Tag Archives: rsa

No, RSA Is Not Broken

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2021/03/no-rsa-is-not-broken.html

I have been seeing this paper by cryptographer Peter Schnorr making the rounds: “Fast Factoring Integers by SVP Algorithms.” It describes a new factoring method, and its abstract ends with the provocative sentence: “This destroys the RSA cryptosystem.”

It does not. At best, it’s an improvement in factoring — and I’m not sure it’s even that. The paper is a preprint: it hasn’t been peer reviewed. Be careful taking its claims at face value.

Some discussion here.

I’ll append more analysis links to this post when I find them.

How to protect sensitive data for its entire lifecycle in AWS

Post Syndicated from Raj Jain original https://aws.amazon.com/blogs/security/how-to-protect-sensitive-data-for-its-entire-lifecycle-in-aws/

Many Amazon Web Services (AWS) customer workflows require ingesting sensitive and regulated data such as Payments Card Industry (PCI) data, personally identifiable information (PII), and protected health information (PHI). In this post, I’ll show you a method designed to protect sensitive data for its entire lifecycle in AWS. This method can help enhance your data security posture and be useful for fulfilling the data privacy regulatory requirements applicable to your organization for data protection at-rest, in-transit, and in-use.

An existing method for sensitive data protection in AWS is to use the field-level encryption feature offered by Amazon CloudFront. This CloudFront feature protects sensitive data fields in requests at the AWS network edge. The chosen fields are protected upon ingestion and remain protected throughout the entire application stack. The notion of protecting sensitive data early in its lifecycle in AWS is a highly desirable security architecture. However, CloudFront can protect a maximum of 10 fields and only within HTTP(S) POST requests that carry HTML form encoded payloads.

If your requirements exceed CloudFront’s native field-level encryption feature, such as a need to handle diverse application payload formats, different HTTP methods, and more than 10 sensitive fields, you can implement field-level encryption yourself using the [email protected] feature in CloudFront. In terms of choosing an appropriate encryption scheme, this problem calls for an asymmetric cryptographic system that will allow public keys to be openly distributed to the CloudFront network edges while keeping the corresponding private keys stored securely within the network core. One such popular asymmetric cryptographic system is RSA. Accordingly, we’ll implement a [email protected] function that uses asymmetric encryption using the RSA cryptosystem to protect an arbitrary number of fields in any HTTP(S) request. We will discuss the solution using an example JSON payload, although this approach can be applied to any payload format.

A complex part of any encryption solution is key management. To address that, I use AWS Key Management Service (AWS KMS). AWS KMS simplifies the solution and offers improved security posture and operational benefits, detailed later.

Solution overview

You can protect data in-transit over individual communications channels using transport layer security (TLS), and at-rest in individual storage silos using volume encryption, object encryption or database table encryption. However, if you have sensitive workloads, you might need additional protection that can follow the data as it moves through the application stack. Fine-grained data protection techniques such as field-level encryption allow for the protection of sensitive data fields in larger application payloads while leaving non-sensitive fields in plaintext. This approach lets an application perform business functions on non-sensitive fields without the overhead of encryption, and allows fine-grained control over what fields can be accessed by what parts of the application.

A best practice for protecting sensitive data is to reduce its exposure in the clear throughout its lifecycle. This means protecting data as early as possible on ingestion and ensuring that only authorized users and applications can access the data only when and as needed. CloudFront, when combined with the flexibility provided by [email protected], provides an appropriate environment at the edge of the AWS network to protect sensitive data upon ingestion in AWS.

Since the downstream systems don’t have access to sensitive data, data exposure is reduced, which helps to minimize your compliance footprint for auditing purposes.

The number of sensitive data elements that may need field-level encryption depends on your requirements. For example:

  • For healthcare applications, HIPAA regulates 18 personal data elements.
  • In California, the California Consumer Privacy Act (CCPA) regulates at least 11 categories of personal information—each with its own set of data elements.

The idea behind field-level encryption is to protect sensitive data fields individually, while retaining the structure of the application payload. The alternative is full payload encryption, where the entire application payload is encrypted as a binary blob, which makes it unusable until the entirety of it is decrypted. With field-level encryption, the non-sensitive data left in plaintext remains usable for ordinary business functions. When retrofitting data protection in existing applications, this approach can reduce the risk of application malfunction since the data format is maintained.

The following figure shows how PII data fields in a JSON construction that are deemed sensitive by an application can be transformed from plaintext to ciphertext with a field-level encryption mechanism.

Figure 1: Example of field-level encryption

Figure 1: Example of field-level encryption

You can change plaintext to ciphertext as depicted in Figure 1 by using a [email protected] function to perform field-level encryption. I discuss the encryption and decryption processes separately in the following sections.

Field-level encryption process

Let’s discuss the individual steps involved in the encryption process as shown in Figure 2.

Figure 2: Field-level encryption process

Figure 2: Field-level encryption process

Figure 2 shows CloudFront invoking a [email protected] function while processing a client request. CloudFront offers multiple integration points for invoking [email protected] functions. Since you are processing a client request and your encryption behavior is related to requests being forwarded to an origin server, you want your function to run upon the origin request event in CloudFront. The origin request event represents an internal state transition in CloudFront that happens immediately before CloudFront forwards a request to the downstream origin server.

You can associate your [email protected] with CloudFront as described in Adding Triggers by Using the CloudFront Console. A screenshot of the CloudFront console is shown in Figure 3. The selected event type is Origin Request and the Include Body check box is selected so that the request body is conveyed to [email protected]

Figure 3: Configuration of Lambda@Edge in CloudFront

Figure 3: Configuration of [email protected] in CloudFront

The [email protected] function acts as a programmable hook in the CloudFront request processing flow. You can use the function to replace the incoming request body with a request body with the sensitive data fields encrypted.

The process includes the following steps:

Step 1 – RSA key generation and inclusion in [email protected]

You can generate an RSA customer managed key (CMK) in AWS KMS as described in Creating asymmetric CMKs. This is done at system configuration time.

Note: You can use your existing RSA key pairs or generate new ones externally by using OpenSSL commands, especially if you need to perform RSA decryption and key management independently of AWS KMS. Your choice won’t affect the fundamental encryption design pattern presented here.

The RSA key creation in AWS KMS requires two inputs: key length and type of usage. In this example, I created a 2048-bit key and assigned its use for encryption and decryption. The cryptographic configuration of an RSA CMK created in AWS KMS is shown in Figure 4.

Figure 4: Cryptographic properties of an RSA key managed by AWS KMS

Figure 4: Cryptographic properties of an RSA key managed by AWS KMS

Of the two encryption algorithms shown in Figure 4— RSAES_OAEP_SHA_256 and RSAES_OAEP_SHA_1, this example uses RSAES_OAEP_SHA_256. The combination of a 2048-bit key and the RSAES_OAEP_SHA_256 algorithm lets you encrypt a maximum of 190 bytes of data, which is enough for most PII fields. You can choose a different key length and encryption algorithm depending on your security and performance requirements. How to choose your CMK configuration includes information about RSA key specs for encryption and decryption.

Using AWS KMS for RSA key management versus managing the keys yourself eliminates that complexity and can help you:

  • Enforce IAM and key policies that describe administrative and usage permissions for keys.
  • Manage cross-account access for keys.
  • Monitor and alarm on key operations through Amazon CloudWatch.
  • Audit AWS KMS API invocations through AWS CloudTrail.
  • Record configuration changes to keys and enforce key specification compliance through AWS Config.
  • Generate high-entropy keys in an AWS KMS hardware security module (HSM) as required by NIST.
  • Store RSA private keys securely, without the ability to export.
  • Perform RSA decryption within AWS KMS without exposing private keys to application code.
  • Categorize and report on keys with key tags for cost allocation.
  • Disable keys and schedule their deletion.

You need to extract the RSA public key from AWS KMS so you can include it in the AWS Lambda deployment package. You can do this from the AWS Management Console, through the AWS KMS SDK, or by using the get-public-key command in the AWS Command Line Interface (AWS CLI). Figure 5 shows Copy and Download options for a public key in the Public key tab of the AWS KMS console.

