Tag Archives: theft

Mail Fishing

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/03/mail_fishing.html

Not email, paper mail:

Thieves, often at night, use string to lower glue-covered rodent traps or bottles coated with an adhesive down the chute of a sidewalk mailbox. This bait attaches to the envelopes inside, and the fish in this case — mail containing gift cards, money orders or checks, which can be altered with chemicals and cashed — are reeled out slowly.

In response, the US Post Office is introducing a more secure mailbox:

The mail slots are only large enough for letters, meaning sending even small packages will require a trip to the post office. The opening is also equipped with a mechanism that grabs at a letter once inserted, making it difficult to retract.

The crime has become more common in the past few years.

Detecting Shoplifting Behavior

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/03/detecting_shopl.html

This system claims to detect suspicious behavior that indicates shoplifting:

Vaak, a Japanese startup, has developed artificial intelligence software that hunts for potential shoplifters, using footage from security cameras for fidgeting, restlessness and other potentially suspicious body language.

The article has no detail or analysis, so we don’t know how well it works. But this kind of thing is surely the future of video surveillance.

Glitter Bomb against Package Thieves

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/12/glitter_bomb_ag.html

Stealing packages from unattended porches is a rapidly rising crime, as more of us order more things by mail. One person hid a glitter bomb and a video recorder in a package, posting the results when thieves opened the box. At least, that’s what might have happened. At least some of the video was faked, which puts the whole thing into question.

That’s okay, though. Santa is faked, too. Happy whatever you’re celebrating.

Banks Attacked through Malicious Hardware Connected to the Local Network

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/12/banks_attacked_.html

Kaspersky is reporting on a series of bank hacks — called DarkVishnya — perpetrated through malicious hardware being surreptitiously installed into the target network:

In 2017-2018, Kaspersky Lab specialists were invited to research a series of cybertheft incidents. Each attack had a common springboard: an unknown device directly connected to the company’s local network. In some cases, it was the central office, in others a regional office, sometimes located in another country. At least eight banks in Eastern Europe were the targets of the attacks (collectively nicknamed DarkVishnya), which caused damage estimated in the tens of millions of dollars.

Each attack can be divided into several identical stages. At the first stage, a cybercriminal entered the organization’s building under the guise of a courier, job seeker, etc., and connected a device to the local network, for example, in one of the meeting rooms. Where possible, the device was hidden or blended into the surroundings, so as not to arouse suspicion.

The devices used in the DarkVishnya attacks varied in accordance with the cybercriminals’ abilities and personal preferences. In the cases we researched, it was one of three tools:

  • netbook or inexpensive laptop
  • Raspberry Pi computer
  • Bash Bunny, a special tool for carrying out USB attacks

Inside the local network, the device appeared as an unknown computer, an external flash drive, or even a keyboard. Combined with the fact that Bash Bunny is comparable in size to a USB flash drive, this seriously complicated the search for the entry point. Remote access to the planted device was via a built-in or USB-connected GPRS/3G/LTE modem.

Slashdot thread.

"Two Stage" BMW Theft Attempt

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/08/two_stage_bmw_t.html

Modern cars have alarm systems that automatically connect to a remote call center. This makes cars harder to steal, since tripping the alarm causes a quick response. This article describes a theft attempt that tried to neutralize that security system. In the first attack, the thieves just disabled the alarm system and then left. If the owner had not immediately repaired the car, the thieves would have returned the next night and — no longer working under time pressure — stolen the car.

Gas Pump Hack

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/07/gas_pump_hack.html

This is weird:

Police in Detroit are looking for two suspects who allegedly managed to hack a gas pump and steal over 600 gallons of gasoline, valued at about $1,800. The theft took place in the middle of the day and went on for about 90 minutes, with the gas station attendant unable to thwart the hackers.

The theft, reported by Fox 2 Detroit, took place at around 1pm local time on June 23 at a Marathon gas station located about 15 minutes from downtown Detroit. At least 10 cars are believed to have benefitted from the free-flowing gas pump, which still has police befuddled.

Here’s what is known about the supposed hack: Per Fox 2 Detroit, the thieves used some sort of remote device that allowed them to hijack the pump and take control away from the gas station employee. Police confirmed to the local publication that the device prevented the clerk from using the gas station’s system to shut off the individual pump.

Slashdot post.

Hard to know what’s true, but it seems like a good example of a hack against a cyber-physical system.

Some quick thoughts on the public discussion regarding facial recognition and Amazon Rekognition this past week

Post Syndicated from Dr. Matt Wood original https://aws.amazon.com/blogs/aws/some-quick-thoughts-on-the-public-discussion-regarding-facial-recognition-and-amazon-rekognition-this-past-week/

We have seen a lot of discussion this past week about the role of Amazon Rekognition in facial recognition, surveillance, and civil liberties, and we wanted to share some thoughts.

Amazon Rekognition is a service we announced in 2016. It makes use of new technologies – such as deep learning – and puts them in the hands of developers in an easy-to-use, low-cost way. Since then, we have seen customers use the image and video analysis capabilities of Amazon Rekognition in ways that materially benefit both society (e.g. preventing human trafficking, inhibiting child exploitation, reuniting missing children with their families, and building educational apps for children), and organizations (enhancing security through multi-factor authentication, finding images more easily, or preventing package theft). Amazon Web Services (AWS) is not the only provider of services like these, and we remain excited about how image and video analysis can be a driver for good in the world, including in the public sector and law enforcement.

