Tag Archives: raspberry pi 3

Raspberry Pi underwater camera drone | The MagPi 80

Post Syndicated from Rob Zwetsloot original https://www.raspberrypi.org/blog/raspberry-pi-underwater-camera-drone-magpi-80/

Never let it be said that some makers won’t jump in at the deep end for their ambitious experiments with the Raspberry Pi. When Ievgenii Tkachenko fancied a challenge, he sought to go where few had gone before by creating an underwater drone, successfully producing a working prototype that he’s now hard at work refining.

Inspired by watching inventors on the Discovery Channel, Ievgenii has learned much from his endeavour. “For me it was a significant engineering challenge,” he says, and while he has ended up submerging himself within a process of trial-and-error, the results so far have been impressive.

Pi dive

The project began with a loose plan in Ievgenii’s head. “I knew what I should have in the project as a minimum: motions, lights, camera, and a gyroscope inside the device and smartphone control outside,” he explains. “Pretty simple, but I didn’t have a clue what equipment I would be able to use for the drone, and I was limited by finances.”

Bearing that in mind, one of his first moves was to choose a Raspberry Pi 3B, which he says was perfect for controlling the motors, diodes, and gyroscope while sending video streams from a camera and receiving commands from a control device.

The Raspberry Pi 3 sits in the housing and connects to a LiPo battery that also powers the LEDs and motors

“I was really surprised that this small board has a fully functional UNIX-based OS and that software like the Node.js server can be easily installed,” he tells us. “It has control input and output pins and there are a lot of libraries. With an Ethernet port and wireless LAN and a camera, it just felt plug-and-play. I couldn’t find a better solution.”

The LEDs are attached to radiators to prevent overheating, and a pulse driver is used for flashlight control

Working with a friend, Ievgenii sought to create suitable housing for the components, which included a twin twisted-pair wire suitable for transferring data underwater, an electric motor, an electronic speed control, an LED together with a pulse driver, and a battery. Four motors were attached to the outside of the housing, and efforts were made to ensure it was waterproof. Tests in a bath and out on a lake were conducted.

Streaming video

With a WiFi router on the shore connected to the Raspberry Pi via RJ45 connectors and an Ethernet cable, Ievgenii developed an Android application to connect to the Raspberry Pi by address and port (“as an Android developer, I’m used to working with the platform”). This also allowed movement to be controlled via the touchscreen, although he says a gamepad for Android can also be used. When it’s up and running, the Pi streams a video from the camera to the app — “live video streaming is not simple, and I spent a lot of time on the solution” — but the wired connection means the drone can only currently travel as far as the cable length allows.

The camera was placed in this transparent waterproof case attached to the front of the waterproof housing

In that sense, it’s not perfect. “It’s also hard to handle the drone, and it needs to be enhanced with an additional controls board and a few more electromotors for smooth movement,” Ievgenii admits. But as well as wanting to base the project on fast and reliable C++ code and make use of a USB 4K camera, he can see the future potential and he feels it will swim rather than sink.

“Similar drones are used for boat inspections, and they can also be used by rescue squads or for scientific purposes,” he points out. “They can be used to discover a vast marine world without training and risks too. In fact, now that I understand the Raspberry Pi, I know I can create almost anything, from a radio electronic toy car to a smart home.”

The MagPi magazine

This article was lovingly borrowed from the latest issue of The MagPi magazine. Pick up your copy of issue 80 from your local stockist, online, or by downloading the free PDF.

Subscribers to The MagPi also get a rather delightful subscription gift!

The post Raspberry Pi underwater camera drone | The MagPi 80 appeared first on Raspberry Pi.

Play Heverlee’s Sjoelen and win beer

Post Syndicated from Rob Zwetsloot original https://www.raspberrypi.org/blog/play-heverlees-sjoelen-win-beer/

Chances are you’ve never heard of the Dutch table shuffleboard variant Sjoelen. But if you have, then you’ll know it has a basic premise – to slide wooden pucks into a set of four scoring boxes – but some rather complex rules.

Sjoelen machine

Uploaded by Grant Gibson on 2018-07-10.

Sjoelen

It may seem odd that a game which relies so much on hand-eye coordination and keeping score could be deemed a perfect match for a project commissioned by a beer brand. Yet Grant Gibson is toasting success with his refreshing interpretation of Sjoelen, having simplified the rules and incorporated a Raspberry Pi to serve special prizes to the winners.

“Sjoelen’s traditional scoring requires lots of addition and multiplication, but our version simply gives players ten pucks and gets them to slide three through any one of the four gates within 30 seconds,” Grant explains.

As they do this, the Pi (a Model 3B) keeps track of how many pucks are sliding through each gate, figures how much time the player has left, and displays a winning message on a screen. A Logitech HD webcam films the player in action, so bystanders can watch their reactions as they veer between frustration and success.

Taking the plunge

Grant started the project with a few aims in mind: “I wanted something that could be transported in a small van and assembled by a two-person team, and I wanted it to have a vintage look.” Inspired by pinball tables, he came up with a three-piece unit that could be flat-packed for transport, then quickly assembled on site. The Pi 3B proved a perfect component.

Grant has tended to use full-size PCs in his previous builds, but he says the Pi allowed him to use less complex software, and less hardware to control input and output. He used Python for the input and output tasks and to get the Pi to communicate with a full-screen Chromium browser, via JSON, in order to handle the scoring and display tasks in JavaScript.

“We used infrared (IR) sensors to detect when a puck passed through the gate bar to score a point,” Grant adds. “Because of the speed of the pucks, we had to poll each of the four IR sensors over 100 times per second to ensure that the pucks were always detected. Optimising the Python code to run fast enough, whilst also leaving enough processing power to run a full-screen web browser and HD webcam, was definitely the biggest software challenge on this project.”

Bottoms up

The Raspberry Pi’s GPIO pins are used to trigger the dispensing of a can of Heverlee beer to the winner. These are stocked inside the machine, but building the vending mechanism was a major headache, since it needed to be lightweight and compact, and to keep the cans cool.

No off-the-shelf vending unit offered a solution, and Grant’s initial attempts with stepper motors and clear laser-cut acrylic gears proved disastrous. “After a dozen successful vends, the prototype went out of alignment and started slicing through cans, creating a huge frothy fountain of beer. Impressive to watch, but not a great mix with electronics,” Grant laughs.

Instead, he drew up a final design that was laser‑cut from poplar plywood. “It uses automotive central locking motors to operate a see-saw mechanism that serve the cans. A custom Peltier-effect heat exchanger, and a couple of salvaged PC fans, keep the cans cool inside the machine,” reveals Grant.

“I’d now love to make a lightweight version sometime, perhaps with a folding Sjoelen table and pop-up scoreboard screen, that could be carried by one person,” he adds. We’d certainly drink to that.