Figure 5: RSA public key available for copy or download in the console

Figure 5: RSA public key available for copy or download in the console

Note: As we will see in the sample code in step 3, we embed the public key in the [email protected] deployment package. This is a permissible practice because public keys in asymmetric cryptography systems aren’t a secret and can be freely distributed to entities that need to perform encryption. Alternatively, you can use [email protected] to query AWS KMS for the public key at runtime. However, this introduces latency, increases the load against your KMS account quota, and increases your AWS costs. General patterns for using external data in [email protected] are described in Leveraging external data in [email protected].

Step 2 – HTTP API request handling by CloudFront

CloudFront receives an HTTP(S) request from a client. CloudFront then invokes [email protected] during origin-request processing and includes the HTTP request body in the invocation.

Step 3 – [email protected] processing

The [email protected] function processes the HTTP request body. The function extracts sensitive data fields and performs RSA encryption over their values.

The following code is sample source code for the [email protected] function implemented in Python 3.7:

import Crypto
import base64
import json
from Crypto.Cipher import PKCS1_OAEP
from Crypto.PublicKey import RSA

# PEM-formatted RSA public key copied over from AWS KMS or your own public key.
RSA_PUBLIC_KEY = "-----BEGIN PUBLIC KEY-----<your key>-----END PUBLIC KEY-----"
RSA_PUBLIC_KEY_OBJ = RSA.importKey(RSA_PUBLIC_KEY)
RSA_CIPHER_OBJ = PKCS1_OAEP.new(RSA_PUBLIC_KEY_OBJ, Crypto.Hash.SHA256)

# Example sensitive data field names in a JSON object. 
PII_SENSITIVE_FIELD_NAMES = ["fname", "lname", "email", "ssn", "dob", "phone"]

CIPHERTEXT_PREFIX = "#01#"
CIPHERTEXT_SUFFIX = "#10#"

def lambda_handler(event, context):
    # Extract HTTP request and its body as per documentation:
    # https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/lambda-event-structure.html
    http_request = event['Records'][0]['cf']['request']
    body = http_request['body']
    org_body = base64.b64decode(body['data'])
    mod_body = protect_sensitive_fields_json(org_body)
    body['action'] = 'replace'
    body['encoding'] = 'text'
    body['data'] = mod_body
    return http_request


def protect_sensitive_fields_json(body):
    # Encrypts sensitive fields in sample JSON payload shown earlier in this post.
    # [{"fname": "Alejandro", "lname": "Rosalez", … }]
    person_list = json.loads(body.decode("utf-8"))
    for person_data in person_list:
        for field_name in PII_SENSITIVE_FIELD_NAMES:
            if field_name not in person_data:
                continue
            plaintext = person_data[field_name]
            ciphertext = RSA_CIPHER_OBJ.encrypt(bytes(plaintext, 'utf-8'))
            ciphertext_b64 = base64.b64encode(ciphertext).decode()
            # Optionally, add unique prefix/suffix patterns to ciphertext
            person_data[field_name] = CIPHERTEXT_PREFIX + ciphertext_b64 + CIPHERTEXT_SUFFIX 
    return json.dumps(person_list)

The event structure passed into the [email protected] function is described in [email protected] Event Structure. Following the event structure, you can extract the HTTP request body. In this example, the assumption is that the HTTP payload carries a JSON document based on a particular schema defined as part of the API contract. The input JSON document is parsed by the function, converting it into a Python dictionary. The Python native dictionary operators are then used to extract the sensitive field values.

Note: If you don’t know your API payload structure ahead of time or you’re dealing with unstructured payloads, you can use techniques such as regular expression pattern searches and checksums to look for patterns of sensitive data and target them accordingly. For example, credit card primary account numbers include a Luhn checksum that can be programmatically detected. Additionally, services such as Amazon Comprehend and Amazon Macie can be leveraged for detecting sensitive data such as PII in application payloads.

While iterating over the sensitive fields, individual field values are encrypted using the standard RSA encryption implementation available in the Python Cryptography Toolkit (PyCrypto). The PyCrypto module is included within the [email protected] zip archive as described in [email protected] deployment package.

The example uses the standard optimal asymmetric encryption padding (OAEP) and SHA-256 encryption algorithm properties. These properties are supported by AWS KMS and will allow RSA ciphertext produced here to be decrypted by AWS KMS later.

Note: You may have noticed in the code above that we’re bracketing the ciphertexts with predefined prefix and suffix strings:

person_data[field_name] = CIPHERTEXT_PREFIX + ciphertext_b64 + CIPHERTEXT_SUFFIX

This is an optional measure and is being implemented to simplify the decryption process.

The prefix and suffix strings help demarcate ciphertext embedded in unstructured data in downstream processing and also act as embedded metadata. Unique prefix and suffix strings allow you to extract ciphertext through string or regular expression (regex) searches during the decryption process without having to know the data body format or schema, or the field names that were encrypted.

Distinct strings can also serve as indirect identifiers of RSA key pair identifiers. This can enable key rotation and allow separate keys to be used for separate fields depending on the data security requirements for individual fields.

You can ensure that the prefix and suffix strings can’t collide with the ciphertext by bracketing them with characters that don’t appear in cyphertext. For example, a hash (#) character cannot be part of a base64 encoded ciphertext string.

Deploying a Lambda function as a [email protected] function requires specific IAM permissions and an IAM execution role. Follow the [email protected] deployment instructions in Setting IAM Permissions and Roles for [email protected].

Step 4 – [email protected] response

The [email protected] function returns the modified HTTP body back to CloudFront and instructs it to replace the original HTTP body with the modified one by setting the following flag:

http_request['body']['action'] = 'replace'

Step 5 – Forward the request to the origin server

CloudFront forwards the modified request body provided by [email protected] to the origin server. In this example, the origin server writes the data body to persistent storage for later processing.

Field-level decryption process

An application that’s authorized to access sensitive data for a business function can decrypt that data. An example decryption process is shown in Figure 6. The figure shows a Lambda function as an example compute environment for invoking AWS KMS for decryption. This functionality isn’t dependent on Lambda and can be performed in any compute environment that has access to AWS KMS.

Figure 6: Field-level decryption process

Figure 6: Field-level decryption process

The steps of the process shown in Figure 6 are described below.

Step 1 – Application retrieves the field-level encrypted data

The example application retrieves the field-level encrypted data from persistent storage that had been previously written during the data ingestion process.

Step 2 – Application invokes the decryption Lambda function

The application invokes a Lambda function responsible for performing field-level decryption, sending the retrieved data to Lambda.

Step 3 – Lambda calls the AWS KMS decryption API

The Lambda function uses AWS KMS for RSA decryption. The example calls the KMS decryption API that inputs ciphertext and returns plaintext. The actual decryption happens in KMS; the RSA private key is never exposed to the application, which is a highly desirable characteristic for building secure applications.

Note: If you choose to use an external key pair, then you can securely store the RSA private key in AWS services like AWS Systems Manager Parameter Store or AWS Secrets Manager and control access to the key through IAM and resource policies. You can fetch the key from relevant vault using the vault’s API, then decrypt using the standard RSA implementation available in your programming language. For example, the cryptography toolkit in Python or javax.crypto in Java.

