Tag Archives: anonymity

Securing Your Cryptocurrency

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/backing-up-your-cryptocurrency/

Securing Your Cryptocurrency

In our blog post on Tuesday, Cryptocurrency Security Challenges, we wrote about the two primary challenges faced by anyone interested in safely and profitably participating in the cryptocurrency economy: 1) make sure you’re dealing with reputable and ethical companies and services, and, 2) keep your cryptocurrency holdings safe and secure.

In this post, we’re going to focus on how to make sure you don’t lose any of your cryptocurrency holdings through accident, theft, or carelessness. You do that by backing up the keys needed to sell or trade your currencies.

$34 Billion in Lost Value

Of the 16.4 million bitcoins said to be in circulation in the middle of 2017, close to 3.8 million may have been lost because their owners no longer are able to claim their holdings. Based on today’s valuation, that could total as much as $34 billion dollars in lost value. And that’s just bitcoins. There are now over 1,500 different cryptocurrencies, and we don’t know how many of those have been misplaced or lost.



Now that some cryptocurrencies have reached (at least for now) staggering heights in value, it’s likely that owners will be more careful in keeping track of the keys needed to use their cryptocurrencies. For the ones already lost, however, the owners have been separated from their currencies just as surely as if they had thrown Benjamin Franklins and Grover Clevelands over the railing of a ship.

The Basics of Securing Your Cryptocurrencies

In our previous post, we reviewed how cryptocurrency keys work, and the common ways owners can keep track of them. A cryptocurrency owner needs two keys to use their currencies: a public key that can be shared with others is used to receive currency, and a private key that must be kept secure is used to spend or trade currency.

Many wallets and applications allow the user to require extra security to access them, such as a password, or iris, face, or thumb print scan. If one of these options is available in your wallets, take advantage of it. Beyond that, it’s essential to back up your wallet, either using the backup feature built into some applications and wallets, or manually backing up the data used by the wallet. When backing up, it’s a good idea to back up the entire wallet, as some wallets require additional private data to operate that might not be apparent.

No matter which backup method you use, it is important to back up often and have multiple backups, preferable in different locations. As with any valuable data, a 3-2-1 backup strategy is good to follow, which ensures that you’ll have a good backup copy if anything goes wrong with one or more copies of your data.

One more caveat, don’t reuse passwords. This applies to all of your accounts, but is especially important for something as critical as your finances. Don’t ever use the same password for more than one account. If security is breached on one of your accounts, someone could connect your name or ID with other accounts, and will attempt to use the password there, as well. Consider using a password manager such as LastPass or 1Password, which make creating and using complex and unique passwords easy no matter where you’re trying to sign in.

Approaches to Backing Up Your Cryptocurrency Keys

There are numerous ways to be sure your keys are backed up. Let’s take them one by one.

1. Automatic backups using a backup program

If you’re using a wallet program on your computer, for example, Bitcoin Core, it will store your keys, along with other information, in a file. For Bitcoin Core, that file is wallet.dat. Other currencies will use the same or a different file name and some give you the option to select a name for the wallet file.

To back up the wallet.dat or other wallet file, you might need to tell your backup program to explicitly back up that file. Users of Backblaze Backup don’t have to worry about configuring this, since by default, Backblaze Backup will back up all data files. You should determine where your particular cryptocurrency, wallet, or application stores your keys, and make sure the necessary file(s) are backed up if your backup program requires you to select which files are included in the backup.

Backblaze B2 is an option for those interested in low-cost and high security cloud storage of their cryptocurrency keys. Backblaze B2 supports 2-factor verification for account access, works with a number of apps that support automatic backups with encryption, error-recovery, and versioning, and offers an API and command-line interface (CLI), as well. The first 10GB of storage is free, which could be all one needs to store encrypted cryptocurrency keys.

2. Backing up by exporting keys to a file

Apps and wallets will let you export your keys from your app or wallet to a file. Once exported, your keys can be stored on a local drive, USB thumb drive, DAS, NAS, or in the cloud with any cloud storage or sync service you wish. Encrypting the file is strongly encouraged — more on that later. If you use 1Password or LastPass, or other secure notes program, you also could store your keys there.

3. Backing up by saving a mnemonic recovery seed

A mnemonic phrase, mnemonic recovery phrase, or mnemonic seed is a list of words that stores all the information needed to recover a cryptocurrency wallet. Many wallets will have the option to generate a mnemonic backup phrase, which can be written down on paper. If the user’s computer no longer works or their hard drive becomes corrupted, they can download the same wallet software again and use the mnemonic recovery phrase to restore their keys.

The phrase can be used by anyone to recover the keys, so it must be kept safe. Mnemonic phrases are an excellent way of backing up and storing cryptocurrency and so they are used by almost all wallets.

A mnemonic recovery seed is represented by a group of easy to remember words. For example:

eye female unfair moon genius pipe nuclear width dizzy forum cricket know expire purse laptop scale identify cube pause crucial day cigar noise receive

The above words represent the following seed:

0a5b25e1dab6039d22cd57469744499863962daba9d2844243fec 9c0313c1448d1a0b2cd9e230a78775556f9b514a8be45802c2808e fd449a20234e9262dfa69

These words have certain properties:

  • The first four letters are enough to unambiguously identify the word.
  • Similar words are avoided (such as: build and built).

