Tag Archives: mitigation

[$] Meltdown and Spectre mitigations — a February update

Post Syndicated from corbet original https://lwn.net/Articles/746551/rss

The initial panic over the Meltdown and Spectre processor vulnerabilities
has faded, and work on mitigations in the kernel has slowed since our mid-January report. That work has not
stopped, though. Fully equipping the kernel to protect systems from these
vulnerabilities is a task that may well require years. Read on for an
update on the current status of that work.

The 4.15 kernel is out

Post Syndicated from corbet original https://lwn.net/Articles/744875/rss

Linus has released the 4.15 kernel.
After a release cycle that was unusual in so many (bad) ways, this
last week was really pleasant. Quiet and small, and no last-minute
panics, just small fixes for various issues. I never got a feeling
that I’d need to extend things by yet another week, and 4.15 looks
fine to me.

Some of the more significant features in this release include:
the long-awaited CPU controller for the
version-2 control-group interface,
significant live-patching improvements,
initial support for the RISC-V architecture,
support for AMD’s secure encrypted virtualization feature, and
the MAP_SYNC mechanism for working
with nonvolatile memory.
This release also, of course, includes mitigations for the Meltdown and Spectre variant-2
vulnerabilities
though, as Linus points out in the announcement, the
work of dealing with these issues is not yet done.

On that Spectre mitigations discussion

Post Syndicated from corbet original https://lwn.net/Articles/745111/rss

By now, almost everybody has probably seen the press coverage of Linus Torvalds’s remarks about one of the
patches addressing Spectre variant 2. Less noted, but much more
informative, is David Woodhouse’s response
on why those patches are the way they are. “That’s why my initial
idea, as implemented in this RFC patchset, was to stick with IBRS on
Skylake, and use retpoline everywhere else. I’ll give you ‘garbage
patches’, but they weren’t being ‘just mindlessly sent around’. If we’re
going to drop IBRS support and accept the caveats, then let’s do it as a
conscious decision having seen what it would look like, not just drop it
quietly because poor Davey is too scared that Linus might shout at him
again.

[$] Meltdown/Spectre mitigation for 4.15 and beyond

Post Syndicated from corbet original https://lwn.net/Articles/744287/rss

While some aspects of the kernel’s defenses against the Meltdown and
Spectre vulnerabilities were more-or-less in place when the problems were
disclosed on January 3, others were less fully formed. Additionally,
many of the mitigations (especially for the two Spectre variants) had not
been seen in public prior to the disclosure, meaning that there was a lot
of scope for discussion once they came out. Many of those discussions are
slowing down, and the kernel’s initial response has mostly come into
focus. The 4.15 kernel will include a broad set of mitigations, while some
others will have to wait for later; read on
for details on where things stand.

Spectre & Meltdown Checker – Vulnerability Mitigation Tool For Linux

Post Syndicated from Darknet original https://www.darknet.org.uk/2018/01/spectre-meltdown-checker-vulnerability-mitigation-tool-linux/?utm_source=rss&utm_medium=social&utm_campaign=darknetfeed

Spectre & Meltdown Checker – Vulnerability Mitigation Tool For Linux

Spectre & Meltdown Checker is a simple shell script to tell if your Linux installation is vulnerable against the 3 “speculative execution” CVEs that were made public early 2018.

Without options, it’ll inspect you currently running kernel. You can also specify a kernel image on the command line, if you’d like to inspect a kernel you’re not running.

The script will do its best to detect mitigations, including backported non-vanilla patches, regardless of the advertised kernel version number.

Read the rest of Spectre & Meltdown Checker – Vulnerability Mitigation Tool For Linux now! Only available at Darknet.

[$] Addressing Meltdown and Spectre in the kernel

Post Syndicated from corbet original https://lwn.net/Articles/743265/rss

When the Meltdown and Spectre vulnerabilities were disclosed on
January 3, attention quickly turned to mitigations. There was already
a clear defense against Meltdown in the form of kernel page-table isolation (KPTI), but the
defenses
against the two Spectre variants had not been developed in public and still
do not exist in the mainline kernel. Initial versions of proposed
defenses have now been disclosed. The resulting picture shows what has
been done to fend off Spectre-based attacks in the near future, but the
situation remains chaotic, to put it lightly.

More details about mitigations for the CPU Speculative Execution issue (Google Security Blog)

Post Syndicated from jake original https://lwn.net/Articles/743269/rss

One of the main concerns about the mitigations for the Meltdown/Spectre speculative execution bugs has been performance. The Google Security Blog is reporting negligible performance impact on Google systems for two of the mitigations (kernel page-table isolation and Retpoline): “In response to the vulnerabilities that were discovered we developed a novel mitigation called “Retpoline” — a binary modification technique that protects against “branch target injection” attacks. We shared Retpoline with our industry partners and have deployed it on Google’s systems, where we have observed negligible impact on performance.
In addition, we have deployed Kernel Page Table Isolation (KPTI) — a general purpose technique for better protecting sensitive information in memory from other software running on a machine — to the entire fleet of Google Linux production servers that support all of our products, including Search, Gmail, YouTube, and Google Cloud Platform.
There has been speculation that the deployment of KPTI causes significant performance slowdowns. Performance can vary, as the impact of the KPTI mitigations depends on the rate of system calls made by an application. On most of our workloads, including our cloud infrastructure, we see negligible impact on performance.