More from The MagPi magazine

Get your copy now from the Raspberry Pi Press store, major newsagents in the UK, or Barnes & Noble, Fry’s, or Micro Center in the US. Or, download your free PDF copy from The MagPi magazine website.

MagPi 79 cover

Subscribe now

Subscribe to The MagPi on a monthly, quarterly, or twelve-monthly basis to save money against newsstand prices!

Twelve-month print subscribers get a free Raspberry Pi 3A+, the perfect Raspberry Pi to try your hand at some of the latest projects covered in The MagPi magazine.

The post Play Heverlee’s Sjoelen and win beer appeared first on Raspberry Pi.

Build a dial-up ISP server using a Raspberry Pi

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/raspberry-pi-dial-up-server/

Trying to connect an old, dial-up–compatible computer to modern-day broadband internet can be a chore. The new tutorial by Doge Microsystems walks you through the process of using a Raspberry Pi to bridge the gap.

The Sound of dial-up Internet

I was bored so I wanted to see if I could get free dial up internet so I found that NetZero still has free service so I put in the number and heard the glorious sound of the Dial-up. Remind me of years gone. Unfortunately I was not able to make a connection.

Dial-up internet

Ah, there really is nothing quite like it: listen to the sweet sound of dial-up internet in the video above and reminisce about the days of yore that you spent waiting for your computer to connect and trying to convince other members of your household to not use the landline for a few hours.

But older computers have fallen behind these times of ever faster broadband and ever more powerful processors, and getting your beloved vintage computer online isn’t as easy as it once was.

For one thing, does anyone even have a landline anymore?

Enter Doge Microsystems, who save the day with their Linux-based dial-up server, the perfect tool for connecting computers of yesteryear to today’s broadband using a Raspberry Pi.

Disclaimer: I’m going to pre-empt a specific topic of conversation in the comment section by declaring that, no, I don’t like the words ‘vintage’, ‘retro’, and yesteryear’ any more than you do. But we all need to accept that the times, they are a-changing, OK? We’re all in this together. Let’s continue.

Building a Raspberry Pi dial-in server

For the build, you’ll need a hardware modem — any model should work, as long as it presents as a serial device to the operating system. You’ll also need a Linux device such as a Raspberry Pi, a client device with a modem, and ‘some form of telephony connection to link the two modems’, described by Doge Microsystems as one of the following:

We need a way to connect our ISP modem to clients. There are many ways to approach this:

  • Use the actual PSTN (i.e. real phone lines)
  • Use a PBX to provide local connectivity
  • Build your own circuity (not covered here, as it would require extra configuration)
  • Build a fake PSTN using VoIP ATAs and a software PBX

I’ve gone with the fourth option. Here’s the breakdown:

  • Asterisk — a VoIP PBX — is configured on the dial-in server to accept connections from two SIP client accounts and route calls between them
  • A Linksys PAP2T ATA — which supports two phone lines — is set up as both of those SIP clients connected to the PBX
  • The ISP-side modem is connected to the first line, and the client device to the second line

Doge Microsystems explains how to set up everything, including the Linux device, on the wiki for the project. Have a look for yourself if you want to try out the dial-up server first-hand.

The sound of dial-up

For funsies, I asked our Twitter followers how they would write down the sound of a dial-up internet connection. Check them out.

Alex on Twitter

@Raspberry_Pi dialtone, (phone beeps), rachh racchh rachh rechhhhhhh reccchhhhhh rechhhh, DEE-DONG-DEE-DONG-DI, BachhhhhhhhhhhhBACHHHHBACHHHHHHHHHHHHHHHHHHHHHHHHH

The post Build a dial-up ISP server using a Raspberry Pi appeared first on Raspberry Pi.

Monitoring insects at the Victoria and Albert Museum

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/monitoring-insects-at-the-victoria-and-albert-museum/

A simple Raspberry Pi camera setup is helping staff at the Victoria and Albert Museum track and identify insects that are threatening priceless exhibits.

“Fiacre, I need an image of bug infestation at the V&A!”

The problem with bugs

Bugs: there’s no escaping them. Whether it’s ants in your kitchen or cockroaches in your post-apocalyptic fallout shelter, insects have a habit of inconveniently infesting edifices, intent on damaging beloved belongings.

And museums are as likely as anywhere to be hit by creepy-crawly visitors. Especially when many of their exhibits are old and deliciously dusty. Yum!

Tracking insects at the V&A

As Bhavesh Shah and Maris Ines Carvalho state on the V&A blog, monitoring insect activity has become common practice at their workplace. As part of the Integrated Pest Monitoring (IPM) strategy at the museum, they even have trained staff members who inspect traps and report back their findings.

“But what if we could develop a system that gives more insight into the behaviour of insects and then use this information to prevent future outbreaks?” ask Shah and Carvalho.

The team spent around £50 on a Raspberry Pi and a 160° camera, and used these and Claude Pageau’s PI-TIMOLO software project to build an insect monitoring system. The system is now integrated into the museum, tracking insects and recording their movements — even in low-light conditions.

Emma Ormond, Raspberry Pi Trading Office Manager and Doctor of Bugs, believes this to be a Bristletail or Silverfish.

“The initial results were promising. Temperature, humidity, and light sensors could also be added to find out, for example, what time of day insects are more active or if they favour particular environmental conditions.”

For more information on the project, visit the Victoria & Albert Museum blog. And for more information on the Victoria & Albert Museum, visit the Victoria & Albert Museum, London — it’s delightful. We highly recommend attending their Videogames: Design/Play/Disrupt exhibition, which is running until 24 February.

The post Monitoring insects at the Victoria and Albert Museum appeared first on Raspberry Pi.

Upcycle a vintage TV with the Raspberry Pi TV HAT | The MagPi #78

Post Syndicated from Rob Zwetsloot original https://www.raspberrypi.org/blog/magpi-78-upcycled-vintage-tv-hat/

When Martin Mander’s portable Hitachi television was manufactured in 1975, there were just three UK channels and you’d need to leave the comfort of your sofa in order to switch between them.

A page layout of the upcycled vintage television project using the Raspberry Pi TV HAT from The MagPi issue 78

Today, we have multiple viewing options and even a cool Raspberry Pi TV HAT that lets us enjoy DVB-T2 broadcasts via a suitable antenna. So what did nostalgia-nut Martin decide to do when he connected his newly purchased TV HAT to the Pi’s 40-pin GPIO header? Why, he stuck it in his old-fashioned TV set with a butt-busting rotary switch and limited the number of channels to those he could count on one hand – dubbing it “the 1982 experience” because he wanted to enjoy Channel 4 which was launched that year.

Going live

Martin is a dab hand at CRT television conversions (he’s created six since 2012, using monitors, photo frames, and neon signs to replace the displays). “For my latest project, I wanted to have some fun with the new HAT and see if I’d be able to easily display and control its TV streams on some of my converted televisions,” he says. It’s now being promoted to his office, for some background viewing as he works. “I had great fun getting the TV HAT streams working with the rotary dial,” he adds.