Bitcoin and most other cryptocurrencies such as Litecoin, Ethereum, and others use mnemonic seeds that are 12 to 24 words long. Other currencies might use different length seeds.

4. Physical backups — Paper, Metal

Some cryptocurrency holders believe that their backup, or even all their cryptocurrency account information, should be stored entirely separately from the internet to avoid any risk of their information being compromised through hacks, exploits, or leaks. This type of storage is called “cold storage.” One method of cold storage involves printing out the keys to a piece of paper and then erasing any record of the keys from all computer systems. The keys can be entered into a program from the paper when needed, or scanned from a QR code printed on the paper.

Printed public and private keys

Printed public and private keys

Some who go to extremes suggest separating the mnemonic needed to access an account into individual pieces of paper and storing those pieces in different locations in the home or office, or even different geographical locations. Some say this is a bad idea since it could be possible to reconstruct the mnemonic from one or more pieces. How diligent you wish to be in protecting these codes is up to you.

Mnemonic recovery phrase booklet

Mnemonic recovery phrase booklet

There’s another option that could make you the envy of your friends. That’s the CryptoSteel wallet, which is a stainless steel metal case that comes with more than 250 stainless steel letter tiles engraved on each side. Codes and passwords are assembled manually from the supplied part-randomized set of tiles. Users are able to store up to 96 characters worth of confidential information. Cryptosteel claims to be fireproof, waterproof, and shock-proof.

image of a Cryptosteel cold storage device

Cryptosteel cold wallet

Of course, if you leave your Cryptosteel wallet in the pocket of a pair of ripped jeans that gets thrown out by the housekeeper, as happened to the character Russ Hanneman on the TV show Silicon Valley in last Sunday’s episode, then you’re out of luck. That fictional billionaire investor lost a USB drive with $300 million in cryptocoins. Let’s hope that doesn’t happen to you.

Encryption & Security

Whether you store your keys on your computer, an external disk, a USB drive, DAS, NAS, or in the cloud, you want to make sure that no one else can use those keys. The best way to handle that is to encrypt the backup.

With Backblaze Backup for Windows and Macintosh, your backups are encrypted in transmission to the cloud and on the backup server. Users have the option to add an additional level of security by adding a Personal Encryption Key (PEK), which secures their private key. Your cryptocurrency backup files are secure in the cloud. Using our web or mobile interface, previous versions of files can be accessed, as well.

Our object storage cloud offering, Backblaze B2, can be used with a variety of applications for Windows, Macintosh, and Linux. With B2, cryptocurrency users can choose whichever method of encryption they wish to use on their local computers and then upload their encrypted currency keys to the cloud. Depending on the client used, versioning and life-cycle rules can be applied to the stored files.

Other backup programs and systems provide some or all of these capabilities, as well. If you are backing up to a local drive, it is a good idea to encrypt the local backup, which is an option in some backup programs.

Address Security

Some experts recommend using a different address for each cryptocurrency transaction. Since the address is not the same as your wallet, this means that you are not creating a new wallet, but simply using a new identifier for people sending you cryptocurrency. Creating a new address is usually as easy as clicking a button in the wallet.

One of the chief advantages of using a different address for each transaction is anonymity. Each time you use an address, you put more information into the public ledger (blockchain) about where the currency came from or where it went. That means that over time, using the same address repeatedly could mean that someone could map your relationships, transactions, and incoming funds. The more you use that address, the more information someone can learn about you. For more on this topic, refer to Address reuse.

Note that a downside of using a paper wallet with a single key pair (type-0 non-deterministic wallet) is that it has the vulnerabilities listed above. Each transaction using that paper wallet will add to the public record of transactions associated with that address. Newer wallets, i.e. “deterministic” or those using mnemonic code words support multiple addresses and are now recommended.

There are other approaches to keeping your cryptocurrency transaction secure. Here are a couple of them.

Multi-signature

Multi-signature refers to requiring more than one key to authorize a transaction, much like requiring more than one key to open a safe. It is generally used to divide up responsibility for possession of cryptocurrency. Standard transactions could be called “single-signature transactions” because transfers require only one signature — from the owner of the private key associated with the currency address (public key). Some wallets and apps can be configured to require more than one signature, which means that a group of people, businesses, or other entities all must agree to trade in the cryptocurrencies.

Deep Cold Storage

Deep cold storage ensures the entire transaction process happens in an offline environment. There are typically three elements to deep cold storage.

First, the wallet and private key are generated offline, and the signing of transactions happens on a system not connected to the internet in any manner. This ensures it’s never exposed to a potentially compromised system or connection.

Second, details are secured with encryption to ensure that even if the wallet file ends up in the wrong hands, the information is protected.

Third, storage of the encrypted wallet file or paper wallet is generally at a location or facility that has restricted access, such as a safety deposit box at a bank.

Deep cold storage is used to safeguard a large individual cryptocurrency portfolio held for the long term, or for trustees holding cryptocurrency on behalf of others, and is possibly the safest method to ensure a crypto investment remains secure.