The Lambda function Python code for decryption is shown below.

import base64
import boto3
import re

kms_client = boto3.client('kms')
CIPHERTEXT_PREFIX = "#01#"
CIPHERTEXT_SUFFIX = "#10#"

# This lambda function extracts event body, searches for and decrypts ciphertext 
# fields surrounded by provided prefix and suffix strings in arbitrary text bodies 
# and substitutes plaintext fields in-place.  
def lambda_handler(event, context):    
    org_data = event["body"]
    mod_data = unprotect_fields(org_data, CIPHERTEXT_PREFIX, CIPHERTEXT_SUFFIX)
    return mod_data

# Helper function that performs non-greedy regex search for ciphertext strings on
# input data and performs RSA decryption of them using AWS KMS 
def unprotect_fields(org_data, prefix, suffix):
    regex_pattern = prefix + "(.*?)" + suffix
    mod_data_parts = []
    cursor = 0

    # Search ciphertexts iteratively using python regular expression module
    for match in re.finditer(regex_pattern, org_data):
        mod_data_parts.append(org_data[cursor: match.start()])
        try:
            # Ciphertext was stored as Base64 encoded in our example. Decode it.
            ciphertext = base64.b64decode(match.group(1))

            # Decrypt ciphertext using AWS KMS  
            decrypt_rsp = kms_client.decrypt(
                EncryptionAlgorithm="RSAES_OAEP_SHA_256",
                KeyId="<Your-Key-ID>",
                CiphertextBlob=ciphertext)
            decrypted_val = decrypt_rsp["Plaintext"].decode("utf-8")
            mod_data_parts.append(decrypted_val)
        except Exception as e:
            print ("Exception: " + str(e))
            return None
        cursor = match.end()

    mod_data_parts.append(org_data[cursor:])
    return "".join(mod_data_parts)

The function performs a regular expression search in the input data body looking for ciphertext strings bracketed in predefined prefix and suffix strings that were added during encryption.

While iterating over ciphertext strings one-by-one, the function calls the AWS KMS decrypt() API. The example function uses the same RSA encryption algorithm properties—OAEP and SHA-256—and the Key ID of the public key that was used during encryption in [email protected]

Note that the Key ID itself is not a secret. Any application can be configured with it, but that doesn’t mean any application will be able to perform decryption. The security control here is that the AWS KMS key policy must allow the caller to use the Key ID to perform the decryption. An additional security control is provided by Lambda execution role that should allow calling the KMS decrypt() API.

Step 4 – AWS KMS decrypts ciphertext and returns plaintext

To ensure that only authorized users can perform decrypt operation, the KMS is configured as described in Using key policies in AWS KMS. In addition, the Lambda IAM execution role is configured as described in AWS Lambda execution role to allow it to access KMS. If both the key policy and IAM policy conditions are met, KMS returns the decrypted plaintext. Lambda substitutes the plaintext in place of ciphertext in the encapsulating data body.

Steps three and four are repeated for each ciphertext string.

Step 5 – Lambda returns decrypted data body

Once all the ciphertext has been converted to plaintext and substituted in the larger data body, the Lambda function returns the modified data body to the client application.

Conclusion

In this post, I demonstrated how you can implement field-level encryption integrated with AWS KMS to help protect sensitive data workloads for their entire lifecycle in AWS. Since your [email protected] is designed to protect data at the network edge, data remains protected throughout the application execution stack. In addition to improving your data security posture, this protection can help you comply with data privacy regulations applicable to your organization.

Since you author your own [email protected] function to perform standard RSA encryption, you have flexibility in terms of payload formats and the number of fields that you consider to be sensitive. The integration with AWS KMS for RSA key management and decryption provides significant simplicity, higher key security, and rich integration with other AWS security services enabling an overall strong security solution.

By using encrypted fields with identifiers as described in this post, you can create fine-grained controls for data accessibility to meet the security principle of least privilege. Instead of granting either complete access or no access to data fields, you can ensure least privileges where a given part of an application can only access the fields that it needs, when it needs to, all the way down to controlling access field by field. Field by field access can be enabled by using different keys for different fields and controlling their respective policies.

In addition to protecting sensitive data workloads to meet regulatory and security best practices, this solution can be used to build de-identified data lakes in AWS. Sensitive data fields remain protected throughout their lifecycle, while non-sensitive data fields remain in the clear. This approach can allow analytics or other business functions to operate on data without exposing sensitive data.

If you have feedback about this post, submit comments in the Comments section below.

Want more AWS Security how-to content, news, and feature announcements? Follow us on Twitter.

Author

Raj Jain

Raj is a Senior Cloud Architect at AWS. He is passionate about helping customers build well-architected applications in AWS. Raj is a published author in Bell Labs Technical Journal, has authored 3 IETF standards, and holds 12 patents in internet telephony and applied cryptography. In his spare time, Raj enjoys outdoors, cooking, reading, and travel.

Brexit Deal Mandates Old Insecure Crypto Algorithms

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2020/12/brexit-deal-mandates-old-insecure-crypto-algorithms.html

In what is surely an unthinking cut-and-paste issue, page 921 of the Brexit deal mandates the use of SHA-1 and 1024-bit RSA:

The open standard s/MIME as extension to de facto e-mail standard SMTP will be deployed to encrypt messages containing DNA profile information. The protocol s/MIME (V3) allows signed receipts, security labels, and secure mailing lists… The underlying certificate used by s/MIME mechanism has to be in compliance with X.509 standard…. The processing rules for s/MIME encryption operations… are as follows:

  1. the sequence of the operations is: first encryption and then signing,
  2. the encryption algorithm AES (Advanced Encryption Standard) with 256 bit key length and RSA with 1,024 bit key length shall be applied for symmetric and asymmetric encryption respectively,
  3. the hash algorithm SHA-1 shall be applied.
  4. s/MIME functionality is built into the vast majority of modern e-mail software packages including Outlook, Mozilla Mail as well as Netscape Communicator 4.x and inter-operates among all major e-mail software packages.

And s/MIME? Bleah.

RSA-250 Factored

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2020/04/rsa-250_factore.html

RSA-250 has been factored.

This computation was performed with the Number Field Sieve algorithm,
using the open-source CADO-NFS software.

The total computation time was roughly 2700 core-years, using Intel Xeon Gold 6130 CPUs as a reference (2.1GHz):

RSA-250 sieving: 2450 physical core-years
RSA-250 matrix: 250 physical core-years

The computation involved tens of thousands of machines worldwide, and was completed in a few months.

News article. On the factoring challenges.

Chinese Hackers Bypassing Two-Factor Authentication

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/12/chinese_hackers_1.html

Interesting story of how a Chinese state-sponsored hacking group is bypassing the RSA SecurID two-factor authentication system.

How they did it remains unclear; although, the Fox-IT team has their theory. They said APT20 stole an RSA SecurID software token from a hacked system, which the Chinese actor then used on its computers to generate valid one-time codes and bypass 2FA at will.

Normally, this wouldn’t be possible. To use one of these software tokens, the user would need to connect a physical (hardware) device to their computer. The device and the software token would then generate a valid 2FA code. If the device was missing, the RSA SecureID software would generate an error.

The Fox-IT team explains how hackers might have gone around this issue:

The software token is generated for a specific system, but of course this system specific value could easily be retrieved by the actor when having access to the system of the victim.

As it turns out, the actor does not actually need to go through the trouble of obtaining the victim’s system specific value, because this specific value is only checked when importing the SecurID Token Seed, and has no relation to the seed used to generate actual 2-factor tokens. This means the actor can actually simply patch the check which verifies if the imported soft token was generated for this system, and does not need to bother with stealing the system specific value at all.

In short, all the actor has to do to make use of the 2 factor authentication codes is to steal an RSA SecurID Software Token and to patch 1 instruction, which results in the generation of valid tokens.

RSA-240 Factored

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/12/rsa-240_factore.html

This just in:

We are pleased to announce the factorization of RSA-240, from RSA’s challenge list, and the computation of a discrete logarithm of the same size (795 bits):

RSA-240 = 12462036678171878406583504460810659043482037465167880575481878888328 966680118821085503603957027250874750986476843845862105486553797025393057189121 768431828636284694840530161441643046806687569941524699318570418303051254959437 1372159029236099 = 509435952285839914555051023580843714132648382024111473186660296521821206469746 700620316443478873837606252372049619334517 * 244624208838318150567813139024002896653802092578931401452041221336558477095178 155258218897735030590669041302045908071447

[…]

The previous records were RSA-768 (768 bits) in December 2009 [2], and a 768-bit prime discrete logarithm in June 2016 [3].

It is the first time that two records for integer factorization and discrete logarithm are broken together, moreover with the same hardware and software.

Both computations were performed with the Number Field Sieve algorithm, using the open-source CADO-NFS software [4].

The sum of the computation time for both records is roughly 4000 core-years, using Intel Xeon Gold 6130 CPUs as a reference (2.1GHz). A rough breakdown of the time spent in the main computation steps is as follows.

