Tag Archives: databases

Blizzard Targets Fan-Created ‘World of Warcraft’ Legacy Server

Post Syndicated from Ernesto original https://torrentfreak.com/blizzard-targets-fan-created-world-of-warcraft-legacy-server-180203/

Over the years video game developer Blizzard Entertainment has published many popular game titles, including World of Warcraft (WoW).

First released in 2004, the multiplayer online role-playing game has been a massive success. It holds the record for the most popular MMORPG in history, with over 100 million subscribers.

While the current game looks entirely different from its first release, there are many nostalgic gamers who still enjoy the earlier editions. Unfortunately, however, they can’t play them. At least not legally.

The only option WoW fans have is to go to unauthorized fan projects which recreate the early gaming experience, such as Light’s Hope.

“We are what’s known as a ‘Legacy Server’ project for World of Warcraft, which seeks to emulate the experience of playing the game in its earliest iterations, including advancing through early expansions,” the project explains.

“If you’ve ever wanted to see what World of Warcraft was like back in 2004 then this is the place to be. Our goal is to maintain the same feel and structure as the realms back then while maintaining an open platform for development and operation.”

In recent years the project has captured the hearts of tens of thousands of die-hard WoW fans. At the time of writing, the most popular realm has more than 6,000 people playing from all over the world. Blizzard, however, is less excited.

The company has asked the developer platform GitHub to remove the code repository published by Light’s Hope. Blizzard’s notice targets several SQL databases stating that the layout and structure is nearly identical to the early WoW databases.

“The LightsHope spell table has identical layout and typically identical field names as the table from early WoW. We use database tables to represent game data, like spells, in WoW,” Blizzard writes.

“In our code, we use .sql files to represent the data layout of each table […]. MaNGOS, the platform off of which Light’s Hope appears to be built, uses a similar structure. The LightsHope spell_template table matches almost exactly the layout and field names of early WoW client database tables.”

This takedown notice had some effect, as people now see a “repository unavailable due to DMCA takedown” message when they access it in their browser.

While this may slow down development temporarily, it appears that the server itself is still running just fine. There were some downtime reports earlier this week, but it’s unknown whether that was related.

In addition to the GitHub repository, the official Twitter account was also suspended recently.

TorrentFreak contacted both Blizzard and Light’s Hope earlier this week for a comment on the situation. At the time of publication, we haven’t heard back.

Blizzard’s takedown notice comes just weeks after several organizations and gaming fans asked the US Copyright Office to make a DMCA circumvention exemption for “abandoned” games, including older versions of popular MMORPGs.

While it’s possible that such an exemption is granted in the future, it’s unlikely to apply to the public at large. The more likely scenario is that it would permit libraries, researchers, and museums to operate servers for these abandoned games.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

After Section 702 Reauthorization

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/01/after_section_7.html

For over a decade, civil libertarians have been fighting government mass surveillance of innocent Americans over the Internet. We’ve just lost an important battle. On January 18, President Trump signed the renewal of Section 702, domestic mass surveillance became effectively a permanent part of US law.

Section 702 was initially passed in 2008, as an amendment to the Foreign Intelligence Surveillance Act of 1978. As the title of that law says, it was billed as a way for the NSA to spy on non-Americans located outside the United States. It was supposed to be an efficiency and cost-saving measure: the NSA was already permitted to tap communications cables located outside the country, and it was already permitted to tap communications cables from one foreign country to another that passed through the United States. Section 702 allowed it to tap those cables from inside the United States, where it was easier. It also allowed the NSA to request surveillance data directly from Internet companies under a program called PRISM.

The problem is that this authority also gave the NSA the ability to collect foreign communications and data in a way that inherently and intentionally also swept up Americans’ communications as well, without a warrant. Other law enforcement agencies are allowed to ask the NSA to search those communications, give their contents to the FBI and other agencies and then lie about their origins in court.

In 1978, after Watergate had revealed the Nixon administration’s abuses of power, we erected a wall between intelligence and law enforcement that prevented precisely this kind of sharing of surveillance data under any authority less restrictive than the Fourth Amendment. Weakening that wall is incredibly dangerous, and the NSA should never have been given this authority in the first place.

Arguably, it never was. The NSA had been doing this type of surveillance illegally for years, something that was first made public in 2006. Section 702 was secretly used as a way to paper over that illegal collection, but nothing in the text of the later amendment gives the NSA this authority. We didn’t know that the NSA was using this law as the statutory basis for this surveillance until Edward Snowden showed us in 2013.

Civil libertarians have been battling this law in both Congress and the courts ever since it was proposed, and the NSA’s domestic surveillance activities even longer. What this most recent vote tells me is that we’ve lost that fight.

Section 702 was passed under George W. Bush in 2008, reauthorized under Barack Obama in 2012, and now reauthorized again under Trump. In all three cases, congressional support was bipartisan. It has survived multiple lawsuits by the Electronic Frontier Foundation, the ACLU, and others. It has survived the revelations by Snowden that it was being used far more extensively than Congress or the public believed, and numerous public reports of violations of the law. It has even survived Trump’s belief that he was being personally spied on by the intelligence community, as well as any congressional fears that Trump could abuse the authority in the coming years. And though this extension lasts only six years, it’s inconceivable to me that it will ever be repealed at this point.

So what do we do? If we can’t fight this particular statutory authority, where’s the new front on surveillance? There are, it turns out, reasonable modifications that target surveillance more generally, and not in terms of any particular statutory authority. We need to look at US surveillance law more generally.

First, we need to strengthen the minimization procedures to limit incidental collection. Since the Internet was developed, all the world’s communications travel around in a single global network. It’s impossible to collect only foreign communications, because they’re invariably mixed in with domestic communications. This is called “incidental” collection, but that’s a misleading name. It’s collected knowingly, and searched regularly. The intelligence community needs much stronger restrictions on which American communications channels it can access without a court order, and rules that require they delete the data if they inadvertently collect it. More importantly, “collection” is defined as the point the NSA takes a copy of the communications, and not later when they search their databases.

Second, we need to limit how other law enforcement agencies can use incidentally collected information. Today, those agencies can query a database of incidental collection on Americans. The NSA can legally pass information to those other agencies. This has to stop. Data collected by the NSA under its foreign surveillance authority should not be used as a vehicle for domestic surveillance.

The most recent reauthorization modified this lightly, forcing the FBI to obtain a court order when querying the 702 data for a criminal investigation. There are still exceptions and loopholes, though.

Third, we need to end what’s called “parallel construction.” Today, when a law enforcement agency uses evidence found in this NSA database to arrest someone, it doesn’t have to disclose that fact in court. It can reconstruct the evidence in some other manner once it knows about it, and then pretend it learned of it that way. This right to lie to the judge and the defense is corrosive to liberty, and it must end.

Pressure to reform the NSA will probably first come from Europe. Already, European Union courts have pointed to warrantless NSA surveillance as a reason to keep Europeans’ data out of US hands. Right now, there is a fragile agreement between the EU and the United States ­– called “Privacy Shield” — ­that requires Americans to maintain certain safeguards for international data flows. NSA surveillance goes against that, and it’s only a matter of time before EU courts start ruling this way. That’ll have significant effects on both government and corporate surveillance of Europeans and, by extension, the entire world.

Further pressure will come from the increased surveillance coming from the Internet of Things. When your home, car, and body are awash in sensors, privacy from both governments and corporations will become increasingly important. Sooner or later, society will reach a tipping point where it’s all too much. When that happens, we’re going to see significant pushback against surveillance of all kinds. That’s when we’ll get new laws that revise all government authorities in this area: a clean sweep for a new world, one with new norms and new fears.

It’s possible that a federal court will rule on Section 702. Although there have been many lawsuits challenging the legality of what the NSA is doing and the constitutionality of the 702 program, no court has ever ruled on those questions. The Bush and Obama administrations successfully argued that defendants don’t have legal standing to sue. That is, they have no right to sue because they don’t know they’re being targeted. If any of the lawsuits can get past that, things might change dramatically.

Meanwhile, much of this is the responsibility of the tech sector. This problem exists primarily because Internet companies collect and retain so much personal data and allow it to be sent across the network with minimal security. Since the government has abdicated its responsibility to protect our privacy and security, these companies need to step up: Minimize data collection. Don’t save data longer than absolutely necessary. Encrypt what has to be saved. Well-designed Internet services will safeguard users, regardless of government surveillance authority.

For the rest of us concerned about this, it’s important not to give up hope. Everything we do to keep the issue in the public eye ­– and not just when the authority comes up for reauthorization again in 2024 — hastens the day when we will reaffirm our rights to privacy in the digital age.

This essay previously appeared in the Washington Post.

When You Have A Blockchain, Everything Looks Like a Nail

Post Syndicated from Bozho original https://techblog.bozho.net/blockchain-everything-looks-like-nail/

Blockchain, AI, big data, NoSQL, microservices, single page applications, cloud, SOA. What do these have in common? They have been or are hyped. At some point they were “the big thing” du jour. Everyone was investigating the possibility of using them, everyone was talking about them, there were meetups, conferences, articles on Hacker news and reddit. There are more examples, of course (which is the javascript framework this month?) but I’ll focus my examples on those above.

Another thing they have in common is that they are useful. All of them have some pretty good applications that are definitely worth the time and investment.

Yet another thing they have in common is that they are far from universally applicable. I’ve argued that monoliths are often still the better approach and that microservices introduce too much complexity for the average project. Big Data is something very few organizations actually have; AI/machine learning can help a wide variety of problems, but it is just a tool in a toolbox, not the solution to all problems. Single page applications are great for, yeah, applications, but most websites are still websites, not feature-rich frontends – you don’t need an SPA for every type of website. NoSQL has solved niche issues, and issues of scale that few companies have had, but nothing beats a good old relational database for the typical project out there. “The cloud” is not always where you want your software to be; and SOA just means everything (ESBs, direct integrations, even microservices, according to some). And the blockchain – it seems to be having limited success beyond cryptocurrencies.

And finally, another trait many of them share is that the hype has settled down. Only yesterday I read an article about the “death of the microservices madness”. I don’t see nearly as many new NoSQL databases as a few years ago, some of the projects that have been popular have faded. SOA and “the cloud” are already “boring”, and we’ve realized we don’t actually have big data if it fits in an Excel spreadsheet. SPAs and AI are still high in popularity, but we are getting a good understanding as a community why and when they are useful.

But it seems that nuanced reality has never stopped us from hyping a particular technology or approach. And maybe that’s okay in order to get a promising, though niche, technology, the spotlight and let it shine in the particular usecases where it fits.

But countless projects have and will suffer from our collective inability to filter through these hypes. I’d bet millions of developer hours have been wasted in trying to use the above technologies where they just didn’t fit. It’s like that scene from Idiocracy where a guy tries to fit a rectangular figure into a circular hole.

And the new one is not “the blockchain”. I won’t repeat my rant, but in summary – it doesn’t solve many of the problems companies are trying to solve with it right now just because it’s cool. Or at least it doesn’t solve them better than existing solutions. Many pilots will be carried out, many hours will be wasted in figuring out why that thing doesn’t work. A few of those projects will be a good fit and will actually bring value.

Do you need to reach multi-party consensus for the data you store? Can all stakeholder support the infrastructure to run their node(s)? Do they have the staff to administer the node(s)? Do you need to execute distributed application code on the data? Won’t it be easier to just deploy RESTful APIs and integrate the parties through that? Do you need to store all the data, or just parts of it, to guarantee data integrity?

“If you have is a hammer, everything looks like a nail” as the famous saying goes. In the software industry we repeatedly find new and cool hammers and then try to hit as many nails as we can. But only few of them are actual nails. The rest remain ugly, hard to support, “who was the idiot that wrote this” and “I wasn’t here when the decisions were made” types of projects.

I don’t have the illusion that we will calm down and skip the next hypes. Especially if adding the hyped word to your company raises your stock price. But if there’s one thing I’d like people to ask themselves when choosing a technology stack, it is “do we really need that to solve our problems?”.

If the answer is really “yes”, then great, go ahead and deploy the multi-organization permissioned blockchain, or fork Ethereum, or whatever. If not, you can still do a project a home that you can safely abandon. And if you need some pilot project to figure out whether the new piece of technology would be beneficial – go ahead and try it. But have a baseline – the fact that it somehow worked doesn’t mean it’s better than old, tested models of doing the same thing.

The post When You Have A Blockchain, Everything Looks Like a Nail appeared first on Bozho's tech blog.

Amazon Web Services Is the First Global Cloud Service Provider to Achieve the Korea-Information Security Management System Certification

Post Syndicated from Oliver Bell original https://aws.amazon.com/blogs/security/amazon-web-services-is-the-first-global-cloud-service-provider-to-achieve-the-korea-information-security-management-system-certification/

Scope of certification: Operation of infrastructure in the AWS Asia Pacific (Seoul) Region
Period of validity: December 27, 2017, through December 26, 2020

Amazon Web Services (AWS) has achieved the Korea-Information Security Management System (K-ISMS) Certification. The Korea Internet and Security Agency (KISA) completed its assessment of AWS, which covered the operation of infrastructure (such as compute, storage, networking, databases, and security) in the Asia Pacific (Seoul) Region. AWS is the first global cloud service provider to earn this status in Korea.