Keep Your Software Up to Date

You should always make sure that you are using the latest version of your app or wallet software, which includes important stability and security fixes. Installing updates for all other software on your computer or mobile device is also important to keep your wallet environment safer.

One Last Thing: Think About Your Testament

Your cryptocurrency funds can be lost forever if you don’t have a backup plan for your peers and family. If the location of your wallets or your passwords is not known by anyone when you are gone, there is no hope that your funds will ever be recovered. Taking a bit of time on these matters can make a huge difference.

To the Moon*

Are you comfortable with how you’re managing and backing up your cryptocurrency wallets and keys? Do you have a suggestion for keeping your cryptocurrencies safe that we missed above? Please let us know in the comments.


*To the Moon — Crypto slang for a currency that reaches an optimistic price projection.

The post Securing Your Cryptocurrency appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Video Deters People From Pirate Sites…Or Encourages Them to Start One?

Post Syndicated from Andy original https://torrentfreak.com/video-deters-people-from-pirate-sites-or-encourages-them-to-start-one-180505/

There are almost as many anti-piracy strategies as there are techniques for downloading.

Litigation and education are probably the two most likely to be seen by the public, who are often directly targeted by the entertainment industries.

Over the years this has led to many campaigns, one of which famously stated that piracy is a crime while equating it to the physical theft of a car, a handbag, a television, or a regular movie DVD. It’s debatable whether these campaigns have made much difference but they have raised awareness and some of the responses have been hilarious.

While success remains hard to measure, it hasn’t stopped these PSAs from being made. The latest efforts come out of Sweden, where the country’s Patent and Registration Office (PRV) was commissioned by the government to increase public awareness of copyright and help change attitudes surrounding streaming and illegal downloading.

“The purpose is, among other things, to reduce the use of illegal streaming sites and make it easier and safer to find and choose legal options,” PRV says.

“Every year, criminal networks earn millions of dollars from illegal streaming. This money comes from advertising on illegal sites and is used for other criminal activities. The purpose of our film is to inform about this.”

The series of videos show pirates in their supposed natural habitats of beautiful mansions, packed with luxurious items such as indoor pools, fancy staircases, and stacks of money. For some reason (perhaps to depict anonymity, perhaps to suggest something more sinister) the pirates are all dressed in animal masks, such as this one enjoying his Dodge Viper.

The clear suggestion here is that people who visit pirate sites and stream unlicensed content are helping to pay for this guy’s bright green car. The same holds true for his indoor swimming pool, jet bike, and gold chains in the next clip.

While some might have a problem with pirates getting rich from their clicks, it can’t have escaped the targets of these videos that they too are benefiting from the scheme. Granted, hyena-man gets the pool and the Viper, but they get the latest movies. It seems unlikely that pirate streamers refused to watch the copy of Black Panther that leaked onto the web this week (a month before its retail release) on the basis that someone else was getting rich from it.

That being said, most people will probably balk at elements of the full PSA, which suggests that revenue from illegal streaming goes on to fuel other crimes, such as prescription drug offenses.

After reporting piracy cases for more than twelve years, no one at TF has ever seen evidence of this happening with any torrent or streaming site operators. Still, it makes good drama for the full video, embedded below.

“In the film we follow a fictional occupational criminal who gives us a tour of his beautiful villa. He proudly shows up his multi-criminal activity, which was made possible by means of advertising money from his illegal streaming services,” PRV explains.

The dark tone and creepy masks are bound to put some people off but one has to question the effect this kind of video could have on younger people. Do pirates really make mountains of money so huge that they can only be counted by machine? If they do, then it’s a lot less risky than almost any other crime that yields this claimed level of profit.

With that in mind, will this video deter the public or simply encourage people to get involved for some of that big money? We sent a link to the operator of a large pirate site for his considered opinion.

“WTF,” he responded.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

Securing Elections

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/04/securing_electi_1.html

Elections serve two purposes. The first, and obvious, purpose is to accurately choose the winner. But the second is equally important: to convince the loser. To the extent that an election system is not transparently and auditably accurate, it fails in that second purpose. Our election systems are failing, and we need to fix them.

Today, we conduct our elections on computers. Our registration lists are in computer databases. We vote on computerized voting machines. And our tabulation and reporting is done on computers. We do this for a lot of good reasons, but a side effect is that elections now have all the insecurities inherent in computers. The only way to reliably protect elections from both malice and accident is to use something that is not hackable or unreliable at scale; the best way to do that is to back up as much of the system as possible with paper.

Recently, there have been two graphic demonstrations of how bad our computerized voting system is. In 2007, the states of California and Ohio conducted audits of their electronic voting machines. Expert review teams found exploitable vulnerabilities in almost every component they examined. The researchers were able to undetectably alter vote tallies, erase audit logs, and load malware on to the systems. Some of their attacks could be implemented by a single individual with no greater access than a normal poll worker; others could be done remotely.

Last year, the Defcon hackers’ conference sponsored a Voting Village. Organizers collected 25 pieces of voting equipment, including voting machines and electronic poll books. By the end of the weekend, conference attendees had found ways to compromise every piece of test equipment: to load malicious software, compromise vote tallies and audit logs, or cause equipment to fail.