RSA-240 sieving: 800 physical core-years
RSA-240 matrix: 100 physical core-years
DLP-240 sieving: 2400 physical core-years
DLP-240 matrix: 700 physical core-years

The computation times above are well below the time that was spent with the previous 768-bit records. To measure how much of this can be attributed to Moore’s law, we ran our software on machines that are identical to those cited in the 768-bit DLP computation [3], and reach the conclusion that sieving for our new record size on these old machines would have taken 25% less time than the reported sieving time of the 768-bit DLP computation.

EDITED TO ADD (12/4): News article. Dan Goodin points out that the speed improvements were more due to improvements in the algorithms than from Moore’s Law.

Factoring 2048-bit Numbers Using 20 Million Qubits

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/10/factoring_2048-.html

This theoretical paper shows how to factor 2048-bit RSA moduli with a 20-million qubit quantum computer in eight hours. It’s interesting work, but I don’t want overstate the risk.

We know from Shor’s Algorithm that both factoring and discrete logs are easy to solve on a large, working quantum computer. Both of those are currently beyond our technological abilities. We barely have quantum computers with 50 to 100 qubits. Extending this requires advances not only in the number of qubits we can work with, but in making the system stable enough to read any answers. You’ll hear this called “error rate” or “coherence” — this paper talks about “noise.”

Advances are hard. At this point, we don’t know if they’re “send a man to the moon” hard or “faster-than-light travel” hard. If I were guessing, I would say they’re the former, but still harder than we can accomplish with our current understanding of physics and technology.

I write about all this generally, and in detail, here. (Short summary: Our work on quantum-resistant algorithms is outpacing our work on quantum computers, so we’ll be fine in the short run. But future theoretical work on quantum computing could easily change what “quantum resistant” means, so it’s possible that public-key cryptography will simply not be possible in the long run. That’s not terrible, though; we have a lot of good scalable secret-key systems that do much the same things.)

Videos and Links from the Public-Interest Technology Track at the RSA Conference

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/03/videos_and_link.html

Yesterday at the RSA Conference, I gave a keynote talk about the role of public-interest technologists in cybersecurity. (Video here).

I also hosted a one-day mini-track on the topic. We had six panels, and they were all great. If you missed it live, we have videos:

  • How Public Interest Technologists are Changing the World: Matt Mitchell, Tactical Tech; Bruce Schneier, Fellow and Lecturer, Harvard Kennedy School; and J. Bob Alotta, Astraea Foundation (Moderator). (Video here.)
  • Public Interest Tech in Silicon Valley: Mitchell Baker, Chairwoman, Mozilla Corporation; Cindy Cohn, EFF; and Lucy Vasserman, Software Engineer, Google. (Video here.)

  • Working in Civil Society: Sarah Aoun, Digital Security Technologist; Peter Eckersley, Partnership on AI; Harlo Holmes, Director of Newsroom Digital Security, Freedom of the Press Foundation; and John Scott-Railton, Senior Researcher, Citizen Lab. (Video here.)

  • Government Needs You: Travis Moore, TechCongress; Hashim Mteuzi, Senior Manager, Network Talent Initiative, Code for America; Gigi Sohn, Distinguished Fellow, Georgetown Law Institute for Technology, Law and Policy; and Ashkan Soltani, Independent Consultant. (Video here.)

  • Changing Academia: Latanya Sweeney, Harvard; Dierdre Mulligan, UC Berkeley; and Danny Weitzner, MIT CSAIL. (Video here.)

  • The Future of Public Interest Tech: Bruce Schneier, Fellow and Lecturer, Harvard Kennedy School; Ben Wizner, ACLU; and Jenny Toomey, Director, Internet Freedom, Ford Foundation (Moderator). (Video here.)

I also conducted eight short video interviews with different people involved in public-interest technology: independent security technologist Sarah Aoun, TechCongress’s Travis Moore, Ford Foundation’s Jenny Toomey, CitizenLab’s John-Scott Railton, Dierdre Mulligan from UC Berkeley, ACLU’s Jon Callas, Matt Mitchell of TacticalTech, and Kelley Misata from Sightline Security.

Here is my blog post about the event. Here’s Ford Foundation’s blog post on why they helped me organize the event.

We got some good press coverage about the event. (Hey MeriTalk: you spelled my name wrong.)

Related: Here’s my longer essay on the need for public-interest technologists in Internet security, and my public-interest technology resources page.

And just so we have all the URLs in one place, here is a page from the RSA Conference website with links to all of the videos.

If you liked this mini-track, please rate it highly on your RSA Conference evaluation form. I’d like to do it again next year.

Cybersecurity for the Public Interest

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/03/cybersecurity_f_1.html

The Crypto Wars have been waging off-and-on for a quarter-century. On one side is law enforcement, which wants to be able to break encryption, to access devices and communications of terrorists and criminals. On the other are almost every cryptographer and computer security expert, repeatedly explaining that there’s no way to provide this capability without also weakening the security of every user of those devices and communications systems.

It’s an impassioned debate, acrimonious at times, but there are real technologies that can be brought to bear on the problem: key-escrow technologies, code obfuscation technologies, and backdoors with different properties. Pervasive surveillance capitalism — ­as practiced by the Internet companies that are already spying on everyone­ — matters. So does society’s underlying security needs. There is a security benefit to giving access to law enforcement, even though it would inevitably and invariably also give that access to others. However, there is also a security benefit of having these systems protected from all attackers, including law enforcement. These benefits are mutually exclusive. Which is more important, and to what degree?

The problem is that almost no policymakers are discussing this policy issue from a technologically informed perspective, and very few technologists truly understand the policy contours of the debate. The result is both sides consistently talking past each other, and policy proposals — ­that occasionally become law­ — that are technological disasters.

This isn’t sustainable, either for this issue or any of the other policy issues surrounding Internet security. We need policymakers who understand technology, but we also need cybersecurity technologists who understand­ — and are involved in — ­policy. We need public-interest technologists.

Let’s pause at that term. The Ford Foundation defines public-interest technologists as “technology practitioners who focus on social justice, the common good, and/or the public interest.” A group of academics recently wrote that public-interest technologists are people who “study the application of technology expertise to advance the public interest, generate public benefits, or promote the public good.” Tim Berners-Lee has called them “philosophical engineers.” I think of public-interest technologists as people who combine their technological expertise with a public-interest focus: by working on tech policy, by working on a tech project with a public benefit, or by working as a traditional technologist for an organization with a public benefit. Maybe it’s not the best term­ — and I know not everyone likes it­ — but it’s a decent umbrella term that can encompass all these roles.

We need public-interest technologists in policy discussions. We need them on congressional staff, in federal agencies, at non-governmental organizations (NGOs), in academia, inside companies, and as part of the press. In our field, we need them to get involved in not only the Crypto Wars, but everywhere cybersecurity and policy touch each other: the vulnerability equities debate, election security, cryptocurrency policy, Internet of Things safety and security, big data, algorithmic fairness, adversarial machine learning, critical infrastructure, and national security. When you broaden the definition of Internet security, many additional areas fall within the intersection of cybersecurity and policy. Our particular expertise and way of looking at the world is critical for understanding a great many technological issues, such as net neutrality and the regulation of critical infrastructure. I wouldn’t want to formulate public policy about artificial intelligence and robotics without a security technologist involved.

Public-interest technology isn’t new. Many organizations are working in this area, from older organizations like EFF and EPIC to newer ones like Verified Voting and Access Now. Many academic classes and programs combine technology and public policy. My cybersecurity policy class at the Harvard Kennedy School is just one example. Media startups like The Markup are doing technology-driven journalism. There are even programs and initiatives related to public-interest technology inside for-profit corporations.

This might all seem like a lot, but it’s really not. There aren’t enough people doing it, there aren’t enough people who know it needs to be done, and there aren’t enough places to do it. We need to build a world where there is a viable career path for public-interest technologists.

There are many barriers. There’s a report titled A Pivotal Moment that includes this quote: “While we cite individual instances of visionary leadership and successful deployment of technology skill for the public interest, there was a consensus that a stubborn cycle of inadequate supply, misarticulated demand, and an inefficient marketplace stymie progress.”