There have always been and will always be risks with new technology capabilities. Each organization choosing to employ technology must act responsibly or risk legal penalties and public condemnation. AWS takes its responsibilities seriously. But we believe it is the wrong approach to impose a ban on promising new technologies because they might be used by bad actors for nefarious purposes in the future. The world would be a very different place if we had restricted people from buying computers because it was possible to use that computer to do harm. The same can be said of thousands of technologies upon which we all rely each day. Through responsible use, the benefits have far outweighed the risks.

Customers are off to a great start with Amazon Rekognition; the evidence of the positive impact this new technology can provide is strong (and growing by the week), and we’re excited to continue to support our customers in its responsible use.

-Dr. Matt Wood, general manager of artificial intelligence at AWS

FCC Asks Amazon & eBay to Help Eliminate Pirate Media Box Sales

Post Syndicated from Andy original https://torrentfreak.com/fcc-asks-amazon-ebay-to-help-eliminate-pirate-media-box-sales-180530/

Over the past several years, anyone looking for a piracy-configured set-top box could do worse than search for one on Amazon or eBay.

Historically, people deploying search terms including “Kodi” or “fully-loaded” were greeted by page after page of Android-type boxes, each ready for illicit plug-and-play entertainment consumption following delivery.

Although the problem persists on both platforms, people are now much less likely to find infringing devices than they were 12 to 24 months ago. Under pressure from entertainment industry groups, both Amazon and eBay have tightened the screws on sellers of such devices. Now, however, both companies have received requests to stem sales from a completetey different direction.

In a letter to eBay CEO Devin Wenig and Amazon CEO Jeff Bezos first spotted by Ars, FCC Commissioner Michael O’Rielly calls on the platforms to take action against piracy-configured boxes that fail to comply with FCC equipment authorization requirements or falsely display FCC logos, contrary to United States law.

“Disturbingly, some rogue set-top box manufacturers and distributors are exploiting the FCC’s trusted logo by fraudulently placing it on devices that have not been approved via the Commission’s equipment authorization process,” O’Rielly’s letter reads.

“Specifically, nine set-top box distributors were referred to the FCC in October for enabling the unlawful streaming of copyrighted material, seven of which displayed the FCC logo, although there was no record of such compliance.”

While O’Rielly admits that the copyright infringement aspects fall outside the jurisdiction of the FCC, he says it’s troubling that many of these devices are used to stream infringing content, “exacerbating the theft of billions of dollars in American innovation and creativity.”

As noted above, both Amazon and eBay have taken steps to reduce sales of pirate boxes on their respective platforms on copyright infringement grounds, something which is duly noted by O’Rielly. However, he points out that devices continue to be sold to members of the public who may believe that the devices are legal since they’re available for sale from legitimate companies.

“For these reasons, I am seeking your further cooperation in assisting the FCC in taking steps to eliminate the non-FCC compliant devices or devices that fraudulently bear the FCC logo,” the Commissioner writes (pdf).

“Moreover, if your company is made aware by the Commission, with supporting evidence, that a particular device is using a fraudulent FCC label or has not been appropriately certified and labeled with a valid FCC logo, I respectfully request that you commit to swiftly removing these products from your sites.”

In the event that Amazon and eBay take action under this request, O’Rielly asks both platforms to hand over information they hold on offending manufacturers, distributors, and suppliers.

Amazon was quick to respond to the FCC. In a letter published by Ars, Amazon’s Public Policy Vice President Brian Huseman assured O’Rielly that the company is not only dedicated to tackling rogue devices on copyright-infringement grounds but also when there is fraudulent use of the FCC’s logos.

Noting that Amazon is a key member of the Alliance for Creativity and Entertainment (ACE) – a group that has been taking legal action against sellers of infringing streaming devices (ISDs) and those who make infringing addons for Kodi-type systems – Huseman says that dealing with the problem is a top priority.

“Our goal is to prevent the sale of ISDs anywhere, as we seek to protect our customers from the risks posed by these devices, in addition to our interest in protecting Amazon Studios content,” Huseman writes.

“In 2017, Amazon became the first online marketplace to prohibit the sale of streaming media players that promote or facilitate piracy. To prevent the sale of these devices, we proactively scan product listings for signs of potentially infringing products, and we also invest heavily in sophisticated, automated real-time tools to review a variety of data sources and signals to identify inauthentic goods.

“These automated tools are supplemented by human reviewers that conduct manual investigations. When we suspect infringement, we take immediate action to remove suspected listings, and we also take enforcement action against sellers’ entire accounts when appropriate.”

Huseman also reveals that since implementing a proactive policy against such devices, “tens of thousands” of listings have been blocked from Amazon. In addition, the platform has been making criminal referrals to law enforcement as well as taking civil action (1,2,3) as part of ACE.

“As noted in your letter, we would also appreciate the opportunity to collaborate further with the FCC to remove non-compliant devices that improperly use the FCC logo or falsely claim FCC certification. If any FCC non-compliant devices are identified, we seek to work with you to ensure they are not offered for sale,” Huseman concludes.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

Securing Your Cryptocurrency

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/backing-up-your-cryptocurrency/

Securing Your Cryptocurrency

In our blog post on Tuesday, Cryptocurrency Security Challenges, we wrote about the two primary challenges faced by anyone interested in safely and profitably participating in the cryptocurrency economy: 1) make sure you’re dealing with reputable and ethical companies and services, and, 2) keep your cryptocurrency holdings safe and secure.