Three new stable kernels

Post Syndicated from jake original https://lwn.net/Articles/743246/rss

Greg Kroah-Hartman has announced the release of the 4.14.12, 4.9.75, and 4.4.110 stable kernels. The bulk of the
changes are either to fix the mitigations for Meltdown/Spectre (in 4.14.12) or to backport
those mitigations (in the two older kernels). There are apparently known (or
suspected) problems with
each of the releases, which Kroah-Hartman is hoping to get shaken out in
the near term. For example, the 4.4.110 announcement warns: “But be
careful, there have been some reports of problems with this
release during the -rc review cycle. Hopefully all of those issues are
now resolved.

So please test, as of right now, it should be ‘bug compatible’ with the
‘enterprise’ kernel releases with regards to the Meltdown bug and proper
support on all virtual platforms (meaning there is still a vdso issue
that might trip up some old binaries, again, please test!)”

Privilege escalation via eBPF in Linux 4.9 and beyond

Post Syndicated from jake original https://lwn.net/Articles/742170/rss

Jann Horn has reported eight bugs in the
eBPF verifier, one for the 4.9 kernel and seven introduced in 4.14, to the
oss-security mailing list. Some
of these bugs result in eBPF programs being able to read and write arbitrary
kernel memory, thus can be used for a variety of ill effects, including
privilege escalation. As Ben Hutchings notes,
one mitigation would be to disable unprivileged access to BPF using the
following sysctl:
kernel.unprivileged_bpf_disabled=1. More information can also be found
in this Project
Zero bug entry
. The fixes are not yet in the mainline tree, but are in
the netdev tree. Hutchings goes on to say: “There is a public
exploit that uses several of these bugs to get root privileges. It doesn’t
work as-is on stretch [Debian 9] with the Linux 4.9 kernel, but is easy to adapt. I
recommend applying the above mitigation as soon as possible to all systems
running Linux 4.4 or later.

The Intel ME vulnerabilities are a big deal for some people, harmless for most

Post Syndicated from Matthew Garrett original https://mjg59.dreamwidth.org/49788.html

(Note: all discussion here is based on publicly disclosed information, and I am not speaking on behalf of my employers)

I wrote about the potential impact of the most recent Intel ME vulnerabilities a couple of weeks ago. The details of the vulnerability were released last week, and it’s not absolutely the worst case scenario but it’s still pretty bad. The short version is that one of the (signed) pieces of early bringup code for the ME reads an unsigned file from flash and parses it. Providing a malformed file could result in a buffer overflow, and a moderately complicated exploit chain could be built that allowed the ME’s exploit mitigation features to be bypassed, resulting in arbitrary code execution on the ME.

Getting this file into flash in the first place is the difficult bit. The ME region shouldn’t be writable at OS runtime, so the most practical way for an attacker to achieve this is to physically disassemble the machine and directly reprogram it. The AMT management interface may provide a vector for a remote attacker to achieve this – for this to be possible, AMT must be enabled and provisioned and the attacker must have valid credentials[1]. Most systems don’t have provisioned AMT, so most users don’t have to worry about this.

Overall, for most end users there’s little to worry about here. But the story changes for corporate users or high value targets who rely on TPM-backed disk encryption. The way the TPM protects access to the disk encryption key is to insist that a series of “measurements” are correct before giving the OS access to the disk encryption key. The first of these measurements is obtained through the ME hashing the first chunk of the system firmware and passing that to the TPM, with the firmware then hashing each component in turn and storing those in the TPM as well. If someone compromises a later point of the chain then the previous step will generate a different measurement, preventing the TPM from releasing the secret.

However, if the first step in the chain can be compromised, all these guarantees vanish. And since the first step in the chain relies on the ME to be running uncompromised code, this vulnerability allows that to be circumvented. The attacker’s malicious code can be used to pass the “good” hash to the TPM even if the rest of the firmware has been tampered with. This allows a sufficiently skilled attacker to extract the disk encryption key and read the contents of the disk[2].

In addition, TPMs can be used to perform something called “remote attestation”. This allows the TPM to provide a signed copy of the recorded measurements to a remote service, allowing that service to make a policy decision around whether or not to grant access to a resource. Enterprises using remote attestation to verify that systems are appropriately patched (eg) before they allow them access to sensitive material can no longer depend on those results being accurate.

Things are even worse for people relying on Intel’s Platform Trust Technology (PTT), which is an implementation of a TPM that runs on the ME itself. Since this vulnerability allows full access to the ME, an attacker can obtain all the private key material held in the PTT implementation and, effectively, adopt the machine’s cryptographic identity. This allows them to impersonate the system with arbitrary measurements whenever they want to. This basically renders PTT worthless from an enterprise perspective – unless you’ve maintained physical control of a machine for its entire lifetime, you have no way of knowing whether it’s had its private keys extracted and so you have no way of knowing whether the attestation attempt is coming from the machine or from an attacker pretending to be that machine.

Bootguard, the component of the ME that’s responsible for measuring the firmware into the TPM, is also responsible for verifying that the firmware has an appropriate cryptographic signature. Since that can be bypassed, an attacker can reflash modified firmware that can do pretty much anything. Yes, that probably means you can use this vulnerability to install Coreboot on a system locked down using Bootguard.