That quote speaks to the three places for intervention. One: the supply side. There just isn’t enough talent to meet the eventual demand. This is especially acute in cybersecurity, which has a talent problem across the field. Public-interest technologists are a diverse and multidisciplinary group of people. Their backgrounds come from technology, policy, and law. We also need to foster diversity within public-interest technology; the populations using the technology must be represented in the groups that shape the technology. We need a variety of ways for people to engage in this sphere: ways people can do it on the side, for a couple of years between more traditional technology jobs, or as a full-time rewarding career. We need public-interest technology to be part of every core computer-science curriculum, with “clinics” at universities where students can get a taste of public-interest work. We need technology companies to give people sabbaticals to do this work, and then value what they’ve learned and done.

Two: the demand side. This is our biggest problem right now; not enough organizations understand that they need technologists doing public-interest work. We need jobs to be funded across a wide variety of NGOs. We need staff positions throughout the government: executive, legislative, and judiciary branches. President Obama’s US Digital Service should be expanded and replicated; so should Code for America. We need more press organizations that perform this kind of work.

Three: the marketplace. We need job boards, conferences, and skills exchanges­ — places where people on the supply side can learn about the demand.

Major foundations are starting to provide funding in this space: the Ford and MacArthur Foundations in particular, but others as well.

This problem in our field has an interesting parallel with the field of public-interest law. In the 1960s, there was no such thing as public-interest law. The field was deliberately created, funded by organizations like the Ford Foundation. They financed legal aid clinics at universities, so students could learn housing, discrimination, or immigration law. They funded fellowships at organizations like the ACLU and the NAACP. They created a world where public-interest law is valued, where all the partners at major law firms are expected to have done some public-interest work. Today, when the ACLU advertises for a staff attorney, paying one-third to one-tenth normal salary, it gets hundreds of applicants. Today, 20% of Harvard Law School graduates go into public-interest law, and the school has soul-searching seminars because that percentage is so low. Meanwhile, the percentage of computer-science graduates going into public-interest work is basically zero.

This is bigger than computer security. Technology now permeates society in a way it didn’t just a couple of decades ago, and governments move too slowly to take this into account. That means technologists now are relevant to all sorts of areas that they had no traditional connection to: climate change, food safety, future of work, public health, bioengineering.

More generally, technologists need to understand the policy ramifications of their work. There’s a pervasive myth in Silicon Valley that technology is politically neutral. It’s not, and I hope most people reading this today knows that. We built a world where programmers felt they had an inherent right to code the world as they saw fit. We were allowed to do this because, until recently, it didn’t matter. Now, too many issues are being decided in an unregulated capitalist environment where significant social costs are too often not taken into account.

This is where the core issues of society lie. The defining political question of the 20th century was: “What should be governed by the state, and what should be governed by the market?” This defined the difference between East and West, and the difference between political parties within countries. The defining political question of the first half of the 21st century is: “How much of our lives should be governed by technology, and under what terms?” In the last century, economists drove public policy. In this century, it will be technologists.

The future is coming faster than our current set of policy tools can deal with. The only way to fix this is to develop a new set of policy tools with the help of technologists. We need to be in all aspects of public-interest work, from informing policy to creating tools all building the future. The world needs all of our help.

This essay previously appeared in the January/February issue of IEEE Security & Privacy.

Together with the Ford Foundation, I am hosting a one-day mini-track on public-interest technologists at the RSA Conference this week on Thursday. We’ve had some press coverage.

Edited to Add (3/7): More news articles.

Evidence for the Security of PKCS #1 Digital Signatures

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/09/evidence_for_th.html

This is interesting research: “On the Security of the PKCS#1 v1.5 Signature Scheme“:

Abstract: The RSA PKCS#1 v1.5 signature algorithm is the most widely used digital signature scheme in practice. Its two main strengths are its extreme simplicity, which makes it very easy to implement, and that verification of signatures is significantly faster than for DSA or ECDSA. Despite the huge practical importance of RSA PKCS#1 v1.5 signatures, providing formal evidence for their security based on plausible cryptographic hardness assumptions has turned out to be very difficult. Therefore the most recent version of PKCS#1 (RFC 8017) even recommends a replacement the more complex and less efficient scheme RSA-PSS, as it is provably secure and therefore considered more robust. The main obstacle is that RSA PKCS#1 v1.5 signatures use a deterministic padding scheme, which makes standard proof techniques not applicable.

We introduce a new technique that enables the first security proof for RSA-PKCS#1 v1.5 signatures. We prove full existential unforgeability against adaptive chosen-message attacks (EUF-CMA) under the standard RSA assumption. Furthermore, we give a tight proof under the Phi-Hiding assumption. These proofs are in the random oracle model and the parameters deviate slightly from the standard use, because we require a larger output length of the hash function. However, we also show how RSA-PKCS#1 v1.5 signatures can be instantiated in practice such that our security proofs apply.

In order to draw a more complete picture of the precise security of RSA PKCS#1 v1.5 signatures, we also give security proofs in the standard model, but with respect to weaker attacker models (key-only attacks) and based on known complexity assumptions. The main conclusion of our work is that from a provable security perspective RSA PKCS#1 v1.5 can be safely used, if the output length of the hash function is chosen appropriately.

I don’t think the protocol is “provably secure,” meaning that it cannot have any vulnerabilities. What this paper demonstrates is that there are no vulnerabilities under the model of the proof. And, more importantly, that PKCS #1 v1.5 is as secure as any of its successors like RSA-PSS and RSA Full-Domain.

New Findings About Prime Number Distribution Almost Certainly Irrelevant to Cryptography

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/09/new_findings_ab.html

Lots of people are e-mailing me about this new result on the distribution of prime numbers. While interesting, it has nothing to do with cryptography. Cryptographers aren’t interested in how to find prime numbers, or even in the distribution of prime numbers. Public-key cryptography algorithms like RSA get their security from the difficulty of factoring large composite numbers that are the product of two prime numbers. That’s completely different.

Quantum Computing and Cryptography

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/09/quantum_computi_2.html

Quantum computing is a new way of computing — one that could allow humankind to perform computations that are simply impossible using today’s computing technologies. It allows for very fast searching, something that would break some of the encryption algorithms we use today. And it allows us to easily factor large numbers, something that would break the RSA cryptosystem for any key length.

This is why cryptographers are hard at work designing and analyzing “quantum-resistant” public-key algorithms. Currently, quantum computing is too nascent for cryptographers to be sure of what is secure and what isn’t. But even assuming aliens have developed the technology to its full potential, quantum computing doesn’t spell the end of the world for cryptography. Symmetric cryptography is easy to make quantum-resistant, and we’re working on quantum-resistant public-key algorithms. If public-key cryptography ends up being a temporary anomaly based on our mathematical knowledge and computational ability, we’ll still survive. And if some inconceivable alien technology can break all of cryptography, we still can have secrecy based on information theory — albeit with significant loss of capability.

At its core, cryptography relies on the mathematical quirk that some things are easier to do than to undo. Just as it’s easier to smash a plate than to glue all the pieces back together, it’s much easier to multiply two prime numbers together to obtain one large number than it is to factor that large number back into two prime numbers. Asymmetries of this kind — one-way functions and trap-door one-way functions — underlie all of cryptography.

To encrypt a message, we combine it with a key to form ciphertext. Without the key, reversing the process is more difficult. Not just a little more difficult, but astronomically more difficult. Modern encryption algorithms are so fast that they can secure your entire hard drive without any noticeable slowdown, but that encryption can’t be broken before the heat death of the universe.

With symmetric cryptography — the kind used to encrypt messages, files, and drives — that imbalance is exponential, and is amplified as the keys get larger. Adding one bit of key increases the complexity of encryption by less than a percent (I’m hand-waving here) but doubles the cost to break. So a 256-bit key might seem only twice as complex as a 128-bit key, but (with our current knowledge of mathematics) it’s 340,282,366,920,938,463,463,374,607,431,768,211,456 times harder to break.