In this post, we’re going to focus on how to make sure you don’t lose any of your cryptocurrency holdings through accident, theft, or carelessness. You do that by backing up the keys needed to sell or trade your currencies.

$34 Billion in Lost Value

Of the 16.4 million bitcoins said to be in circulation in the middle of 2017, close to 3.8 million may have been lost because their owners no longer are able to claim their holdings. Based on today’s valuation, that could total as much as $34 billion dollars in lost value. And that’s just bitcoins. There are now over 1,500 different cryptocurrencies, and we don’t know how many of those have been misplaced or lost.



Now that some cryptocurrencies have reached (at least for now) staggering heights in value, it’s likely that owners will be more careful in keeping track of the keys needed to use their cryptocurrencies. For the ones already lost, however, the owners have been separated from their currencies just as surely as if they had thrown Benjamin Franklins and Grover Clevelands over the railing of a ship.

The Basics of Securing Your Cryptocurrencies

In our previous post, we reviewed how cryptocurrency keys work, and the common ways owners can keep track of them. A cryptocurrency owner needs two keys to use their currencies: a public key that can be shared with others is used to receive currency, and a private key that must be kept secure is used to spend or trade currency.

Many wallets and applications allow the user to require extra security to access them, such as a password, or iris, face, or thumb print scan. If one of these options is available in your wallets, take advantage of it. Beyond that, it’s essential to back up your wallet, either using the backup feature built into some applications and wallets, or manually backing up the data used by the wallet. When backing up, it’s a good idea to back up the entire wallet, as some wallets require additional private data to operate that might not be apparent.

No matter which backup method you use, it is important to back up often and have multiple backups, preferable in different locations. As with any valuable data, a 3-2-1 backup strategy is good to follow, which ensures that you’ll have a good backup copy if anything goes wrong with one or more copies of your data.

One more caveat, don’t reuse passwords. This applies to all of your accounts, but is especially important for something as critical as your finances. Don’t ever use the same password for more than one account. If security is breached on one of your accounts, someone could connect your name or ID with other accounts, and will attempt to use the password there, as well. Consider using a password manager such as LastPass or 1Password, which make creating and using complex and unique passwords easy no matter where you’re trying to sign in.

Approaches to Backing Up Your Cryptocurrency Keys

There are numerous ways to be sure your keys are backed up. Let’s take them one by one.

1. Automatic backups using a backup program

If you’re using a wallet program on your computer, for example, Bitcoin Core, it will store your keys, along with other information, in a file. For Bitcoin Core, that file is wallet.dat. Other currencies will use the same or a different file name and some give you the option to select a name for the wallet file.

To back up the wallet.dat or other wallet file, you might need to tell your backup program to explicitly back up that file. Users of Backblaze Backup don’t have to worry about configuring this, since by default, Backblaze Backup will back up all data files. You should determine where your particular cryptocurrency, wallet, or application stores your keys, and make sure the necessary file(s) are backed up if your backup program requires you to select which files are included in the backup.

Backblaze B2 is an option for those interested in low-cost and high security cloud storage of their cryptocurrency keys. Backblaze B2 supports 2-factor verification for account access, works with a number of apps that support automatic backups with encryption, error-recovery, and versioning, and offers an API and command-line interface (CLI), as well. The first 10GB of storage is free, which could be all one needs to store encrypted cryptocurrency keys.

2. Backing up by exporting keys to a file

Apps and wallets will let you export your keys from your app or wallet to a file. Once exported, your keys can be stored on a local drive, USB thumb drive, DAS, NAS, or in the cloud with any cloud storage or sync service you wish. Encrypting the file is strongly encouraged — more on that later. If you use 1Password or LastPass, or other secure notes program, you also could store your keys there.

3. Backing up by saving a mnemonic recovery seed

A mnemonic phrase, mnemonic recovery phrase, or mnemonic seed is a list of words that stores all the information needed to recover a cryptocurrency wallet. Many wallets will have the option to generate a mnemonic backup phrase, which can be written down on paper. If the user’s computer no longer works or their hard drive becomes corrupted, they can download the same wallet software again and use the mnemonic recovery phrase to restore their keys.

The phrase can be used by anyone to recover the keys, so it must be kept safe. Mnemonic phrases are an excellent way of backing up and storing cryptocurrency and so they are used by almost all wallets.

A mnemonic recovery seed is represented by a group of easy to remember words. For example:

eye female unfair moon genius pipe nuclear width dizzy forum cricket know expire purse laptop scale identify cube pause crucial day cigar noise receive

The above words represent the following seed:

0a5b25e1dab6039d22cd57469744499863962daba9d2844243fec 9c0313c1448d1a0b2cd9e230a78775556f9b514a8be45802c2808e fd449a20234e9262dfa69

These words have certain properties:

  • The first four letters are enough to unambiguously identify the word.
  • Similar words are avoided (such as: build and built).

Bitcoin and most other cryptocurrencies such as Litecoin, Ethereum, and others use mnemonic seeds that are 12 to 24 words long. Other currencies might use different length seeds.

