMSC), a central hub that receives, stores, and forwards text messages. The SMSC acts as a gateway, routing your message to the recipient’s carrier or operator through a series of interconnected networks, thanks to agreements between different carriers known as interconnection agreements. The entire process is facilitated by the Signaling System 7 (SS7), a set of protocols that enables the exchange of information between telecommunication networks, ensuring messages reach their intended recipients.
Diagram showing how SMS is delivered using aggregators
Every country has its own regulations and processes that you need to comply with in order to successfully deliver SMS to handsets that are registered to a particular country. There are some countries with little regulation and others that will block all SMS traffic unless it has been registered with the proper authorities.

Each country’s requirements include the origination identities (OIDs) that their networks support, some of these include long codes (standard phone numbers that typically have 10 or more digits), short codes (phone numbers that contain between four and seven digits), and Sender IDs (names that contain 6–11 alphanumeric characters). Each of these types of origination identities has unique benefits and drawbacks and you will need one for each use case and country you plan on supporting. Here is a list of the countries that AWS currently sends to and the OIDs that are supported.

Pre-Planning and Country Selection
The first step to planning a global roll out of SMS is to know what countries you want to send to and what each of your use cases are. Put together a spreadsheet for each unique use case you have and the countries you plan on sending to with the below key details:

  • The volumes you expect to send to each country
  • The throughput (Also referred to as Messages per Second, MPS, Transactions per Second, or TPS) at which you expect to deliver these messages
  • Whether your use case is one-way or two-way
    • Not all countries support 2-way communications, which is the ability to have the recipient send a message back to the OID. Sender ID also does not support 2-way communication so if you are planning on using Sender ID you will need to account for how to opt recipients out of future communications.
  • Leave a column for the Origination Identity you will use for each country
  • Leave a column for whether this country requires advanced registration
  • Leave a column for any country specific limitations or requirements such as language limitations
  • Leave a column for the estimated time it takes to register
    • This chart has estimates for common countries but there are others that also have lead time in procuring an OID so please open a support case for review

Selecting an Origination Identity

Now that you have these details all in one place consult this table to determine what OIDs each country supports, and, if your use case requires it, which countries support two-way.

In countries where there are multiple options for OIDs there are several guidelines to consider when you’re deciding what type of origination identity to use:

  • Sender IDs are a great option for one-way use cases. However, they’re not available in all countries and if you are needing to opt-out your customers you will need to provide a way for them to do so since they are only one-way.
    • In some countries (such as India and Saudi Arabia), long codes can be used to receive incoming messages, but can’t be used to send outgoing messages. You can use these inbound-only long codes to provide your recipients with a way to opt out of messages that you send using a Sender ID.
  • Short codes are a great option for two-way use cases and have the highest throughput of all OIDs.
    • While short codes have a higher throughput they also come at a much higher cost than other OIDs so weigh your cost against your use case requirements.
  • In some countries, we maintain a pool of shared origination identities. If you send messages to recipients in a particular country, but you don’t have a dedicated origination identity in that country, we make an effort to deliver your message using one of these shared identities.
    • Shared identities are unavailable in some countries, including the United States and China.
    • Shared identities cannot be 2-way so make sure you have a way of opting customers out of communication

With these in mind consult this guide to help you decide which OID to use for each country and use case. Update your sheet as you review each country. Many of our customers opt for a phased roll-out, enabling SMS for the countries that do not require registration and can be put into production swiftly while working through the registration process for those countries that require it and bringing those to production as they are approved. A phased approach is also preferred as it allows customers to monitor for any problems with deliverability with a smaller volume than their full production workload.

Procurement and Registration of Origination Identities

In countries where registration is onerous it is important to have a few things about your process all in one place. Some registrations are very similar in the information that they ask for while others have special processes that you need to follow. Examples include:

Once you have decided on your OIDs for each of your countries you can begin the process of procuring them. Depending on where you plan on sending you may need to open a case to procure them. Short codes you also need to open a case but the process is slightly different so review the documentation here. If you are having trouble making a decision on OIDs you may have the option of engaging with AWS support or your Account Manager dependent on the support level you have opted for on your account.

Testing SMS Sending

Once you have procured OIDs and are ready to begin testing, it is essential that you set up a way of monitoring the events that Pinpoint generates. Pay attention to the Delivery Receipts (DLRs) that are returned back into the event stream. These provide you details on the success or failure of your sends. Pinpoint delivers all events via Amazon Kinesis, which needs to be enabled within each Project you are using. This is a common solution among our customers. It enables the stream, sends it to a user-specified S3 Bucket, and sets up Tables and Views within Amazon Athena, our serverless SQL query engine.. Kinesis can stream to many different destinations, including Redshift and HTTP endpoints, among many others. This gives you flexibility in how you deliver the events to their required locations. Monitoring SMS events is an important part of sending globally, these are the SMS Events that are possible to receive in your stream.