Sponsored by KISA and affiliated with the Korean Ministry of Science and ICT (MSIT), K-ISMS serves as a standard for evaluating whether enterprises and organizations operate and manage their information security management systems consistently and securely such that they thoroughly protect their information assets. The K-ISMS certification assessment covers 104 criteria, including 12 control items in 5 sectors for information security management, and 92 control items in 13 sectors for information security countermeasures.

With this certification, enterprises and organizations across Korea can meet KISA compliance requirements more effectively. Achieving this certification demonstrates the proactive approach AWS has taken with regard to driving compliance with the Korean government’s requirements and delivering secure AWS services to Korean customers. Enterprises and organizations in Korea that need the K-ISMS certification can use the work that AWS has done to reduce the time and cost of getting their own certification.

– Oliver

Cloud Babble: The Jargon of Cloud Storage

Post Syndicated from Andy Klein original https://www.backblaze.com/blog/what-is-cloud-computing/

Cloud Babble

One of the things we in the technology business are good at is coming up with names, phrases, euphemisms, and acronyms for the stuff that we create. The Cloud Storage market is no different, and we’d like to help by illuminating some of the cloud storage related terms that you might come across. We know this is just a start, so please feel free to add in your favorites in the comments section below and we’ll update this post accordingly.

Clouds

The cloud is really just a collection of purpose built servers. In a public cloud the servers are shared between multiple unrelated tenants. In a private cloud, the servers are dedicated to a single tenant or sometimes a group of related tenants. A public cloud is off-site, while a private cloud can be on-site or off-site – or on-prem or off-prem, if you prefer.

Both Sides Now: Hybrid Clouds

Speaking of on-prem and off-prem, there are Hybrid Clouds or Hybrid Data Clouds depending on what you need. Both are based on the idea that you extend your local resources (typically on-prem) to the cloud (typically off-prem) as needed. This extension is controlled by software that decides, based on rules you define, what needs to be done where.

A Hybrid Data Cloud is specific to data. For example, you can set up a rule that says all accounting files that have not been touched in the last year are automatically moved off-prem to cloud storage. The files are still available; they are just no longer stored on your local systems. The rules can be defined to fit an organization’s workflow and data retention policies.

A Hybrid Cloud is similar to a Hybrid Data Cloud except it also extends compute. For example, at the end of the quarter, you can spin up order processing application instances off-prem as needed to add to your on-prem capacity. Of course, determining where the transactional data used and created by these applications resides can be an interesting systems design challenge.

Clouds in my Coffee: Fog

Typically, public and private clouds live in large buildings called data centers. Full of servers, networking equipment, and clean air, data centers need lots of power, lots of networking bandwidth, and lots of space. This often limits where data centers are located. The further away you are from a data center, the longer it generally takes to get your data to and from there. This is known as latency. That’s where “Fog” comes in.

Fog is often referred to as clouds close to the ground. Fog, in our cloud world, is basically having a “little” data center near you. This can make data storage and even cloud based processing faster for everyone nearby. Data, and less so processing, can be transferred to/from the Fog to the Cloud when time is less a factor. Data could also be aggregated in the Fog and sent to the Cloud. For example, your electric meter could report its minute-by-minute status to the Fog for diagnostic purposes. Then once a day the aggregated data could be send to the power company’s Cloud for billing purposes.

Another term used in place of Fog is Edge, as in computing at the Edge. In either case, a given cloud (data center) usually has multiple Edges (little data centers) connected to it. The connection between the Edge and the Cloud is sometimes known as the middle-mile. The network in the middle-mile can be less robust than that required to support a stand-alone data center. For example, the middle-mile can use 1 Gbps lines, versus a data center, which would require multiple 10 Gbps lines.

Heavy Clouds No Rain: Data

We’re all aware that we are creating, processing, and storing data faster than ever before. All of this data is stored in either a structured or more likely an unstructured way. Databases and data warehouses are structured ways to store data, but a vast amount of data is unstructured – meaning the schema and data access requirements are not known until the data is queried. A large pool of unstructured data in a flat architecture can be referred to as a Data Lake.

A Data Lake is often created so we can perform some type of “big data” analysis. In an over simplified example, let’s extend the lake metaphor a bit and ask the question; “how many fish are in our lake?” To get an answer, we take a sufficient sample of our lake’s water (data), count the number of fish we find, and extrapolate based on the size of the lake to get an answer within a given confidence interval.

A Data Lake is usually found in the cloud, an excellent place to store large amounts of non-transactional data. Watch out as this can lead to our data having too much Data Gravity or being locked in the Hotel California. This could also create a Data Silo, thereby making a potential data Lift-and-Shift impossible. Let me explain:

  • Data Gravity — Generally, the more data you collect in one spot, the harder it is to move. When you store data in a public cloud, you have to pay egress and/or network charges to download the data to another public cloud or even to your own on-premise systems. Some public cloud vendors charge a lot more than others, meaning that depending on your public cloud provider, your data could financially have a lot more gravity than you expected.
  • Hotel California — This is like Data Gravity but to a lesser scale. Your data is in the Hotel California if, to paraphrase, “your data can check out any time you want, but it can never leave.” If the cost of downloading your data is limiting the things you want to do with that data, then your data is in the Hotel California. Data is generally most valuable when used, and with cloud storage that can include archived data. This assumes of course that the archived data is readily available, and affordable, to download. When considering a cloud storage project always figure in the cost of using your own data.
  • Data Silo — Over the years, businesses have suffered from organizational silos as information is not shared between different groups, but instead needs to travel up to the top of the silo before it can be transferred to another silo. If your data is “trapped” in a given cloud by the cost it takes to share such data, then you may have a Data Silo, and that’s exactly opposite of what the cloud should do.
  • Lift-and-Shift — This term is used to define the movement of data or applications from one data center to another or from on-prem to off-prem systems. The move generally occurs all at once and once everything is moved, systems are operational and data is available at the new location with few, if any, changes. If your data has too much gravity or is locked in a hotel, a data lift-and-shift may break the bank.

I Can See Clearly Now

Hopefully, the cloudy terms we’ve covered are well, less cloudy. As we mentioned in the beginning, our compilation is just a start, so please feel free to add in your favorite cloud term in the comments section below and we’ll update this post with your contributions. Keep your entries “clean,” and please no words or phrases that are really adverts for your company. Thanks.

The post Cloud Babble: The Jargon of Cloud Storage appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Scale Your Web Application — One Step at a Time

Post Syndicated from Saurabh Shrivastava original https://aws.amazon.com/blogs/architecture/scale-your-web-application-one-step-at-a-time/

I often encounter people experiencing frustration as they attempt to scale their e-commerce or WordPress site—particularly around the cost and complexity related to scaling. When I talk to customers about their scaling plans, they often mention phrases such as horizontal scaling and microservices, but usually people aren’t sure about how to dive in and effectively scale their sites.

Now let’s talk about different scaling options. For instance if your current workload is in a traditional data center, you can leverage the cloud for your on-premises solution. This way you can scale to achieve greater efficiency with less cost. It’s not necessary to set up a whole powerhouse to light a few bulbs. If your workload is already in the cloud, you can use one of the available out-of-the-box options.

Designing your API in microservices and adding horizontal scaling might seem like the best choice, unless your web application is already running in an on-premises environment and you’ll need to quickly scale it because of unexpected large spikes in web traffic.

So how to handle this situation? Take things one step at a time when scaling and you may find horizontal scaling isn’t the right choice, after all.

For example, assume you have a tech news website where you did an early-look review of an upcoming—and highly-anticipated—smartphone launch, which went viral. The review, a blog post on your website, includes both video and pictures. Comments are enabled for the post and readers can also rate it. For example, if your website is hosted on a traditional Linux with a LAMP stack, you may find yourself with immediate scaling problems.

Let’s get more details on the current scenario and dig out more:

  • Where are images and videos stored?
  • How many read/write requests are received per second? Per minute?
  • What is the level of security required?
  • Are these synchronous or asynchronous requests?

We’ll also want to consider the following if your website has a transactional load like e-commerce or banking:

How is the website handling sessions?

  • Do you have any compliance requests—like the Payment Card Industry Data Security Standard (PCI DSS compliance) —if your website is using its own payment gateway?
  • How are you recording customer behavior data and fulfilling your analytics needs?
  • What are your loading balancing considerations (scaling, caching, session maintenance, etc.)?

So, if we take this one step at a time:

Step 1: Ease server load. We need to quickly handle spikes in traffic, generated by activity on the blog post, so let’s reduce server load by moving image and video to some third -party content delivery network (CDN). AWS provides Amazon CloudFront as a CDN solution, which is highly scalable with built-in security to verify origin access identity and handle any DDoS attacks. CloudFront can direct traffic to your on-premises or cloud-hosted server with its 113 Points of Presence (102 Edge Locations and 11 Regional Edge Caches) in 56 cities across 24 countries, which provides efficient caching.
Step 2: Reduce read load by adding more read replicas. MySQL provides a nice mirror replication for databases. Oracle has its own Oracle plug for replication and AWS RDS provide up to five read replicas, which can span across the region and even the Amazon database Amazon Aurora can have 15 read replicas with Amazon Aurora autoscaling support. If a workload is highly variable, you should consider Amazon Aurora Serverless database  to achieve high efficiency and reduced cost. While most mirror technologies do asynchronous replication, AWS RDS can provide synchronous multi-AZ replication, which is good for disaster recovery but not for scalability. Asynchronous replication to mirror instance means replication data can sometimes be stale if network bandwidth is low, so you need to plan and design your application accordingly.

I recommend that you always use a read replica for any reporting needs and try to move non-critical GET services to read replica and reduce the load on the master database. In this case, loading comments associated with a blog can be fetched from a read replica—as it can handle some delay—in case there is any issue with asynchronous reflection.

Step 3: Reduce write requests. This can be achieved by introducing queue to process the asynchronous message. Amazon Simple Queue Service (Amazon SQS) is a highly-scalable queue, which can handle any kind of work-message load. You can process data, like rating and review; or calculate Deal Quality Score (DQS) using batch processing via an SQS queue. If your workload is in AWS, I recommend using a job-observer pattern by setting up Auto Scaling to automatically increase or decrease the number of batch servers, using the number of SQS messages, with Amazon CloudWatch, as the trigger.  For on-premises workloads, you can use SQS SDK to create an Amazon SQS queue that holds messages until they’re processed by your stack. Or you can use Amazon SNS  to fan out your message processing in parallel for different purposes like adding a watermark in an image, generating a thumbnail, etc.

Step 4: Introduce a more robust caching engine. You can use Amazon Elastic Cache for Memcached or Redis to reduce write requests. Memcached and Redis have different use cases so if you can afford to lose and recover your cache from your database, use Memcached. If you are looking for more robust data persistence and complex data structure, use Redis. In AWS, these are managed services, which means AWS takes care of the workload for you and you can also deploy them in your on-premises instances or use a hybrid approach.

Step 5: Scale your server. If there are still issues, it’s time to scale your server.  For the greatest cost-effectiveness and unlimited scalability, I suggest always using horizontal scaling. However, use cases like database vertical scaling may be a better choice until you are good with sharding; or use Amazon Aurora Serverless for variable workloads. It will be wise to use Auto Scaling to manage your workload effectively for horizontal scaling. Also, to achieve that, you need to persist the session. Amazon DynamoDB can handle session persistence across instances.

If your server is on premises, consider creating a multisite architecture, which will help you achieve quick scalability as required and provide a good disaster recovery solution.  You can pick and choose individual services like Amazon Route 53, AWS CloudFormation, Amazon SQS, Amazon SNS, Amazon RDS, etc. depending on your needs.

Your multisite architecture will look like the following diagram:

In this architecture, you can run your regular workload on premises, and use your AWS workload as required for scalability and disaster recovery. Using Route 53, you can direct a precise percentage of users to an AWS workload.

If you decide to move all of your workloads to AWS, the recommended multi-AZ architecture would look like the following:

In this architecture, you are using a multi-AZ distributed workload for high availability. You can have a multi-region setup and use Route53 to distribute your workload between AWS Regions. CloudFront helps you to scale and distribute static content via an S3 bucket and DynamoDB, maintaining your application state so that Auto Scaling can apply horizontal scaling without loss of session data. At the database layer, RDS with multi-AZ standby provides high availability and read replica helps achieve scalability.

This is a high-level strategy to help you think through the scalability of your workload by using AWS even if your workload in on premises and not in the cloud…yet.

I highly recommend creating a hybrid, multisite model by placing your on-premises environment replica in the public cloud like AWS Cloud, and using Amazon Route53 DNS Service and Elastic Load Balancing to route traffic between on-premises and cloud environments. AWS now supports load balancing between AWS and on-premises environments to help you scale your cloud environment quickly, whenever required, and reduce it further by applying Amazon auto-scaling and placing a threshold on your on-premises traffic using Route 53.

A Look Back At 2017 – Tools & News Highlights

Post Syndicated from Darknet original https://www.darknet.org.uk/2018/01/look-back-2017-tools-news-highlights/?utm_source=rss&utm_medium=social&utm_campaign=darknetfeed

A Look Back At 2017 – Tools & News Highlights

So here we are in 2018, taking a look back at 2017, quite a year it was. We somehow forgot to do this last year so just have the 2015 summary and the 2014 summary but no 2016 edition.