(An aside: The Titan security chips used in Google Cloud Platform sit between the chipset and the flash and verify the flash before permitting anything to start reading from it. If an attacker tampers with the ME firmware, Titan should detect that and prevent the system from booting. However, I’m not involved in the Titan project and don’t know exactly how this works, so don’t take my word for this)

Intel have published an update that fixes the vulnerability, but it’s pretty pointless – there’s apparently no rollback protection in the affected 11.x MEs, so while the attacker is modifying your flash to insert the payload they can just downgrade your ME firmware to a vulnerable version. Version 12 will reportedly include optional rollback protection, which is little comfort to anyone who has current hardware. Basically, anyone whose threat model depends on the low-level security of their Intel system is probably going to have to buy new hardware.

This is a big deal for enterprises and any individuals who may be targeted by skilled attackers who have physical access to their hardware, and entirely irrelevant for almost anybody else. If you don’t know that you should be worried, you shouldn’t be.

[1] Although admins should bear in mind that any system that hasn’t been patched against CVE-2017-5689 considers an empty authentication cookie to be a valid credential

[2] TPMs are not intended to be strongly tamper resistant, so an attacker could also just remove the TPM, decap it and (with some effort) extract the key that way. This is somewhat more time consuming than just reflashing the firmware, so the ME vulnerability still amounts to a change in attack practicality.

comment count unavailable comments

Attend This Free December 13 Tech Talk: “Cloud-Native DDoS Mitigation with AWS Shield”

Post Syndicated from Craig Liebendorfer original https://aws.amazon.com/blogs/security/register-for-and-attend-this-december-14-aws-shield-tech-talk-cloud-native-ddos-mitigation/

AWS Online Tech Talks banner

As part of the AWS Online Tech Talks series, AWS will present Cloud-Native DDoS Mitigation with AWS Shield on Wednesday, December 13. This tech talk will start at 9:00 A.M. Pacific Time and end at 9:40 A.M. Pacific Time.

Distributed Denial of Service (DDoS) mitigation can help you maintain application availability, but traditional solutions are hard to scale and require expensive hardware. AWS Shield is a managed DDoS protection service that helps you safeguard web applications running in the AWS Cloud. In this tech talk, you will learn simple techniques for using AWS Shield to help you build scalable DDoS defenses into your applications without investing in costly infrastructure. You also will learn how AWS Shield helps you monitor your applications to detect DDoS attempts and how to respond to in-progress events.

This tech talk is free. Register today.

– Craig

In the Works – AWS IoT Device Defender – Secure Your IoT Fleet

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/in-the-works-aws-sepio-secure-your-iot-fleet/

Scale takes on a whole new meaning when it comes to IoT. Last year I was lucky enough to tour a gigantic factory that had, on average, one environment sensor per square meter. The sensors measured temperature, humidity, and air purity several times per second, and served as an early warning system for contaminants. I’ve heard customers express interest in deploying IoT-enabled consumer devices in the millions or tens of millions.

With powerful, long-lived devices deployed in a geographically distributed fashion, managing security challenges is crucial. However, the limited amount of local compute power and memory can sometimes limit the ability to use encryption and other forms of data protection.

To address these challenges and to allow our customers to confidently deploy IoT devices at scale, we are working on IoT Device Defender. While the details might change before release, AWS IoT Device Defender is designed to offer these benefits:

Continuous AuditingAWS IoT Device Defender monitors the policies related to your devices to ensure that the desired security settings are in place. It looks for drifts away from best practices and supports custom audit rules so that you can check for conditions that are specific to your deployment. For example, you could check to see if a compromised device has subscribed to sensor data from another device. You can run audits on a schedule or on an as-needed basis.

Real-Time Detection and AlertingAWS IoT Device Defender looks for and quickly alerts you to unusual behavior that could be coming from a compromised device. It does this by monitoring the behavior of similar devices over time, looking for unauthorized access attempts, changes in connection patterns, and changes in traffic patterns (either inbound or outbound).

Fast Investigation and Mitigation – In the event that you get an alert that something unusual is happening, AWS IoT Device Defender gives you the tools, including contextual information, to help you to investigate and mitigate the problem. Device information, device statistics, diagnostic logs, and previous alerts are all at your fingertips. You have the option to reboot the device, revoke its permissions, reset it to factory defaults, or push a security fix.

Stay Tuned
I’ll have more info (and a hands-on post) as soon as possible, so stay tuned!

Jeff;

Now You Can Use AWS Shield Advanced to Help Protect Your Amazon EC2 Instances and Network Load Balancers

Post Syndicated from Ritwik Manan original https://aws.amazon.com/blogs/security/now-you-can-use-aws-shield-advanced-to-protect-your-amazon-ec2-instances-and-network-load-balancers/

AWS Shield image

Starting today, AWS Shield Advanced can help protect your Amazon EC2 instances and Network Load Balancers against infrastructure-layer Distributed Denial of Service (DDoS) attacks. Enable AWS Shield Advanced on an AWS Elastic IP address and attach the address to an internet-facing EC2 instance or Network Load Balancer. AWS Shield Advanced automatically detects the type of AWS resource behind the Elastic IP address and mitigates DDoS attacks.

AWS Shield Advanced also ensures that all your Amazon VPC network access control lists (ACLs) are automatically executed on AWS Shield at the edge of the AWS network, giving you access to additional bandwidth and scrubbing capacity as well as mitigating large volumetric DDoS attacks. You also can customize additional mitigations on AWS Shield by engaging the AWS DDoS Response Team, which can preconfigure the mitigations or respond to incidents as they happen. For every incident detected by AWS Shield Advanced, you also get near-real-time visibility via Amazon CloudWatch metrics and details about the incident, such as the geographic origin and source IP address of the attack.