Raspberry Pi TV HAT

The project was made possible thanks to the new Raspberry Pi TV HAT

Although Martin jumped straight into the HAT without reading the instructions or connecting an aerial, he eventually followed the guide and found getting it up-and-running to be rather straightforward. He then decided to repurpose his Hitachi Pi project, which he’d already fitted with an 8-inch 4:3 screen.

Upcycled television using the Raspberry Pi TV HAT

The boards, screen, and switches installed inside the repurposed Hitachi television

“It’s powered by a Pi 3 and it already had the rotary dial set up and connected to the GPIO,” he explains. “This meant I could mess about with the TV HAT, but still fall back on the original project’s script if needed, with no hardware changes required.”

Change the channel

Indeed, Martin’s main task was to ensure he could switch channels using the rotary dial and this, he says, was easier to achieve than he expected. “When you go to watch a show from the Tvheadend web interface, it downloads an M3U playlist file for you which you can then open in VLC or another media player,” he says.

Upcycled television using the Raspberry Pi TV HAT

– The Hitachi television is fitted with a Pimoroni 8-inch 4:3 screen and a Raspberry Pi 3
– Programmes stream from a Pi 2 server and the channels are changed by turning the dial
– The name of the channel briefly appears at the bottom of the screen – the playlist files are edited in Notepad

“At first, I thought the playlist file was specific to the individual TV programme, as the show’s name is embedded in the file, but actually each playlist file is specific to the channel itself, so it meant I could download a set of playlists, one per channel, and store them in a folder to give me a full range of watching options.”

Sticking to his theme, he stored playlists for the four main channels of 1982 (BBC1, BBC2, ITV, and Channel 4) in a folder and renamed them channel1, channel2, channel3, and channel4.

Upcycled television using the Raspberry Pi TV HAT

A young Martin Mander decides the blank screen of his black and white Philips TX with six manual preset buttons is preferable to the shows (but he’d like to convert one of these in the future)

“Next, I created a script with an infinite loop that would look out for any action on the GPIO pin that was wired to the rotary dial,” he continues. “If the script detects that the switch has been moved, then it opens the first playlist file in VLC, full-screen. The next time the switch moves, the script loops around and adds ‘1’ to the playlist name, so that it will open the next one in the folder.”

Martin is now planning the next stage of the project, considering expanding the channel-changing script to include streams from his IP cameras, replacing a rechargeable speaker with a speaker HAT, and looking to make the original volume controls work with the Pi’s audio. “It been really satisfying to get this project working, and there are many possibilities ahead,” he says.

More from The MagPi magazine

The MagPi magazine issue 78 is out today. Buy your copy now from the Raspberry Pi Press store, major newsagents in the UK, or Barnes & Noble, Fry’s, or Micro Center in the US. Or, download your free PDF copy from The MagPi magazine website.

The MagPi magazine issue 78

Subscribe now

Subscribe to The MagPi magazine on a monthly, quarterly, or twelve-month basis to save money against newsstand prices!

Twelve-month print subscribers get a free Raspberry Pi 3A+, the perfect Raspberry Pi to try your hand at some of the latest projects covered in The MagPi magazine.

The post Upcycle a vintage TV with the Raspberry Pi TV HAT | The MagPi #78 appeared first on Raspberry Pi.

Spirit Animal: a guitar with a built-in synthesiser

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/spirit-animal-synth-guitar/

UK-based Lucem Custom Instruments has teamed up with Seattle’s Tracktion Corporation to create an electric guitar with a built-in Raspberry Pi synthesiser, which they call Spirit Animal.

Raspberry Pi inside a guitar body - Spirit Animal

The Spirit Animal concept guitar

We love seeing the Raspberry Pi incorporated into old technology such as radios, games consoles and unwanted toys. And we also love Pi-based music projects. So can you imagine how happy we were to see an electric guitar with an onboard Raspberry Pi synthesiser?

Raspberry Pi inside a guitar body - Spirit Animal

Tracktion, responsible for synth software BioTek 2, ran their product on a Raspberry Pi, and Lucem fitted this Pi and associated tech inside the hollow body of a through-neck Visceral guitar. The concept guitar made its debut at NAMM 2019 last weekend, where attendees at the National Association of Music Merchants event had the chance to get hands-on with the new instrument.

Raspberry Pi inside a guitar body - Spirit Animal

The instrument boasts an onboard Li-ion battery granting about 8 hours of play time, and a standard 1/4″ audio jack for connecting to an amp. To permit screen-sharing, updates, and control via SSH, the guitar allows access to the Pi’s Ethernet port and wireless functionality.

See more

You can find more information about the design on the Gear News website, and see the instrument in action at NAMM on the Lucem Custom Instruments Facebook page. We look forward to seeing where this collaboration will lead!

Music and Pi

If you’re a guitarist and keen to incorporate a Raspberry Pi into your music, then also check out these other projects:

  • pisound — the Raspberry Pi–powered guitar pedal

PiSound with hardware and peripherals

  • Pedalumi — the illuminated pedal board

  • Guitarboy — is it a Gameboy? Is it a guitar? Unclear, but it’s awesome!

Guitar Boy video

The Guitar Boy is a guitar. The Guitar Boy is a Game Boy. The Guitar Boy is the best of both worlds! Created for the BitFix Gaming 2015 Game Boy Classic build-off, this Game Boy guitar plays both Pokemon and rock and roll!

The post Spirit Animal: a guitar with a built-in synthesiser appeared first on Raspberry Pi.

Clap on, clap off with the Raspberry Pi Clapper 👏👏

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/clap-on-clap-off-raspberry-pi-clapper/

While many people use off-the-shelf automation setups for their electrical appliances, Ash Puckett’s Raspberry Pi Clapper pays homage to the king of infomercial classics.

Remember this?

The Clapper (1989)

Uploaded by Travis Doucette on 2013-06-03.

Build your own Raspberry Pi Clapper

Sometimes, the best Raspberry Pi projects don’t need thousands of lines of code and a makerspace full of tech to make an impact: Ash Puckett‘s Clapper uses only a Raspberry Pi and a USB microphone as a basis. After that, it’s up to you to integrate the device into whatever project you wish, from home lighting and security systems to entertainment consoles — really anything you can switch from one state to another, including a Raspberry Pi!

GitHub user nikhiljohn10’s clap detection script allows the USB mic to pick up the control clap. With the help of the RPi.GPIO and PyAudio libraries, Ash demonstrates that the Clapper works by turning on and off a red LED attached to the Pi.

You will find instructions for putting together the code and running it on your Pi on the project’s Howchoo page. Howchoo also hosts some of Ash’s other Raspberry Pi projects, including a music streaming device, a smart clock, and a Pi-powered calendar.