TPS limits can vary depending on the countries you’re sending to and the OIDs you’re using. If there’s a risk of exceeding these limits and triggering rate limiting errors, it’s crucial to devise a strategy for queuing your messages. Keep in mind, Amazon Pinpoint doesn’t offer queueing capabilities. Therefore, message queueing must be incorporated at your application level or by leveraging AWS services. For instance, you could deploy this commonly used architecture that’s adjustable according to your specific use case.

Once you have your monitoring solution in place, you are read to begin testing sends to real destination phone numbers. Keep in mind that at this point you are likely still in the Sandbox for SMS. This means you have much lower quotas for sending and can only send to verified phone numbers or the SMS Simulator numbers. Pinpoint includes an SMS simulator, which you can use to send text messages and receive realistic event records to 51 commonly sent to countries. Messages sent to these destination phone numbers are not sent over the carrier network but do incur the standard outbound SMS messaging rate for the country that the simulated phone number is based in.

Best Practices for Sending
Before beginning There are two common ways of sending SMS via Pinpoint. The first option is the Pinpoint API using the SendMessages Action, which you can send a direct message to as many as 100 recipients at a time. The second option is to use the SMS and Voice v2 API and the SendTextMessage Action, which has more options available to configure your sends and can send to a single recipient with each call. The V2 API is the preferred way of sending as it allows for more fine grained control over your messages and is the API upon which new functionality will be built. Keep in mind that sending via the API does not attribute any metrics back to an endpoint unless you are specifying an endpoint ID in your call, so if you are using other features of Pinpoint such as campaigns or journeys or sending via other channels such as email you will need to consider your strategy for measuring success and how you will tie all of your communication efforts together.

When sending SMS Pinpoint includes logic for selecting the best OID to send from based on the country code. If there are multiple OIDs available to send to a particular country Pinpoint will default to the highest throughput OID available in your Account/Region. If there are not OIDs specific to the country being sent to Pinpoint will default to SenderID or to a shared OID owned by Pinpoint in that order, if the country allows these OIDs to be used. Given this functionality the best practice for sending SMS is to not specify the OID needed to send to a specific country and to allow Pinpoint to select. You can restrict Pinpoint to send to only those countries that you have OIDs for by using Pools, and turning off Shared Routes, more on this below.

If you have multiple use cases and need to specify the correct OID for each, this is where the V2 API is useful. OIDs can be attached to Pools, which can be configured to serve a particular use case, and the pool can be specified in your SendTextMessage call. Sending using a PoolID and allowing Pinpoint to select the right OID from that pool for the destination phone number simplifies your sending process. This blogpost details the process for creating Pools and using them to send SMS.

As mentioned above Pools also serve an additional use case, which is to limit message sending to specific countries. Some countries allow messages without an OID. If you don’t modify your settings to disable this feature, Pinpoint will attempt to deliver messages to these countries, even if you don’t have an explicit OID for them. Restricting SMS sends only to countries that you have OIDs for can be accomplished by using Pools and configuring “SharedRoutesEnabled“ to false by using the UpdatePool Action. Once configured you will receive an error back if attempting to send to a destination phone number that you do not have an OID for in the Pool. This configuration gives you the ability to control your costs while simplifying your process.

Managing Opt-Outs

As we have seen, managing SMS in an environment of increasing global regulation is challenging. An area of importance that needs to be configured is how you plan on managing the ability for recipients to opt out of your communications. Pinpoint can automatically opt your customers out of SMS communications using predefined keywords such as, “stop” or “unsubscribe.” However, this would make for an Account wide opt-out, and not ideal for customers that have multiple use cases such as OTP and Marketing communications. This blogpost details the process of managing opt-outs for multiple use cases. The configuration is enabled through the V2 API and is another reason to standardize your process on this API.

Monitoring Sending

The last step in ensuring success for SMS sending is having a solid platform for monitoring your sending. SMS is not a guaranteed delivery channel. You will always receive an event for a successful send in the event stream but there is no guarantee of a return status event, if a DLR from a carrier is not sent. A list of SMS Events and possible statuses can be found here.

The first Event you should see returned when watching the Event Stream for an SMS send activity is the “PENDING” event. This means we’ve sent the message to the carrier, where it’s buffered, and we’re waiting for the carrier to return a status message. There are no status messages between the “PENDING” state and the “whatever happens next” state, so if the carrier is retrying, we simply stay in PENDING and do not create more events. If a message is successfully delivered and a DLR is sent back from the carrier then a new event will be generated with a status of “SUCCESSFUL/DELIVERED.”