Public-key encryption (used primarily for key exchange) and digital signatures are more complicated. Because they rely on hard mathematical problems like factoring, there are more potential tricks to reverse them. So you’ll see key lengths of 2,048 bits for RSA, and 384 bits for algorithms based on elliptic curves. Here again, though, the costs to reverse the algorithms with these key lengths are beyond the current reach of humankind.

This one-wayness is based on our mathematical knowledge. When you hear about a cryptographer “breaking” an algorithm, what happened is that they’ve found a new trick that makes reversing easier. Cryptographers discover new tricks all the time, which is why we tend to use key lengths that are longer than strictly necessary. This is true for both symmetric and public-key algorithms; we’re trying to future-proof them.

Quantum computers promise to upend a lot of this. Because of the way they work, they excel at the sorts of computations necessary to reverse these one-way functions. For symmetric cryptography, this isn’t too bad. Grover’s algorithm shows that a quantum computer speeds up these attacks to effectively halve the key length. This would mean that a 256-bit key is as strong against a quantum computer as a 128-bit key is against a conventional computer; both are secure for the foreseeable future.

For public-key cryptography, the results are more dire. Shor’s algorithm can easily break all of the commonly used public-key algorithms based on both factoring and the discrete logarithm problem. Doubling the key length increases the difficulty to break by a factor of eight. That’s not enough of a sustainable edge.

There are a lot of caveats to those two paragraphs, the biggest of which is that quantum computers capable of doing anything like this don’t currently exist, and no one knows when — or even if ­- we’ll be able to build one. We also don’t know what sorts of practical difficulties will arise when we try to implement Grover’s or Shor’s algorithms for anything but toy key sizes. (Error correction on a quantum computer could easily be an unsurmountable problem.) On the other hand, we don’t know what other techniques will be discovered once people start working with actual quantum computers. My bet is that we will overcome the engineering challenges, and that there will be many advances and new techniques­but they’re going to take time to discover and invent. Just as it took decades for us to get supercomputers in our pockets, it will take decades to work through all the engineering problems necessary to build large-enough quantum computers.

In the short term, cryptographers are putting considerable effort into designing and analyzing quantum-resistant algorithms, and those are likely to remain secure for decades. This is a necessarily slow process, as both good cryptanalysis transitioning standards take time. Luckily, we have time. Practical quantum computing seems to always remain “ten years in the future,” which means no one has any idea.

After that, though, there is always the possibility that those algorithms will fall to aliens with better quantum techniques. I am less worried about symmetric cryptography, where Grover’s algorithm is basically an upper limit on quantum improvements, than I am about public-key algorithms based on number theory, which feel more fragile. It’s possible that quantum computers will someday break all of them, even those that today are quantum resistant.

If that happens, we will face a world without strong public-key cryptography. That would be a huge blow to security and would break a lot of stuff we currently do, but we could adapt. In the 1980s, Kerberos was an all-symmetric authentication and encryption system. More recently, the GSM cellular standard does both authentication and key distribution — at scale — with only symmetric cryptography. Yes, those systems have centralized points of trust and failure, but it’s possible to design other systems that use both secret splitting and secret sharing to minimize that risk. (Imagine that a pair of communicants get a piece of their session key from each of five different key servers.) The ubiquity of communications also makes things easier today. We can use out-of-band protocols where, for example, your phone helps you create a key for your computer. We can use in-person registration for added security, maybe at the store where you buy your smartphone or initialize your Internet service. Advances in hardware may also help to secure keys in this world. I’m not trying to design anything here, only to point out that there are many design possibilities. We know that cryptography is all about trust, and we have a lot more techniques to manage trust than we did in the early years of the Internet. Some important properties like forward secrecy will be blunted and far more complex, but as long as symmetric cryptography still works, we’ll still have security.

It’s a weird future. Maybe the whole idea of number theory­-based encryption, which is what our modern public-key systems are, is a temporary detour based on our incomplete model of computing. Now that our model has expanded to include quantum computing, we might end up back to where we were in the late 1970s and early 1980s: symmetric cryptography, code-based cryptography, Merkle hash signatures. That would be both amusing and ironic.

Yes, I know that quantum key distribution is a potential replacement for public-key cryptography. But come on — does anyone expect a system that requires specialized communications hardware and cables to be useful for anything but niche applications? The future is mobile, always-on, embedded computing devices. Any security for those will necessarily be software only.

There’s one more future scenario to consider, one that doesn’t require a quantum computer. While there are several mathematical theories that underpin the one-wayness we use in cryptography, proving the validity of those theories is in fact one of the great open problems in computer science. Just as it is possible for a smart cryptographer to find a new trick that makes it easier to break a particular algorithm, we might imagine aliens with sufficient mathematical theory to break all encryption algorithms. To us, today, this is ridiculous. Public- key cryptography is all number theory, and potentially vulnerable to more mathematically inclined aliens. Symmetric cryptography is so much nonlinear muddle, so easy to make more complex, and so easy to increase key length, that this future is unimaginable. Consider an AES variant with a 512-bit block and key size, and 128 rounds. Unless mathematics is fundamentally different than our current understanding, that’ll be secure until computers are made of something other than matter and occupy something other than space.

But if the unimaginable happens, that would leave us with cryptography based solely on information theory: one-time pads and their variants. This would be a huge blow to security. One-time pads might be theoretically secure, but in practical terms they are unusable for anything other than specialized niche applications. Today, only crackpots try to build general-use systems based on one-time pads — and cryptographers laugh at them, because they replace algorithm design problems (easy) with key management and physical security problems (much, much harder). In our alien-ridden science-fiction future, we might have nothing else.

Against these godlike aliens, cryptography will be the only technology we can be sure of. Our nukes might refuse to detonate and our fighter jets might fall out of the sky, but we will still be able to communicate securely using one-time pads. There’s an optimism in that.

This essay originally appeared in IEEE Security and Privacy.

Build your own weather station with our new guide!

Post Syndicated from Richard Hayler original https://www.raspberrypi.org/blog/build-your-own-weather-station/

One of the most common enquiries I receive at Pi Towers is “How can I get my hands on a Raspberry Pi Oracle Weather Station?” Now the answer is: “Why not build your own version using our guide?”

Build Your Own weather station kit assembled

Tadaaaa! The BYO weather station fully assembled.

Our Oracle Weather Station

In 2016 we sent out nearly 1000 Raspberry Pi Oracle Weather Station kits to schools from around the world who had applied to be part of our weather station programme. In the original kit was a special HAT that allows the Pi to collect weather data with a set of sensors.

The original Raspberry Pi Oracle Weather Station HAT – Build Your Own Raspberry Pi weather station

The original Raspberry Pi Oracle Weather Station HAT

We designed the HAT to enable students to create their own weather stations and mount them at their schools. As part of the programme, we also provide an ever-growing range of supporting resources. We’ve seen Oracle Weather Stations in great locations with a huge differences in climate, and they’ve even recorded the effects of a solar eclipse.

Our new BYO weather station guide

We only had a single batch of HATs made, and unfortunately we’ve given nearly* all the Weather Station kits away. Not only are the kits really popular, we also receive lots of questions about how to add extra sensors or how to take more precise measurements of a particular weather phenomenon. So today, to satisfy your demand for a hackable weather station, we’re launching our Build your own weather station guide!

Build Your Own Raspberry Pi weather station

Fun with meteorological experiments!

Our guide suggests the use of many of the sensors from the Oracle Weather Station kit, so can build a station that’s as close as possible to the original. As you know, the Raspberry Pi is incredibly versatile, and we’ve made it easy to hack the design in case you want to use different sensors.

Many other tutorials for Pi-powered weather stations don’t explain how the various sensors work or how to store your data. Ours goes into more detail. It shows you how to put together a breadboard prototype, it describes how to write Python code to take readings in different ways, and it guides you through recording these readings in a database.

Build Your Own Raspberry Pi weather station on a breadboard

There’s also a section on how to make your station weatherproof. And in case you want to move past the breadboard stage, we also help you with that. The guide shows you how to solder together all the components, similar to the original Oracle Weather Station HAT.