Try the Clapper

Why not give the Clapper a go, and let us know what you decide to use it for!

I, for one, will secretly set one up to mess with all the lights in the office — what could possibly go wrong?

The post Clap on, clap off with the Raspberry Pi Clapper 👏👏 appeared first on Raspberry Pi.

Raspberry Pi-monitored chemical reactor 💥

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/raspberry-pi-monitored-chemical-reactor/

In Hello World issue 7, Steven Weir introduces a Raspberry Pi into the classroom to monitor a classic science experiment.

A Raspberry Pi can be used to monitor the reaction between hydrochloric acid and sodium thiosulphate to complement a popular GCSE Chemistry practical.

The rate of reaction between hydrochloric acid and sodium thiosulphate is typically studied as part of GCSE Chemistry. The experiment involves measuring the time required for the reaction mixture to turn cloudy, due to the formation of sulphur as a precipitate. Students can then change the temperature or concentration of the reactants to study their effect on the rate of reaction. The time for the reaction mixture to turn cloudy is normally facilitated by recording the time a hand-drawn cross takes to become obscured when placed underneath a glass vessel holding the reaction mixture. This timing is prone to variability due to operator judgement of when the cross first becomes obscured. This variability can legitimately be discussed as part of the lesson. However, the element of operator judgement can be avoided using a Raspberry Pi-monitored chemical reactor.

The chemical reactor

Attached to a glass jar of approximate 80ml volume (the size is not critical) are two drinking straws, of which one houses a white LED (light-emitting diode) and the other a LDR (light-dependent resistor). The jar is covered in black tape to minimise intrusion of ambient light. The reactor is shown in Figure 1, along with details of other electrical components and connection instructions to a Raspberry Pi.

Figure 1
A: Reactor covered in black tape
B: Drinking straw attached to the reactor, with a further straw inserted housing a white LED
C: Drinking straw attached to the reactor, with a further straw inserted housing a LDR
D: 220Ω resistor to connect to the LED and GPIO 23
E: Wire to connect to ground
F: Wire to connect to 3.3v supply
G: 1µF capacitor to connect to ground
H: Crocodile clip to connect to GPIO 27 (NB: the other end of the wire is situated in between the capacitor and the LDR)

Results

The Python code shown in Figure 2 should be run prior to addition of chemicals to the reactor. Instructions appear on the screen to prompt chemical additions and to start data collection.

Figure 2: Python code for the chemical reactor

Figure 3 shows the results from the experiment when 25ml 0.1M hydrochloric acid is reacted with 25ml 0.15M sodium thiosulphate at 20°C. The reaction is complete at the time the light transmission first reads 0, (i.e. complete obscuration of the light by the precipitate formation) — in this example, that time is 45.4s. For more advanced students, tangents can be drawn at various points on the curve, and gradients calculated to determine the maximum rate of reaction from various reaction conditions.

Figure 3: Graph showing the change in light transmission with time

Download Hello World for free

Download your free copy of Hello World issue 7 today from the Hello World website, where you’ll also find all previous issues. And if you’re an educator in the UK, you’ll have the chance sign up to receive free hard copies to your door!

The post Raspberry Pi-monitored chemical reactor 💥 appeared first on Raspberry Pi.

Is this the most ‘all-in-one’ a computer can possibly be?

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/electronic-grenade-computer-mouse/

Electronic Grenade’s Computer Mouse is the turducken of the tech world, stuffed so full of computing gubbins that you genuinely don’t need anything else. Don’t believe us? See for yourself:

The “Computer” Mouse: A DIY Project

The computer mouse is an entire laptop computer in mouse form that uses the raspberry pi zero W as its brain. I originally wanted to just put a raspberry pi into a mouse but I soon discovered that that large of a mouse didn’t exist.

See what we mean?

The Computer Mouse

Sure, your laptop may be considered an all-in-one computer, but if you’re not a fan of trackpads, you’ll still need a mouse to complete the experience. Electronic Grenade‘s Computer Mouse truly has everything — a mouse, a screen, a keyboard — and while the screen is tiny, it’s still enough to get started.

A GIF of the Computer Mouse in action

Electronic Grenade designed the device using Autodesk Fusion 360, housing a Raspberry Pi Zero W, the guts of two USB mice, a slideout Bluetooth keyboard, and a flip-up 1.5″ full-colour OLED display. For power, the mouse also plays host to a 500mAh battery, charged by an Adafruit Micro-LiPo charger.

It’s very cool. Very, very cool.

A GIF from the movie Storks

Homemade Raspberry Pi laptops

From cardboard pizza boxes to ornate, wooden creations, our community members love making Raspberry Pi laptops out of whatever they can get their hands on.


Steampunk Raspberry Pi laptop

Variations on a theme include projects such as Jeremy Lee’s wrist computer with onboard gyromouse, perfect for any Captain Jack cosplay; and Scripto, the Raspberry Pi word processor that processes words and nothing more.


Photo: a red-cased Scripto sits open on a white work surface. It is on, and Its screen is filled with text.

Electronic Grenade

If you’re a fan of retrofit Raspberry Pi projects, check out Electronic Grenade’s Xbox controller hack. And while you’re skimming through their YouTube channel (as you should), be sure to subscribe, and watch the videos of their other Raspberry Pi–based projects, such as this wooden Raspberry Pi 3 laptop. You can also help Electronic Grenade design and build more projects such as the Computer Mouse by supporting them on Patreon.

Notes

  • A turducken is a chicken stuffed into a duck, that is then in turn stuffed into a turkey, and it sounds all kinds of wrong. Do you know what doesn’t sound all kinds of wrong? Electronic Grenade’s Computer Mouse.
  • The ‘cool, cool, cool’ GIF is from the movie Storks. If you haven’t watched Storks yet, you really should: it’s very underrated and quite wonderful.
  • I meant this Captain Jack and not this Captain Jack.

The post Is this the most ‘all-in-one’ a computer can possibly be? appeared first on Raspberry Pi.

YouTube and Google Photos add-ons for your magic mirror

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/youtube-google-photos-magic-mirror-modules/

Bring YouTube videos, Google Photos, and more to your magic mirror, with third-party modules and the MagicMirror² open-source software platform.

NEW Raspberry Pi Magic Mirror Modules!

Today I walk you through two fun modules to add top your Raspberry Pi Magic Mirror! Music in this video was from Epidemic Sound! Green Screen Subscribe Button: Its Frida MAGIC MIRROR Magic Mirror Builder (Michael Teeuw): https://magicmirror.builders/ Magic Mirror Modules in this video: YouTube: https://forum.magicmirror.builders/topic/8481/mmm-iframe-ping Google Photos: https://forum.magicmirror.builders/topic/8437/mmm-googlephotos/18 USB Audio: ROCCAT – Juke Virtual 7.1 USB Stereo Gaming Soundcard Music in this video was from Epidemic Sound.