AWS Shield Advanced for Elastic IP addresses extends the coverage of DDoS cost protection, which safeguards against scaling charges as a result of a DDoS attack. DDoS cost protection now allows you to request service credits for Elastic Load Balancing, Amazon CloudFront, Amazon Route 53, and your EC2 instance hours in the event that these increase as the result of a DDoS attack.

Get started protecting EC2 instances and Network Load Balancers

To get started:

  1. Sign in to the AWS Management Console and navigate to the AWS WAF and AWS Shield console.
  2. Activate AWS Shield Advanced by choosing Activate AWS Shield Advanced and accepting the terms.
  3. Navigate to Protected Resources through the navigation pane.
  4. Choose the Elastic IP addresses that you want to protect (these can point to EC2 instances or Network Load Balancers).

If AWS Shield Advanced detects a DDoS attack, you can get details about the attack by checking CloudWatch, or the Incidents tab on the AWS WAF and AWS Shield console. To learn more about this new feature and AWS Shield Advanced, see the AWS Shield home page.

If you have comments or questions about this post, submit them in the “Comments” section below, start a new thread in the AWS Shield forum, or contact AWS Support.

– Ritwik

How to Automatically Revert and Receive Notifications About Changes to Your Amazon VPC Security Groups

Post Syndicated from Rob Barnes original https://aws.amazon.com/blogs/security/how-to-automatically-revert-and-receive-notifications-about-changes-to-your-amazon-vpc-security-groups/

In a previous AWS Security Blog post, Jeff Levine showed how you can monitor changes to your Amazon EC2 security groups. The methods he describes in that post are examples of detective controls, which can help you determine when changes are made to security controls on your AWS resources.

In this post, I take that approach a step further by introducing an example of a responsive control, which you can use to automatically respond to a detected security event by applying a chosen security mitigation. I demonstrate a solution that continuously monitors changes made to an Amazon VPC security group, and if a new ingress rule (the same as an inbound rule) is added to that security group, the solution removes the rule and then sends you a notification after the changes have been automatically reverted.

The scenario

Let’s say you want to reduce your infrastructure complexity by replacing your Secure Shell (SSH) bastion hosts with Amazon EC2 Systems Manager (SSM). SSM allows you to run commands on your hosts remotely, removing the need to manage bastion hosts or rely on SSH to execute commands. To support this objective, you must prevent your staff members from opening SSH ports to your web server’s Amazon VPC security group. If one of your staff members does modify the VPC security group to allow SSH access, you want the change to be automatically reverted and then receive a notification that the change to the security group was automatically reverted. If you are not yet familiar with security groups, see Security Groups for Your VPC before reading the rest of this post.

Solution overview

This solution begins with a directive control to mandate that no web server should be accessible using SSH. The directive control is enforced using a preventive control, which is implemented using a security group rule that prevents ingress from port 22 (typically used for SSH). The detective control is a “listener” that identifies any changes made to your security group. Finally, the responsive control reverts changes made to the security group and then sends a notification of this security mitigation.

The detective control, in this case, is an Amazon CloudWatch event that detects changes to your security group and triggers the responsive control, which in this case is an AWS Lambda function. I use AWS CloudFormation to simplify the deployment.

The following diagram shows the architecture of this solution.

Solution architecture diagram

Here is how the process works:

  1. Someone on your staff adds a new ingress rule to your security group.
  2. A CloudWatch event that continually monitors changes to your security groups detects the new ingress rule and invokes a designated Lambda function (with Lambda, you can run code without provisioning or managing servers).
  3. The Lambda function evaluates the event to determine whether you are monitoring this security group and reverts the new security group ingress rule.
  4. Finally, the Lambda function sends you an email to let you know what the change was, who made it, and that the change was reverted.

Deploy the solution by using CloudFormation

In this section, you will click the Launch Stack button shown below to launch the CloudFormation stack and deploy the solution.

Prerequisites

  • You must have AWS CloudTrail already enabled in the AWS Region where you will be deploying the solution. CloudTrail lets you log, continuously monitor, and retain events related to API calls across your AWS infrastructure. See Getting Started with CloudTrail for more information.
  • You must have a default VPC in the region in which you will be deploying the solution. AWS accounts have one default VPC per AWS Region. If you’ve deleted your VPC, see Creating a Default VPC to recreate it.

Resources that this solution creates

When you launch the CloudFormation stack, it creates the following resources:

  • A sample VPC security group in your default VPC, which is used as the target for reverting ingress rule changes.
  • A CloudWatch event rule that monitors changes to your AWS infrastructure.
  • A Lambda function that reverts changes to the security group and sends you email notifications.
  • A permission that allows CloudWatch to invoke your Lambda function.
  • An AWS Identity and Access Management (IAM) role with limited privileges that the Lambda function assumes when it is executed.
  • An Amazon SNS topic to which the Lambda function publishes notifications.

Launch the CloudFormation stack

The link in this section uses the us-east-1 Region (the US East [N. Virginia] Region). Change the region if you want to use this solution in a different region. See Selecting a Region for more information about changing the region.

To deploy the solution, click the following Launch Stack button to launch the stack. After you click the button, you must sign in to the AWS Management Console if you have not already done so.