4. Physical backups — Paper, Metal

Some cryptocurrency holders believe that their backup, or even all their cryptocurrency account information, should be stored entirely separately from the internet to avoid any risk of their information being compromised through hacks, exploits, or leaks. This type of storage is called “cold storage.” One method of cold storage involves printing out the keys to a piece of paper and then erasing any record of the keys from all computer systems. The keys can be entered into a program from the paper when needed, or scanned from a QR code printed on the paper.

Printed public and private keys

Printed public and private keys

Some who go to extremes suggest separating the mnemonic needed to access an account into individual pieces of paper and storing those pieces in different locations in the home or office, or even different geographical locations. Some say this is a bad idea since it could be possible to reconstruct the mnemonic from one or more pieces. How diligent you wish to be in protecting these codes is up to you.

Mnemonic recovery phrase booklet

Mnemonic recovery phrase booklet

There’s another option that could make you the envy of your friends. That’s the CryptoSteel wallet, which is a stainless steel metal case that comes with more than 250 stainless steel letter tiles engraved on each side. Codes and passwords are assembled manually from the supplied part-randomized set of tiles. Users are able to store up to 96 characters worth of confidential information. Cryptosteel claims to be fireproof, waterproof, and shock-proof.

image of a Cryptosteel cold storage device

Cryptosteel cold wallet

Of course, if you leave your Cryptosteel wallet in the pocket of a pair of ripped jeans that gets thrown out by the housekeeper, as happened to the character Russ Hanneman on the TV show Silicon Valley in last Sunday’s episode, then you’re out of luck. That fictional billionaire investor lost a USB drive with $300 million in cryptocoins. Let’s hope that doesn’t happen to you.

Encryption & Security

Whether you store your keys on your computer, an external disk, a USB drive, DAS, NAS, or in the cloud, you want to make sure that no one else can use those keys. The best way to handle that is to encrypt the backup.

With Backblaze Backup for Windows and Macintosh, your backups are encrypted in transmission to the cloud and on the backup server. Users have the option to add an additional level of security by adding a Personal Encryption Key (PEK), which secures their private key. Your cryptocurrency backup files are secure in the cloud. Using our web or mobile interface, previous versions of files can be accessed, as well.

Our object storage cloud offering, Backblaze B2, can be used with a variety of applications for Windows, Macintosh, and Linux. With B2, cryptocurrency users can choose whichever method of encryption they wish to use on their local computers and then upload their encrypted currency keys to the cloud. Depending on the client used, versioning and life-cycle rules can be applied to the stored files.

Other backup programs and systems provide some or all of these capabilities, as well. If you are backing up to a local drive, it is a good idea to encrypt the local backup, which is an option in some backup programs.

Address Security

Some experts recommend using a different address for each cryptocurrency transaction. Since the address is not the same as your wallet, this means that you are not creating a new wallet, but simply using a new identifier for people sending you cryptocurrency. Creating a new address is usually as easy as clicking a button in the wallet.

One of the chief advantages of using a different address for each transaction is anonymity. Each time you use an address, you put more information into the public ledger (blockchain) about where the currency came from or where it went. That means that over time, using the same address repeatedly could mean that someone could map your relationships, transactions, and incoming funds. The more you use that address, the more information someone can learn about you. For more on this topic, refer to Address reuse.

Note that a downside of using a paper wallet with a single key pair (type-0 non-deterministic wallet) is that it has the vulnerabilities listed above. Each transaction using that paper wallet will add to the public record of transactions associated with that address. Newer wallets, i.e. “deterministic” or those using mnemonic code words support multiple addresses and are now recommended.

There are other approaches to keeping your cryptocurrency transaction secure. Here are a couple of them.

Multi-signature

Multi-signature refers to requiring more than one key to authorize a transaction, much like requiring more than one key to open a safe. It is generally used to divide up responsibility for possession of cryptocurrency. Standard transactions could be called “single-signature transactions” because transfers require only one signature — from the owner of the private key associated with the currency address (public key). Some wallets and apps can be configured to require more than one signature, which means that a group of people, businesses, or other entities all must agree to trade in the cryptocurrencies.

Deep Cold Storage

Deep cold storage ensures the entire transaction process happens in an offline environment. There are typically three elements to deep cold storage.

First, the wallet and private key are generated offline, and the signing of transactions happens on a system not connected to the internet in any manner. This ensures it’s never exposed to a potentially compromised system or connection.

Second, details are secured with encryption to ensure that even if the wallet file ends up in the wrong hands, the information is protected.

Third, storage of the encrypted wallet file or paper wallet is generally at a location or facility that has restricted access, such as a safety deposit box at a bank.

Deep cold storage is used to safeguard a large individual cryptocurrency portfolio held for the long term, or for trustees holding cryptocurrency on behalf of others, and is possibly the safest method to ensure a crypto investment remains secure.

Keep Your Software Up to Date

You should always make sure that you are using the latest version of your app or wallet software, which includes important stability and security fixes. Installing updates for all other software on your computer or mobile device is also important to keep your wallet environment safer.

One Last Thing: Think About Your Testament

Your cryptocurrency funds can be lost forever if you don’t have a backup plan for your peers and family. If the location of your wallets or your passwords is not known by anyone when you are gone, there is no hope that your funds will ever be recovered. Taking a bit of time on these matters can make a huge difference.