2017 News Stories

All kinds of things happened in 2017 starting with some pretty comical shit and the MongoDB Ransack – Over 33,000 Databases Hacked, I’ve personally had very poor experienced with MongoDB in general and I did notice the sloppy defaults (listen on all interfaces, no password) when I used it, I believe the defaults have been corrected – but I still don’t have a good impression of it.

Read the rest of A Look Back At 2017 – Tools & News Highlights now! Only available at Darknet.

Graphite 1.1: Teaching an Old Dog New Tricks

Post Syndicated from Blogs on Grafana Labs Blog original https://grafana.com/blog/2018/01/11/graphite-1.1-teaching-an-old-dog-new-tricks/

The Road to Graphite 1.1

I started working on Graphite just over a year ago, when @obfuscurity asked me to help out with some issues blocking the Graphite 1.0 release. Little did I know that a year later, that would have resulted in 262 commits (and counting), and that with the help of the other Graphite maintainers (especially @deniszh, @iksaif & @cbowman0) we would have added a huge amount of new functionality to Graphite.

There are a huge number of new additions and updates in this release, in this post I’ll give a tour of some of the highlights including tag support, syntax and function updates, custom function plugins, and python 3.x support.

Tagging!

The single biggest feature in this release is the addition of tag support, which brings the ability to describe metrics in a much richer way and to write more flexible and expressive queries.

Traditionally series in Graphite are identified using a hierarchical naming scheme based on dot-separated segments called nodes. This works very well and is simple to map into a hierarchical structure like the whisper filesystem tree, but it means that the user has to know what each segment represents, and makes it very difficult to modify or extend the naming scheme since everything is based on the positions of the segments within the hierarchy.

The tagging system gives users the ability to encode information about the series in a collection of tag=value pairs which are used together with the series name to uniquely identify each series, and the ability to query series by specifying tag-based matching expressions rather than constructing glob-style selectors based on the positions of specific segments within the hierarchy. This is broadly similar to the system used by Prometheus and makes it possible to use Graphite as a long-term storage backend for metrics gathered by Prometheus with full tag support.

When using tags, series names are specified using the new tagged carbon format: name;tag1=value1;tag2=value2. This format is backward compatible with most existing carbon tooling, and makes it easy to adapt existing tools to produce tagged metrics simply by changing the metric names. The OpenMetrics format is also supported for ingestion, and is normalized into the standard Graphite format internally.

At its core, the tagging system is implemented as a tag database (TagDB) alongside the metrics that allows them to be efficiently queried by individual tag values rather than having to traverse the metrics tree looking for series that match the specified query. Internally the tag index is stored in one of a number of pluggable tag databases, currently supported options are the internal graphite-web database, redis, or an external system that implements the Graphite tagging HTTP API. Carbon automatically keeps the index up to date with any tagged series seen.

The new seriesByTag function is used to query the TagDB and will return a list of all the series that match the expressions passed to it. seriesByTag supports both exact and regular expression matches, and can be used anywhere you would previously have specified a metric name or glob expression.

There are new dedicated functions for grouping and aliasing series by tag (groupByTags and aliasByTags), and you can also use tags interchangeably with node numbers in the standard Graphite functions like aliasByNode, groupByNodes, asPercent, mapSeries, etc.

Piping Syntax & Function Updates

One of the huge strengths of the Graphite render API is the ability to chain together multiple functions to process data, but until now (unless you were using a tool like Grafana) writing chained queries could be painful as each function had to be wrapped around the previous one. With this release it is now possible to “pipe” the output of one processing function into the next, and to combine piped and nested functions.

For example:

alias(movingAverage(scaleToSeconds(sumSeries(stats_global.production.counters.api.requests.*.count),60),30),'api.avg')

Can now be written as:

sumSeries(stats_global.production.counters.api.requests.*.count)|scaleToSeconds(60)|movingAverage(30)|alias('api.avg')

OR

stats_global.production.counters.api.requests.*.count|sumSeries()|scaleToSeconds(60)|movingAverage(30)|alias('api.avg')

Another source of frustration with the old function API was the inconsistent implementation of aggregations, with different functions being used in different parts of the API, and some functions simply not being available. In 1.1 all functions that perform aggregation (whether across series or across time intervals) now support a consistent set of aggregations; average, median, sum, min, max, diff, stddev, count, range, multiply and last. This is part of a new approach to implementing functions that emphasises using shared building blocks to ensure consistency across the API and solve the problem of a particular function not working with the aggregation needed for a given task.

To that end a number of new functions have been added that each provide the same functionality as an entire family of “old” functions; aggregate, aggregateWithWildcards, movingWindow, filterSeries, highest, lowest and sortBy.

Each of these functions accepts an aggregation method parameter, for example aggregate(some.metric.*, 'sum') implements the same functionality as sumSeries(some.metric.*).

It can also be used with different aggregation methods to replace averageSeries, stddevSeries, multiplySeries, diffSeries, rangeOfSeries, minSeries, maxSeries and countSeries. All those functions are now implemented as aliases for aggregate, and it supports the previously-missing median and last aggregations.

The same is true for the other functions, and the summarize, smartSummarize, groupByNode, groupByNodes and the new groupByTags functions now all support the standard set of aggregations. Gone are the days of wishing that sortByMedian or highestRange were available!

For more information on the functions available check the function documentation.

Custom Functions

No matter how many functions are available there are always going to be specific use-cases where a custom function can perform analysis that wouldn’t otherwise be possible, or provide a convenient alias for a complicated function chain or specific set of parameters.

In Graphite 1.1 we added support for easily adding one-off custom functions, as well as for creating and sharing plugins that can provide one or more functions.

Each function plugin is packaged as a simple python module, and will be automatically loaded by Graphite when placed into the functions/custom folder.

An example of a simple function plugin that translates the name of every series passed to it into UPPERCASE:

from graphite.functions.params import Param, ParamTypes

def toUpperCase(requestContext, seriesList):
  """Custom function that changes series names to UPPERCASE"""
  for series in seriesList:
    series.name = series.name.upper()
  return seriesList

toUpperCase.group = 'Custom'
toUpperCase.params = [
  Param('seriesList', ParamTypes.seriesList, required=True),
]

SeriesFunctions = {
  'upper': toUpperCase,
}

Once installed the function is not only available for use within Grpahite, but is also exposed via the new Function API which allows the function definition and documentation to be automatically loaded by tools like Grafana. This means that users will be able to select and use the new function in exactly the same way as the internal functions.

More information on writing and using custom functions is available in the documentation.

Clustering Updates

One of the biggest changes from the 0.9 to 1.0 releases was the overhaul of the clustering code, and with 1.1.1 that process has been taken even further to optimize performance when using Graphite in a clustered deployment. In the past it was common for a request to require the frontend node to make multiple requests to the backend nodes to identify matching series and to fetch data, and the code for handling remote vs local series was overly complicated. In 1.1.1 we took a new approach where all render data requests pass through the same path internally, and multiple backend nodes are handled individually rather than grouped together into a single finder. This has greatly simplified the codebase, making it much easier to understand and reason about, while allowing much more flexibility in design of the finders. After these changes, render requests can now be answered with a single internal request to each backend node, and all requests for both remote and local data are executed in parallel.

To maintain the ability of graphite to scale out horizontally, the tagging system works seamlessly within a clustered environment, with each node responsible for the series stored on that node. Calls to load tagged series via seriesByTag are fanned out to the backend nodes and results are merged on the query node just like they are for non-tagged series.

Python 3 & Django 1.11 Support

Graphite 1.1 finally brings support for Python 3.x, both graphite-web and carbon are now tested against Python 2.7, 3.4, 3.5, 3.6 and PyPy. Django releases 1.8 through 1.11 are also supported. The work involved in sorting out the compatibility issues between Python 2.x and 3.x was quite involved, but it is a huge step forward for the long term support of the project! With the new Django 2.x series supporting only Python 3.x we will need to evaluate our long-term support for Python 2.x, but the Django 1.11 series is supported through 2020 so there is time to consider the options there.

Watch This Space

Efforts are underway to add support for the new functionality across the ecosystem of tools that work with Graphite, adding collectd tagging support, prometheus remote read & write with tags (and native Prometheus remote read/write support in Graphite) and last but not least Graphite tag support in Grafana.

We’re excited about the possibilities that the new capabilities in 1.1.x open up, and can’t wait to see how the community puts them to work.

Download the 1.1.1 release and check out the release notes here.

OWASP Dependency Check Maven Plugin – a Must-Have

Post Syndicated from Bozho original https://techblog.bozho.net/owasp-dependency-check-maven-plugin-must/

I have to admit with a high degree of shame that I didn’t know about the OWASP dependency check maven plugin. And seems to have been around since 2013. And apparently a thousand projects on GitHub are using it already.

In the past I’ve gone manually through dependencies to check them against vulnerability databases, or in many cases I was just blissfully ignorant about any vulnerabilities that my dependencies had.

The purpose of this post is just that – to recommend the OWASP dependency check maven plugin as a must-have in practically every maven project. (There are dependency-check tools for other build systems as well).

When you add the plugin it generates a report. Initially you can go and manually upgrade the problematic dependencies (I upgraded two of those in my current project), or suppress the false positives (e.g. the cassandra library is marked as vulnerable, whereas the actual vulnerability is that Cassandra binds an unauthenticated RMI endpoint, which I’ve addressed via my stack setup, so the library isn’t an issue).

Then you can configure a threshold for vulnerabilities and fail the build if new ones appear – either by you adding a vulnerable dependency, or in case a vulnerability is discovered in an existing dependency.

All of that is shown in the examples page and is pretty straightforward. I’d suggest adding the plugin immediately, it’s a must-have:

<plugin>
	<groupId>org.owasp</groupId>
	<artifactId>dependency-check-maven</artifactId>
	<version>3.0.2</version>
	<executions>
		<execution>
			<goals>
				<goal>check</goal>
			</goals>
		</execution>
	</executions>
</plugin>

Now, checking dependencies for vulnerabilities is just one small aspect of having your software secure and it shouldn’t give you a false sense of security (a sort-of “I have my dependencies checked, therefore my system is secure” fallacy). But it’s an important aspect. And having that check automated is a huge gain.

The post OWASP Dependency Check Maven Plugin – a Must-Have appeared first on Bozho's tech blog.

Amazon Linux 2 – Modern, Stable, and Enterprise-Friendly

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/amazon-linux-2-modern-stable-and-enterprise-friendly/

I’m getting ready to wrap up my work for the year, cleaning up my inbox and catching up on a few recent AWS launches that happened at and shortly after AWS re:Invent.

Last week we launched Amazon Linux 2. This is modern version of Linux, designed to meet the security, stability, and productivity needs of enterprise environments while giving you timely access to new tools and features. It also includes all of the things that made the Amazon Linux AMI popular, including AWS integration, cloud-init, a secure default configuration, regular security updates, and AWS Support. From that base, we have added many new features including:

Long-Term Support – You can use Amazon Linux 2 in situations where you want to stick with a single major version of Linux for an extended period of time, perhaps to avoid re-qualifying your applications too frequently. This build (2017.12) is a candidate for LTS status; the final determination will be made based on feedback in the Amazon Linux Discussion Forum. Long-term support for the Amazon Linux 2 LTS build will include security updates, bug fixes, user-space Application Binary Interface (ABI), and user-space Application Programming Interface (API) compatibility for 5 years.

Extras Library – You can now get fast access to fresh, new functionality while keeping your base OS image stable and lightweight. The Amazon Linux Extras Library eliminates the age-old tradeoff between OS stability and access to fresh software. It contains open source databases, languages, and more, each packaged together with any needed dependencies.

Tuned Kernel – You have access to the latest 4.9 LTS kernel, with support for the latest EC2 features and tuned to run efficiently in AWS and other virtualized environments.

SystemdAmazon Linux 2 includes the systemd init system, designed to provide better boot performance and increased control over individual services and groups of interdependent services. For example, you can indicate that Service B must be started only after Service A is fully started, or that Service C should start on a change in network connection status.

Wide AvailabiltyAmazon Linux 2 is available in all AWS Regions in AMI and Docker image form. Virtual machine images for Hyper-V, KVM, VirtualBox, and VMware are also available. You can build and test your applications on your laptop or in your own data center and then deploy them to AWS.

Launching an Instance
You can launch an instance in all of the usual ways – AWS Management Console, AWS Command Line Interface (CLI), AWS Tools for Windows PowerShell, RunInstances, and via a AWS CloudFormation template. I’ll use the Console:

I’m interested in the Extras Library; here’s how I see which topics (lists of packages) are available:

As you can see, the library includes languages, editors, and web tools that receive frequent updates. Each topic contains all of dependencies that are needed to install the package on Amazon Linux 2. For example, the Rust topic includes the cmake build system for Rust, cargo for Rust package maintenance, and the LLVM-based compiler toolchain for Rust.

Here’s how I install a topic (Emacs 25.3):

SNS Updates
Many AWS customers use the Amazon Linux AMIs as a starting point for their own AMIs. If you do this and would like to kick off your build process whenever a new AMI is released, you can subscribe to an SNS topic:

You can be notified by email, invoke a AWS Lambda function, and so forth.

Available Now
Amazon Linux 2 is available now and you can start using it in the cloud and on-premises today! To learn more, read the Amazon Linux 2 LTS Candidate (2017.12) Release Notes.

