Tag Archives: e-mail

Email Security Flaw Found in the Wild

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2023/11/email-security-flaw-found-in-the-wild.html

Google’s Threat Analysis Group announced a zero-day against the Zimbra Collaboration email server that has been used against governments around the world.

TAG has observed four different groups exploiting the same bug to steal email data, user credentials, and authentication tokens. Most of this activity occurred after the initial fix became public on Github. To ensure protection against these types of exploits, TAG urges users and organizations to keep software fully up-to-date and apply security updates as soon as they become available.

The vulnerability was discovered in June. It has been patched.

Apple Mail Now Blocks Email Trackers

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2022/05/apple-mail-now-blocks-email-trackers.html

Apple Mail now blocks email trackers by default.

Most email newsletters you get include an invisible “image,” typically a single white pixel, with a unique file name. The server keeps track of every time this “image” is opened and by which IP address. This quirk of internet history means that marketers can track exactly when you open an email and your IP address, which can be used to roughly work out your location.

So, how does Apple Mail stop this? By caching. Apple Mail downloads all images for all emails before you open them. Practically speaking, that means every message downloaded to Apple Mail is marked “read,” regardless of whether you open it. Apples also routes the download through two different proxies, meaning your precise location also can’t be tracked.

Crypto-Gram uses Mailchimp, which has these tracking pixels turned on by default. I turn them off. Normally, Mailchimp requires them to be left on for the first few mailings, presumably to prevent abuse. The company waived that requirement for me.

Using Fake Student Accounts to Shill Brands

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2021/11/using-fake-student-accounts-to-shill-brands.html

It turns out that it’s surprisingly easy to create a fake Harvard student and get a harvard.edu email account. Scammers are using that prestigious domain name to shill brands:

Basically, it appears that anyone with $300 to spare can ­– or could, depending on whether Harvard successfully shuts down the practice — advertise nearly anything they wanted on Harvard.edu, in posts that borrow the university’s domain and prestige while making no mention of the fact that it in reality they constitute paid advertising….

A Harvard spokesperson said that the university is working to crack down on the fake students and other scammers that have gained access to its site. They also said that the scammers were creating the fake accounts by signing up for online classes and then using the email address that process provided to infiltrate the university’s various blogging platforms.

ProtonMail Now Keeps IP Logs

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2021/09/protonmail-now-keeps-ip-logs.html

After being compelled by a Swiss court to monitor IP logs for a particular user, ProtonMail no longer claims that “we do not keep any IP logs.”

EDITED TO ADD (9/14): This seems to be more complicated. ProtonMail is not yet saying that they keep logs. Their privacy policy still states that they do not keep logs except in certain circumstances, and outlines those circumstances. And ProtonMail’s warrant canary has an interesting list of data orders they have received from various authorities, whether they complied, and why or why not.

Brexit Deal Mandates Old Insecure Crypto Algorithms

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2020/12/brexit-deal-mandates-old-insecure-crypto-algorithms.html

In what is surely an unthinking cut-and-paste issue, page 921 of the Brexit deal mandates the use of SHA-1 and 1024-bit RSA:

The open standard s/MIME as extension to de facto e-mail standard SMTP will be deployed to encrypt messages containing DNA profile information. The protocol s/MIME (V3) allows signed receipts, security labels, and secure mailing lists… The underlying certificate used by s/MIME mechanism has to be in compliance with X.509 standard…. The processing rules for s/MIME encryption operations… are as follows:

  1. the sequence of the operations is: first encryption and then signing,
  2. the encryption algorithm AES (Advanced Encryption Standard) with 256 bit key length and RSA with 1,024 bit key length shall be applied for symmetric and asymmetric encryption respectively,
  3. the hash algorithm SHA-1 shall be applied.
  4. s/MIME functionality is built into the vast majority of modern e-mail software packages including Outlook, Mozilla Mail as well as Netscape Communicator 4.x and inter-operates among all major e-mail software packages.

And s/MIME? Bleah.

Detecting Phishing Emails

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2020/11/detecting-phishing-emails.html

Research paper: Rick Wash, “How Experts Detect Phishing Scam Emails“:

Abstract: Phishing scam emails are emails that pretend to be something they are not in order to get the recipient of the email to undertake some action they normally would not. While technical protections against phishing reduce the number of phishing emails received, they are not perfect and phishing remains one of the largest sources of security risk in technology and communication systems. To better understand the cognitive process that end users can use to identify phishing messages, I interviewed 21 IT experts about instances where they successfully identified emails as phishing in their own inboxes. IT experts naturally follow a three-stage process for identifying phishing emails. In the first stage, the email recipient tries to make sense of the email, and understand how it relates to other things in their life. As they do this, they notice discrepancies: little things that are “off” about the email. As the recipient notices more discrepancies, they feel a need for an alternative explanation for the email. At some point, some feature of the email — usually, the presence of a link requesting an action — triggers them to recognize that phishing is a possible alternative explanation. At this point, they become suspicious (stage two) and investigate the email by looking for technical details that can conclusively identify the email as phishing. Once they find such information, then they move to stage three and deal with the email by deleting it or reporting it. I discuss ways this process can fail, and implications for improving training of end users about phishing.