Click this "Launch Stack" button

Then:

  1. Choose Next to proceed to the Specify Details page.
  2. On the Specify Details page, type your email address in the Send notifications to box. This is the email address to which change notifications will be sent. (After the stack is launched, you will receive a confirmation email that you must accept before you can receive notifications.)
  3. Choose Next until you get to the Review page, and then choose the I acknowledge that AWS CloudFormation might create IAM resources check box. This confirms that you are aware that the CloudFormation template includes an IAM resource.
  4. Choose Create. CloudFormation displays the stack status, CREATE_COMPLETE, when the stack has launched completely, which should take less than two minutes.Screenshot showing that the stack has launched completely

Testing the solution

  1. Check your email for the SNS confirmation email. You must confirm this subscription to receive future notification emails. If you don’t confirm the subscription, your security group ingress rules still will be automatically reverted, but you will not receive notification emails.
  2. Navigate to the EC2 console and choose Security Groups in the navigation pane.
  3. Choose the security group created by CloudFormation. Its name is Web Server Security Group.
  4. Choose the Inbound tab in the bottom pane of the page. Note that only one rule allows HTTPS ingress on port 443 from 0.0.0.0/0 (from anywhere).Screenshot showing the "Inbound" tab in the bottom pane of the page
  1. Choose Edit to display the Edit inbound rules dialog box (again, an inbound rule and an ingress rule are the same thing).
  2. Choose Add Rule.
  3. Choose SSH from the Type drop-down list.
  4. Choose My IP from the Source drop-down list. Your IP address is populated for you. By adding this rule, you are simulating one of your staff members violating your organization’s policy (in this blog post’s hypothetical example) against allowing SSH access to your EC2 servers. You are testing the solution created when you launched the CloudFormation stack in the previous section. The solution should remove this newly created SSH rule automatically.
    Screenshot of editing inbound rules
  5. Choose Save.

Adding this rule creates an EC2 AuthorizeSecurityGroupIngress service event, which triggers the Lambda function created in the CloudFormation stack. After a few moments, choose the refresh button ( The "refresh" icon ) to see that the new SSH ingress rule that you just created has been removed by the solution you deployed earlier with the CloudFormation stack. If the rule is still there, wait a few more moments and choose the refresh button again.

Screenshot of refreshing the page to see that the SSH ingress rule has been removed

You should also receive an email to notify you that the ingress rule was added and subsequently reverted.

Screenshot of the notification email

Cleaning up

If you want to remove the resources created by this CloudFormation stack, you can delete the CloudFormation stack:

  1. Navigate to the CloudFormation console.
  2. Choose the stack that you created earlier.
  3. Choose the Actions drop-down list.
  4. Choose Delete Stack, and then choose Yes, Delete.
  5. CloudFormation will display a status of DELETE_IN_PROGRESS while it deletes the resources created with the stack. After a few moments, the stack should no longer appear in the list of completed stacks.
    Screenshot of stack "DELETE_IN_PROGRESS"

Other applications of this solution

I have shown one way to use multiple AWS services to help continuously ensure that your security controls haven’t deviated from your security baseline. However, you also could use the CIS Amazon Web Services Foundations Benchmarks, for example, to establish a governance baseline across your AWS accounts and then use the principles in this blog post to automatically mitigate changes to that baseline.

To scale this solution, you can create a framework that uses resource tags to identify particular resources for monitoring. You also can use a consolidated monitoring approach by using cross-account event delivery. See Sending and Receiving Events Between AWS Accounts for more information. You also can extend the principle of automatic mitigation to detect and revert changes to other resources such as IAM policies and Amazon S3 bucket policies.

Summary

In this blog post, I demonstrated how you can automatically revert changes to a VPC security group and have a notification sent about the changes. You can use this solution in your own AWS accounts to enforce your security requirements continuously.

If you have comments about this blog post or other ideas for ways to use this solution, submit a comment in the “Comments” section below. If you have implementation questions, start a new thread in the EC2 forum or contact AWS Support.

– Rob

Rapid7 Nexpose Community Edition – Free Vulnerability Scanner

Post Syndicated from Darknet original https://www.darknet.org.uk/2017/09/rapid7-nexpose-community-edition-free-vulnerability-scanner/?utm_source=rss&utm_medium=social&utm_campaign=darknetfeed

Rapid7 Nexpose Community Edition – Free Vulnerability Scanner

Rapid7 Nexpose Community Edition is a free vulnerability scanner & security risk intelligence solution designed for organizations with large networks, prioritize and manage risk effectively.

It proactively supports the entire vulnerability management lifecycle, including discovery, detection, verification, risk classification, impact analysis, reporting and mitigation.

Nexpose Community Edition Features

Data breaches are growing at an alarming rate. Your attack surface is constantly changing, the adversary is becoming more nimble than your security teams, and your board wants to know what you are doing about it.

Read the rest of Rapid7 Nexpose Community Edition – Free Vulnerability Scanner now! Only available at Darknet.

New UK IP Crime Report Reveals Continued Focus on ‘Pirate’ Kodi Boxes

Post Syndicated from Andy original https://torrentfreak.com/new-uk-ip-crime-report-reveals-continued-focus-on-pirate-kodi-boxes-170908/

The UK’s Intellectual Property Office has published its annual IP Crime Report, spanning the period 2016 to 2017.

It covers key events in the copyright and trademark arenas and is presented with input from the police and trading standards, plus private entities such as the BPI, Premier League, and Federation Against Copyright Theft, to name a few.