Jeff;

 

Simplify Querying Nested JSON with the AWS Glue Relationalize Transform

Post Syndicated from Trevor Roberts original https://aws.amazon.com/blogs/big-data/simplify-querying-nested-json-with-the-aws-glue-relationalize-transform/

AWS Glue has a transform called Relationalize that simplifies the extract, transform, load (ETL) process by converting nested JSON into columns that you can easily import into relational databases. Relationalize transforms the nested JSON into key-value pairs at the outermost level of the JSON document. The transformed data maintains a list of the original keys from the nested JSON separated by periods.

Let’s look at how Relationalize can help you with a sample use case.

An example of Relationalize in action

Suppose that the developers of a video game want to use a data warehouse like Amazon Redshift to run reports on player behavior based on data that is stored in JSON. Sample 1 shows example user data from the game. The player named “user1” has characteristics such as race, class, and location in nested JSON data. Further down, the player’s arsenal information includes additional nested JSON data. If the developers want to ETL this data into their data warehouse, they might have to resort to nested loops or recursive functions in their code.

Sample 1: Nested JSON

{
	"player": {
		"username": "user1",
		"characteristics": {
			"race": "Human",
			"class": "Warlock",
			"subclass": "Dawnblade",
			"power": 300,
			"playercountry": "USA"
		},
		"arsenal": {
			"kinetic": {
				"name": "Sweet Business",
				"type": "Auto Rifle",
				"power": 300,
				"element": "Kinetic"
			},
			"energy": {
				"name": "MIDA Mini-Tool",
				"type": "Submachine Gun",
				"power": 300,
				"element": "Solar"
			},
			"power": {
				"name": "Play of the Game",
				"type": "Grenade Launcher",
				"power": 300,
				"element": "Arc"
			}
		},
		"armor": {
			"head": "Eye of Another World",
			"arms": "Philomath Gloves",
			"chest": "Philomath Robes",
			"leg": "Philomath Boots",
			"classitem": "Philomath Bond"
		},
		"location": {
			"map": "Titan",
			"waypoint": "The Rig"
		}
	}
}

Instead, the developers can use the Relationalize transform. Sample 2 shows what the transformed data looks like.

Sample 2: Flattened JSON

{
    "player.username": "user1",
    "player.characteristics.race": "Human",
    "player.characteristics.class": "Warlock",
    "player.characteristics.subclass": "Dawnblade",
    "player.characteristics.power": 300,
    "player.characteristics.playercountry": "USA",
    "player.arsenal.kinetic.name": "Sweet Business",
    "player.arsenal.kinetic.type": "Auto Rifle",
    "player.arsenal.kinetic.power": 300,
    "player.arsenal.kinetic.element": "Kinetic",
    "player.arsenal.energy.name": "MIDA Mini-Tool",
    "player.arsenal.energy.type": "Submachine Gun",
    "player.arsenal.energy.power": 300,
    "player.arsenal.energy.element": "Solar",
    "player.arsenal.power.name": "Play of the Game",
    "player.arsenal.power.type": "Grenade Launcher",
    "player.arsenal.power.power": 300,
    "player.arsenal.power.element": "Arc",
    "player.armor.head": "Eye of Another World",
    "player.armor.arms": "Philomath Gloves",
    "player.armor.chest": "Philomath Robes",
    "player.armor.leg": "Philomath Boots",
    "player.armor.classitem": "Philomath Bond",
    "player.location.map": "Titan",
    "player.location.waypoint": "The Rig"
}

You can then write the data to a database or to a data warehouse. You can also write it to delimited text files, such as in comma-separated value (CSV) format, or columnar file formats such as Optimized Row Columnar (ORC) format. You can use either of these format types for long-term storage in Amazon S3. Storing the transformed files in S3 provides the additional benefit of being able to query this data using Amazon Athena or Amazon Redshift Spectrum. You can further extend the usefulness of the data by performing joins between data stored in S3 and the data stored in an Amazon Redshift data warehouse.

Before we get started…

In my example, I took two preparatory steps that save some time in your ETL code development:

  1. I stored my data in an Amazon S3 bucket and used an AWS Glue crawler to make my data available in the AWS Glue data catalog. You can find instructions on how to do that in Cataloging Tables with a Crawler in the AWS Glue documentation. The AWS Glue database name I used was “blog,” and the table name was “players.” You can see these values in use in the sample code that follows.
  2. I deployed a Zeppelin notebook using the automated deployment available within AWS Glue. If you already used an AWS Glue development endpoint to deploy a Zeppelin notebook, you can skip the deployment instructions. Otherwise, let’s quickly review how to deploy Zeppelin.

Deploying a Zeppelin notebook with AWS Glue

The following steps are outlined in the AWS Glue documentation, and I include a few screenshots here for clarity.

First, create two IAM roles:

Next, in the AWS Glue Management Console, choose Dev endpoints, and then choose Add endpoint.

Specify a name for the endpoint and the AWS Glue IAM role that you created.

On the networking screen, choose Skip Networking because our code only communicates with S3.

Complete the development endpoint process by providing a Secure Shell (SSH) public key and confirming your settings.

When your new development endpoint’s Provisioning status changes from PROVISIONING to READY, choose your endpoint, and then for Actions choose Create notebook server.

Enter the notebook server details, including the role you previously created and a security group with inbound access allowed on TCP port 443.

Doing this automatically launches an AWS CloudFormation template. The output specifies the URL that you can use to access your Zeppelin notebook with the username and password you specified in the wizard.

How do we flatten nested JSON?

With my data loaded and my notebook server ready, I accessed Zeppelin, created a new note, and set my interpreter to spark. I used some Python code that AWS Glue previously generated for another job that outputs to ORC. Then I added the Relationalize transform. You can see the resulting Python code in Sample 3.­

Sample 3: Python code to transform the nested JSON and output it to ORC

import sys
from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job
#from awsglue.transforms import Relationalize

# Begin variables to customize with your information
glue_source_database = "blog"
glue_source_table = "players"
glue_temp_storage = "s3://blog-example-edz/temp"
glue_relationalize_output_s3_path = "s3://blog-example-edz/output-flat"
dfc_root_table_name = "root" #default value is "roottable"
# End variables to customize with your information

glueContext = GlueContext(spark.sparkContext)
datasource0 = glueContext.create_dynamic_frame.from_catalog(database = glue_source_database, table_name = glue_source_table, transformation_ctx = "datasource0")
dfc = Relationalize.apply(frame = datasource0, staging_path = glue_temp_storage, name = dfc_root_table_name, transformation_ctx = "dfc")
blogdata = dfc.select(dfc_root_table_name)
blogdataoutput = glueContext.write_dynamic_frame.from_options(frame = blogdata, connection_type = "s3", connection_options = {"path": glue_relationalize_output_s3_path}, format = "orc", transformation_ctx = "blogdataoutput")

What exactly is going on in this script?

After the import statements, we instantiate a GlueContext object, which allows us to work with the data in AWS Glue. Next, we create a DynamicFrame (datasource0) from the “players” table in the AWS Glue “blog” database. We use this DynamicFrame to perform any necessary operations on the data structure before it’s written to our desired output format. The source files remain unchanged.

We then run the Relationalize transform (Relationalize.apply()) with our datasource0 as one of the parameters. Another important parameter is the name parameter, which is a key that identifies our data after the transformation completes.

The Relationalize.apply() method returns a DynamicFrameCollection, and this is stored in the dfc variable. Before we can write our data to S3, we need to select the DynamicFrame from the DynamicFrameCollection object. We do this with the dfc.select() method. The correct DynamicFrame is stored in the blogdata variable.

You might be curious why a DynamicFrameCollection was returned when we started with a single DynamicFrame. This return value comes from the way Relationalize treats arrays in the JSON document: A DynamicFrame is created for each array. Together with the root data structure, each generated DynamicFrame is added to a DynamicFrameCollection when Relationalize completes its work. Although we didn’t have any arrays in our data, it’s good to keep this in mind. Finally, we output (blogdataoutput) the root DynamicFrame to ORC files in S3.

Using the transformed data

One of the use cases we discussed earlier was using Amazon Athena or Amazon Redshift Spectrum to query the ORC files.

I used the following SQL DDL statements to create external tables in both services to enable queries of my data stored in Amazon S3.

Sample 4: Amazon Athena DDL

CREATE EXTERNAL TABLE IF NOT EXISTS blog.blog_data_athena_test (
  `characteristics_race` string,
  `characteristics_class` string,
  `characteristics_subclass` string,
  `characteristics_power` int,
  `characteristics_playercountry` string,
  `kinetic_name` string,
  `kinetic_type` string,
  `kinetic_power` int,
  `kinetic_element` string,
  `energy_name` string,
  `energy_type` string,
  `energy_power` int,
  `energy_element` string,
  `power_name` string,
  `power_type` string,
  `power_power` int,
  `power_element` string,
  `armor_head` string,
  `armor_arms` string,
  `armor_chest` string,
  `armor_leg` string,
  `armor_classitem` string,
  `map` string,
  `waypoint` string 
)
ROW FORMAT SERDE 'org.apache.hadoop.hive.ql.io.orc.OrcSerde'
WITH SERDEPROPERTIES (
  'serialization.format' = '1'
) LOCATION 's3://blog-example-edz/output-flat/'
TBLPROPERTIES ('has_encrypted_data'='false');

 

Sample 5: Amazon Redshift Spectrum DDL

-- Create a Schema
-- A single schema can be used with multiple external tables.
-- This step is only required once for the external tables you create.
create external schema spectrum 
from data catalog 
database 'blog' 
iam_role 'arn:aws:iam::0123456789:role/redshift-role'
create external database if not exists;

-- Create an external table in the schema
create external table spectrum.blog(
  username VARCHAR,
  characteristics_race VARCHAR,
  characteristics_class VARCHAR,
  characteristics_subclass VARCHAR,
  characteristics_power INTEGER,
  characteristics_playercountry VARCHAR,
  kinetic_name VARCHAR,
  kinetic_type VARCHAR,
  kinetic_power INTEGER,
  kinetic_element VARCHAR,
  energy_name VARCHAR,
  energy_type VARCHAR,
  energy_power INTEGER,
  energy_element VARCHAR,
  power_name VARCHAR,
  power_type VARCHAR,
  power_power INTEGER,
  power_element VARCHAR,
  armor_head VARCHAR,
  armor_arms VARCHAR,
  armor_chest VARCHAR,
  armor_leg VARCHAR,
  armor_classItem VARCHAR,
  map VARCHAR,
  waypoint VARCHAR)
stored as orc
location 's3://blog-example-edz/output-flat';

I even ran a query, shown in Sample 6, that joined my Redshift Spectrum table (spectrum.playerdata) with data in an Amazon Redshift table (public.raids) to generate advanced reports. In the where clause, I join the two tables based on the username values that are common to both data sources.

Sample 6: Select statement with a join of Redshift Spectrum data with Amazon Redshift data

-- Get Total Raid Completions for the Hunter Class.
select spectrum.playerdata.characteristics_class as class, sum(public.raids."completions.val.raids.leviathan") as "Total Hunter Leviathan Raid Completions" from spectrum.playerdata, public.raids
where spectrum.playerdata.username = public.raids."completions.val.username"
and spectrum.playerdata.characteristics_class = 'Hunter'
group by spectrum.playerdata.characteristics_class;

Summary

This post demonstrated how simple it can be to flatten nested JSON data with AWS Glue, using the Relationalize transform to automate the conversion of nested JSON. AWS Glue also automates the deployment of Zeppelin notebooks that you can use to develop your Python automation script. Finally, AWS Glue can output the transformed data directly to a relational database, or to files in Amazon S3 for further analysis with tools such as Amazon Athena and Amazon Redshift Spectrum.

As great as Relationalize is, it’s not the only transform available with AWS Glue. You can see a complete list of available transforms in Built-In Transforms in the AWS Glue documentation. Try them out today!


Additional Reading

If you found this post useful, be sure to check out Using Amazon Redshift Spectrum, Amazon Athena and AWS Glue with Node.js in Production and Build a Data Lake Foundation with AWS Glue and Amazon S3.


About the Author

Trevor Roberts Jr is a Solutions Architect with AWS. He provides architectural guidance to help customers achieve success in the cloud. In his spare time, Trevor enjoys traveling to new places and spending time with family.

Managing AWS Lambda Function Concurrency

Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/managing-aws-lambda-function-concurrency/

One of the key benefits of serverless applications is the ease in which they can scale to meet traffic demands or requests, with little to no need for capacity planning. In AWS Lambda, which is the core of the serverless platform at AWS, the unit of scale is a concurrent execution. This refers to the number of executions of your function code that are happening at any given time.

Thinking about concurrent executions as a unit of scale is a fairly unique concept. In this post, I dive deeper into this and talk about how you can make use of per function concurrency limits in Lambda.

Understanding concurrency in Lambda

Instead of diving right into the guts of how Lambda works, here’s an appetizing analogy: a magical pizza.
Yes, a magical pizza!

This magical pizza has some unique properties:

  • It has a fixed maximum number of slices, such as 8.
  • Slices automatically re-appear after they are consumed.
  • When you take a slice from the pizza, it does not re-appear until it has been completely consumed.
  • One person can take multiple slices at a time.
  • You can easily ask to have the number of slices increased, but they remain fixed at any point in time otherwise.

Now that the magical pizza’s properties are defined, here’s a hypothetical situation of some friends sharing this pizza.