Who should try this build

We think this is a great project to tackle at home, at a STEM club, Scout group, or CoderDojo, and we’re sure that many of you will be chomping at the bit to get started. Before you do, please note that we’ve designed the build to be as straight-forward as possible, but it’s still fairly advanced both in terms of electronics and programming. You should read through the whole guide before purchasing any components.

Build Your Own Raspberry Pi weather station – components

The sensors and components we’re suggesting balance cost, accuracy, and easy of use. Depending on what you want to use your station for, you may wish to use different components. Similarly, the final soldered design in the guide may not be the most elegant, but we think it is achievable for someone with modest soldering experience and basic equipment.

You can build a functioning weather station without soldering with our guide, but the build will be more durable if you do solder it. If you’ve never tried soldering before, that’s OK: we have a Getting started with soldering resource plus video tutorial that will walk you through how it works step by step.

Prototyping HAT for Raspberry Pi weather station sensors

For those of you who are more experienced makers, there are plenty of different ways to put the final build together. We always like to hear about alternative builds, so please post your designs in the Weather Station forum.

Our plans for the guide

Our next step is publishing supplementary guides for adding extra functionality to your weather station. We’d love to hear which enhancements you would most like to see! Our current ideas under development include adding a webcam, making a tweeting weather station, adding a light/UV meter, and incorporating a lightning sensor. Let us know which of these is your favourite, or suggest your own amazing ideas in the comments!

*We do have a very small number of kits reserved for interesting projects or locations: a particularly cool experiment, a novel idea for how the Oracle Weather Station could be used, or places with specific weather phenomena. If have such a project in mind, please send a brief outline to [email protected], and we’ll consider how we might be able to help you.

The post Build your own weather station with our new guide! appeared first on Raspberry Pi.

Amazon Sumerian – Now Generally Available

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/amazon-sumerian-now-generally-available/

We announced Amazon Sumerian at AWS re:Invent 2017. As you can see from Tara‘s blog post (Presenting Amazon Sumerian: An Easy Way to Create VR, AR, and 3D Experiences), Sumerian does not require any specialized programming or 3D graphics expertise. You can build VR, AR, and 3D experiences for a wide variety of popular hardware platforms including mobile devices, head-mounted displays, digital signs, and web browsers.

I’m happy to announce that Sumerian is now generally available. You can create realistic virtual environments and scenes without having to acquire or master specialized tools for 3D modeling, animation, lighting, audio editing, or programming. Once built, you can deploy your finished creation across multiple platforms without having to write custom code or deal with specialized deployment systems and processes.

Sumerian gives you a web-based editor that you can use to quickly and easily create realistic, professional-quality scenes. There’s a visual scripting tool that lets you build logic to control how objects and characters (Sumerian Hosts) respond to user actions. Sumerian also lets you create rich, natural interactions powered by AWS services such as Amazon Lex, Polly, AWS Lambda, AWS IoT, and Amazon DynamoDB.

Sumerian was designed to work on multiple platforms. The VR and AR apps that you create in Sumerian will run in browsers that supports WebGL or WebVR and on popular devices such as the Oculus Rift, HTC Vive, and those powered by iOS or Android.

During the preview period, we have been working with a broad spectrum of customers to put Sumerian to the test and to create proof of concept (PoC) projects designed to highlight an equally broad spectrum of use cases, including employee education, training simulations, field service productivity, virtual concierge, design and creative, and brand engagement. Fidelity Labs (the internal R&D unit of Fidelity Investments), was the first to use a Sumerian host to create an engaging VR experience. Cora (the host) lives within a virtual chart room. She can display stock quotes, pull up company charts, and answer questions about a company’s performance. This PoC uses Amazon Polly to implement text to speech and Amazon Lex for conversational chatbot functionality. Read their blog post and watch the video inside to see Cora in action:

Now that Sumerian is generally available, you have the power to create engaging AR, VR, and 3D experiences of your own. To learn more, visit the Amazon Sumerian home page and then spend some quality time with our extensive collection of Sumerian Tutorials.

Jeff;

 

Cryptocurrency Security Challenges

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/cryptocurrency-security-challenges/

Physical coins representing cyrptocurrencies

Most likely you’ve read the tantalizing stories of big gains from investing in cryptocurrencies. Someone who invested $1,000 into bitcoins five years ago would have over $85,000 in value now. Alternatively, someone who invested in bitcoins three months ago would have seen their investment lose 20% in value. Beyond the big price fluctuations, currency holders are possibly exposed to fraud, bad business practices, and even risk losing their holdings altogether if they are careless in keeping track of the all-important currency keys.

It’s certain that beyond the rewards and risks, cryptocurrencies are here to stay. We can’t ignore how they are changing the game for how money is handled between people and businesses.

Some Advantages of Cryptocurrency

  • Cryptocurrency is accessible to anyone.
  • Decentralization means the network operates on a user-to-user (or peer-to-peer) basis.
  • Transactions can completed for a fraction of the expense and time required to complete traditional asset transfers.
  • Transactions are digital and cannot be counterfeited or reversed arbitrarily by the sender, as with credit card charge-backs.
  • There aren’t usually transaction fees for cryptocurrency exchanges.
  • Cryptocurrency allows the cryptocurrency holder to send exactly what information is needed and no more to the merchant or recipient, even permitting anonymous transactions (for good or bad).
  • Cryptocurrency operates at the universal level and hence makes transactions easier internationally.
  • There is no other electronic cash system in which your account isn’t owned by someone else.

On top of all that, blockchain, the underlying technology behind cryptocurrencies, is already being applied to a variety of business needs and itself becoming a hot sector of the tech economy. Blockchain is bringing traceability and cost-effectiveness to supply-chain management — which also improves quality assurance in areas such as food, reducing errors and improving accounting accuracy, smart contracts that can be automatically validated, signed and enforced through a blockchain construct, the possibility of secure, online voting, and many others.

Like any new, booming marketing there are risks involved in these new currencies. Anyone venturing into this domain needs to have their eyes wide open. While the opportunities for making money are real, there are even more ways to lose money.

We’re going to cover two primary approaches to staying safe and avoiding fraud and loss when dealing with cryptocurrencies. The first is to thoroughly vet any person or company you’re dealing with to judge whether they are ethical and likely to succeed in their business segment. The second is keeping your critical cryptocurrency keys safe, which we’ll deal with in this and a subsequent post.

Caveat Emptor — Buyer Beware

The short history of cryptocurrency has already seen the demise of a number of companies that claimed to manage, mine, trade, or otherwise help their customers profit from cryptocurrency. Mt. Gox, GAW Miners, and OneCoin are just three of the many companies that disappeared with their users’ money. This is the traditional equivalent of your bank going out of business and zeroing out your checking account in the process.

That doesn’t happen with banks because of regulatory oversight. But with cryptocurrency, you need to take the time to investigate any company you use to manage or trade your currencies. How long have they been around? Who are their investors? Are they affiliated with any reputable financial institutions? What is the record of their founders and executive management? These are all important questions to consider when evaluating a company in this new space.

Would you give the keys to your house to a service or person you didn’t thoroughly know and trust? Some companies that enable you to buy and sell currencies online will routinely hold your currency keys, which gives them the ability to do anything they want with your holdings, including selling them and pocketing the proceeds if they wish.

That doesn’t mean you shouldn’t ever allow a company to keep your currency keys in escrow. It simply means that you better know with whom you’re doing business and if they’re trustworthy enough to be given that responsibility.

Keys To the Cryptocurrency Kingdom — Public and Private

If you’re an owner of cryptocurrency, you know how this all works. If you’re not, bear with me for a minute while I bring everyone up to speed.

Cryptocurrency has no physical manifestation, such as bills or coins. It exists purely as a computer record. And unlike currencies maintained by governments, such as the U.S. dollar, there is no central authority regulating its distribution and value. Cryptocurrencies use a technology called blockchain, which is a decentralized way of keeping track of transactions. There are many copies of a given blockchain, so no single central authority is needed to validate its authenticity or accuracy.