Make sure to review all of the possible values for the record_status attribute so that you are aware of varying issues with your sending that can arise. For example, statuses such as “Blocked,” “Spam,” and “Carrier_Blocked“ can indicate systemic issues that should be investigated.

Updates sent from a carrier via a DLR can be delayed for up to 72 hours or never sent at all. This varies based on the carrier and the country being sent to. Should you require a higher level of reliability, you need to establish business logic around monitoring SMS messages. If messages remain in a PENDING status longer than your business requirements permit, you must make a decision on how to handle them. You need to consider whether missed or duplicated messages are acceptable, or if it’s preferable to retry messages that are stuck in pending. The following is an example architecture for failed SMS retries that you can adjust to your needs.

Conclusion

This post covers the general process for getting started with Global SMS but as you have learned each country presents a different challenge and the regulatory environment is constantly evolving. It’s important to make sure that you are receiving messages from AWS that detail new regulations, new feature launches, and other major announcements to continually improve your process and make sure your SMS are delivering at the highest rate possible.

Take the time to plan out your approach, follow the steps outlined in this blog, and take advantage of any resources available to you within your support tier.

Decide what origination IDs you will need here
Review the documentation for the V2 SMS and Voice API here
Review the Pinpoint API and SendMessage here
Check out the support tiers comparison here

Resources:
https://docs.aws.amazon.com/pinpoint/latest/userguide/channels-sms-countries.html
https://aws.amazon.com/blogs/messaging-and-targeting/how-to-utilise-amazon-pinpoint-to-retry-unsuccessful-sms-delivery/
https://datatracker.ietf.org/doc/html/draft-wilde-sms-uri-20#section-4
https://docs.aws.amazon.com/pinpoint/latest/developerguide/event-streams-data-sms.html
https://docs.aws.amazon.com/pinpoint/latest/userguide/channels-sms-limitations-opt-out.html
https://docs.aws.amazon.com/pinpoint/latest/userguide/channels-sms-simulator.html

Build AI and ML into Email & SMS for customer engagement

Post Syndicated from Vinay Ujjini original https://aws.amazon.com/blogs/messaging-and-targeting/build-ai-and-ml-into-email-sms-for-customer-engagement/

Build AI and ML into Email & SMS for customer engagement

Customers engage with businesses through various channels like email, SMS, Push, and in-app. With the availability and ease of usage of mobile phones, businesses can use 2-way Short Service Messages (SMS) to engage with their customers. Text messaging does not need applications and provides immediate interaction with your customers. Amazon Pinpoint enables businesses & organizations to interact in 2-way SMS messages with their customers. Since it is not practical and scalable for organizations to have people responding to millions of their customer’s texts, we can leverage Amazon Lex which helps build the conversational AI into the 2-way SMS. Amazon Lex is a fully managed artificial intelligent (AI) AWS service with advanced natural language models to design, build, test, and deploy conversational interfaces in applications. Machine Learning (ML) is used in digital marketing to help businesses detect patterns in customer bhevaior.

Today, if customers want to know the latest status on their order, they have to send an email, which is hard for businesses to monitor and respond, and time consuming for the customer to call regarding their order status and also expensive for businesses to field the calls.

This blog post shows how you can elevate your customer’s experience using Amazon Pinpoint’s omni-channel capabilities, Amazon Lex’s AI powered chat, and ML-powered personalization using Amazon Personalize.

The solution presented in this blog helps resolve all the above issues. The example I have used to depict this where a customer orders a bike and since the delivery has been delayed, he wants to get timely updates on the progress. He has been given a phone number by the bike company to text them with any questions. This solution elevates the customer’s experience by providing him with timely update by checking the latest from the database and also sending additional product recommendations, predicting what the customer might need.

Architecture

This solution uses Amazon Pinpoint, Amazon Lex, AWS Lambda, Amazon Dynamo DB, Amazon Simple Notification Services, Amazon Personalize.

AWS architecture diagram AI/ML, Email, SMS.

  1. The customer sends a message to the number provided by the store asking about their order status.
  2. Pinpoint 2-way SMS has as SNS topic tied to it.
  3. The SNS topic relays the message to the Lex integration Lambda.
  4. This Lex integration lambda has the integration between Pinpoint & Lex.
  5. When the customer checks on their order status, Lex taps into the fulfillment lambda that is tied to it.
  6. That lambda checks on the order status from the DynamoDB and sends it back to Lex.
  7. Lex sends the order details to Amazon Pinpoint and Amazon Pinpoint delivers the SMS with the order details to the customer’s phone number.
  8. Amazon Lex lets fulfillment Lambda know to send an email to the customer with the order details.
  9. Fulfillment Lambda create an event called ‘Order Status’ for Amazon Pinpoint Journey to consume in its Journey.
  10. Amazon Pinpoint’s message template reaches out to Amazon Personalize to get the 3 recommendations.
  11. Amazon Pinpoint’s Journey triggers an email message to the customer with the order information and recommendations