Shawn, Kate, Daniela, Chuck, Ian and Avleen get together every Friday to share a pizza and catch up on their week. As there is just six of them, they can easily all enjoy a slice of pizza at a time. As they finish each slice, it re-appears in the pizza pan and they can take another slice again. Given the magical properties of their pizza, they can continue to eat all they want, but with two very important constraints:

  • If any of them take too many slices at once, the others may not get as much as they want.
  • If they take too many slices, they might also eat too much and get sick.

One particular week, some of the friends are hungrier than the rest, taking two slices at a time instead of just one. If more than two of them try to take two pieces at a time, this can cause contention for pizza slices. Some of them would wait hungry for the slices to re-appear. They could ask for a pizza with more slices, but then run the same risk again later if more hungry friends join than planned for.

What can they do?

If the friends agreed to accept a limit for the maximum number of slices they each eat concurrently, both of these issues are avoided. Some could have a maximum of 2 of the 8 slices, or other concurrency limits that were more or less. Just so long as they kept it at or under eight total slices to be eaten at one time. This would keep any from going hungry or eating too much. The six friends can happily enjoy their magical pizza without worry!

Concurrency in Lambda

Concurrency in Lambda actually works similarly to the magical pizza model. Each AWS Account has an overall AccountLimit value that is fixed at any point in time, but can be easily increased as needed, just like the count of slices in the pizza. As of May 2017, the default limit is 1000 “slices” of concurrency per AWS Region.

Also like the magical pizza, each concurrency “slice” can only be consumed individually one at a time. After consumption, it becomes available to be consumed again. Services invoking Lambda functions can consume multiple slices of concurrency at the same time, just like the group of friends can take multiple slices of the pizza.

Let’s take our example of the six friends and bring it back to AWS services that commonly invoke Lambda:

  • Amazon S3
  • Amazon Kinesis
  • Amazon DynamoDB
  • Amazon Cognito

In a single account with the default concurrency limit of 1000 concurrent executions, any of these four services could invoke enough functions to consume the entire limit or some part of it. Just like with the pizza example, there is the possibility for two issues to pop up:

  • One or more of these services could invoke enough functions to consume a majority of the available concurrency capacity. This could cause others to be starved for it, causing failed invocations.
  • A service could consume too much concurrent capacity and cause a downstream service or database to be overwhelmed, which could cause failed executions.

For Lambda functions that are launched in a VPC, you have the potential to consume the available IP addresses in a subnet or the maximum number of elastic network interfaces to which your account has access. For more information, see Configuring a Lambda Function to Access Resources in an Amazon VPC. For information about elastic network interface limits, see Network Interfaces section in the Amazon VPC Limits topic.

One way to solve both of these problems is applying a concurrency limit to the Lambda functions in an account.

Configuring per function concurrency limits

You can now set a concurrency limit on individual Lambda functions in an account. The concurrency limit that you set reserves a portion of your account level concurrency for a given function. All of your functions’ concurrent executions count against this account-level limit by default.

If you set a concurrency limit for a specific function, then that function’s concurrency limit allocation is deducted from the shared pool and assigned to that specific function. AWS also reserves 100 units of concurrency for all functions that don’t have a specified concurrency limit set. This helps to make sure that future functions have capacity to be consumed.

Going back to the example of the consuming services, you could set throttles for the functions as follows:

Amazon S3 function = 350
Amazon Kinesis function = 200
Amazon DynamoDB function = 200
Amazon Cognito function = 150
Total = 900

With the 100 reserved for all non-concurrency reserved functions, this totals the account limit of 1000.

Here’s how this works. To start, create a basic Lambda function that is invoked via Amazon API Gateway. This Lambda function returns a single “Hello World” statement with an added sleep time between 2 and 5 seconds. The sleep time simulates an API providing some sort of capability that can take a varied amount of time. The goal here is to show how an API that is underloaded can reach its concurrency limit, and what happens when it does.
To create the example function

  1. Open the Lambda console.
  2. Choose Create Function.
  3. For Author from scratch, enter the following values:
    1. For Name, enter a value (such as concurrencyBlog01).
    2. For Runtime, choose Python 3.6.
    3. For Role, choose Create new role from template and enter a name aligned with this function, such as concurrencyBlogRole.
  4. Choose Create function.
  5. The function is created with some basic example code. Replace that code with the following:

import time
from random import randint
seconds = randint(2, 5)

def lambda_handler(event, context):
time.sleep(seconds)
return {"statusCode": 200,
"body": ("Hello world, slept " + str(seconds) + " seconds"),
"headers":
{
"Access-Control-Allow-Headers": "Content-Type,X-Amz-Date,Authorization,X-Api-Key,X-Amz-Security-Token",
"Access-Control-Allow-Methods": "GET,OPTIONS",
}}

  1. Under Basic settings, set Timeout to 10 seconds. While this function should only ever take up to 5-6 seconds (with the 5-second max sleep), this gives you a little bit of room if it takes longer.

  1. Choose Save at the top right.

At this point, your function is configured for this example. Test it and confirm this in the console:

  1. Choose Test.
  2. Enter a name (it doesn’t matter for this example).
  3. Choose Create.
  4. In the console, choose Test again.
  5. You should see output similar to the following:

Now configure API Gateway so that you have an HTTPS endpoint to test against.

  1. In the Lambda console, choose Configuration.
  2. Under Triggers, choose API Gateway.
  3. Open the API Gateway icon now shown as attached to your Lambda function:

  1. Under Configure triggers, leave the default values for API Name and Deployment stage. For Security, choose Open.
  2. Choose Add, Save.

API Gateway is now configured to invoke Lambda at the Invoke URL shown under its configuration. You can take this URL and test it in any browser or command line, using tools such as “curl”:


$ curl https://ofixul557l.execute-api.us-east-1.amazonaws.com/prod/concurrencyBlog01
Hello world, slept 2 seconds

Throwing load at the function

Now start throwing some load against your API Gateway + Lambda function combo. Right now, your function is only limited by the total amount of concurrency available in an account. For this example account, you might have 850 unreserved concurrency out of a full account limit of 1000 due to having configured a few concurrency limits already (also the 100 concurrency saved for all functions without configured limits). You can find all of this information on the main Dashboard page of the Lambda console:

For generating load in this example, use an open source tool called “hey” (https://github.com/rakyll/hey), which works similarly to ApacheBench (ab). You test from an Amazon EC2 instance running the default Amazon Linux AMI from the EC2 console. For more help with configuring an EC2 instance, follow the steps in the Launch Instance Wizard.

After the EC2 instance is running, SSH into the host and run the following:


sudo yum install go
go get -u github.com/rakyll/hey

“hey” is easy to use. For these tests, specify a total number of tests (5,000) and a concurrency of 50 against the API Gateway URL as follows(replace the URL here with your own):


$ ./go/bin/hey -n 5000 -c 50 https://ofixul557l.execute-api.us-east-1.amazonaws.com/prod/concurrencyBlog01

The output from “hey” tells you interesting bits of information:


$ ./go/bin/hey -n 5000 -c 50 https://ofixul557l.execute-api.us-east-1.amazonaws.com/prod/concurrencyBlog01

Summary:
Total: 381.9978 secs
Slowest: 9.4765 secs
Fastest: 0.0438 secs
Average: 3.2153 secs
Requests/sec: 13.0891
Total data: 140024 bytes
Size/request: 28 bytes

Response time histogram:
0.044 [1] |
0.987 [2] |
1.930 [0] |
2.874 [1803] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
3.817 [1518] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
4.760 [719] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
5.703 [917] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
6.647 [13] |
7.590 [14] |
8.533 [9] |
9.477 [4] |

Latency distribution:
10% in 2.0224 secs
25% in 2.0267 secs
50% in 3.0251 secs
75% in 4.0269 secs
90% in 5.0279 secs
95% in 5.0414 secs
99% in 5.1871 secs

Details (average, fastest, slowest):
DNS+dialup: 0.0003 secs, 0.0000 secs, 0.0332 secs
DNS-lookup: 0.0000 secs, 0.0000 secs, 0.0046 secs
req write: 0.0000 secs, 0.0000 secs, 0.0005 secs
resp wait: 3.2149 secs, 0.0438 secs, 9.4472 secs
resp read: 0.0000 secs, 0.0000 secs, 0.0004 secs

Status code distribution:
[200] 4997 responses
[502] 3 responses

You can see a helpful histogram and latency distribution. Remember that this Lambda function has a random sleep period in it and so isn’t entirely representational of a real-life workload. Those three 502s warrant digging deeper, but could be due to Lambda cold-start timing and the “second” variable being the maximum of 5, causing the Lambda functions to time out. AWS X-Ray and the Amazon CloudWatch logs generated by both API Gateway and Lambda could help you troubleshoot this.

Configuring a concurrency reservation

Now that you’ve established that you can generate this load against the function, I show you how to limit it and protect a backend resource from being overloaded by all of these requests.

  1. In the console, choose Configure.
  2. Under Concurrency, for Reserve concurrency, enter 25.

  1. Click on Save in the top right corner.

You could also set this with the AWS CLI using the Lambda put-function-concurrency command or see your current concurrency configuration via Lambda get-function. Here’s an example command:


$ aws lambda get-function --function-name concurrencyBlog01 --output json --query Concurrency
{
"ReservedConcurrentExecutions": 25
}

Either way, you’ve set the Concurrency Reservation to 25 for this function. This acts as both a limit and a reservation in terms of making sure that you can execute 25 concurrent functions at all times. Going above this results in the throttling of the Lambda function. Depending on the invoking service, throttling can result in a number of different outcomes, as shown in the documentation on Throttling Behavior. This change has also reduced your unreserved account concurrency for other functions by 25.

Rerun the same load generation as before and see what happens. Previously, you tested at 50 concurrency, which worked just fine. By limiting the Lambda functions to 25 concurrency, you should see rate limiting kick in. Run the same test again:


$ ./go/bin/hey -n 5000 -c 50 https://ofixul557l.execute-api.us-east-1.amazonaws.com/prod/concurrencyBlog01

While this test runs, refresh the Monitoring tab on your function detail page. You see the following warning message:

This is great! It means that your throttle is working as configured and you are now protecting your downstream resources from too much load from your Lambda function.

Here is the output from a new “hey” command:


$ ./go/bin/hey -n 5000 -c 50 https://ofixul557l.execute-api.us-east-1.amazonaws.com/prod/concurrencyBlog01
Summary:
Total: 379.9922 secs
Slowest: 7.1486 secs
Fastest: 0.0102 secs
Average: 1.1897 secs
Requests/sec: 13.1582
Total data: 164608 bytes
Size/request: 32 bytes

Response time histogram:
0.010 [1] |
0.724 [3075] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
1.438 [0] |
2.152 [811] |∎∎∎∎∎∎∎∎∎∎∎
2.866 [11] |
3.579 [566] |∎∎∎∎∎∎∎
4.293 [214] |∎∎∎
5.007 [1] |
5.721 [315] |∎∎∎∎
6.435 [4] |
7.149 [2] |

Latency distribution:
10% in 0.0130 secs
25% in 0.0147 secs
50% in 0.0205 secs
75% in 2.0344 secs
90% in 4.0229 secs
95% in 5.0248 secs
99% in 5.0629 secs

Details (average, fastest, slowest):
DNS+dialup: 0.0004 secs, 0.0000 secs, 0.0537 secs
DNS-lookup: 0.0002 secs, 0.0000 secs, 0.0184 secs
req write: 0.0000 secs, 0.0000 secs, 0.0016 secs
resp wait: 1.1892 secs, 0.0101 secs, 7.1038 secs
resp read: 0.0000 secs, 0.0000 secs, 0.0005 secs

Status code distribution:
[502] 3076 responses
[200] 1924 responses

This looks fairly different from the last load test run. A large percentage of these requests failed fast due to the concurrency throttle failing them (those with the 0.724 seconds line). The timing shown here in the histogram represents the entire time it took to get a response between the EC2 instance and API Gateway calling Lambda and being rejected. It’s also important to note that this example was configured with an edge-optimized endpoint in API Gateway. You see under Status code distribution that 3076 of the 5000 requests failed with a 502, showing that the backend service from API Gateway and Lambda failed the request.

Other uses

Managing function concurrency can be useful in a few other ways beyond just limiting the impact on downstream services and providing a reservation of concurrency capacity. Here are two other uses:

  • Emergency kill switch
  • Cost controls

Emergency kill switch

On occasion, due to issues with applications I’ve managed in the past, I’ve had a need to disable a certain function or capability of an application. By setting the concurrency reservation and limit of a Lambda function to zero, you can do just that.

With the reservation set to zero every invocation of a Lambda function results in being throttled. You could then work on the related parts of the infrastructure or application that aren’t working, and then reconfigure the concurrency limit to allow invocations again.

Cost controls

While I mentioned how you might want to use concurrency limits to control the downstream impact to services or databases that your Lambda function might call, another resource that you might be cautious about is money. Setting the concurrency throttle is another way to help control costs during development and testing of your application.

You might want to prevent against a function performing a recursive action too quickly or a development workload generating too high of a concurrency. You might also want to protect development resources connected to this function from generating too much cost, such as APIs that your Lambda function calls.

Conclusion

Concurrent executions as a unit of scale are a fairly unique characteristic about Lambda functions. Placing limits on how many concurrency “slices” that your function can consume can prevent a single function from consuming all of the available concurrency in an account. Limits can also prevent a function from overwhelming a backend resource that isn’t as scalable.