Magic mirror

Mention Raspberry Pi to the uninitiated, and they’ll probably ask if it’s “that green thing people use for game emulation and smart mirrors?”. The popularity of magic mirrors has grown massively over the past few years, thanks to how easy it’s become to find cheap displays and great online tutorials.An image of a Raspberry Pi Magic Mirror

While big-brand smart mirrors cost upwards of a bajillion dollars, a homemade magic mirror costs pennies in comparison. The basic homemade model consists of a screen (usually an old computer monitor or flatscreen TV), a piece of two-way mirrored acrylic or glass, a frame, and a Raspberry Pi. Once it’s set up, you have yourself both a mirror and a notification board complete with calendar events, memos, and more.

Introducing MagicMirror²!

MagicMirror² is an open source platform for smart mirrors. It provides an extensive API for module development and is easy to setup and use. For more information and downloads visit http://magicmirror.builders and the forum http://forum.magicmirror.builders 🙂

The software most people use for setting up their magic mirror is MagicMirror², a free, group-maintained open-source platform created by Michael Teeuw.

And you know what open-source means…

Third-party add-ons!

The modular nature of MagicMirror² lets third-party developers easily bring their own ideas to the platform. As Brian Cotter explains in the video above, he used AgP42’s MMM-iFrame-Ping and eouia’s MMM-GooglePhotos to integrate YouTube videos and photographs into his magic mirror.

A screenshot from Brian Cotter's Magic Mirror add-on YouTube video.

And of course that’s not all! Other magic mirror add-ons let you implement 3D gesture detection or display international currency values, Google Fit totals, and more. Find a whole host of such third-party add-ons in this GitHub wiki.

Brian Cotter

Looking for more Raspberry Pi videos from Brian? Check out his Raspberry Pi playlist and be sure, as always, to subscribe to his channel.

Inside My Raspberry Pi Magic Mirror!

Checkout this inside look of my Rasberry Pi Magic Mirror build! Magic Mirror Builder (Michael Teeuw): https://magicmirror.builders/ Two-Way Mirror: https://www.tapplastics.com/ Monitor: https://amzn.to/2EusyhQ Raspberry Pi: https://www.raspberrypi.org/products/… Music Credit: Ikson – Paradise New Here? Follow Me Instagram: https://www.instagram.com/techcoderun/ Twitter: https://twitter.com/bfcotter Hi! My name is Brian Cotter and I live in New York City.

We’re forever grateful to all the content creators who make videos of their Raspberry Pi projects. If you have your own, be sure to let us know the link in the comments!

The post YouTube and Google Photos add-ons for your magic mirror appeared first on Raspberry Pi.

Build your own South Park Buddha Box

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/south-park-raspberry-pi-buddha-box/

Escape the distractions of the world around you and focus your attention on the thing you love the most in life: your smartphone! It’s easy with the all-new Buddha Box, brought to you by South Park and the 8 Bits and a Byte team!

Introducing The All New Buddha Box | South Park

A brand new invention is sweeping South Park. The Buddha Box will let you escape from anything in the world so that you can focus on the thing you love the most… your phone.

The Buddha Box

Introduced in a recent episode of the cult show South Park, the Buddha Box is an ingenious invention that allows its user to ignore the outside world and fully immerse themselves in their smartphone. With noise-cancelling headphones and a screen so close to your eyes you’ll be seeing light spots for weeks to come, the Buddha Box is the must-have accessory for 2019.

We jest, obviously. It’s a horrible idea. And here’s how to make your own!

Build your own Buddha Box

Using a Raspberry Pi, noise-cancelling headphones, a screen, and a cardboard box, the wonderful 8 Bits and a Byte team has created a real-life Buddha Box that you definitely shouldn’t make yourself. As we said — horrible idea.

But it would be a great way to try out screensharing software on your Pi!

To make it, you’ll need to secure the headphones and a screen inside a suitably sized cardboard box, and then set up your Raspberry Pi to run Screencast.

The inside of the Raspberry Pi-enabled South Park Buddha Box showing the headphones, screen and Pi secured inside

The Screencast software allows you to cast the screen of your smartphone to the screen within the box — hence its name.

Here’s the tutorial from 8 Bits and a Byte, and a working demonstration:

South Park’s Buddha Box

A real, working version of South Parks Buddha Box, made using a pair of headphones, an LCD screen, a powerbank and a Raspberry Pi.

If you have an Android phone that you want to use with your Raspberry Pi, check out this guide for enabling Screencast, written by Make Tech Easier. And if you want to share the screen of an iPhone with your Pi, this Instructables guide will walk you through setting up the RPlay software.

Building props

We love prop builds using Raspberry Pi — if you do too, check out the posts in our ‘props’ blog category. And if you’ve made a prop from TV or film using a Pi, be sure to share it with us!

The post Build your own South Park Buddha Box appeared first on Raspberry Pi.

Adding the Pi to Picasso with wireless digital graffiti

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/wiimote-graffiti-raspberry-pi/

It looks like the Nintendo Wii Remote (Wiimote) has become a staple in many maker toolkits! Case in point: with the help of a Raspberry Pi and the cwiid Python library, David Pride turned the popular piece of tech into a giant digital graffiti spraycan.

Raspberry Pi-powered Nintento Wiimote digital art

Using the Wiimote with a Raspberry Pi

While it’s no longer being updated and supported, the cwiid library is still a handy resource for creators who want to integrate the Wiimote with their Raspberry Pi.

Raspberry Pi-powered Nintento Wiimote digital art

Over the years, makers have used the Wiimote to control robots, musical instruments, and skateboards; the accessibility of the library plus the low cost and availability of the remote make using this tool a piece of cake…or pie, in this instance.

Digital graffiti

Using aWiimote, a Wii Sensor Bar, and a large display, David Pride hacked his way to digital artistry wonderment and enabled attendees of the Open University Knowledge Makers event to try their hand at wireless drawing. It’s kinda awesome.

OK, it’s all kinds of awesome. We really like it.

Digital graffiti ingredients

To construct David’s digital graffiti setup, you’ll need:

  • A Raspberry Pi
  • A Nintendo Wii Remote and a Wii Sensor Bar
  • A power supply and DC/DC power converter
  • A large display, e.g. a TV or projector screen
  • A 30mm × 30mm mirror and this 3D-printed holder

Putting it all together

David provides the step-by-step instructions for setting up the Wiimote and Raspberry Pi on his website, including a link to the GitHub repository with the complete project code. The gist of the build process is as follows:

Raspberry Pi-powered Nintento Wiimote digital art

After installing the cwiid library on the Raspberry Pi, David connected the Pi to the Wiimote via Bluetooth. And after some digging into the onboard libraries of the remote itself, he was able to access the infrared technology that lets the remote talk to the Sensor Bar.