The report begins with an interesting statistic. Despite claims that many millions of UK citizens regularly engage in some kind of infringement, figures from the Ministry of Justice indicate that just 47 people were found guilty of offenses under the Copyright, Designs and Patents Act during 2016. That’s down on the 69 found guilty in the previous year.

Despite this low conviction rate, 15% of all internet users aged 12+ are reported to have consumed at least one item of illegal content between March and May 2017. Figures supplied by the Industry Trust for IP indicate that 19% of adults watch content via various IPTV devices – often referred to as set-top, streaming, Android, or Kodi boxes.

“At its cutting edge IP crime is innovative. It exploits technological loopholes before they become apparent. IP crime involves sophisticated hackers, criminal financial experts, international gangs and service delivery networks. Keeping pace with criminal innovation places a burden on IP crime prevention resources,” the report notes.

The report covers a broad range of IP crime, from counterfeit sportswear to foodstuffs, but our focus is obviously on Internet-based infringement. Various contributors cover various aspects of online activity as it affects them, including music industry group BPI.

“The main online piracy threats to the UK recorded music industry at present are from BitTorrent networks, linking/aggregator sites, stream-ripping sites, unauthorized streaming sites and cyberlockers,” the BPI notes.

The BPI’s website blocking efforts have been closely reported, with 63 infringing sites blocked to date via various court orders. However, the BPI reports that more than 700 related URLs, IP addresses, and proxy sites/ proxy aggregators have also been rendered inaccessible as part of the same action.

“Site blocking has proven to be a successful strategy as the longer the blocks are in place, the more effective they are. We have seen traffic to these sites reduce by an average of 70% or more,” the BPI reports.

While prosecutions against music pirates are a fairly rare event in the UK, the Crown Prosecution Service (CPS) Specialist Fraud Division highlights that their most significant prosecution of the past 12 months involved a prolific music uploader.

As first revealed here on TF, Wayne Evans was an uploader not only on KickassTorrents and The Pirate Bay, but also some of his own sites. Known online as OldSkoolScouse, Evans reportedly cost the UK’s Performing Rights Society more than £1m in a single year. He was sentenced in December 2016 to 12 months in prison.

While Evans has been free for some time already, the CPS places particular emphasis on the importance of the case, “since it provided sentencing guidance for the Copyright, Designs and Patents Act 1988, where before there was no definitive guideline.”

The CPS says the case was useful on a number of fronts. Despite illegal distribution of content being difficult to investigate and piracy losses proving tricky to quantify, the court found that deterrent sentences are appropriate for the kinds of offenses Evans was accused of.

The CPS notes that various factors affect the severity of such sentences, not least the length of time the unlawful activity has persisted and particularly if it has done so after the service of a cease and desist notice. Other factors include the profit made by defendants and/or the loss caused to copyright holders “so far as it can accurately be calculated.”

Importantly, however, the CPS says that beyond issues of personal mitigation and timely guilty pleas, a jail sentence is probably going to be the outcome for others engaging in this kind of activity in future. That’s something for torrent and streaming site operators and their content uploaders to consider.

“[U]nless the unlawful activity of this kind is very amateur, minor or short-lived, or in the absence of particularly compelling mitigation or other exceptional circumstances, an immediate custodial sentence is likely to be appropriate in cases of illegal distribution of copyright infringing articles,” the CPS concludes.

But while a music-related trial provided the highlight of the year for the CPS, the online infringement world is still dominated by the rise of streaming sites and the now omnipresent “fully-loaded Kodi Box” – set-top devices configured to receive copyright-infringing live TV and VOD.

In the IP Crime Report, the Intellectual Property Office references a former US Secretary of Defense to describe the emergence of the threat.

“The echoes of Donald Rumsfeld’s famous aphorism concerning ‘known knowns’ and ‘known unknowns’ reverberate across our landscape perhaps more than any other. The certainty we all share is that we must be ready to confront both ‘known unknowns’ and ‘unknown unknowns’,” the IPO writes.

“Not long ago illegal streaming through Kodi Boxes was an ‘unknown’. Now, this technology updates copyright infringement by empowering TV viewers with the technology they need to subvert copyright law at the flick of a remote control.”

While the set-top box threat has grown in recent times, the report highlights the important legal clarifications that emerged from the BREIN v Filmspeler case, which found itself before the European Court of Justice.

As widely reported, the ECJ determined that the selling of piracy-configured devices amounts to a communication to the public, something which renders their sale illegal. However, in a submission by PIPCU, the Police Intellectual Property Crime Unit, box sellers are said to cast a keen eye on the legal situation.

“Organised criminals, especially those in the UK who distribute set-top boxes, are aware of recent developments in the law and routinely exploit loopholes in it,” PIPCU reports.

“Given recent judgments on the sale of pre-programmed set-top boxes, it is now unlikely criminals would advertise the devices in a way which is clearly infringing by offering them pre-loaded or ‘fully loaded’ with apps and addons specifically designed to access subscription services for free.”

With sellers beginning to clean up their advertising, it seems likely that detection will become more difficult than when selling was considered a gray area. While that will present its own issues, PIPCU still sees problems on two fronts – a lack of clear legislation and a perception of support for ‘pirate’ devices among the public.

“There is no specific legislation currently in place for the prosecution of end users or sellers of set-top boxes. Indeed, the general public do not see the usage of these devices as potentially breaking the law,” the unit reports.