It’s important to understand that these were not well-funded nation-state attackers. These were not even academics who had been studying the problem for weeks. These were bored hackers, with no experience with voting machines, playing around between parties one weekend.

It shouldn’t be any surprise that voting equipment, including voting machines, voter registration databases, and vote tabulation systems, are that hackable. They’re computers — often ancient computers running operating systems no longer supported by the manufacturers — and they don’t have any magical security technology that the rest of the industry isn’t privy to. If anything, they’re less secure than the computers we generally use, because their manufacturers hide any flaws behind the proprietary nature of their equipment.

We’re not just worried about altering the vote. Sometimes causing widespread failures, or even just sowing mistrust in the system, is enough. And an election whose results are not trusted or believed is a failed election.

Voting systems have another requirement that makes security even harder to achieve: the requirement for a secret ballot. Because we have to securely separate the election-roll system that determines who can vote from the system that collects and tabulates the votes, we can’t use the security systems available to banking and other high-value applications.

We can securely bank online, but can’t securely vote online. If we could do away with anonymity — if everyone could check that their vote was counted correctly — then it would be easy to secure the vote. But that would lead to other problems. Before the US had the secret ballot, voter coercion and vote-buying were widespread.

We can’t, so we need to accept that our voting systems are insecure. We need an election system that is resilient to the threats. And for many parts of the system, that means paper.

Let’s start with the voter rolls. We know they’ve already been targeted. In 2016, someone changed the party affiliation of hundreds of voters before the Republican primary. That’s just one possibility. A well-executed attack that deletes, for example, one in five voters at random — or changes their addresses — would cause chaos on election day.

Yes, we need to shore up the security of these systems. We need better computer, network, and database security for the various state voter organizations. We also need to better secure the voter registration websites, with better design and better internet security. We need better security for the companies that build and sell all this equipment.

Multiple, unchangeable backups are essential. A record of every addition, deletion, and change needs to be stored on a separate system, on write-only media like a DVD. Copies of that DVD, or — even better — a paper printout of the voter rolls, should be available at every polling place on election day. We need to be ready for anything.

Next, the voting machines themselves. Security researchers agree that the gold standard is a voter-verified paper ballot. The easiest (and cheapest) way to achieve this is through optical-scan voting. Voters mark paper ballots by hand; they are fed into a machine and counted automatically. That paper ballot is saved, and serves as a final true record in a recount in case of problems. Touch-screen machines that print a paper ballot to drop in a ballot box can also work for voters with disabilities, as long as the ballot can be easily read and verified by the voter.

Finally, the tabulation and reporting systems. Here again we need more security in the process, but we must always use those paper ballots as checks on the computers. A manual, post-election, risk-limiting audit varies the number of ballots examined according to the margin of victory. Conducting this audit after every election, before the results are certified, gives us confidence that the election outcome is correct, even if the voting machines and tabulation computers have been tampered with. Additionally, we need better coordination and communications when incidents occur.

It’s vital to agree on these procedures and policies before an election. Before the fact, when anyone can win and no one knows whose votes might be changed, it’s easy to agree on strong security. But after the vote, someone is the presumptive winner — and then everything changes. Half of the country wants the result to stand, and half wants it reversed. At that point, it’s too late to agree on anything.

The politicians running in the election shouldn’t have to argue their challenges in court. Getting elections right is in the interest of all citizens. Many countries have independent election commissions that are charged with conducting elections and ensuring their security. We don’t do that in the US.

Instead, we have representatives from each of our two parties in the room, keeping an eye on each other. That provided acceptable security against 20th-century threats, but is totally inadequate to secure our elections in the 21st century. And the belief that the diversity of voting systems in the US provides a measure of security is a dangerous myth, because few districts can be decisive and there are so few voting-machine vendors.

We can do better. In 2017, the Department of Homeland Security declared elections to be critical infrastructure, allowing the department to focus on securing them. On 23 March, Congress allocated $380m to states to upgrade election security.

These are good starts, but don’t go nearly far enough. The constitution delegates elections to the states but allows Congress to “make or alter such Regulations”. In 1845, Congress set a nationwide election day. Today, we need it to set uniform and strict election standards.

This essay originally appeared in the Guardian.

Harassment By Package Delivery

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/02/harassment_by_p.html

People harassing women by delivering anonymous packages purchased from Amazon.

On the one hand, there is nothing new here. This could have happened decades ago, pre-Internet. But the Internet makes this easier, and the article points out that using prepaid gift cards makes this anonymous. I am curious how much these differences make a difference in kind, and what can be done about it.

More on Kaspersky and the Stolen NSA Attack Tools

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/10/more_on_kaspers.html

Both the New York Times and the Washington Post are reporting that Israel has penetrated Kaspersky’s network and detected the Russian operation.

From the New York Times:

Israeli intelligence officers informed the NSA that, in the course of their Kaspersky hack, they uncovered evidence that Russian government hackers were using Kaspersky’s access to aggressively scan for American government classified programs and pulling any findings back to Russian intelligence systems. [Israeli intelligence] provided their NSA counterparts with solid evidence of the Kremlin campaign in the form of screenshots and other documentation, according to the people briefed on the events.