Raspberry Pi-powered Nintento Wiimote digital art

The 3D-printed holder with which David augmented the Wiimote lets the user hold the remote upright like a spray can, while the integrated mirror reflects the IR rays so the Sensor Bar can detect them.

Raspberry Pi-powered Nintento Wiimote digital art

The Sensor Bar perceives the movement of the Wiimote, and this data is used to turn the user’s physical actions into works of art on screen. Neat!

If you’ve used the Nintendo Wiimote for your Raspberry Pi projects, let us know. And, speaking of the Wii, has anyone hacked their Balance Board with a Pi?

On a completely unrelated note…

How cool is this?!

The post Adding the Pi to Picasso with wireless digital graffiti appeared first on Raspberry Pi.

Minecraft-controlled real world Christmas tree

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/minecraft-controlled-christmas-tree/

Interact with the real world via the block world, with the Minecraft-controlled Christmas tree from the team at BroCraft Gaming.

Illuminating

David Stevens of BroCraft Gaming reached out to us last month to let us know about the real-life Christmas tree he and his team were planning to hack using Minecraft. Intriguing? Obviously. And after a few more emails, David has been back in touch to let us know the tree hack is now live and ready for the world to interact with.

Here’s a blurb from the BroCraft team:

Join our Minecraft server at brocraftlive.net, complete the tutorial if you haven’t already, and type /mcct to join our snowy wonderland. Collect power from power blocks dotted everywhere, then select a pattern with the Technician, and watch as the tree lights up on the camera stream LIVE before your very eyes! Visit the attractions, play our minigames, and find out what else our server has to offer.

The tree uses individually addressable LEDs and the Adafruit Neopixel Python library. And with the help of a bespoke Java plugin, all instructions from within the Minecraft server are fed to the lights via a Raspberry Pi.

You can view the live Christmas tree camera stream here, along with a brief FAQ on interacting with the tree within the BroCraft Minecraft server.

Minecraft Pi

You’ll need access to Minecraft to be able to interact with the tree. And, lucky for you, Minecraft Pi comes free with Raspbian on the Raspberry Pi!

To flash the Raspbian image onto an SD card, follow this video tutorial from the team at The MagPi. And to get more acquainted with Minecraft on the Raspberry Pi, check out our free resources, including the getting started guide, Minecraft selfies, and the big Minecraft piano.



Find more free Raspberry Pi resources on our projects site, and immerse yourself even further into the world of Minecraft Pi with The MagPi’s Hacking and Making in Minecraft Essentials Guide, available in print and as a free PDF download!

The post Minecraft-controlled real world Christmas tree appeared first on Raspberry Pi.

Google AIY Projects Kit vs Star Wars Porgs

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/star-wars-porg-google-aiy-translator/

Here at Pi Towers, we have a love/hate relationship with the Star Wars creatures known as Porgs. Love, because anything cute and annoying will instantly get our attention; hate, primarily because of this GIF:

Star Wars Porg Raspberry Pi Google AIY Projects Kit translator

So when hackster.io tweeted about the following project, you can imagine the unfiltered excitement and fear with which I shared the link in the comms team Slack channel.

It looked a little something like this:

Star Wars Porg Raspberry Pi Google AIY Projects Kit translator

Google AIY Projects Kit

When we announced the Google AIY Projects Kit as a freebie included in issue 57 of The MagPi, I don’t think we realised how well it would do. OK, no, we knew it would do well. After we gave away a free $5 computer on the front cover of issue 40, we knew giving tech away with The MagPi would always do well. But the wave of projects and applications that started on the day of the release was a wonderful surprise, as community members across the world immediately began to implement voice control in their builds.

Star Wars Porg Raspberry Pi Google AIY Projects Kit translator

And now, twenty months later, we’re still seeing some wonderful applications of the kit, including this glorious Porg project.

Learn Spanish with a Porg — because of course

Hackster.io user Paul Trebilcox-Ruiz shared his Translation Toy project on the site yesterday, providing a step-by-step guide to hacking the motors of the Star Wars Porg toy so that it moves in time with verbal responses from the AIY kit. It’s all rather nifty, and apart from a Raspberry Pi you only need some wires and a soldering iron to complete the project yourself.

…some wires, a soldering iron, and the cold-heartedness to pull apart the innards of a stuffed toy, Paul, you monster!

“Hello” Translation Toy

Uploaded by Paul Trebilcox-Ruiz on 2018-12-10.

As soon as Paul realised that the Porg’s motors would run if he simply applied voltage, he extended the wires inside the Porg with the help of jumper leads and so attached the Porg to the GPIO pins on his Raspberry Pi.

For this setup, I hooked the two speaker wires from the Porg into the speaker connectors on the HAT, the button wires into the GPIO pin 24 and ground connectors under the ‘Servos’ heading, and for the motors I needed to hook up a relay for a 5V connection driven by the signal off of GPIO pin 26. The microphone that came with the AIY Voice Projects Kit was attached to the board using the pre-defined mic connector.

Then Paul wrote code that uses the AIY kit to translate any voice command it hears into Spanish.

For the full code and instructions, check out Paul’s hackster.io project page. And for more Porg love, here’s every Porg scene from The Last Jedi:

Porgs! Love Them Or Hate Them – Every Porg Scene in Star Wars: The Last Jedi HD

Porgs are now part of the Star Wars universe for better or worse thanks to director Rian Johnson. How do you feel about the tasty critters? Thanks for watching

Bonus facts

  • Porgs were introduced into the Star Wars universe as a means of hiding the many puffins that traipse the landscape of Skellig Michael, the location used for filming Luke Skywalker’s home, Ahch-To. Bless you.
  • A group of Porgs is called a murder.
  • A baby Porg is called a Porglet.
  • And no, you can’t get a physical copy of The MagPi issue 40 or issue 57. They’re gone now. Done. Forever. But you can still download the PDFs.

 

The post Google AIY Projects Kit vs Star Wars Porgs appeared first on Raspberry Pi.

We tried out Valve’s Steam Link on Raspberry Pi and…

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/steam-link-raspberry-pi/

… it worked well!

tl;dr: really, really well.

But if “it worked really well” isn’t enough of a reason for you to give Steam Link on Raspberry Pi a go, here’s the rest of today’s blog post…

Steam Link on Raspberry Pi

The internet (mainly Reddit) was all aflutter last week due to the release of the Steam Link app beta version for the Raspberry Pi.

Steam Link, for the uninitiated, is a service that allowed users of the digital distribution platform Steam to stream video games from their PC to a display of choice — without the need to weave a mile-long HDMI cable between rooms and furniture to connect computer and television.

The original Steam Link

Up until now, if Steam users wanted to stream games to other displays, they had to do so with Valve’s own Steam Link device — a small black box available for purchase on the Valve website — and the device did pretty well. But with the new Steam Link app for Raspberry Pi, any Pi owner can get up and running with Steam Link using one single line of code.