Prerequisites

To deploy this solution, you must have the following:

  1. An AWS account.
  2. An Amazon Pinpoint project.
  3. An originating identity that supports 2 way SMS in the country you are planning to send SMS to – Supported countries and regions (SMS channel).
  4. A mobile number to send and receive text messages.
  5. An SMS customer segment – Download the example CSV, that contains a sample SMS & email endpoints. Replace the phone number (column C) with yours, and email with your email and import it to Amazon Pinpoint – How to import an Amazon Pinpoint segment.
  6. Add your mobile number in the Amazon Pinpoint SMS sandbox.
  7. Verify your email address that needs to receive messages from this account.
  8. Download the LexIntegration.zip & RE_Order_Validation.zip Lambda files from this Github location.

Preparation:

  1. Download the CloudFormation template.
  2. Go to Amazon S3 console and create a bucket. I created one for this example as ‘pinpointreinventaiml-code’. Under that S3 bucket, create a sub-folder and name it Lambda.
  3. Upload the 2 zip files you downloaded earlier from the Github.
  4. In Amazon Pinpoint > Phone numbers, Check to make sure the phone number you are using is enabled for SMS and its status is active.
  5. Add the machine learning generated product recommendations using Amazon Personalize.
Check if phone number is enabled & active in Pinpoint console

Phone numbers in Pinpoint console

Solution implementation

Create a Lex Chat bot:

  1. Now it’s time to create your bot. To create your bot, sign in to the Lex console at https://console.aws.amazon.com/lex.
  2. For more information about creating bots in Lex, see https://docs.aws.amazon.com/lex/latest/dg/gs-console.html.
  3. Click on Create bot button. Next steps:
    1. Select Create a blank bot radio button.
    2. Give a Bot name ‘Order Status’ under Bot name Configuration. (Use the same Bot name as mentioned here. If you change the Bot name here, your CloudFormation will fail)
    3. Under IAM permissions, select the radio button Create a role with basic Amazon Lex permissions.
    4. For COPPA, choose No. Click Next
    5. Under Language dropdown, choose the language of usage. I chose Language as English in my example.
    6. Click Done, to complete the Bot creation.
  4. You have to create an Intent within the Bot you just created
    1. Click on the Bot you just created. Click on Intents and click the dropdown Add intent and select Add empty intent.
    2. Give an intent name and click Ok.
  5. Once the intent is created, go to the intent and open the Conversation flow section in the intent and create a flow that that has the following info and looks like below image:
    1. Click on Sample utterance and it takes you to Sample Utterance and type in Order status.
    2. Click on initial response and type in Okay, I can help with that. What is your order number?
    3. Click on the slot value and click on Add a slot. Name: OrderNumber and Slot type is AMAZON.AlphaNumeric. In the prompt, enter Please enter your order number.
    4. Click on Save Intent button. The conversation flow should look like the below screenshot:

Amazon Lex intent

6. Go back to the Intent you just created and click on the Build button that is to the right side of the page.

Build intent

7. Once the build is successfully completed, go back to the Bot you created and click on Aliases on the left frame. Click on the Alias that was created earlier, TestBotAlias.

Bot Alias

8. In the Languages section, click on the English language that we created earlier.
9. Open the Lambda function – optional section and point the source to RE_Order_Validation Lambda that we downloaded earlier.
10. For Lambda function version or alias, select $LATEST. Click on Save.

Add Lambda to Alias

11. Go to Intents, choose the intent you just built and click on Build button again. Once build is complete, you can test the intent.

Import and execute CloudFormation:

  1. Navigate to the Amazon CloudFormation console in the AWS region you want to deploy this solution.
  2. Select Create stack and With new resources. Choose Template is ready as Prerequisite – Prepare template and Upload a template file as Specify template. Upload the template downloaded in step 1 under Preparation section of this document. Click Next.
  3. Fill the AWS CloudFormation parameters as shown below:
  4. Stack name: Give a name to this stack.
    1. Under Parameters, for BotAlias: The Bot Alias that you created as part of Amazon Lex above.
    2. BotId: The Bot ID for the bot that you created as part of Amazon Lex above.
    3. CodeS3Bucket: Give the name of the S3 bucket you created in step3 of the Preparation topic above.
    4. OriginationNumber: This is the origination identity phone number you created in step4 of the Preparation topic above.
    5. PinpointProjectId: Use the ProjectID you have from step2 of the Prerequisites phase above.
  5. After entering all the parameter info, it would look something like this below:
  6. CloudFormation parameters
  7. Click Next. Leave the default options on the next page and click Next again.
  8. Check the box I acknowledge that AWS CloudFormation might create IAM resources with custom names. Click Submit.