Kaspersky first noticed the Israeli intelligence operation in 2015.

The Washington Post writes about the NSA tools being on the home computer in the first place:

The employee, whose name has not been made public and is under investigation by federal prosecutors, did not intend to pass the material to a foreign adversary. “There wasn’t any malice,” said one person familiar with the case, who, like others interviewed, spoke on the condition of anonymity to discuss an ongoing case. “It’s just that he was trying to complete the mission, and he needed the tools to do it.

I don’t buy this. People with clearances are told over and over not to take classified material home with them. It’s not just mentioned occasionally; it’s a core part of the job.

More news articles.

Bitcoin Anonymity Compromised By Most Vendors

Post Syndicated from Darknet original http://feedproxy.google.com/~r/darknethackers/~3/ONgF504Ytqs/

Cryptocurrency is getting a lot of press lately and some researchers dug a little bit deeper in Bitcoin anonymity as it’s a touted selling point for most cryptocurrencies. It’s not a problem with Bitcoin itself, or any other coin, more the fact that shopping cart implementations and analytics systems aren’t built with the anonymity of…

Read the full post at darknet.org.uk

[$] The Brave web browser

Post Syndicated from jake original https://lwn.net/Articles/725261/rss

The Brave web browser is a project from
a new company called Brave Software. It was founded by Brendan Eich, who is the
inventor of JavaScript and former developer and CTO at Mozilla; he
hopes to dramatically re-invent the advertising model of the web while
strengthening user anonymity and security. Brave’s value proposition is
that instead of being served advertisements from web sites that use the
revenue to pay their bills, users can opt to directly pay the content
providers of their choosing with cryptocurrency. Also, there is a
recognition of the
utility of targeted advertising, so users have an option of saving a local,
protected profile that can be used anonymously to obtain targeted
advertisements instead of having their online behavior tracked and sold by
a third party.

Tails 3.0 is out

Post Syndicated from ris original https://lwn.net/Articles/725303/rss

Tails 3.0 has been released.
Tails, the amnesic incognito live system, is a Debian-based live system
aimed at preserving privacy and anonymity. Version 3.0 is based on Debian
9 (stretch). “It brings a completely new startup and shutdown experience, a lot of polishing to the desktop, security improvements in depth, and major upgrades to a lot of the included software.

Commenting Policy for This Blog

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/03/commenting_poli.html

Over the past few months, I have been watching my blog comments decline in civility. I blame it in part on the contentious US election and its aftermath. It’s also a consequence of not requiring visitors to register in order to post comments, and of our tolerance for impassioned conversation. Whatever the causes, I’m tired of it. Partisan nastiness is driving away visitors who might otherwise have valuable insights to offer.

I have been engaging in more active comment moderation. What that means is that I have been quicker to delete posts that are rude, insulting, or off-topic. This is my blog. I consider the comments section as analogous to a gathering at my home. It’s not a town square. Everyone is expected to be polite and respectful, and if you’re an unpleasant guest, I’m going to ask you to leave. Your freedom of speech does not compel me to publish your words.

I like people who disagree with me. I like debate. I even like arguments. But I expect everyone to behave as if they’ve been invited into my home.

I realize that I sometimes express opinions on political matters; I find they are relevant to security at all levels. On those posts, I welcome on-topic comments regarding those opinions. I don’t welcome people pissing and moaning about the fact that I’ve expressed my opinion on something other than security technology. As I said, it’s my blog.

So, please… Assume good faith. Be polite. Minimize profanity. Argue facts, not personalities. Stay on topic. If you want a model to emulate, look at Clive Robinson’s posts.

Schneier on Security is not a professional operation. There’s no advertising, so no revenue to hire staff. My part-time moderator — paid out of my own pocket — and I do what we can when we can. If you see a comment that’s spam, or off-topic, or an ad hominem attack, flag it and be patient. Don’t reply or engage; we’ll get to it. And we won’t always post an explanation when we delete something.

My own stance on privacy and anonymity means that I’m not going to require commenters to register a name or e-mail address, so that isn’t an option. And I really don’t want to disable comments.

I dislike having to deal with this problem. I’ve been proud and happy to see how interesting and useful the comments section has been all these years. I’ve watched many blogs and discussion groups descend into toxicity as a result of trolls and drive-by ideologues derailing the conversations of regular posters. I’m not going to let that happen here.

WikiLeaks Not Disclosing CIA-Hoarded Vulnerabilities to Companies

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/03/wikileaks_not_d.html

WikiLeaks has started publishing a large collection of classified CIA documents, including information on several — possibly many — unpublished (i.e., zero-day) vulnerabilities in computing equipment used by Americans. Despite assurances that the US government prioritizes defense over offense, it seems that the CIA was hoarding vulnerabilities. (It’s not just the CIA; last year we learned that the NSA is, too.)

Publishing those vulnerabilities into the public means that they’ll get fixed, but it also means that they’ll be used by criminals and other governments in the time period between when they’re published and when they’re patched. WikiLeaks has said that it’s going to do the right thing and privately disclose those vulnerabilities to the companies first.