To the Moon*

Are you comfortable with how you’re managing and backing up your cryptocurrency wallets and keys? Do you have a suggestion for keeping your cryptocurrencies safe that we missed above? Please let us know in the comments.


*To the Moon — Crypto slang for a currency that reaches an optimistic price projection.

The post Securing Your Cryptocurrency appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Bell/TSN Letter to University Connects Site-Blocking Support to Students’ Futures

Post Syndicated from Andy original https://torrentfreak.com/bell-tsn-letter-to-university-connects-site-blocking-support-to-students-futures-180510/

In January, a coalition of Canadian companies called on local telecoms regulator CRTC to implement a website-blocking regime in Canada.

The coalition, Fairplay Canada, is a collection of organizations and companies with ties to the entertainment industries and includes Bell, Cineplex, Directors Guild of Canada, Maple Leaf Sports and Entertainment, Movie Theatre Association of Canada, and Rogers Media. Its stated aim is to address Canada’s online piracy problems.

While CTRC reviews FairPlay Canada’s plans, the coalition has been seeking to drum up support for the blocking regime, encouraging a diverse range of supporters to send submissions endorsing the project. Of course, building a united front among like-minded groups is nothing out of the ordinary but a situation just uncovered by Canadian law Professor Micheal Geist, one of the most vocal opponents of the proposed scheme, is bound to raise eyebrows.

Geist discovered a submission by Brian Hutchings, who works as Vice-President, Administration at Brock University in Ontario. Dated March 22, 2018, it notes that one of the university’s most sought-after programs is Sports Management, which helps Brock’s students to become “the lifeblood” of Canada’s sport and entertainment industries.

“Our University is deeply alarmed at how piracy is eroding an industry that employs so many of our co-op students and graduates. Piracy is a serious, pervasive threat that steals creativity, undermines investment in content development and threatens the survival of an industry that is also part of our national identity,” the submission reads.

“Brock ardently supports the FairPlay Canada coalition of more than 25 organizations involved in every aspect of Canada’s film, TV, radio, sports entertainment and music industries. Specifically, we support the coalition’s request that the CRTC introduce rules that would disable access in Canada to the most egregious piracy sites, similar to measures that have been taken in the UK, France and Australia. We are committed to assist the members of the coalition and the CRTC in eliminating the theft of digital content.”

The letter leaves no doubt that Brock University as a whole stands side-by-side with Fairplay Canada but according to a subsequent submission signed by Michelle Webber, President, Brock University Faculty Association (BUFA), nothing could be further from the truth.

Noting that BUFA unanimously supports the position of the Canadian Association of University Teachers which opposes the FairPlay proposal, Webber adds that BUFA stands in opposition to the submission by Brian Hutchings on behalf of Brock University.

“Vice President Hutching’s intervention was undertaken without consultation with the wider Brock University community, including faculty, librarians, and Senate; therefore, his submission should not be seen as indicative of the views of Brock University as a whole.”

BUFA goes on to stress the importance of an open Internet to researchers and educators while raising concerns that the blocking proposals could threaten the principles of net neutrality in Canada.

While the undermining of Hutching’s position is embarrassing enough, via access to information laws Geist has also been able to reveal the chain of events that prompted the Vice-President to write a letter of support on behalf of the whole university.

It began with an email sent by former Brock professor Cheri Bradish to Mark Milliere, TSN’s Senior Vice President and General Manager, with Hutchings copied in. The idea was to connect the pair, with the suggestion that supporting the site-blocking plan would help to mitigate the threat to “future work options” for students.

What followed was a direct email from Mark Milliere to Brian Hutchings, in which the former laid out the contributions his company makes to the university, while again suggesting that support for site-blocking would be in the long-term interests of students seeking employment in the industry.

On March 23, Milliere wrote to Hutchings again, thanking him for “a terrific letter” and stating that “If you need anything from TSN, just ask.”

This isn’t the first time that Bell has asked those beholden to the company to support its site-blocking plans.

Back in February it was revealed that the company had asked its own employees to participate in the site-blocking submission process, without necessarily revealing their affiliations with the company.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

Ray Ozzie’s Encryption Backdoor

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/05/ray_ozzies_encr.html

Last month, Wired published a long article about Ray Ozzie and his supposed new scheme for adding a backdoor in encrypted devices. It’s a weird article. It paints Ozzie’s proposal as something that “attains the impossible” and “satisfies both law enforcement and privacy purists,” when (1) it’s barely a proposal, and (2) it’s essentially the same key escrow scheme we’ve been hearing about for decades.

Basically, each device has a unique public/private key pair and a secure processor. The public key goes into the processor and the device, and is used to encrypt whatever user key encrypts the data. The private key is stored in a secure database, available to law enforcement on demand. The only other trick is that for law enforcement to use that key, they have to put the device in some sort of irreversible recovery mode, which means it can never be used again. That’s basically it.

I have no idea why anyone is talking as if this were anything new. Several cryptographers have already explained why this key escrow scheme is no better than any other key escrow scheme. The short answer is (1) we won’t be able to secure that database of backdoor keys, (2) we don’t know how to build the secure coprocessor the scheme requires, and (3) it solves none of the policy problems around the whole system. This is the typical mistake non-cryptographers make when they approach this problem: they think that the hard part is the cryptography to create the backdoor. That’s actually the easy part. The hard part is ensuring that it’s only used by the good guys, and there’s nothing in Ozzie’s proposal that addresses any of that.