Unlike monolithic applications or even microservices where there are mixed capabilities in a single service, Lambda functions encourage a sort of “nano-service” of small business logic directly related to the integration model connected to the function. I hope you’ve enjoyed this post and configure your concurrency limits today!

Looking Forward to 2018

Post Syndicated from Let's Encrypt - Free SSL/TLS Certificates original https://letsencrypt.org//2017/12/07/looking-forward-to-2018.html

Let’s Encrypt had a great year in 2017. We more than doubled the number of active (unexpired) certificates we service to 46 million, we just about tripled the number of unique domains we service to 61 million, and we did it all while maintaining a stellar security and compliance track record. Most importantly though, the Web went from 46% encrypted page loads to 67% according to statistics from Mozilla – a gain of 21% in a single year – incredible. We’re proud to have contributed to that, and we’d like to thank all of the other people and organizations who also worked hard to create a more secure and privacy-respecting Web.

While we’re proud of what we accomplished in 2017, we are spending most of the final quarter of the year looking forward rather than back. As we wrap up our own planning process for 2018, I’d like to share some of our plans with you, including both the things we’re excited about and the challenges we’ll face. We’ll cover service growth, new features, infrastructure, and finances.

Service Growth

We are planning to double the number of active certificates and unique domains we service in 2018, to 90 million and 120 million, respectively. This anticipated growth is due to continuing high expectations for HTTPS growth in general in 2018.

Let’s Encrypt helps to drive HTTPS adoption by offering a free, easy to use, and globally available option for obtaining the certificates required to enable HTTPS. HTTPS adoption on the Web took off at an unprecedented rate from the day Let’s Encrypt launched to the public.

One of the reasons Let’s Encrypt is so easy to use is that our community has done great work making client software that works well for a wide variety of platforms. We’d like to thank everyone involved in the development of over 60 client software options for Let’s Encrypt. We’re particularly excited that support for the ACME protocol and Let’s Encrypt is being added to the Apache httpd server.

Other organizations and communities are also doing great work to promote HTTPS adoption, and thus stimulate demand for our services. For example, browsers are starting to make their users more aware of the risks associated with unencrypted HTTP (e.g. Firefox, Chrome). Many hosting providers and CDNs are making it easier than ever for all of their customers to use HTTPS. Government agencies are waking up to the need for stronger security to protect constituents. The media community is working to Secure the News.

New Features

We’ve got some exciting features planned for 2018.

First, we’re planning to introduce an ACME v2 protocol API endpoint and support for wildcard certificates along with it. Wildcard certificates will be free and available globally just like our other certificates. We are planning to have a public test API endpoint up by January 4, and we’ve set a date for the full launch: Tuesday, February 27.

Later in 2018 we plan to introduce ECDSA root and intermediate certificates. ECDSA is generally considered to be the future of digital signature algorithms on the Web due to the fact that it is more efficient than RSA. Let’s Encrypt will currently sign ECDSA keys from subscribers, but we sign with the RSA key from one of our intermediate certificates. Once we have an ECDSA root and intermediates, our subscribers will be able to deploy certificate chains which are entirely ECDSA.

Infrastructure

Our CA infrastructure is capable of issuing millions of certificates per day with multiple redundancy for stability and a wide variety of security safeguards, both physical and logical. Our infrastructure also generates and signs nearly 20 million OCSP responses daily, and serves those responses nearly 2 billion times per day. We expect issuance and OCSP numbers to double in 2018.

Our physical CA infrastructure currently occupies approximately 70 units of rack space, split between two datacenters, consisting primarily of compute servers, storage, HSMs, switches, and firewalls.

When we issue more certificates it puts the most stress on storage for our databases. We regularly invest in more and faster storage for our database servers, and that will continue in 2018.

We’ll need to add a few additional compute servers in 2018, and we’ll also start aging out hardware in 2018 for the first time since we launched. We’ll age out about ten 2u compute servers and replace them with new 1u servers, which will save space and be more energy efficient while providing better reliability and performance.

We’ll also add another infrastructure operations staff member, bringing that team to a total of six people. This is necessary in order to make sure we can keep up with demand while maintaining a high standard for security and compliance. Infrastructure operations staff are systems administrators responsible for building and maintaining all physical and logical CA infrastructure. The team also manages a 24/7/365 on-call schedule and they are primary participants in both security and compliance audits.

Finances

We pride ourselves on being an efficient organization. In 2018 Let’s Encrypt will secure a large portion of the Web with a budget of only $3.0M. For an overall increase in our budget of only 13%, we will be able to issue and service twice as many certificates as we did in 2017. We believe this represents an incredible value and that contributing to Let’s Encrypt is one of the most effective ways to help create a more secure and privacy-respecting Web.

Our 2018 fundraising efforts are off to a strong start with Platinum sponsorships from Mozilla, Akamai, OVH, Cisco, Google Chrome and the Electronic Frontier Foundation. The Ford Foundation has renewed their grant to Let’s Encrypt as well. We are seeking additional sponsorship and grant assistance to meet our full needs for 2018.

We had originally budgeted $2.91M for 2017 but we’ll likely come in under budget for the year at around $2.65M. The difference between our 2017 expenses of $2.65M and the 2018 budget of $3.0M consists primarily of the additional infrastructure operations costs previously mentioned.

Support Let’s Encrypt

We depend on contributions from our community of users and supporters in order to provide our services. If your company or organization would like to sponsor Let’s Encrypt please email us at [email protected]. We ask that you make an individual contribution if it is within your means.

We’re grateful for the industry and community support that we receive, and we look forward to continuing to create a more secure and privacy-respecting Web!

Looking Forward to 2018

Post Syndicated from Let's Encrypt - Free SSL/TLS Certificates original https://letsencrypt.org/2017/12/07/looking-forward-to-2018.html

<p>Let’s Encrypt had a great year in 2017. We more than doubled the number of active (unexpired) certificates we service to 46 million, we just about tripled the number of unique domains we service to 61 million, and we did it all while maintaining a stellar security and compliance track record. Most importantly though, <a href="https://letsencrypt.org/stats/">the Web went from 46% encrypted page loads to 67%</a> according to statistics from Mozilla – a gain of 21 percentage points in a single year – incredible. We’re proud to have contributed to that, and we’d like to thank all of the other people and organizations who also worked hard to create a more secure and privacy-respecting Web.</p>

<p>While we’re proud of what we accomplished in 2017, we are spending most of the final quarter of the year looking forward rather than back. As we wrap up our own planning process for 2018, I’d like to share some of our plans with you, including both the things we’re excited about and the challenges we’ll face. We’ll cover service growth, new features, infrastructure, and finances.</p>

<h1 id="service-growth">Service Growth</h1>

<p>We are planning to double the number of active certificates and unique domains we service in 2018, to 90 million and 120 million, respectively. This anticipated growth is due to continuing high expectations for HTTPS growth in general in 2018.</p>

<p>Let’s Encrypt helps to drive HTTPS adoption by offering a free, easy to use, and globally available option for obtaining the certificates required to enable HTTPS. HTTPS adoption on the Web took off at an unprecedented rate from the day Let’s Encrypt launched to the public.</p>

<p>One of the reasons Let’s Encrypt is so easy to use is that our community has done great work making client software that works well for a wide variety of platforms. We’d like to thank everyone involved in the development of over 60 <a href="https://letsencrypt.org/docs/client-options/">client software options for Let’s Encrypt</a>. We’re particularly excited that support for the ACME protocol and Let’s Encrypt is <a href="https://letsencrypt.org/2017/10/17/acme-support-in-apache-httpd.html">being added to the Apache httpd server</a>.</p>

<p>Other organizations and communities are also doing great work to promote HTTPS adoption, and thus stimulate demand for our services. For example, browsers are starting to make their users more aware of the risks associated with unencrypted HTTP (e.g. <a href="https://blog.mozilla.org/security/2017/01/20/communicating-the-dangers-of-non-secure-http/">Firefox</a>, <a href="https://security.googleblog.com/2017/04/next-steps-toward-more-connection.html">Chrome</a>). Many hosting providers and CDNs are making it easier than ever for all of their customers to use HTTPS. <a href="https://https.cio.gov/">Government</a> <a href="https://www.canada.ca/en/treasury-board-secretariat/services/information-technology/strategic-plan-2017-2021.html#toc8-3-2">agencies</a> are waking up to the need for stronger security to protect constituents. The media community is working to <a href="https://securethe.news/">Secure the News</a>.</p>

<h1 id="new-features">New Features</h1>

<p>We’ve got some exciting features planned for 2018.</p>

<p>First, we’re planning to introduce an ACME v2 protocol API endpoint and <a href="https://letsencrypt.org/2017/07/06/wildcard-certificates-coming-jan-2018.html">support for wildcard certificates</a> along with it. Wildcard certificates will be free and available globally just like our other certificates. We are planning to have a public test API endpoint up by January 4, and we’ve set a date for the full launch: Tuesday, February 27.</p>

<p>Later in 2018 we plan to introduce ECDSA root and intermediate certificates. ECDSA is generally considered to be the future of digital signature algorithms on the Web due to the fact that it is more efficient than RSA. Let’s Encrypt will currently sign ECDSA keys from subscribers, but we sign with the RSA key from one of our intermediate certificates. Once we have an ECDSA root and intermediates, our subscribers will be able to deploy certificate chains which are entirely ECDSA.</p>

<h1 id="infrastructure">Infrastructure</h1>

<p>Our CA infrastructure is capable of issuing millions of certificates per day with multiple redundancy for stability and a wide variety of security safeguards, both physical and logical. Our infrastructure also generates and signs nearly 20 million OCSP responses daily, and serves those responses nearly 2 billion times per day. We expect issuance and OCSP numbers to double in 2018.</p>

<p>Our physical CA infrastructure currently occupies approximately 70 units of rack space, split between two datacenters, consisting primarily of compute servers, storage, HSMs, switches, and firewalls.</p>

<p>When we issue more certificates it puts the most stress on storage for our databases. We regularly invest in more and faster storage for our database servers, and that will continue in 2018.</p>

<p>We’ll need to add a few additional compute servers in 2018, and we’ll also start aging out hardware in 2018 for the first time since we launched. We’ll age out about ten 2u compute servers and replace them with new 1u servers, which will save space and be more energy efficient while providing better reliability and performance.</p>

<p>We’ll also add another infrastructure operations staff member, bringing that team to a total of six people. This is necessary in order to make sure we can keep up with demand while maintaining a high standard for security and compliance. Infrastructure operations staff are systems administrators responsible for building and maintaining all physical and logical CA infrastructure. The team also manages a 24/7/365 on-call schedule and they are primary participants in both security and compliance audits.</p>

<h1 id="finances">Finances</h1>

<p>We pride ourselves on being an efficient organization. In 2018 Let’s Encrypt will secure a large portion of the Web with a budget of only $3.0M. For an overall increase in our budget of only 13%, we will be able to issue and service twice as many certificates as we did in 2017. We believe this represents an incredible value and that contributing to Let’s Encrypt is one of the most effective ways to help create a more secure and privacy-respecting Web.</p>

<p>Our 2018 fundraising efforts are off to a strong start with Platinum sponsorships from Mozilla, Akamai, OVH, Cisco, Google Chrome and the Electronic Frontier Foundation. The Ford Foundation has renewed their grant to Let’s Encrypt as well. We are seeking additional sponsorship and grant assistance to meet our full needs for 2018.</p>

<p>We had originally budgeted $2.91M for 2017 but we’ll likely come in under budget for the year at around $2.65M. The difference between our 2017 expenses of $2.65M and the 2018 budget of $3.0M consists primarily of the additional infrastructure operations costs previously mentioned.</p>

<h1 id="support-let-s-encrypt">Support Let’s Encrypt</h1>

<p>We depend on contributions from our community of users and supporters in order to provide our services. If your company or organization would like to <a href="https://letsencrypt.org/become-a-sponsor/">sponsor</a> Let’s Encrypt please email us at <a href="mailto:[email protected]">[email protected]</a>. We ask that you make an <a href="https://letsencrypt.org/donate/">individual contribution</a> if it is within your means.</p>

<p>We’re grateful for the industry and community support that we receive, and we look forward to continuing to create a more secure and privacy-respecting Web!</p>

Implementing Dynamic ETL Pipelines Using AWS Step Functions

Post Syndicated from Tara Van Unen original https://aws.amazon.com/blogs/compute/implementing-dynamic-etl-pipelines-using-aws-step-functions/

This post contributed by:
Wangechi Dole, AWS Solutions Architect
Milan Krasnansky, ING, Digital Solutions Developer, SGK
Rian Mookencherry, Director – Product Innovation, SGK

Data processing and transformation is a common use case you see in our customer case studies and success stories. Often, customers deal with complex data from a variety of sources that needs to be transformed and customized through a series of steps to make it useful to different systems and stakeholders. This can be difficult due to the ever-increasing volume, velocity, and variety of data. Today, data management challenges cannot be solved with traditional databases.

Workflow automation helps you build solutions that are repeatable, scalable, and reliable. You can use AWS Step Functions for this. A great example is how SGK used Step Functions to automate the ETL processes for their client. With Step Functions, SGK has been able to automate changes within the data management system, substantially reducing the time required for data processing.