Set up data in Amazon Dynamo DB

  1. We are using DynamoDB table here as the transactional database that stores order information for the bike store.
  2. Once the solution has been successfully deployed, navigate to the Amazon DynamoDB console and access the OrderStatus DynamoDB table. Each row created in this table represents an order and it’s details. Each row should have a unique Order_Num that holds the order number and it’s related information. You can put additional information about the order like the example below:
  3. {
       "Order_Num":{
          "Value":"ABC123"
       },
       "Delivery_Dt":{
          "Value":"12/01/2022"
       },
       "Order_Dt":{
          "Value":"11/01/2022"
       }
       "Shipping_Dt":{
          "Value":"11/24/2022"
       }
       "UserId":{
          "Value":"example-iser-id-3"
       }
    }
  4. Once you enter the data, it should look like the image below. Click on Create item.
  5. Dynamo DB values

Set up Amazon Simple Notification Service (SNS) topic

  1. We need the Amazon Simple Notification Service here, to provide internal message delivery from publishers (customer’s text message) to subscribers (Amazon Lex in this example). This is used for internal notifications in this use case.
  2. As part of the CloudFormation above, check if you have an SNS topic created by the name LexPinpointIntegrationDemo.
  3. Now, we have successfully created an Amazon SNS topic.

Set up Lambda Functions

  1. Go to AWS Lambda console and open the Lambda function LexIntegration. Under the Function overview, click on the Add trigger. Under Trigger configuration dropdown, select SNS and under SNS Topic select LexPinpointIntegrationDemo topic. Click on Add.
  2. Note: In this example, I used Node.js in a Lambda and Python in another, to show how AWS Lambda functions are flexible to use the scripting language of your choice.

Setting up 2-way SMS in Amazon Pinpoint

  1. Go to Amazon Pinpoint console and click on Phone numbers under SMS & Voice in the left frame. If you don’t see any phone numbers, please refer to #3 under prerequisites section above.
  2. This is how your screen should look like
  3. Phone numbers in Pinpoint
  4. Click on the number.
  5. On the right frame, expand Two-way SMS drop down arrow.
  6. Click on the check box ‘Enable two-way SMS’.
  7. In the ‘Incoming message destination’ select the radio button ‘Choose an existing SNS topic’ and in the drop down below, choose the SNS topic you built above.
  8. The result would look like the screenshot below:
  9. 2-way SMS
  10. Click on Save.

Import Machine Learning model into Pinpoint

  1. Go to Amazon Pinpoint.
  2. Click on Machine Learning Models. Click on Add recommender model.
  3. Give a recommender model name and description under model details.
  4. Under Model configuration, choose the radio button ‘Automatically create a role’ and give an IAM role name in the textbox below.
  5. Under recommender model, choose the recommender model campaign that you created in Amazon Personalize earlier in the project.
    1. If you did not create it, use this Pinpoint workshop to create a recommender model in Amazon Personalize.
    2. The data used in this example is for retail industry, please edit the data as needed for your use case and industry.
  6. Under the settings section:
    1. Select ‘User Id’ as identifier.
    2. Click on the drop down ‘Number of recommendations per message’ and select 3.
  7. For Processing method, choose ‘Use value returned by model’.
  8. Click on Next.
  9. You are presented with attributes section. Give a display name as ‘product_name’ for the attributes and click next.
  10. On the next screen, you can review all the information provided and click on Publish.
  11. The completed model after publishing looks like the screen below:
  12. Personalize model in Pinpoint

Create a Message Template in Amazon Pinpoint

  1. Use chapter 6.4 in this workshop Amazon Pinpoint Workshop to create a message template.
  2. Once the template is created, you need to add recommendations to the message template using this Amazon Pinpoint Workshop details. Change the type of data needed for your use case and industry in this workshop. I used sample retail data.
  3. To create a Amazon Pinpoint Journey, navigate to the Amazon Pinpoint console , select Journeys and click on Create journey.
  4. Give a name, click on Set entry condition in the Journey entry block.
  5. Choose the radio button Add participants when they perform an activity.
  6. Click in the ‘Events’ text box and type in OrderStatus.
  7. Pinpoint Journey entry
  8. Click on Add activity and select Send an email.
  9. Click on choose an email template and select the email message template we created earlier in this blog. Click on choose template button.
  10. Select a Sender email address from the drop down list.
  11. Choose sender email here
  12. Click Save. The final journey should look like this:
  13. This is the final journey
  14. Click on Actions > Settings where you will review the journey settings. There you set the start and end date of the journey if applicable as well as other advanced settings. Configure your journey settings to look like the screenshot below and click Save.
  15. Journey settings
  16. To publish your journey click on Review. On the Review your journey click Next > Mark as reviewed > Publish. A 5 minutes countdown will begin after, which your journey will be live.
  17. Once the journey is live, we need to pass the event OrderStatus and the endpoints will go through that journey and will receive an email.