The validity of each cryptocurrency is determined by a blockchain. A blockchain is a continuously growing list of records, called “blocks”, which are linked and secured using cryptography. Blockchains by design are inherently resistant to modification of the data. They perform as an open, distributed ledger that can record transactions between two parties efficiently and in a verifiable, permanent way. A blockchain is typically managed by a peer-to-peer network collectively adhering to a protocol for validating new blocks. Once recorded, the data in any given block cannot be altered retroactively without the alteration of all subsequent blocks, which requires collusion of the network majority. On a scaled network, this level of collusion is impossible — making blockchain networks effectively immutable and trustworthy.

Blockchain process

The other element common to all cryptocurrencies is their use of public and private keys, which are stored in the currency’s wallet. A cryptocurrency wallet stores the public and private “keys” or “addresses” that can be used to receive or spend the cryptocurrency. With the private key, it is possible to write in the public ledger (blockchain), effectively spending the associated cryptocurrency. With the public key, it is possible for others to send currency to the wallet.

What is a cryptocurrency address?

Cryptocurrency “coins” can be lost if the owner loses the private keys needed to spend the currency they own. It’s as if the owner had lost a bank account number and had no way to verify their identity to the bank, or if they lost the U.S. dollars they had in their wallet. The assets are gone and unusable.

The Cryptocurrency Wallet

Given the importance of these keys, and lack of recourse if they are lost, it’s obviously very important to keep track of your keys.

If you’re being careful in choosing reputable exchanges, app developers, and other services with whom to trust your cryptocurrency, you’ve made a good start in keeping your investment secure. But if you’re careless in managing the keys to your bitcoins, ether, Litecoin, or other cryptocurrency, you might as well leave your money on a cafe tabletop and walk away.

What Are the Differences Between Hot and Cold Wallets?

Just like other numbers you might wish to keep track of — credit cards, account numbers, phone numbers, passphrases — cryptocurrency keys can be stored in a variety of ways. Those who use their currencies for day-to-day purchases most likely will want them handy in a smartphone app, hardware key, or debit card that can be used for purchases. These are called “hot” wallets. Some experts advise keeping the balances in these devices and apps to a minimal amount to avoid hacking or data loss. We typically don’t walk around with thousands of dollars in U.S. currency in our old-style wallets, so this is really a continuation of the same approach to managing spending money.

Bread mobile app screenshot

A “hot” wallet, the Bread mobile app

Some investors with large balances keep their keys in “cold” wallets, or “cold storage,” i.e. a device or location that is not connected online. If funds are needed for purchases, they can be transferred to a more easily used payment medium. Cold wallets can be hardware devices, USB drives, or even paper copies of your keys.

Trezor hardware wallet

A “cold” wallet, the Trezor hardware wallet

Ledger Nano S hardware wallet

A “cold” wallet, the Ledger Nano S

Bitcoin paper wallet

A “cold” Bitcoin paper wallet

Wallets are suited to holding one or more specific cryptocurrencies, and some people have multiple wallets for different currencies and different purposes.

A paper wallet is nothing other than a printed record of your public and private keys. Some prefer their records to be completely disconnected from the internet, and a piece of paper serves that need. Just like writing down an account password on paper, however, it’s essential to keep the paper secure to avoid giving someone the ability to freely access your funds.

How to Keep your Keys, and Cryptocurrency Secure

In a post this coming Thursday, Securing Your Cryptocurrency, we’ll discuss the best strategies for backing up your cryptocurrency so that your currencies don’t become part of the millions that have been lost. We’ll cover the common (and uncommon) approaches to backing up hot wallets, cold wallets, and using paper and metal solutions to keeping your keys safe.

In the meantime, please tell us of your experiences with cryptocurrencies — good and bad — and how you’ve dealt with the issue of cryptocurrency security.

The post Cryptocurrency Security Challenges appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

[$] Reworking page-table traversal

Post Syndicated from corbet original https://lwn.net/Articles/753267/rss

A system’s page tables are organized into a tree that is as many as five
levels deep. In many ways those levels are all similar, but the kernel
treats them all as being different, with the result that page-table
manipulations include a fair amount of repetitive code. During the
memory-management track of the 2018 Linux Storage, Filesystem, and
Memory-Management Summit, Kirill Shutemov proposed reworking how page
tables are maintained. The idea was popular, but the implementation is
likely to be tricky.

The Helium Factor and Hard Drive Failure Rates

Post Syndicated from Andy Klein original https://www.backblaze.com/blog/helium-filled-hard-drive-failure-rates/

Seagate Enterprise Capacity 3.5 Helium HDD

In November 2013, the first commercially available helium-filled hard drive was introduced by HGST, a Western Digital subsidiary. The 6 TB drive was not only unique in being helium-filled, it was for the moment, the highest capacity hard drive available. Fast forward a little over 4 years later and 12 TB helium-filled drives are readily available, 14 TB drives can be found, and 16 TB helium-filled drives are arriving soon.

Backblaze has been purchasing and deploying helium-filled hard drives over the past year and we thought it was time to start looking at their failure rates compared to traditional air-filled drives. This post will provide an overview, then we’ll continue the comparison on a regular basis over the coming months.

The Promise and Challenge of Helium Filled Drives

We all know that helium is lighter than air — that’s why helium-filled balloons float. Inside of an air-filled hard drive there are rapidly spinning disk platters that rotate at a given speed, 7200 rpm for example. The air inside adds an appreciable amount of drag on the platters that in turn requires an appreciable amount of additional energy to spin the platters. Replacing the air inside of a hard drive with helium reduces the amount of drag, thereby reducing the amount of energy needed to spin the platters, typically by 20%.

We also know that after a few days, a helium-filled balloon sinks to the ground. This was one of the key challenges in using helium inside of a hard drive: helium escapes from most containers, even if they are well sealed. It took years for hard drive manufacturers to create containers that could contain helium while still functioning as a hard drive. This container innovation allows helium-filled drives to function at spec over the course of their lifetime.

Checking for Leaks

Three years ago, we identified SMART 22 as the attribute assigned to recording the status of helium inside of a hard drive. We have both HGST and Seagate helium-filled hard drives, but only the HGST drives currently report the SMART 22 attribute. It appears the normalized and raw values for SMART 22 currently report the same value, which starts at 100 and goes down.

To date only one HGST drive has reported a value of less than 100, with multiple readings between 94 and 99. That drive continues to perform fine, with no other errors or any correlating changes in temperature, so we are not sure whether the change in value is trying to tell us something or if it is just a wonky sensor.

Helium versus Air-Filled Hard Drives

There are several different ways to compare these two types of drives. Below we decided to use just our 8, 10, and 12 TB drives in the comparison. We did this since we have helium-filled drives in those sizes. We left out of the comparison all of the drives that are 6 TB and smaller as none of the drive models we use are helium-filled. We are open to trying different comparisons. This just seemed to be the best place to start.

Lifetime Hard Drive Failure Rates: Helium vs. Air-Filled Hard Drives table

The most obvious observation is that there seems to be little difference in the Annualized Failure Rate (AFR) based on whether they contain helium or air. One conclusion, given this evidence, is that helium doesn’t affect the AFR of hard drives versus air-filled drives. My prediction is that the helium drives will eventually prove to have a lower AFR. Why? Drive Days.

Let’s go back in time to Q1 2017 when the air-filled drives listed in the table above had a similar number of Drive Days to the current number of Drive Days for the helium drives. We find that the failure rate for the air-filled drives at the time (Q1 2017) was 1.61%. In other words, when the drives were in use a similar number of hours, the helium drives had a failure rate of 1.06% while the failure rate of the air-filled drives was 1.61%.

Helium or Air?

My hypothesis is that after normalizing the data so that the helium and air-filled drives have the same (or similar) usage (Drive Days), the helium-filled drives we use will continue to have a lower Annualized Failure Rate versus the air-filled drives we use. I expect this trend to continue for the next year at least. What side do you come down on? Will the Annualized Failure Rate for helium-filled drives be better than air-filled drives or vice-versa? Or do you think the two technologies will be eventually produce the same AFR over time? Pick a side and we’ll document the results over the next year and see where the data takes us.

The post The Helium Factor and Hard Drive Failure Rates appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.