“PIPCU are currently having to try and ‘shoehorn’ existing legislation to fit the type of criminality being observed, such as conspiracy to defraud (common law) to tackle this problem. Cases are yet to be charged and results will be known by late 2017.”

Whether these prosecutions will be effective remains to be seen, but PIPCU’s comments suggest an air of caution set to a backdrop of box-sellers’ tendency to adapt to legal challenges.

“Due to the complexity of these cases it is difficult to substantiate charges under the Fraud Act (2006). PIPCU have convicted one person under the Serious Crime Act (2015) (encouraging or assisting s11 of the Fraud Act). However, this would not be applicable unless the suspect had made obvious attempts to encourage users to use the boxes to watch subscription only content,” PIPCU notes, adding;

“The selling community is close knit and adapts constantly to allow itself to operate in the gray area where current legislation is unclear and where they feel they can continue to sell ‘under the radar’.”

More generally, pirate sites as a whole are still seen as a threat. As reported last month, the current anti-piracy narrative is that pirate sites represent a danger to their users. As a result, efforts are underway to paint torrent and streaming sites as risky places to visit, with users allegedly exposed to malware and other malicious content. The scare strategy is supported by PIPCU.

“Unlike the purchase of counterfeit physical goods, consumers who buy unlicensed content online are not taking a risk. Faulty copyright doesn’t explode, burn or break. For this reason the message as to why the public should avoid copyright fraud needs to be re-focused.

“A more concerted attempt to push out a message relating to malware on pirate websites, the clear criminality and the links to organized crime of those behind the sites are crucial if public opinion is to be changed,” the unit advises.

But while the changing of attitudes is desirable for pro-copyright entities, PIPCU says that winning over the public may not prove to be an easy battle. It was given a small taste of backlash itself, after taking action against the operator of a pirate site.

“The scale of the problem regarding public opinion of online copyright crime is evidenced by our own experience. After PIPCU executed a warrant against the owner of a streaming website, a tweet about the event (read by 200,000 people) produced a reaction heavily weighted against PIPCU’s legitimate enforcement action,” PIPCU concludes.

In summary, it seems likely that more effort will be expended during the next 12 months to target the set-top box threat, but there doesn’t appear to be an abundance of confidence in existing legislation to tackle all but the most egregious offenders. That being said, a line has now been drawn in the sand – if the public is prepared to respect it.

The full IP Crime Report 2016-2017 is available here (pdf)

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

ROI is not a cybersecurity concept

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/08/roi-is-not-cybersecurity-concept.html

In the cybersecurity community, much time is spent trying to speak the language of business, in order to communicate to business leaders our problems. One way we do this is trying to adapt the concept of “return on investment” or “ROI” to explain why they need to spend more money. Stop doing this. It’s nonsense. ROI is a concept pushed by vendors in order to justify why you should pay money for their snake oil security products. Don’t play the vendor’s game.

The correct concept is simply “risk analysis”. Here’s how it works.

List out all the risks. For each risk, calculate:

  • How often it occurs.
  • How much damage it does.
  • How to mitigate it.
  • How effective the mitigation is (reduces chance and/or cost).
  • How much the mitigation costs.

If you have risk of something that’ll happen once-per-day on average, costing $1000 each time, then a mitigation costing $500/day that reduces likelihood to once-per-week is a clear win for investment.

Now, ROI should in theory fit directly into this model. If you are paying $500/day to reduce that risk, I could use ROI to show you hypothetical products that will …

  • …reduce the remaining risk to once-per-month for an additional $10/day.
  • …replace that $500/day mitigation with a $400/day mitigation.

But this is never done. Companies don’t have a sophisticated enough risk matrix in order to plug in some ROI numbers to reduce cost/risk. Instead, ROI is a calculation is done standalone by a vendor pimping product, or a security engineer building empires within the company.

If you haven’t done risk analysis to begin with (and almost none of you have), then ROI calculations are pointless.

But there are further problems. This is risk analysis as done in industries like oil and gas, which have inanimate risk. Almost all their risks are due to accidental failures, like in the Deep Water Horizon incident. In our industry, cybersecurity, risks are animate — by hackers. Our risk models are based on trying to guess what hackers might do.

An example of this problem is when our drug company jacks up the price of an HIV drug, Anonymous hackers will break in and dump all our financial data, and our CFO will go to jail. A lot of our risks come now from the technical side, but the whims and fads of the hacker community.

Another example is when some Google researcher finds a vuln in WordPress, and our website gets hacked by that three months from now. We have to forecast not only what hackers can do now, but what they might be able to do in the future.

Finally, there is this problem with cybersecurity that we really can’t distinguish between pesky and existential threats. Take ransomware. A lot of large organizations have just gotten accustomed to just wiping a few worker’s machines every day and restoring from backups. It’s a small, pesky problem of little consequence. Then one day a ransomware gets domain admin privileges and takes down the entire business for several weeks, as happened after #nPetya. Inevitably our risk models always come down on the high side of estimates, with us claiming that all threats are existential, when in fact, most companies continue to survive major breaches.

These difficulties with risk analysis leads us to punting on the problem altogether, but that’s not the right answer. No matter how faulty our risk analysis is, we still have to go through the exercise.

One model of how to do this calculation is architecture. We know we need a certain number of toilets per building, even without doing ROI on the value of such toilets. The same is true for a lot of security engineering. We know we need firewalls, encryption, and OWASP hardening, even without specifically doing a calculation. Passwords and session cookies need to go across SSL. That’s the starting point from which we start to analysis risks and mitigations — what we need beyond SSL, for example.