Testing the solution

  1. Use a phone with a valid number (in this example, I took a US phone number) and send a text ‘Order Status’ to the number generated in Amazon Pinpoint above.
  2. You should get a response “Okay, I can help with that. What is your order number?”
  3. You should type in the order number you generated earlier and stored it in Amazon DynamoDB table.
  4. You should get a response “Your order <order number> was shipped on <shipped_dt> and is expected to be delivered to your address on <delivery_dt>. Your order details have been emailed to you.”
  5. Text message flow
  6. Alternatively, you can test this solution from the Lex bot.
  7. In Amazon Lex, go to the intent you created above and click on the Test button. Next steps:
    1. In the text box, enter Order Status.
    2. Bot should respond with Okay, I can help with that. What is your order number?
    3. You can respond with the order number you entered in the DynamoDB table.
    4. Bot should respond with Your order <Order_Num> was shipped on <Shipping_Dt> and is expected to be delivered to your address on <Delivery_Dt>. Your order details have been emailed to you.
    5. Testing the 2 way messaging in Lex console

Conclusion

Using this blog post, you can elevate your customer’s experience by using Amazon Lex’s AI chat capabilities, Amazon Personalize’s ML recommendation models and trigger a Pinpoint Journey. This blog highlights how organizations can interact in a 2-way SMS with their customers and convert that engagement to a triggered email, with product recommendations, if needed.

Next Steps

You can use the above solution and modify it easily to use it across different verticals and applicable use cases. You can also extend this solution to Amazon Connect to an agent via SMS chat, using this blog.

Clean-up

  1. To delete the solution, go to CloudFormation you created as part od this project. Click on the stack and click Delete.
  2. Navigate to Amazon Pinpoint and stop the Journey you ran in this solution. Delete the Journey, Machine learning models, Message templates you created for this solution. Delete the Project you created for this solution.
  3. In Amazon Lex, delete the intent and bot you created for this solution.
  4. Delete the folder and bucket you created in S3 as part of this project.
  5. Amazon Personalize resources like Dataset groups, datasets, etc. are not created via AWS Cloudformation, thus you have to delete them manually. Please follow the instructions in the AWS documentation on how to clean up the created resources.

Additional resources

Retry delivering failed SMS using Pinpoint

How to target customers using ML, based on their interest in a product

 About the Authors

Vinay Ujjini

Vinay Ujjini is an Amazon Pinpoint and Amazon Simple Email Service Principal Specialist Solutions Architect at AWS. He has been solving customer’s omni-channel challenges for over 15 years. In his spare time, he enjoys playing tennis & cricket.

Incident notification mechanism using Amazon Pinpoint two-way SMS

Post Syndicated from Pavlos Ioannou Katidis original https://aws.amazon.com/blogs/messaging-and-targeting/incident-notification-mechanism-using-amazon-pinpoint-two-way-sms/

Unexpected situations that require immediate attention can occur in any industry. Part of resolving these incidents is the notifications’ delivery. For example, utility companies that have installed gas sensors need to notify immediately the available engineer if a leak occurs.

The goal of an incident management process is to restore a normal service operation as quickly as possible and to minimize the impact on business operations, thus ensuring that the best possible levels of service quality and availability are maintained. A key element of incident management is sending timely notifications to the assigned or available resource(s) who can rectify the issue.

An incident can take place at any time and the resource(s) assigned to it might not have internet access and even if they receive the message they might not be equipped to work on it. This creates five key requirements for an incident notifications mechanism:

  1. Notify the resources via a communication channel that ensures message delivery even without internet access
  2. Enable assigned resources to respond to a request via a communication channel that doesn’t require internet access
  3. Send reminder(s) in case there is no response from the assigned resource(s)
  4. Escalate to another resource in case the first one doesn’t reply or declines the incident
  5. Store the incident details & status for reporting and data analysis

In this blog post, I share a solution on how you can automate the delivery of incident notifications. This solution utilizes Amazon Pinpoint SMS channel to contact the designated resources who might not have access to the internet. Furthermore, the recipient of the SMS is able to reply with an acknowledgement. AWS Step Functions orchestrates the user journey using AWS Lambda functions to evaluate the recipients’ response and trigger the next best action. You will use AWS CloudFormation to deploy this solution.

Use Cases

An incident notification mechanism can vary depending the organization’s requirements and 3rd party system integrations. In this blog the solution covers all five points listed above but it might require further modifications depending your use case.