I worry that this kind of thing is damaging in the long run. There should be some rule that any backdoor or key escrow proposal be a fully specified proposal, not just some cryptography and hand-waving notions about how it will be used in practice. And before it is analyzed and debated, it should have to satisfy some sort of basic security analysis. Otherwise, we’ll be swatting pseudo-proposals like this one, while those on the other side of this debate become increasingly convinced that it’s possible to design one of these things securely.

Already people are using the National Academies report on backdoors for law enforcement as evidence that engineers are developing workable and secure backdoors. Writing in Lawfare, Alan Z. Rozenshtein claims that the report — and a related New York Times story — “undermine the argument that secure third-party access systems are so implausible that it’s not even worth trying to develop them.” Susan Landau effectively corrects this misconception, but the damage is done.

Here’s the thing: it’s not hard to design and build a backdoor. What’s hard is building the systems — both technical and procedural — around them. Here’s Rob Graham:

He’s only solving the part we already know how to solve. He’s deliberately ignoring the stuff we don’t know how to solve. We know how to make backdoors, we just don’t know how to secure them.

A bunch of us cryptographers have already explained why we don’t think this sort of thing will work in the foreseeable future. We write:

Exceptional access would force Internet system developers to reverse “forward secrecy” design practices that seek to minimize the impact on user privacy when systems are breached. The complexity of today’s Internet environment, with millions of apps and globally connected services, means that new law enforcement requirements are likely to introduce unanticipated, hard to detect security flaws. Beyond these and other technical vulnerabilities, the prospect of globally deployed exceptional access systems raises difficult problems about how such an environment would be governed and how to ensure that such systems would respect human rights and the rule of law.

Finally, Matthew Green:

The reason so few of us are willing to bet on massive-scale key escrow systems is that we’ve thought about it and we don’t think it will work. We’ve looked at the threat model, the usage model, and the quality of hardware and software that exists today. Our informed opinion is that there’s no detection system for key theft, there’s no renewability system, HSMs are terrifically vulnerable (and the companies largely staffed with ex-intelligence employees), and insiders can be suborned. We’re not going to put the data of a few billion people on the line an environment where we believe with high probability that the system will fail.

EDITED TO ADD (5/14): An analysis of the proposal.

Video Deters People From Pirate Sites…Or Encourages Them to Start One?

Post Syndicated from Andy original https://torrentfreak.com/video-deters-people-from-pirate-sites-or-encourages-them-to-start-one-180505/

There are almost as many anti-piracy strategies as there are techniques for downloading.

Litigation and education are probably the two most likely to be seen by the public, who are often directly targeted by the entertainment industries.

Over the years this has led to many campaigns, one of which famously stated that piracy is a crime while equating it to the physical theft of a car, a handbag, a television, or a regular movie DVD. It’s debatable whether these campaigns have made much difference but they have raised awareness and some of the responses have been hilarious.

While success remains hard to measure, it hasn’t stopped these PSAs from being made. The latest efforts come out of Sweden, where the country’s Patent and Registration Office (PRV) was commissioned by the government to increase public awareness of copyright and help change attitudes surrounding streaming and illegal downloading.

“The purpose is, among other things, to reduce the use of illegal streaming sites and make it easier and safer to find and choose legal options,” PRV says.

“Every year, criminal networks earn millions of dollars from illegal streaming. This money comes from advertising on illegal sites and is used for other criminal activities. The purpose of our film is to inform about this.”

The series of videos show pirates in their supposed natural habitats of beautiful mansions, packed with luxurious items such as indoor pools, fancy staircases, and stacks of money. For some reason (perhaps to depict anonymity, perhaps to suggest something more sinister) the pirates are all dressed in animal masks, such as this one enjoying his Dodge Viper.

The clear suggestion here is that people who visit pirate sites and stream unlicensed content are helping to pay for this guy’s bright green car. The same holds true for his indoor swimming pool, jet bike, and gold chains in the next clip.

While some might have a problem with pirates getting rich from their clicks, it can’t have escaped the targets of these videos that they too are benefiting from the scheme. Granted, hyena-man gets the pool and the Viper, but they get the latest movies. It seems unlikely that pirate streamers refused to watch the copy of Black Panther that leaked onto the web this week (a month before its retail release) on the basis that someone else was getting rich from it.

That being said, most people will probably balk at elements of the full PSA, which suggests that revenue from illegal streaming goes on to fuel other crimes, such as prescription drug offenses.

After reporting piracy cases for more than twelve years, no one at TF has ever seen evidence of this happening with any torrent or streaming site operators. Still, it makes good drama for the full video, embedded below.

“In the film we follow a fictional occupational criminal who gives us a tour of his beautiful villa. He proudly shows up his multi-criminal activity, which was made possible by means of advertising money from his illegal streaming services,” PRV explains.

The dark tone and creepy masks are bound to put some people off but one has to question the effect this kind of video could have on younger people. Do pirates really make mountains of money so huge that they can only be counted by machine? If they do, then it’s a lot less risky than almost any other crime that yields this claimed level of profit.

With that in mind, will this video deter the public or simply encourage people to get involved for some of that big money? We sent a link to the operator of a large pirate site for his considered opinion.