And that’s all sorts of convenient!

Trying out Steam Link for ourselves

We didn’t just want to put out a blog post to let you folks know that the app’s beta version is now live. Instead, we wanted to collar one of our own to try the new app out at home and let us know exactly what they think. And since we knew that Simon, our Asset Management Assistant Keeper of the Swag, Organiser of the Stuff, Lord Commander of the Things, had a Steam Link at home, it made sense to ask him nicely to give the app a try over the weekend.

And he did, because Simon = ❤

One line of code later…

It took Simon all of five minutes to get Steam Link up and running on his TV. He even went so far as to copy and paste the short line of code via a Chromium search for the announcement, instead of typing it in for himself.

And then Simon just had to sign into his Steam account and boom, Bob’s your uncle, Sally’s your aunt, the process was complete.

“Took less than five minutes before I was investigating strange cults from the comfort of my sofa,” explained Simon, as we all nodded, inwardly judging him a little for his game of choice. But in case you’re interested, Cultist Simulator is made by Factory Weather, and there are currently some photos of a tiny kitten on their homepage, so go check it out.

User experience

Let us know if you’ve tried the Steam Link app on Raspberry Pi, and what you think of it. Oh, and what games you’re playing on it, especially if they include Cultist Simulator.

And to make your Steam Link setup process easier, type rpf.io/steamlinkblog into your Chromium browser on your Raspberry Pi to open this blog post, and then copy and paste the following into a terminal window to run install the app:

curl -#Of http://media.steampowered.com/steamlink/rpi/steamlink_1.0.7_armhf.deb
sudo dpkg -i steamlink_1.0.7_armhf.deb

The post We tried out Valve’s Steam Link on Raspberry Pi and… appeared first on Raspberry Pi.

Reef-Pi: the ultimate Raspberry Pi fish tank management system

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/reef-pi-raspberry-pi-fish-tank-management-system/

If you’ve ever had a pet fish, even the saddest of fairground goldfish, you’ll appreciate how much work and attention they require. And to those who have never owned a fish: believe me, it’s more than you’d assume.

Reef-Pi

And the moment you upgrade from goldfish to brightly coloured, tropical beauties, and replace the standard silk reeds and gravel with live aquatic plants and soil, you suddenly have to factor in things like optimum temperature and chemical levels.

Reef-Pi

Reef-Pi

Thankfully, Adafruit Learning System author and loving fish parent Ranjib Dey has been working on a tutorial series called Reef-Pi, a collection of how-to guides that help you build the ultimate in Raspberry Pi reef aquarium management system.

Ranjib Dey on Twitter

@reef_pi at makerfaire #MFBA18

Reef-Pi monitors pH, chemical, and water levels, controls temperature, light, and power, and automates the management of these aspects so you don’t have to think about them. Phew!

And if you don’t fancy a massive coral-filled saltwater tank like Ranjib’s, you can use parts the Reef-Pi series for your own tank, whatever its setup, because many of the operations are similar or easy to adjust for your needs.

Jean Tannen

Any excuse to show off beautiful Jean to the world

Take, for example, my new Betta, Jean Tannen. While Jean’s tank is a much smaller size, and Jean its only resident (for now), I still need to keep an eye on the chemical balance of his water, the heat of his tank, and when his lights should be turned on or off. Even the most commonplace goldfish will appreciate many of the services Reef-Pi automates.

The Reef-Pi system uses a variety of components, including Raspberry Pi Zero and/or Raspberry Pi 3, and each stage of building the project is well-documented on the Adafruit Learning System. So if you’re looking to upgrade your tank, or have always fancied having pet fish but don’t want the hassle of tank management, give Reef-Pi a gander and see what you think.

We’re going to try it!

Sarah, our new Operations Manager, has been looking to upgrade her giant fish tank with a Raspberry Pi or two, so we’ll be sure to share her progress in the new year. If you decide to give Reef-Pi a try, or have already automated your tank with a Pi, let us know in the comments, or tag us on Twitter or Instagram!

The post Reef-Pi: the ultimate Raspberry Pi fish tank management system appeared first on Raspberry Pi.

Raspberry Pi vs a Raspberry Pi–powered escape room

Post Syndicated from Christina Foust original https://www.raspberrypi.org/blog/raspberry-pi-escape-room/

A few Mondays ago, the Raspberry Pi North America team visited a very special, Raspberry Pi–powered Escape Room in San Francisco. Run by Palace Games, the Edison Escape Room is an immersive experience full of lights, sensors, and plenty of surprises. This is the team’s story of how they entered, explored, and ultimately escaped this room.

At World Maker Faire this year, our very own social media star Alex Bate met Jordan Bunker, one of the Production Artists at Palace Games. Emails were sent, dates arranges, and boom, the Raspberry Pi North America team had to face the Edison Escape Room!

Escape rooms

In case you’re not familiar, an escape room is a physical adventure game in which players solve a series of puzzles and riddles using clues, logic, and strategy to complete the game’s objectives. Many escape room designers use physical computing to control the many sensors and triggers involved in the player experience.

Palace Games Edison Escape Room

The team vs Edison

Upon entering the Edison Escape Room, my team and I quickly realized that we were within a complex system built like a giant computer! So even though it was our first-ever time in an escape room, that would not be a disadvantage for us.

Palace Games Edison Escape Room

Our goal was to accomplish a variety of tasks, including solving many puzzles, looking for hidden clues when anything could be a clue, completing circuits, moving with the floor, and getting a bit of a workout.

The true test, however, was how well we communicated and worked with each other — which we did an awesome job at: at times we split up the work to effectively figure out the many different puzzles and clues; there was a lot “try it this way”, “maybe it means this”, and “what if it’s supposed to go that way” being yelled across the room. Everyone had their Edison thinking hat on that day, and we were so ecstatic when we completed the last challenge and finally escaped!

Palace Games Edison Escape Room

The inner workings

After escaping the room, we got the chance to explore behind the scenes. We found a local network of many Raspberry Pis that are coordinated by a central Raspberry Pi server. The Python Banyan framework is the connective tissue between the Raspberry Pis and their attached components.

Palace Games Edison Escape Room

The framework facilitates the communication between the Pis and the central server via Ethernet. The Raspberry Pis are used to read various types of sensors and to drive actuators that control lights, open doors, or play back media. And Raspberry Pis also drive the control panels that employees use to enter settings and keep tabs on the game.

“Raspberry Pi keeps us going. It’s the heart and soul of our rooms.”  – Elizabeth Sonder, Design Engineer & Production Manager

We highly recommend heading over to Palace Games and exploring one of their many escape rooms. It’s a great team-building exercise and definitely allows you to learn a lot about the people you work with. Thank you to the Palace Games team for hosting us, and we hope to return and escape one of their rooms again soon!