With minor modifications this solution can also be used in the following use cases:

  1. Medicine intake notification: It will notify the patient via SMS that it is their time to take their medicine. If the patient doesn’t acknowledge the SMS by replying then this can be escalated to their assigned doctor
  2. Assignment submission: It will notify the student that their assignment is due. If the student doesn’t acknowledge the SMS by replying then this can be escalated to their teacher

High-level Architecture

The solution requires the country of your SMS recipients to support two-way SMS. To check which countries, support two-way SMS visit this page.  If two-way SMS is supported then you will need to request a dedicated originating identity. You can also use Toll Free Number or 10DLC if your recipients are in the US.

Note: Sender ID doesn’t support two-way SMS.

A new incident is represented as an item in an Amazon DynamoDB table containing information such as description, URL, incident_id as well as the contact numbers for two resources. A resource is someone who has been assigned to work on this incident. The second resource is for escalation purposes in case the first one doesn’t acknowledge or decline the incident notification.

The Amazon DynamoDB table covers three functions for this solution:

  1. A way to add new incidents using either the AWS console or programmatically
  2. As a storage for variables that indicate the incident’s status and can be used from the solution to determine the next action(s)
  3. As a historical data storage for all incidents that have been created for data analysis purposes

The solution utilizes Amazon DynamoDB Streams to invoke an AWS Lambda function every time a new incident is created. The AWS Lambda function triggers an AWS Step Function State machine, which orchestrates three AWS Lambda functions:

  1. Send_First_SMS: Sends the first SMS
  2. Reminder_SMS: Sends a reminder SMS if the resource does not acknowledge the first SMS
  3. Incident_State_Review: Assesses the status of the incident and either goes back to the first AWS Lambda function or finishes the AWS Step Function State machine execution

The AWS Step Functions State machine uses the Choice state, which evaluates the response of the previous AWS Lambda function and decides on the next state. This is a very useful feature that can reduce custom code and potentially AWS Lambda invocations resulting to cost savings.

Additionally, the waiting between steps is also managed from AWS Step Functions State machine using the Wait state. This can be configured to wait seconds, days or till a specific point in the future.

To be able to receive SMS, this solution uses Amazon Pinpoint’s two-way SMS feature. When receiving an SMS Amazon Pinpoint sends a payload to an Amazon SNS topic, which needs to be created separately. An AWS Lambda function that is subscribed to the Amazon SNS topic processes the SMS content and performs one or both of the following actions:

  1. Update the incident status in the DynamoDB table
  2. Create a new Step Function State machine execution

In this solution SMS recipients can reply by typing either yes or no. The SMS response is not case sensitive.

An inbound SMS payload contains the originationNumber, destinationNumber, messageKeyword, messageBody, inboundMessageId and previousPublishedMessageId. Noticeably there isn’t a direct way to associate an inbound SMS with an incident. To overcome this challenge this solution uses a second DynamoDB table, which stores the message_id and incident_id every time an SMS is send to any of the two resources. This allows the solution to use the previousPublishedMessageId from the inbound SMS payload to fetch the respective incident_id from the second DynamoDB table.

The code in this solution uses AWS SDK for Python (Boto3).

Prerequisites

  1. An Amazon Pinpoint project with the SMS channel enabled – Guide on how to enable Amazon Pinpoint SMS channel
  2. Check if the country you want to send SMS to, supports two-way SMS – List with countries that support two-way SMS
  3. An originating identity that supports two-way SMS – Guide on how to request a phone number
  4. Increase your monthly SMS spending quota for Amazon Pinpoint – Guide on how to increase the monthly SMS spending quota

Deploy the solution

Step 1: Create an S3 bucket

  1. Navigate to the Amazon S3 console
  2. Select Create bucket
  3. Enter a unique name for Bucket name
  4. Select the AWS Region to be the same as the one of your Amazon Pinpoint project
  5. Scroll to the bottom of the page and select Create bucket
  6. Follow this link to download the GitHub repository. Once the repository is downloaded, unzip it and navigate to  \amazon-pinpoint-incident-notifications-mechanism-main\src
  7. Access the S3 bucket created above and upload the five .zip files

Step 2: Create a stack

  1. The application is deployed using an AWS CloudFormation template.
  2. Navigate to the AWS CloudFormation console select Create stack > With new resources (standard)
  3. Select Template is ready as Prerequisite – Prepare template and choose Upload a template file as Template source
  4. Select Choose file and from the GitHub repository downloaded in step 1.6 navigate to amazon-pinpoint-incident-notifications-mechanism-main\cfn upload CloudFormation_template.yaml and select Next
  5. Type Pinpoint-Incident-Notifications-Mechanism as Stack name, paste the S3 bucket name created in step 1.5 as the LambdaCodeS3BucketName, type the Amazon Pinpoint Originating Number in E.164 format as OriginatingIdenity, paste the Amazon Pinpoint project ID as PinpointProjectId and type 40 for WaitingBetweenSteps
  6. Select Next, till you reach to Step 4 Review where you will need to check the box I acknowledge that AWS CloudFormation might create IAM resources and then select Create Stack
  7. The stack creation process takes approximately 2 minutes. Click on the refresh button to get the latest event regarding the deployment status. Once the stack has been deployed successfully you should see the last Event with Logical ID Pinpoint-Incident-Notifications-Mechanism and with Status CREATE_COMPLETE

Step 3: Configure two-way SMS SNS topic

  1. Navigate to the Amazon Pinpoint console > SMS and voice > Phone numbers. Select the originating identity that supports two-way SMS. Scroll to the bottom of the page and click to expand the  and check the box to enable it.