So stop using “ROI”, or worse, the abomination “ROSI”. Start doing risk analysis.

Unfixable Automobile Computer Security Vulnerability

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/08/unfixable_autom.html

There is an unpatchable vulnerability that affects most modern cars. It’s buried in the Controller Area Network (CAN):

Researchers say this flaw is not a vulnerability in the classic meaning of the word. This is because the flaw is more of a CAN standard design choice that makes it unpatchable.

Patching the issue means changing how the CAN standard works at its lowest levels. Researchers say car manufacturers can only mitigate the vulnerability via specific network countermeasures, but cannot eliminate it entirely.

Details on how the attack works are here:

The CAN messages, including errors, are called “frames.” Our attack focuses on how CAN handles errors. Errors arise when a device reads values that do not correspond to the original expected value on a frame. When a device detects such an event, it writes an error message onto the CAN bus in order to “recall” the errant frame and notify the other devices to entirely ignore the recalled frame. This mishap is very common and is usually due to natural causes, a transient malfunction, or simply by too many systems and modules trying to send frames through the CAN at the same time.

If a device sends out too many errors, then­ — as CAN standards dictate — ­it goes into a so-called Bus Off state, where it is cut off from the CAN and prevented from reading and/or writing any data onto the CAN. This feature is helpful in isolating clearly malfunctioning devices and stops them from triggering the other modules/systems on the CAN.

This is the exact feature that our attack abuses. Our attack triggers this particular feature by inducing enough errors such that a targeted device or system on the CAN is made to go into the Bus Off state, and thus rendered inert/inoperable. This, in turn, can drastically affect the car’s performance to the point that it becomes dangerous and even fatal, especially when essential systems like the airbag system or the antilock braking system are deactivated. All it takes is a specially-crafted attack device, introduced to the car’s CAN through local access, and the reuse of frames already circulating in the CAN rather than injecting new ones (as previous attacks in this manner have done).

Slashdot thread.

Trust Issues: Exploiting TrustZone TEEs (Project Zero)

Post Syndicated from corbet original https://lwn.net/Articles/728672/rss

Here is a
lengthy and detailed look
from Google’s Project Zero at the trusted
execution environments that, one hopes, protect devices from compromise.
In this blog post we’ll explore the security properties of the two
major TEEs present on Android devices. We’ll see how, despite their highly
sensitive vantage point, these operating systems currently lag behind
modern operating systems in terms of security mitigations and
practices. Additionally, we’ll discover and exploit a major design issue
which affects the security of most devices utilising both
platforms. Lastly, we’ll see why the integrity of TEEs is crucial to the
overall security of the device, making a case for the need to increase
their defences.

Prepare for the OWASP Top 10 Web Application Vulnerabilities Using AWS WAF and Our New White Paper

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/prepare-for-the-owasp-top-10-web-application-vulnerabilities-using-aws-waf-and-our-new-white-paper/

Are you aware of the Open Web Application Security Project (OWASP) and the work that they do to improve the security of web applications? Among many other things, they publish a list of the 10 most critical application security flaws, known as the OWASP Top 10. The release candidate for the 2017 version contains a consensus view of common vulnerabilities often found in web sites and web applications.

AWS WAF, as I described in my blog post, New – AWS WAF, helps to protect your application from application-layer attacks such as SQL injection and cross-site scripting. You can create custom rules to define the types of traffic that are accepted or rejected.

Our new white paper, Use AWS WAF to Mitigate OWASP’s Top 10 Web Application Vulnerabilities, shows you how to put AWS WAF to use. Going far beyond a simple recommendation to “use WAF,” it includes detailed, concrete mitigation strategies and implementation details for the most important items in the OWASP Top 10 (formally known as A1 through A10):

Download Today
The white paper provides background and context for each vulnerability, and then shows you how to create WAF rules to identify and block them. It also provides some defense-in-depth recommendations, including a very cool suggestion to use [email protected] to prevalidate the parameters supplied to HTTP requests.

The white paper links to a companion AWS CloudFormation template that creates a Web ACL, along with the recommended condition types and rules. You can use this template as a starting point for your own work, adding more condition types and rules as desired.

AWSTemplateFormatVersion: '2010-09-09'
Description: AWS WAF Basic OWASP Example Rule Set

## ::PARAMETERS::
## Template parameters to be configured by user
Parameters:
  stackPrefix:
    Type: String
    Description: The prefix to use when naming resources in this stack. Normally we would use the stack name, but since this template can be us\
ed as a resource in other stacks we want to keep the naming consistent. No symbols allowed.
    ConstraintDescription: Alphanumeric characters only, maximum 10 characters
    AllowedPattern: ^[a-zA-z0-9]+$
    MaxLength: 10
    Default: generic
  stackScope:
    Type: String
    Description: You can deploy this stack at a regional level, for regional WAF targets like Application Load Balancers, or for global targets\
, such as Amazon CloudFront distributions.
    AllowedValues:
      - Global
      - Regional
    Default: Regional
...

Attend our Webinar
If you would like to learn more about the topics discussed in this new white paper, please plan to attend our upcoming webinar, Secure Your Applications with AWS Web Application Firewall (WAF) and AWS Shield. On July 12, 2017, my colleagues Jeffrey Lyon and Sundar Jayashekar will show you how to secure your web applications and how to defend against the most common Layer 7 attacks.

Jeff;