This process seems to be hitting some snags:

This week, Assange sent an email to Apple, Google, Microsoft and all the companies mentioned in the documents. But instead of reporting the bugs or exploits found in the leaked CIA documents it has in its possession, WikiLeaks made demands, according to multiple sources familiar with the matter who spoke on condition of anonymity.

WikiLeaks included a document in the email, requesting the companies to sign off on a series of conditions before being able to receive the actual technical details to deploy patches, according to sources. It’s unclear what the conditions are, but a source mentioned a 90-day disclosure deadline, which would compel companies to commit to issuing a patch within three months.

I’m okay with a 90-day window; that seems reasonable. But I have no idea what the other conditions are, and how onerous they are.

Honestly, at this point the CIA should do the right thing and disclose all the vulnerabilities to the companies. They’re burned as CIA attack tools. I have every confidence that Russia, China, and several other countries can hack WikiLeaks and get their hands on a copy. By now, their primary value is for defense. The CIA should bypass WikiLeaks and get the vulnerabilities fixed as soon as possible.

De-Anonymizing Browser History Using Social-Network Data

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/02/de-anonymizing_1.html

Interesting research: “De-anonymizing Web Browsing Data with Social Networks“:

Abstract: Can online trackers and network adversaries de-anonymize web browsing data readily available to them? We show — theoretically, via simulation, and through experiments on real user data — that de-identified web browsing histories can\ be linked to social media profiles using only publicly available data. Our approach is based on a simple observation: each person has a distinctive social network, and thus the set of links appearing in one’s feed is unique. Assuming users visit links in their feed with higher probability than a random user, browsing histories contain tell-tale marks of identity. We formalize this intuition by specifying a model of web browsing behavior and then deriving the maximum likelihood estimate of a user’s social profile. We evaluate this strategy on simulated browsing histories, and show that given a history with 30 links originating from Twitter, we can deduce the corresponding Twitter profile more than 50% of the time. To gauge the real-world effectiveness of this approach, we recruited nearly 400 people to donate their web browsing histories, and we were able to correctly identify more than 70% of them. We further show that several online trackers are embedded on sufficiently many websites to carry out this attack with high accuracy. Our theoretical contribution applies to any type of transactional data and is robust to noisy observations, generalizing a wide range of previous de-anonymization attacks. Finally, since our attack attempts to find the correct Twitter profile out of over 300 million candidates, it is — to our knowledge — the largest scale demonstrated de-anonymization to date.

That "Commission on Enhancing Cybersecurity" is absurd

Post Syndicated from Robert Graham original http://blog.erratasec.com/2016/12/that-commission-on-enhancing.html

An Obama commission has publish a report on how to “Enhance Cybersecurity”. It’s promoted as having been written by neutral, bipartisan, technical experts. Instead, it’s almost entirely dominated by special interests and the Democrat politics of the outgoing administration.

In this post, I’m going through a random list of some of the 53 “action items” proposed by the documents. I show how they are policy issues, not technical issues. Indeed, much of the time the technical details are warped to conform to special interests.

IoT passwords

The recommendations include such things as Action Item 2.1.4:

Initial best practices should include requirements to mandate that IoT devices be rendered unusable until users first change default usernames and passwords. 

This recommendation for changing default passwords is repeated many times. It comes from the way the Mirai worm exploits devices by using hardcoded/default passwords.

But this is a misunderstanding of how these devices work. Take, for example, the infamous Xiongmai camera. It has user accounts on the web server to control the camera. If the user forgets the password, the camera can be reset to factory defaults by pressing a button on the outside of the camera.

But here’s the deal with security cameras. They are placed at remote sites miles away, up on the second story where people can’t mess with them. In order to reset them, you need to put a ladder in your truck and drive 30 minutes out to the site, then climb the ladder (an inherently dangerous activity). Therefore, Xiongmai provides a RESET.EXE utility for remotely resetting them. That utility happens to connect via Telnet using a hardcoded password.

The above report misunderstands what’s going on here. It sees Telnet and a hardcoded password, and makes assumptions. Some people assume that this is the normal user account — it’s not, it’s unrelated to the user accounts on the web server portion of the device. Requiring the user to change the password on the web service would have no effect on the Telnet service. Other people assume the Telnet service is accidental, that good security hygiene would remove it. Instead, it’s an intended feature of the product, to remotely reset the device. Fixing the “password” issue as described in the above recommendations would simply mean the manufacturer would create a different, custom backdoor that hackers would eventually reverse engineer, creating MiraiV2 botnet. Instead of security guides banning backdoors, they need to come up with standard for remote reset.

That characterization of Mirai as an IoT botnet is wrong. Mirai is a botnet of security cameras. Security cameras are fundamentally different from IoT devices like toasters and fridges because they are often exposed to the public Internet. To stream video on your phone from your security camera, you need a port open on the Internet. Non-camera IoT devices, however, are overwhelmingly protected by a firewall, with no exposure to the public Internet. While you can create a botnet of Internet cameras, you cannot create a botnet of Internet toasters.