“WTF,” he responded.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

User Authentication Best Practices Checklist

Post Syndicated from Bozho original https://techblog.bozho.net/user-authentication-best-practices-checklist/

User authentication is the functionality that every web application shared. We should have perfected that a long time ago, having implemented it so many times. And yet there are so many mistakes made all the time.

Part of the reason for that is that the list of things that can go wrong is long. You can store passwords incorrectly, you can have a vulnerably password reset functionality, you can expose your session to a CSRF attack, your session can be hijacked, etc. So I’ll try to compile a list of best practices regarding user authentication. OWASP top 10 is always something you should read, every year. But that might not be enough.

So, let’s start. I’ll try to be concise, but I’ll include as much of the related pitfalls as I can cover – e.g. what could go wrong with the user session after they login:

  • Store passwords with bcrypt/scrypt/PBKDF2. No MD5 or SHA, as they are not good for password storing. Long salt (per user) is mandatory (the aforementioned algorithms have it built in). If you don’t and someone gets hold of your database, they’ll be able to extract the passwords of all your users. And then try these passwords on other websites.
  • Use HTTPS. Period. (Otherwise user credentials can leak through unprotected networks). Force HTTPS if user opens a plain-text version.
  • Mark cookies as secure. Makes cookie theft harder.
  • Use CSRF protection (e.g. CSRF one-time tokens that are verified with each request). Frameworks have such functionality built-in.
  • Disallow framing (X-Frame-Options: DENY). Otherwise your website may be included in another website in a hidden iframe and “abused” through javascript.
  • Have a same-origin policy
  • Logout – let your users logout by deleting all cookies and invalidating the session. This makes usage of shared computers safer (yes, users should ideally use private browsing sessions, but not all of them are that savvy)
  • Session expiry – don’t have forever-lasting sessions. If the user closes your website, their session should expire after a while. “A while” may still be a big number depending on the service provided. For ajax-heavy website you can have regular ajax-polling that keeps the session alive while the page stays open.
  • Remember me – implementing “remember me” (on this machine) functionality is actually hard due to the risks of a stolen persistent cookie. Spring-security uses this approach, which I think should be followed if you wish to implement more persistent logins.
  • Forgotten password flow – the forgotten password flow should rely on sending a one-time (or expiring) link to the user and asking for a new password when it’s opened. 0Auth explain it in this post and Postmark gives some best pracitces. How the link is formed is a separate discussion and there are several approaches. Store a password-reset token in the user profile table and then send it as parameter in the link. Or do not store anything in the database, but send a few params: userId:expiresTimestamp:hmac(userId+expiresTimestamp). That way you have expiring links (rather than one-time links). The HMAC relies on a secret key, so the links can’t be spoofed. It seems there’s no consensus, as the OWASP guide has a bit different approach
  • One-time login links – this is an option used by Slack, which sends one-time login links instead of asking users for passwords. It relies on the fact that your email is well guarded and you have access to it all the time. If your service is not accessed to often, you can have that approach instead of (rather than in addition to) passwords.
  • Limit login attempts – brute-force through a web UI should not be possible; therefore you should block login attempts if they become too many. One approach is to just block them based on IP. The other one is to block them based on account attempted. (Spring example here). Which one is better – I don’t know. Both can actually be combined. Instead of fully blocking the attempts, you may add a captcha after, say, the 5th attempt. But don’t add the captcha for the first attempt – it is bad user experience.
  • Don’t leak information through error messages – you shouldn’t allow attackers to figure out if an email is registered or not. If an email is not found, upon login report just “Incorrect credentials”. On passwords reset, it may be something like “If your email is registered, you should have received a password reset email”. This is often at odds with usability – people don’t often remember the email they used to register, and the ability to check a number of them before getting in might be important. So this rule is not absolute, though it’s desirable, especially for more critical systems.
  • Make sure you use JWT only if it’s really necessary and be careful of the pitfalls.
  • Consider using a 3rd party authentication – OpenID Connect, OAuth by Google/Facebook/Twitter (but be careful with OAuth flaws as well). There’s an associated risk with relying on a 3rd party identity provider, and you still have to manage cookies, logout, etc., but some of the authentication aspects are simplified.
  • For high-risk or sensitive applications use 2-factor authentication. There’s a caveat with Google Authenticator though – if you lose your phone, you lose your accounts (unless there’s a manual process to restore it). That’s why Authy seems like a good solution for storing 2FA keys.

I’m sure I’m missing something. And you see it’s complicated. Sadly we’re still at the point where the most common functionality – authenticating users – is so tricky and cumbersome, that you almost always get at least some of it wrong.

The post User Authentication Best Practices Checklist appeared first on Bozho's tech blog.

Tracing Stolen Bitcoin

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/03/tracing_stolen_.html

Ross Anderson has a really interesting paper on tracing stolen bitcoin. From a blog post:

Previous attempts to track tainted coins had used either the “poison” or the “haircut” method. Suppose I open a new address and pay into it three stolen bitcoin followed by seven freshly-mined ones. Then under poison, the output is ten stolen bitcoin, while under haircut it’s ten bitcoin that are marked 30% stolen. After thousands of blocks, poison tainting will blacklist millions of addresses, while with haircut the taint gets diffused, so neither is very effective at tracking stolen property. Bitcoin due-diligence services supplant haircut taint tracking with AI/ML, but the results are still not satisfactory.