The post Raspberry Pi vs a Raspberry Pi–powered escape room appeared first on Raspberry Pi.

Three-factor authentication is the new two-factor authentication

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/three-factor-authentication-raspberry-pi/

Two-factor authentication continues to provide our online selves with more security for our email and online banking. Meanwhile, in the physical world, protecting our valuables is now all about three-factor authentication.

A GIF of a thumbprint being scanned for authentication - three-factor authentication

Not sure what I mean? Here’s a video from Switched On Network that demonstrates how to use a Raspberry Pi to build a three-factor door lock comprised of an RFID keyring, 6-digit passcode, and one-time access code sent to your mobile phone.

Note that this is a fairly long video, so feel free to skip it for now and read my rather snazzy tl;dr. You can come back to the video later, with a cup of tea and 20 minutes to spare. It’ll be worth it, I promise.

Build a Raspberry Pi Smart Door Lock Security System with Three Factor Authentication!

https://amzn.to/2A98EaZ (UK) / https://amzn.to/2LDlxyc (US) – Get a free audiobook with a 30-day trial of Audible from Amazon! Build the ultimate door lock system, effectively turning your office or bedroom into a high-security vault!

The tl;dr of three-factor door locks by Alex Bate

To build Switched On Network’s three-factor door lock, you need to source a Raspberry Pi 3, a USB RFID reader and fob, a touchscreen, a electronic door strike, and a relay switch. You also need a few other extras, such as a power supply and a glue gun.

A screenshot from the three-factor authentication video of a glue gun

Once you’ve installed the appropriate drivers (if necessary) for your screen, and rotated the display by 90 degrees, you can skip ahead a few steps by installing the Python script from Switched On Network’s GitHub repo! Cheers!

A screenshot from the three-factor authentication video of the screen attached to the Pi in portrait mode

Then for the physical build: you need to attach the door strike, leads, and whatnot to the Pi — and all that together to the door and door frame. Again, I won’t go into the details, since that’s where the video excels.

A screenshot from the video of the components of the three-factor authentication door lock

The end result is a superior door lock that requires you to remember both your keys and your phone in order to open it. And while we’d never suggest using this tech to secure your house from the outside, it’s a perfect setup for inside doors to offices or basement lairs.

A GIF of Dexter from Dexter's Laboratory

Everyone should have a lair.

Now go watch the video!

The post Three-factor authentication is the new two-factor authentication appeared first on Raspberry Pi.

I feel the earth move under my feet (in Michigan)

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/michigan-seismic-activity-raspberry-pi/

The University of Michigan is home to the largest stadium in the USA (the second-largest in the world!). So what better place to test for spectator-induced seismic activity than The Big House?

The Big House stadium in Michigan

The Michigan Shake

University of Michigan geology professor Ben van der Pluijm decided to make waves by measuring the seismic activity produced during games at the university’s 107601 person-capacity stadium. Because earthquakes are (thankfully) very rare in the Midwest, and therefore very rarely experienced by van der Pluijm’s introductory geology class, he hoped this approach would make the movement of the Earth more accessible to his students.

“The bottom line was, I wanted something to show people that the Earth just shakes from all kinds of interactions,” explained van der Pluijm in his interview with The Michigan Daily. “All kinds of activity makes the Earth shake.”

The Big House stadium in Michigan

To measure the seismic activity, van der Pluijm used a Raspberry Pi, placing it on a flat concrete surface within the stadium.

Van der Pluijm installed a small machine called a Raspberry Pi computer in the stadium. He said his only requirements were that it needed to be able to plug into the internet and set up on a concrete floor. “Then it sits there and does its thing,” he said. “In fact, it probably does its thing right now.”

He then sent freshman student Sahil Tolia to some games to record the moments of spectator movement and celebration, so that these could be compared with the seismic activity that the Pi registers.

We’re not sure whether Professor van der Pluijm plans on releasing his findings to the outside world, or whether he’ll keep them a close secret with his introductory students, but we hope for the former!

Build your own Raspberry Pi seismic activity reader

We’re not sure what other technology van der Pluijm uses in conjunction with the Raspberry Pi, but it’s fairly easy to create your own seismic activity reader using our board. You can purchase the Raspberry Shake, an add-on board for the Pi that has vertical and horizontal geophones, MEMs accelerometers, and omnidirectional differential pressure transducers. Or you can fashion something at home, for example by taking hints from this project by Carlo Cristini, which uses household items to register movement.

The post I feel the earth move under my feet (in Michigan) appeared first on Raspberry Pi.

Google Tasks to-do list, or anti-baby-distraction device

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/interactive-raspberry-pi-google-tasks/

Organise your life with the help of a Raspberry Pi, a 3.5″ touchscreen, Google Tasks, and hackster.io user Michal Sporna.

Distracting baby optional, though advised.

Google Tasks Raspberry Pi to-do list Michael Sporna

Baby – in the workplace – thought you ought to know

There’s a baby in the office today. And, as babies tend to do in places of work, he’s stolen all of our attention away from what we’re meant to be doing (our jobs), and has redirected it for the greater good (keeping him entertained). Oh, baby!

If only I had a to-do list to keep all my day’s tasks in plain sight and constantly remind myself of what I should be doing (writing this blog post) instead of what I’m actually doing (naming all the kittens on my T-shirt with the help of a nine-month-old)!

Hold on…

Sorry, the baby just came over to my desk and stole my attention again. Where was I?

Oh yes…

…to-do lists!

Michal Sporna‘s interactive to-do list that syncs with Google Tasks consists of a Raspberry Pi 3 Model B and a 3.5″ touchscreen encased in a laser-cut wooden housing, though this last element is optional.

Google Tasks Raspberry Pi to-do list Michael Sporna

“This is yet another web to-do app, but designed for a 3.5″ screen and Raspberry Pi,” says Michal in the introduction to his hackster.io tutorial. “The idea is for this device to serve as task tracking device, replacing a regular notebook and having to write stuff with pen.”

Michal explains that, while he enjoys writing down tasks on paper, editing items on paper isn’t that user-friendly. By replacing pen and paper with stylus and touchscreen, and making use Google Tasks, he improved the process for himself.

Google Tasks

The Google Tasks platform allows you to record and edit tasks, and to share them across multiple devices. The app integrates nicely with Gmail and Google Calendar, and its browser functionality allowed Michal to auto-run it on Chromium in Raspbian, so his tasks automatically display on the touchscreen. #NotSponsored

Google Tasks Raspberry Pi to-do list Michael Sporna

Build your own

Find full build details for the to-do list device on hackster.io! This is the first project Michal has shared on the website, and we’re looking forward to more makes from him in the future.

Now, where did that baby go?

The post Google Tasks to-do list, or anti-baby-distraction device appeared first on Raspberry Pi.