The point I’m trying to demonstrate here is that the above report was written by policy folks with little grasp of the technical details of what’s going on. They use Mirai to justify several of their “Action Items”, none of which actually apply to the technical details of Mirai. It has little to do with IoT, passwords, or hygiene.

Public-private partnerships

Action Item 1.2.1: The President should create, through executive order, the National Cybersecurity Private–Public Program (NCP 3 ) as a forum for addressing cybersecurity issues through a high-level, joint public–private collaboration.

We’ve had public-private partnerships to secure cyberspace for over 20 years, such as the FBI InfraGuard partnership. President Clinton’s had a plan in 1998 to create a public-private partnership to address cyber vulnerabilities. President Bush declared public-private partnerships the “cornerstone of his 2003 plan to secure cyberspace.

Here we are 20 years later, and this document is full of new naive proposals for public-private partnerships There’s no analysis of why they have failed in the past, or a discussion of which ones have succeeded.

The many calls for public-private programs reflects the left-wing nature of this supposed “bipartisan” document, that sees government as a paternalistic entity that can help. The right-wing doesn’t believe the government provides any value in these partnerships. In my 20 years of experience with government private-partnerships in cybersecurity, I’ve found them to be a time waster at best and at worst, a way to coerce “voluntary measures” out of companies that hurt the public’s interest.

Build a wall and make China pay for it

Action Item 1.3.1: The next Administration should require that all Internet-based federal government services provided directly to citizens require the use of appropriately strong authentication.

This would cost at least $100 per person, for 300 million people, or $30 billion. In other words, it’ll cost more than Trump’s wall with Mexico.

Hardware tokens are cheap. Blizzard (a popular gaming company) must deal with widespread account hacking from “gold sellers”, and provides second factor authentication to its gamers for $6 each. But that ignores the enormous support costs involved. How does a person prove their identity to the government in order to get such a token? To replace a lost token? When old tokens break? What happens if somebody’s token is stolen?

And that’s the best case scenario. Other options, like using cellphones as a second factor, are non-starters.

This is actually not a bad recommendation, as far as government services are involved, but it ignores the costs and difficulties involved.

But then the recommendations go on to suggest this for private sector as well:

Specifically, private-sector organizations, including top online retailers, large health insurers, social media companies, and major financial institutions, should use strong authentication solutions as the default for major online applications.

No, no, no. There is no reason for a “top online retailer” to know your identity. I lie about my identity. Amazon.com thinks my name is “Edward Williams”, for example.

They get worse with:

Action Item 1.3.3: The government should serve as a source to validate identity attributes to address online identity challenges.

In other words, they are advocating a cyber-dystopic police-state wet-dream where the government controls everyone’s identity. We already see how this fails with Facebook’s “real name” policy, where everyone from political activists in other countries to LGBTQ in this country get harassed for revealing their real names.

Anonymity and pseudonymity are precious rights on the Internet that we now enjoy — rights endangered by the radical policies in this document. This document frequently claims to promote security “while protecting privacy”. But the government doesn’t protect privacy — much of what we want from cybersecurity is to protect our privacy from government intrusion. This is nothing new, you’ve heard this privacy debate before. What I’m trying to show here is that the one-side view of privacy in this document demonstrates how it’s dominated by special interests.

Cybersecurity Framework

Action Item 1.4.2: All federal agencies should be required to use the Cybersecurity Framework. 

The “Cybersecurity Framework” is a bunch of a nonsense that would require another long blogpost to debunk. It requires months of training and years of experience to understand. It contains things like “DE.CM-4: Malicious code is detected”, as if that’s a thing organizations are able to do.

All the while it ignores the most common cyber attacks (SQL/web injections, phishing, password reuse, DDoS). It’s a typical example where organizations spend enormous amounts of money following process while getting no closer to solving what the processes are attempting to solve. Federal agencies using the Cybersecurity Framework are no safer from my pentests than those who don’t use it.

It gets even crazier:

Action Item 1.5.1: The National Institute of Standards and Technology (NIST) should expand its support of SMBs in using the Cybersecurity Framework and should assess its cost-effectiveness specifically for SMBs.

Small businesses can’t even afford to even read the “Cybersecurity Framework”. Simply reading the doc, trying to understand it, would exceed their entire IT/computer budget for the year. It would take a high-priced consultant earning $500/hour to tell them that “DE.CM-4: Malicious code is detected” means “buy antivirus and keep it up to date”.

Software liability is a hoax invented by the Chinese to make our IoT less competitive

Action Item 2.1.3: The Department of Justice should lead an interagency study with the Departments of Commerce and Homeland Security and work with the Federal Trade Commission, the Consumer Product Safety Commission, and interested private sector parties to assess the current state of the law with regard to liability for harm caused by faulty IoT devices and provide recommendations within 180 days. 

For over a decade, leftists in the cybersecurity industry have been pushing the concept of “software liability”. Every time there is a major new development in hacking, such as the worms around 2003, they come out with documents explaining why there’s a “market failure” and that we need liability to punish companies to fix the problem. Then the problem is fixed, without software liability, and the leftists wait for some new development to push the theory yet again.