In this post, SGK shares the details of how they used Step Functions to build a robust data processing system based on highly configurable business transformation rules for ETL processes.

SGK: Building dynamic ETL pipelines

SGK is a subsidiary of Matthews International Corporation, a diversified organization focusing on brand solutions and industrial technologies. SGK’s Global Content Creation Studio network creates compelling content and solutions that connect brands and products to consumers through multiple assets including photography, video, and copywriting.

We were recently contracted to build a sophisticated and scalable data management system for one of our clients. We chose to build the solution on AWS to leverage advanced, managed services that help to improve the speed and agility of development.

The data management system served two main functions:

  1. Ingesting a large amount of complex data to facilitate both reporting and product funding decisions for the client’s global marketing and supply chain organizations.
  2. Processing the data through normalization and applying complex algorithms and data transformations. The system goal was to provide information in the relevant context—such as strategic marketing, supply chain, product planning, etc. —to the end consumer through automated data feeds or updates to existing ETL systems.

We were faced with several challenges:

  • Output data that needed to be refreshed at least twice a day to provide fresh datasets to both local and global markets. That constant data refresh posed several challenges, especially around data management and replication across multiple databases.
  • The complexity of reporting business rules that needed to be updated on a constant basis.
  • Data that could not be processed as contiguous blocks of typical time-series data. The measurement of the data was done across seasons (that is, combination of dates), which often resulted with up to three overlapping seasons at any given time.
  • Input data that came from 10+ different data sources. Each data source ranged from 1–20K rows with as many as 85 columns per input source.

These challenges meant that our small Dev team heavily invested time in frequent configuration changes to the system and data integrity verification to make sure that everything was operating properly. Maintaining this system proved to be a daunting task and that’s when we turned to Step Functions—along with other AWS services—to automate our ETL processes.

Solution overview

Our solution included the following AWS services:

  • AWS Step Functions: Before Step Functions was available, we were using multiple Lambda functions for this use case and running into memory limit issues. With Step Functions, we can execute steps in parallel simultaneously, in a cost-efficient manner, without running into memory limitations.
  • AWS Lambda: The Step Functions state machine uses Lambda functions to implement the Task states. Our Lambda functions are implemented in Java 8.
  • Amazon DynamoDB provides us with an easy and flexible way to manage business rules. We specify our rules as Keys. These are key-value pairs stored in a DynamoDB table.
  • Amazon RDS: Our ETL pipelines consume source data from our RDS MySQL database.
  • Amazon Redshift: We use Amazon Redshift for reporting purposes because it integrates with our BI tools. Currently we are using Tableau for reporting which integrates well with Amazon Redshift.
  • Amazon S3: We store our raw input files and intermediate results in S3 buckets.
  • Amazon CloudWatch Events: Our users expect results at a specific time. We use CloudWatch Events to trigger Step Functions on an automated schedule.

Solution architecture

This solution uses a declarative approach to defining business transformation rules that are applied by the underlying Step Functions state machine as data moves from RDS to Amazon Redshift. An S3 bucket is used to store intermediate results. A CloudWatch Event rule triggers the Step Functions state machine on a schedule. The following diagram illustrates our architecture:

Here are more details for the above diagram:

  1. A rule in CloudWatch Events triggers the state machine execution on an automated schedule.
  2. The state machine invokes the first Lambda function.
  3. The Lambda function deletes all existing records in Amazon Redshift. Depending on the dataset, the Lambda function can create a new table in Amazon Redshift to hold the data.
  4. The same Lambda function then retrieves Keys from a DynamoDB table. Keys represent specific marketing campaigns or seasons and map to specific records in RDS.
  5. The state machine executes the second Lambda function using the Keys from DynamoDB.
  6. The second Lambda function retrieves the referenced dataset from RDS. The records retrieved represent the entire dataset needed for a specific marketing campaign.
  7. The second Lambda function executes in parallel for each Key retrieved from DynamoDB and stores the output in CSV format temporarily in S3.
  8. Finally, the Lambda function uploads the data into Amazon Redshift.

To understand the above data processing workflow, take a closer look at the Step Functions state machine for this example.

We walk you through the state machine in more detail in the following sections.

Walkthrough

To get started, you need to:

  • Create a schedule in CloudWatch Events
  • Specify conditions for RDS data extracts
  • Create Amazon Redshift input files
  • Load data into Amazon Redshift

Step 1: Create a schedule in CloudWatch Events
Create rules in CloudWatch Events to trigger the Step Functions state machine on an automated schedule. The following is an example cron expression to automate your schedule:

In this example, the cron expression invokes the Step Functions state machine at 3:00am and 2:00pm (UTC) every day.

Step 2: Specify conditions for RDS data extracts
We use DynamoDB to store Keys that determine which rows of data to extract from our RDS MySQL database. An example Key is MCS2017, which stands for, Marketing Campaign Spring 2017. Each campaign has a specific start and end date and the corresponding dataset is stored in RDS MySQL. A record in RDS contains about 600 columns, and each Key can represent up to 20K records.

A given day can have multiple campaigns with different start and end dates running simultaneously. In the following example DynamoDB item, three campaigns are specified for the given date.

The state machine example shown above uses Keys 31, 32, and 33 in the first ChoiceState and Keys 21 and 22 in the second ChoiceState. These keys represent marketing campaigns for a given day. For example, on Monday, there are only two campaigns requested. The ChoiceState with Keys 21 and 22 is executed. If three campaigns are requested on Tuesday, for example, then ChoiceState with Keys 31, 32, and 33 is executed. MCS2017 can be represented by Key 21 and Key 33 on Monday and Tuesday, respectively. This approach gives us the flexibility to add or remove campaigns dynamically.

Step 3: Create Amazon Redshift input files
When the state machine begins execution, the first Lambda function is invoked as the resource for FirstState, represented in the Step Functions state machine as follows:

"Comment": ” AWS Amazon States Language.", 
  "StartAt": "FirstState",
 
"States": { 
  "FirstState": {
   
"Type": "Task",
   
"Resource": "arn:aws:lambda:xx-xxxx-x:XXXXXXXXXXXX:function:Start",
    "Next": "ChoiceState" 
  } 

As described in the solution architecture, the purpose of this Lambda function is to delete existing data in Amazon Redshift and retrieve keys from DynamoDB. In our use case, we found that deleting existing records was more efficient and less time-consuming than finding the delta and updating existing records. On average, an Amazon Redshift table can contain about 36 million cells, which translates to roughly 65K records. The following is the code snippet for the first Lambda function in Java 8:

public class LambdaFunctionHandler implements RequestHandler<Map<String,Object>,Map<String,String>> {
    Map<String,String> keys= new HashMap<>();
    public Map<String, String> handleRequest(Map<String, Object> input, Context context){
       Properties config = getConfig(); 
       // 1. Cleaning Redshift Database
       new RedshiftDataService(config).cleaningTable(); 
       // 2. Reading data from Dynamodb
       List<String> keyList = new DynamoDBDataService(config).getCurrentKeys();
       for(int i = 0; i < keyList.size(); i++) {
           keys.put(”key" + (i+1), keyList.get(i)); 
       }
       keys.put(”key" + T,String.valueOf(keyList.size()));
       // 3. Returning the key values and the key count from the “for” loop
       return (keys);
}

The following JSON represents ChoiceState.

"ChoiceState": {
   "Type" : "Choice",
   "Choices": [ 
   {

      "Variable": "$.keyT",
     "StringEquals": "3",
     "Next": "CurrentThreeKeys" 
   }, 
   {

     "Variable": "$.keyT",
    "StringEquals": "2",
    "Next": "CurrentTwooKeys" 
   } 
 ], 
 "Default": "DefaultState"
}

The variable $.keyT represents the number of keys retrieved from DynamoDB. This variable determines which of the parallel branches should be executed. At the time of publication, Step Functions does not support dynamic parallel state. Therefore, choices under ChoiceState are manually created and assigned hardcoded StringEquals values. These values represent the number of parallel executions for the second Lambda function.

For example, if $.keyT equals 3, the second Lambda function is executed three times in parallel with keys, $key1, $key2 and $key3 retrieved from DynamoDB. Similarly, if $.keyT equals two, the second Lambda function is executed twice in parallel.  The following JSON represents this parallel execution:

"CurrentThreeKeys": { 
  "Type": "Parallel",
  "Next": "NextState",
  "Branches": [ 
  {

     "StartAt": “key31",
    "States": { 
       “key31": {

          "Type": "Task",
        "InputPath": "$.key1",
        "Resource": "arn:aws:lambda:xx-xxxx-x:XXXXXXXXXXXX:function:Execution",
        "End": true 
       } 
    } 
  }, 
  {

     "StartAt": “key32",
    "States": { 
     “key32": {

        "Type": "Task",
       "InputPath": "$.key2",
         "Resource": "arn:aws:lambda:xx-xxxx-x:XXXXXXXXXXXX:function:Execution",
       "End": true 
      } 
     } 
   }, 
   {

      "StartAt": “key33",
       "States": { 
          “key33": {

                "Type": "Task",
             "InputPath": "$.key3",
             "Resource": "arn:aws:lambda:xx-xxxx-x:XXXXXXXXXXXX:function:Execution",
           "End": true 
       } 
     } 
    } 
  ] 
} 

Step 4: Load data into Amazon Redshift
The second Lambda function in the state machine extracts records from RDS associated with keys retrieved for DynamoDB. It processes the data then loads into an Amazon Redshift table. The following is code snippet for the second Lambda function in Java 8.

public class LambdaFunctionHandler implements RequestHandler<String, String> {
 public static String key = null;

public String handleRequest(String input, Context context) { 
   key=input; 
   //1. Getting basic configurations for the next classes + s3 client Properties
   config = getConfig();

   AmazonS3 s3 = AmazonS3ClientBuilder.defaultClient(); 
   // 2. Export query results from RDS into S3 bucket 
   new RdsDataService(config).exportDataToS3(s3,key); 
   // 3. Import query results from S3 bucket into Redshift 
    new RedshiftDataService(config).importDataFromS3(s3,key); 
   System.out.println(input); 
   return "SUCCESS"; 
 } 
}

After the data is loaded into Amazon Redshift, end users can visualize it using their preferred business intelligence tools.

Lessons learned

  • At the time of publication, the 1.5–GB memory hard limit for Lambda functions was inadequate for processing our complex workload. Step Functions gave us the flexibility to chunk our large datasets and process them in parallel, saving on costs and time.
  • In our previous implementation, we assigned each key a dedicated Lambda function along with CloudWatch rules for schedule automation. This approach proved to be inefficient and quickly became an operational burden. Previously, we processed each key sequentially, with each key adding about five minutes to the overall processing time. For example, processing three keys meant that the total processing time was three times longer. With Step Functions, the entire state machine executes in about five minutes.
  • Using DynamoDB with Step Functions gave us the flexibility to manage keys efficiently. In our previous implementations, keys were hardcoded in Lambda functions, which became difficult to manage due to frequent updates. DynamoDB is a great way to store dynamic data that changes frequently, and it works perfectly with our serverless architectures.

Conclusion

With Step Functions, we were able to fully automate the frequent configuration updates to our dataset resulting in significant cost savings, reduced risk to data errors due to system downtime, and more time for us to focus on new product development rather than support related issues. We hope that you have found the information useful and that it can serve as a jump-start to building your own ETL processes on AWS with managed AWS services.

For more information about how Step Functions makes it easy to coordinate the components of distributed applications and microservices in any workflow, see the use case examples and then build your first state machine in under five minutes in the Step Functions console.

If you have questions or suggestions, please comment below.

Glenn’s Take on re:Invent Part 2

Post Syndicated from Glenn Gore original https://aws.amazon.com/blogs/architecture/glenns-take-on-reinvent-part-2/

Glenn Gore here, Chief Architect for AWS. I’m in Las Vegas this week — with 43K others — for re:Invent 2017. We’ve got a lot of exciting announcements this week. I’m going to check in to the Architecture blog with my take on what’s interesting about some of the announcements from an cloud architectural perspective. My first post can be found here.

The Media and Entertainment industry has been a rapid adopter of AWS due to the scale, reliability, and low costs of our services. This has enabled customers to create new, online, digital experiences for their viewers ranging from broadcast to streaming to Over-the-Top (OTT) services that can be a combination of live, scheduled, or ad-hoc viewing, while supporting devices ranging from high-def TVs to mobile devices. Creating an end-to-end video service requires many different components often sourced from different vendors with different licensing models, which creates a complex architecture and a complex environment to support operationally.

AWS Media Services
Based on customer feedback, we have developed AWS Media Services to help simplify distribution of video content. AWS Media Services is comprised of five individual services that can either be used together to provide an end-to-end service or individually to work within existing deployments: AWS Elemental MediaConvert, AWS Elemental MediaLive, AWS Elemental MediaPackage, AWS Elemental MediaStore and AWS Elemental MediaTailor. These services can help you with everything from storing content safely and durably to setting up a live-streaming event in minutes without having to be concerned about the underlying infrastructure and scalability of the stream itself.

In my role, I participate in many AWS and industry events and often work with the production and event teams that put these shows together. With all the logistical tasks they have to deal with, the biggest question is often: “Will the live stream work?” Compounding this fear is the reality that, as users, we are also quick to jump on social media and make noise when a live stream drops while we are following along remotely. Worse is when I see event organizers actively selecting not to live stream content because of the risk of failure and and exposure — leading them to decide to take the safe option and not stream at all.