    For SNS topic select Choose an existing SNS topic then using the drop down choose the one that contains the name of the AWS CloudFormation stack from Step 2.4 as well as the name TwoWaySMSSNSTopic and click Save.

Step 4: Create a new incident

To create a new incident, navigate to Amazon DynamoDB console > Tables and select the table containing the name of the AWS CloudFormation stack from Step 2.4 as well as the name IncidentInfoDynamoDB. Select View items and then Create item.

On the Create item page choose JSON, copy and paste the JSON below into the text box and replace the values for the first_contact and second_contact with a valid mobile number that you have access to.

Note: If you don’t have two different mobile numbers, enter the same for both first_contact and second_contact fields. The mobile numbers must follow E.164 format +<country code><number>.

{
   "incident_id":{
      "S":"123"
   },
   "incident_stat":{
      "S":"not_acknowledged"
   },
   "double_escalation":{
      "S":"no"
   },
   "description":{
      "S":"Error 111, unit 1 malfunctioned. Urgent assistance is required."
   },
   "url":{
      "S":"https://example.com/incident/111/overview"
   },
   "first_contact":{
      "S":"+4479083---"
   },
   "second_contact":{
      "S":"+4479083---"
   }
}

Incident fields description:

  • incident_id: Needs to be unique
  • incident_stat: This is used from the application to store the incident status. When creating the incident, this value should always be not_acknowledged
  • double_escalation: This is used from the application as a flag for recipients who try to escalate an incident that is already escalated. When creating the incident, this value should always be no
  • description: You can type a description that best describes the incident. Be aware that depending the number of characters the SMS parts will increase. For more information on SMS character limits visit this page
  • url: You can add a URL that resources can access to resolve the issue. If this field is not pertinent to your use case then type no url
  • first_contact: This should contain the mobile number in E.164 format for the first resource
  • second_contact: This should contain the mobile number in E.164 format for the second resource. The second resource will be contacted only if the first one does not acknowledge the SMS or declines the incident

Once the above is ready you can select Create item. This will execute the AWS Step Functions State machine and you should receive an SMS. You can reply with yes to acknowledge the incident or with no to decline it. Depending your response, the incident status in the DynamoDB table will be updated and if you reply no then the incident will be escalated sending a SMS to the second_contact.

Note: The SMS response is not case sensitive.

Clean-up

To remove the solution:

  1. Delete the AWS CloudFormation stack by following the steps listed in this guide
  2. Delete the dedicated originating identity that you used to send the SMS by following the steps listed in this guide
  3. Delete the Amazon Pinpoint project by navigating the Amazon Pinpoint console, select your Amazon Pinpoint Project, choose Settings > General settings > Delete Project

Next Steps

This solution currently works only if your SMS recipients are in one country. If your use case requires to send SMS to multiple countries you will need to:

  • Check this page to ensure that these countries support two-way SMS
  • Follow the instructions in this page to obtain a number that supports two-way SMS for each country
  • Expand the solution to identify the country of the SMS recipient and to choose the correct number accordingly. To identify the country of the SMS recipient you can use Amazon Pinpoint’s phone number validate service via Amazon Pinpoint API or SDKs. The phone validate service returns a list of data points per mobile number with one of them being the Country

Incidents that are not being acknowledged by any of the assigned resources, have their status updated to unacknowledged but they don’t escalate further. Depending your requirements, you can expand the solution to send an email using Amazon Pinpoint APIs or perform an outbound call using Amazon Connect APIs.

Conclusion

In this blog post, I have demonstrated how your organization can use Amazon Pinpoint two-way SMS and Step Functions to automate incident notifications. Furthermore, the solution highlights the synergy of AWS services and how you can build a custom solution with little effort that meets your requirements.

About the Author

Pavlos Ioannou Katidis

Pavlos Ioannou Katidis

Pavlos Ioannou Katidis is an Amazon Pinpoint and Amazon Simple Email Service Specialist Solutions Architect at AWS. He loves to dive deep into his customer’s technical issues and help them design communication solutions. In his spare time, he enjoys playing tennis, watching crime TV series, playing FPS PC games, and coding personal projects.