It’s especially absurd for the IoT marketspace. The harm, as they imagine, is DDoS. But the majority of devices in Mirai were sold by non-US companies to non-US customers. There’s no way US regulations can stop that.

What US regulations will stop is IoT innovation in the United States. Regulations are so burdensome, and liability lawsuits so punishing, that it will kill all innovation within the United States. If you want to get rich with a clever IoT Kickstarter project, forget about it: you entire development budget will go to cybersecurity. The only companies that will be able to afford to ship IoT products in the United States will be large industrial concerns like GE that can afford the overhead of regulation/liability.

Liability is a left-wing policy issue, not one supported by technical analysis. Software liability has proven to be immaterial in any past problem and current proponents are distorting the IoT market to promote it now.

Cybersecurity workforce

Action Item 4.1.1: The next President should initiate a national cybersecurity workforce program to train 100,000 new cybersecurity practitioners by 2020. 

The problem in our industry isn’t the lack of “cybersecurity practitioners”, but the overabundance of “insecurity practitioners”.

Take “SQL injection” as an example. It’s been the most common way hackers break into websites for 15 years. It happens because programmers, those building web-apps, blinding paste input into SQL queries. They do that because they’ve been trained to do it that way. All the textbooks on how to build webapps teach them this. All the examples show them this.

So you have government programs on one hand pushing tech education, teaching kids to build web-apps with SQL injection. Then you propose to train a second group of people to fix the broken stuff the first group produced.

The solution to SQL/website injections is not more practitioners, but stopping programmers from creating the problems in the first place. The solution to phishing is to use the tools already built into Windows and networks that sysadmins use, not adding new products/practitioners. These are the two most common problems, and they happen not because of a lack of cybersecurity practitioners, but because the lack of cybersecurity as part of normal IT/computers.

I point this to demonstrate yet against that the document was written by policy people with little or no technical understanding of the problem.

Nutritional label

Action Item 3.1.1: To improve consumers’ purchasing decisions, an independent organization should develop the equivalent of a cybersecurity “nutritional label” for technology products and services—ideally linked to a rating system of understandable, impartial, third-party assessment that consumers will intuitively trust and understand. 

This can’t be done. Grab some IoT devices, like my thermostat, my car, or a Xiongmai security camera used in the Mirai botnet. These devices are so complex that no “nutritional label” can be made from them.

One of the things you’d like to know is all the software dependencies, so that if there’s a bug in OpenSSL, for example, then you know your device is vulnerable. Unfortunately, that requires a nutritional label with 10,000 items on it.

Or, one thing you’d want to know is that the device has no backdoor passwords. But that would miss the Xiongmai devices. The web service has no backdoor passwords. If you caught the Telnet backdoor password and removed it, then you’d miss the special secret backdoor that hackers would later reverse engineer.

This is a policy position chasing a non-existent technical issue push by Pieter Zatko, who has gotten hundreds of thousands of dollars from government grants to push the issue. It’s his way of getting rich and has nothing to do with sound policy.

Cyberczars and ambassadors

Various recommendations call for the appointment of various CISOs, Assistant to the President for Cybersecurity, and an Ambassador for Cybersecurity. But nowhere does it mention these should be technical posts. This is like appointing a Surgeon General who is not a doctor.

Government’s problems with cybersecurity stems from the way technical knowledge is so disrespected. The current cyberczar prides himself on his lack of technical knowledge, because that helps him see the bigger picture.

Ironically, many of the other Action Items are about training cybersecurity practitioners, employees, and managers. None of this can happen as long as leadership is clueless. Technical details matter, as I show above with the Mirai botnet. Subtlety and nuance in technical details can call for opposite policy responses.

Conclusion

This document is promoted as being written by technical experts. However, nothing in the document is neutral technical expertise. Instead, it’s almost entirely a policy document dominated by special interests and left-wing politics. In many places it makes recommendations to the incoming Republican president. His response should be to round-file it immediately.

I only chose a few items, as this blogpost is long enough as it is. I could pick almost any of of the 53 Action Items to demonstrate how they are policy, special-interest driven rather than reflecting technical expertise.

Security advisories for Wednesday

Post Syndicated from ris original http://lwn.net/Articles/702620/rss

CentOS has updated kernel (C6:
two vulnerabilities).

Debian has updated icedove (multiple vulnerabilities) and libav (multiple vulnerabilities).

Debian-LTS has updated libav (multiple vulnerabilities).

Fedora has updated gd (F23: denial of service) and links (F24; F23: anonymity leak).

openSUSE has updated flex, at,
libbonobo, netpbm, openslp, sgmltool, virtuoso
(Leap42.1: buffer
overflow), mariadb (Leap42.1: SQL
injection/privilege escalation), and php5
(Leap42.1: multiple vulnerabilities).

Oracle has updated kernel (OL6: three vulnerabilities).

Red Hat has updated chromium-browser (RHEL6: multiple
vulnerabilities) and kernel (RHEL6: two vulnerabilities).

Scientific Linux has updated thunderbird (SL5,6,7: multiple vulnerabilities).

Ubuntu has updated php5, php7.0 (multiple vulnerabilities).