We discovered that, back in 1816, the High Court had to tackle this problem in Clayton’s case, which involved the assets and liabilities of a bank that had gone bust. The court ruled that money must be tracked through accounts on the basis of first-in, first out (FIFO); the first penny into an account goes to satisfy the first withdrawal, and so on.

Ilia Shumailov has written software that applies FIFO tainting to the blockchain and the results are impressive, with a massive improvement in precision. What’s more, FIFO taint tracking is lossless, unlike haircut; so in addition to tracking a stolen coin forward to find where it’s gone, you can start with any UTXO and trace it backwards to see its entire ancestry. It’s not just good law; it’s good computer science too.

Jackpotting Attacks Against US ATMs

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/02/jackpotting_att.html

Brian Krebs is reporting sophisticated jackpotting attacks against US ATMs. The attacker gains physical access to the ATM, plants malware using specialized electronics, and then later returns and forces the machine to dispense all the cash it has inside.

The Secret Service alert explains that the attackers typically use an endoscope — a slender, flexible instrument traditionally used in medicine to give physicians a look inside the human body — to locate the internal portion of the cash machine where they can attach a cord that allows them to sync their laptop with the ATM’s computer.

“Once this is complete, the ATM is controlled by the fraudsters and the ATM will appear Out of Service to potential customers,” reads the confidential Secret Service alert.

At this point, the crook(s) installing the malware will contact co-conspirators who can remotely control the ATMs and force the machines to dispense cash.

“In previous Ploutus.D attacks, the ATM continuously dispensed at a rate of 40 bills every 23 seconds,” the alert continues. Once the dispense cycle starts, the only way to stop it is to press cancel on the keypad. Otherwise, the machine is completely emptied of cash, according to the alert.

Lots of details in the article.

Man-in-the-Middle Attack against Electronic Car-Door Openers

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/11/man-in-the-midd_8.html

This is an interesting tactic, and there’s a video of it being used:

The theft took just one minute and the Mercedes car, stolen from the Elmdon area of Solihull on 24 September, has not been recovered.

In the footage, one of the men can be seen waving a box in front of the victim’s house.

The device receives a signal from the key inside and transmits it to the second box next to the car.

The car’s systems are then tricked into thinking the key is present and it unlocks, before the ignition can be started.

Uber Data Hack

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/11/uber_data_hack.html

Uber was hacked, losing data on 57 million driver and rider accounts. The company kept it quiet for over a year. The details are particularly damning:

The two hackers stole data about the company’s riders and drivers ­– including phone numbers, email addresses and names — from a third-party server and then approached Uber and demanded $100,000 to delete their copy of the data, the employees said.

Uber acquiesced to the demands, and then went further. The company tracked down the hackers and pushed them to sign nondisclosure agreements, according to the people familiar with the matter. To further conceal the damage, Uber executives also made it appear as if the payout had been part of a “bug bounty” — a common practice among technology companies in which they pay hackers to attack their software to test for soft spots.

And almost certainly illegal:

While it is not illegal to pay money to hackers, Uber may have violated several laws in its interaction with them.

By demanding that the hackers destroy the stolen data, Uber may have violated a Federal Trade Commission rule on breach disclosure that prohibits companies from destroying any forensic evidence in the course of their investigation.

The company may have also violated state breach disclosure laws by not disclosing the theft of Uber drivers’ stolen data. If the data stolen was not encrypted, Uber would have been required by California state law to disclose that driver’s license data from its drivers had been stolen in the course of the hacking.

Uber was hacked, losing data on 57 million driver and rider accounts. They kept it quiet for over a year. The details are particularly damning:

The two hackers stole data about the company’s riders and drivers ­- including phone numbers, email addresses and names -­ from a third-party server and then approached Uber and demanded $100,000 to delete their copy of the data, the employees said.

Uber acquiesced to the demands, and then went further. The company tracked down the hackers and pushed them to sign nondisclosure agreements, according to the people familiar with the matter. To further conceal the damage, Uber executives also made it appear as if the payout had been part of a “bug bounty” ­- a common practice among technology companies in which they pay hackers to attack their software to test for soft spots.

And almost certainly illegal:

While it is not illegal to pay money to hackers, Uber may have violated several laws in its interaction with them.

By demanding that the hackers destroy the stolen data, Uber may have violated a Federal Trade Commission rule on breach disclosure that prohibits companies from destroying any forensic evidence in the course of their investigation.

The company may have also violated state breach disclosure laws by not disclosing the theft of Uber drivers’ stolen data. If the data stolen was not encrypted, Uber would have been required by California state law to disclose that driver’s license data from its drivers had been stolen in the course of the hacking.

Google’s Data on Login Thefts

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/11/googles_data_on.html

This is interesting research and data:

With Google accounts as a case-study, we teamed up with the University of California, Berkeley to better understand how hijackers attempt to take over accounts in the wild. From March 2016 to March 2017, we analyzed several black markets to see how hijackers steal passwords and other sensitive data.

[…]

Our research tracked several black markets that traded third-party password breaches, as well as 25,000 blackhat tools used for phishing and keylogging. In total, these sources helped us identify 788,000 credentials stolen via keyloggers, 12 million credentials stolen via phishing, and 3.3 billion credentials exposed by third-party breaches.

The report.