With AWS Media Services addressing many of the issues around putting together a high-quality media service, live streaming, and providing access to a library of content through a variety of mechanisms, I can’t wait to see more event teams use live streaming without the concern and worry I’ve seen in the past. I am excited for what this also means for non-media companies, as video becomes an increasingly common way of sharing information and adding a more personalized touch to internally- and externally-facing content.

AWS Media Services will allow you to focus more on the content and not worry about the platform. Awesome!

Amazon Neptune
As a civilization, we have been developing new ways to record and store information and model the relationships between sets of information for more than a thousand years. Government census data, tax records, births, deaths, and marriages were all recorded on medium ranging from knotted cords in the Inca civilization, clay tablets in ancient Babylon, to written texts in Western Europe during the late Middle Ages.

One of the first challenges of computing was figuring out how to store and work with vast amounts of information in a programmatic way, especially as the volume of information was increasing at a faster rate than ever before. We have seen different generations of how to organize this information in some form of database, ranging from flat files to the Information Management System (IMS) used in the 1960s for the Apollo space program, to the rise of the relational database management system (RDBMS) in the 1970s. These innovations drove a lot of subsequent innovations in information management and application development as we were able to move from thousands of records to millions and billions.

Today, as architects and developers, we have a vast variety of database technologies to select from, which have different characteristics that are optimized for different use cases:

  • Relational databases are well understood after decades of use in the majority of companies who required a database to store information. Amazon Relational Database (Amazon RDS) supports many popular relational database engines such as MySQL, Microsoft SQL Server, PostgreSQL, MariaDB, and Oracle. We have even brought the traditional RDBMS into the cloud world through Amazon Aurora, which provides MySQL and PostgreSQL support with the performance and reliability of commercial-grade databases at 1/10th the cost.
  • Non-relational databases (NoSQL) provided a simpler method of storing and retrieving information that was often faster and more scalable than traditional RDBMS technology. The concept of non-relational databases has existed since the 1960s but really took off in the early 2000s with the rise of web-based applications that required performance and scalability that relational databases struggled with at the time. AWS published this Dynamo whitepaper in 2007, with DynamoDB launching as a service in 2012. DynamoDB has quickly become one of the critical design elements for many of our customers who are building highly-scalable applications on AWS. We continue to innovate with DynamoDB, and this week launched global tables and on-demand backup at re:Invent 2017. DynamoDB excels in a variety of use cases, such as tracking of session information for popular websites, shopping cart information on e-commerce sites, and keeping track of gamers’ high scores in mobile gaming applications, for example.
  • Graph databases focus on the relationship between data items in the store. With a graph database, we work with nodes, edges, and properties to represent data, relationships, and information. Graph databases are designed to make it easy and fast to traverse and retrieve complex hierarchical data models. Graph databases share some concepts from the NoSQL family of databases such as key-value pairs (properties) and the use of a non-SQL query language such as Gremlin. Graph databases are commonly used for social networking, recommendation engines, fraud detection, and knowledge graphs. We released Amazon Neptune to help simplify the provisioning and management of graph databases as we believe that graph databases are going to enable the next generation of smart applications.

A common use case I am hearing every week as I talk to customers is how to incorporate chatbots within their organizations. Amazon Lex and Amazon Polly have made it easy for customers to experiment and build chatbots for a wide range of scenarios, but one of the missing pieces of the puzzle was how to model decision trees and and knowledge graphs so the chatbot could guide the conversation in an intelligent manner.

Graph databases are ideal for this particular use case, and having Amazon Neptune simplifies the deployment of a graph database while providing high performance, scalability, availability, and durability as a managed service. Security of your graph database is critical. To help ensure this, you can store your encrypted data by running AWS in Amazon Neptune within your Amazon Virtual Private Cloud (Amazon VPC) and using encryption at rest integrated with AWS Key Management Service (AWS KMS). Neptune also supports Amazon VPC and AWS Identity and Access Management (AWS IAM) to help further protect and restrict access.

Our customers now have the choice of many different database technologies to ensure that they can optimize each application and service for their specific needs. Just as DynamoDB has unlocked and enabled many new workloads that weren’t possible in relational databases, I can’t wait to see what new innovations and capabilities are enabled from graph databases as they become easier to use through Amazon Neptune.

Look for more on DynamoDB and Amazon S3 from me on Monday.

 

Glenn at Tour de Mont Blanc

 

 

Collect Data Statistics Up to 5x Faster by Analyzing Only Predicate Columns with Amazon Redshift

Post Syndicated from George Caragea original https://aws.amazon.com/blogs/big-data/collect-data-statistics-up-to-5x-faster-by-analyzing-only-predicate-columns-with-amazon-redshift/

Amazon Redshift is a fast, fully managed, petabyte-scale data warehousing service that makes it simple and cost-effective to analyze all of your data. Many of our customers—including Boingo Wireless, Scholastic, Finra, Pinterest, and Foursquare—migrated to Amazon Redshift and achieved agility and faster time to insight, while dramatically reducing costs.

Query optimization and the need for accurate estimates

When a SQL query is submitted to Amazon Redshift, the query optimizer is in charge of generating all the possible ways to execute that query, and picking the fastest one. This can mean evaluating the cost of thousands, if not millions, of different execution plans.

The plan cost is calculated based on estimates of the data characteristics. For example, the characteristics could include the number of rows in each base table, the average width of a variable-length column, the number of distinct values in a column, and the most common values in a column. These estimates (or “statistics”) are computed in advance by running an ANALYZE command, and stored in the system catalog.

How do the query optimizer and ANALYZE work together?

An ideal scenario is to run ANALYZE after every ETL/ingestion job. This way, when running your workload, the query optimizer can use up-to-date data statistics, and choose the most optimal execution plan, given the updates.

However, running the ANALYZE command can add significant overhead to the data ingestion scripts. This can lead to customers not running ANALYZE on their data, and using default or stale estimates. The end result is usually the optimizer choosing a suboptimal execution plan that runs for longer than needed.

Analyzing predicate columns only

When you run a SQL query, the query optimizer requests statistics only on columns used in predicates in the SQL query (join predicates, filters in the WHERE clause and GROUP BY clauses). Consider the following query:

SELECT Avg(salary), 
       Min(hiredate), 
       deptname 
FROM   emp 
WHERE  state = 'CA' 
GROUP  BY deptname; 

In the query above, the optimizer requests statistics only on columns ‘state’ and ‘deptname’, but not on ‘salary’ and ‘hiredate’. If present, statistics on columns ‘salary’ and ‘hiredate’ are ignored, as they do not impact the cost of the execution plans considered.

Based on the optimizer functionality described earlier, the Amazon Redshift ANALYZE command has been updated to optionally collect information only about columns used in previous queries as part of a filter, join condition or a GROUP BY clause, and columns that are part of distribution or sort keys (predicate columns). There’s a recently introduced option for the ANALYZE command that only analyzes predicate columns:

ANALYZE <table name> PREDICATE COLUMNS;

By having Amazon Redshift collect information about predicate columns automatically, and analyzing those columns only, you’re able to reduce the time to run ANALYZE. For example, during the execution of the 99 queries in the TPC-DS workload, only 203 out of the 424 total columns are predicate columns (approximately 48%). By analyzing only the predicate columns for such a workload, the execution time for running ANALYZE can be significantly reduced.

From my experience in the data warehousing space, I have observed that about 20% of columns in a typical use case are marked predicate. In such a case, running ANALYZE PREDICATE COLUMNS can lead to a speedup of up to 5x relative to a full ANALYZE run.

If no information on predicate columns exists in the system (for example, a new table that has not been queried yet), ANALYZE PREDICATE COLUMNS collects statistics on all the columns. When queries on the table are run, Amazon Redshift collects information about predicate column usage, and subsequent runs of ANALYZE PREDICATE COLUMNS only operates on the predicate columns.

If the workload is relatively stable, and the set of predicate columns does not expand continuously over time, I recommend replacing all occurrences of the ANALYZE command with ANALYZE PREDICATE COLUMNS commands in your application and data ingestion code.

Using the Analyze/Vacuum utility

Several AWS customers are using the Analyze/Vacuum utility from the Redshift-Utils package to manage and automate their maintenance operations. By passing the –predicate-cols option to the Analyze/Vacuum utility, you can enable it to use the ANALYZE PREDICATE COLUMNS feature, providing you with the significant changes in overhead in a completely seamless manner.

Enhancements to logging for ANALYZE operations

When running ANALYZE with the PREDICATE COLUMNS option, the type of analyze run (Full vs Predicate Column), as well as information about the predicate columns encountered, is logged in the stl_analyze view:

SELECT status, 
       starttime, 
       prevtime, 
       num_predicate_cols, 
       num_new_predicate_cols 
FROM   stl_analyze;
     status   |    starttime        |   prevtime          | pred_cols | new_pred_cols
--------------+---------------------+---------------------+-----------+---------------
 Full         | 2017-11-09 01:15:47 |                     |         0 |             0
 PredicateCol | 2017-11-09 01:16:20 | 2017-11-09 01:15:47 |         2 |             2

AWS also enhanced the pg_statistic catalog table with two new pieces of information: the time stamp at which a column was marked as “predicate”, and the time stamp at which the column was last analyzed.

The Amazon Redshift documentation provides a view that allows a user to easily see which columns are marked as predicate, when they were marked as predicate, and when a column was last analyzed. For example, for the emp table used above, the output of the view could be as follows:

 SELECT col_name, 
       is_predicate, 
       first_predicate_use, 
       last_analyze 
FROM   predicate_columns 
WHERE  table_name = 'emp';

 col_name | is_predicate | first_predicate_use  |        last_analyze
----------+--------------+----------------------+----------------------------
 id       | f            |                      | 2017-11-09 01:15:47
 name     | f            |                      | 2017-11-09 01:15:47
 deptname | t            | 2017-11-09 01:16:03  | 2017-11-09 01:16:20
 age      | f            |                      | 2017-11-09 01:15:47
 salary   | f            |                      | 2017-11-09 01:15:47
 hiredate | f            |                      | 2017-11-09 01:15:47
 state    | t            | 2017-11-09 01:16:03  | 2017-11-09 01:16:20

Conclusion

After loading new data into an Amazon Redshift cluster, statistics need to be re-computed to guarantee performant query plans. By learning which column statistics are actually being used by the customer’s workload and collecting statistics only on those columns, Amazon Redshift is able to significantly reduce the amount of time needed for table maintenance during data loading workflows.


Additional Reading

Be sure to check out the Top 10 Tuning Techniques for Amazon Redshift, and the Advanced Table Design Playbook: Distribution Styles and Distribution Keys.


About the Author

George Caragea is a Senior Software Engineer with Amazon Redshift. He has been working on MPP Databases for over 6 years and is mainly interested in designing systems at scale. In his spare time, he enjoys being outdoors and on the water in the beautiful Bay Area and finishing the day exploring the rich local restaurant scene.

 

 

GDPR – A Practical Guide For Developers

Post Syndicated from Bozho original https://techblog.bozho.net/gdpr-practical-guide-developers/

You’ve probably heard about GDPR. The new European data protection regulation that applies practically to everyone. Especially if you are working in a big company, it’s most likely that there’s already a process for gettign your systems in compliance with the regulation.

The regulation is basically a law that must be followed in all European countries (but also applies to non-EU companies that have users in the EU). In this particular case, it applies to companies that are not registered in Europe, but are having European customers. So that’s most companies. I will not go into yet another “12 facts about GDPR” or “7 myths about GDPR” posts/whitepapers, as they are often aimed at managers or legal people. Instead, I’ll focus on what GDPR means for developers.

Why am I qualified to do that? A few reasons – I was advisor to the deputy prime minister of a EU country, and because of that I’ve been both exposed and myself wrote some legislation. I’m familiar with the “legalese” and how the regulatory framework operates in general. I’m also a privacy advocate and I’ve been writing about GDPR-related stuff in the past, i.e. “before it was cool” (protecting sensitive data, the right to be forgotten). And finally, I’m currently working on a project that (among other things) aims to help with covering some GDPR aspects.

I’ll try to be a bit more comprehensive this time and cover as many aspects of the regulation that concern developers as I can. And while developers will mostly be concerned about how the systems they are working on have to change, it’s not unlikely that a less informed manager storms in in late spring, realizing GDPR is going to be in force tomorrow, asking “what should we do to get our system/website compliant”.

The rights of the user/client (referred to as “data subject” in the regulation) that I think are relevant for developers are: the right to erasure (the right to be forgotten/deleted from the system), right to restriction of processing (you still keep the data, but mark it as “restricted” and don’t touch it without further consent by the user), the right to data portability (the ability to export one’s data), the right to rectification (the ability to get personal data fixed), the right to be informed (getting human-readable information, rather than long terms and conditions), the right of access (the user should be able to see all the data you have about them), the right to data portability (the user should be able to get a machine-readable dump of their data).

Additionally, the relevant basic principles are: data minimization (one should not collect more data than necessary), integrity and confidentiality (all security measures to protect data that you can think of + measures to guarantee that the data has not been inappropriately modified).

Even further, the regulation requires certain processes to be in place within an organization (of more than 250 employees or if a significant amount of data is processed), and those include keeping a record of all types of processing activities carried out, including transfers to processors (3rd parties), which includes cloud service providers. None of the other requirements of the regulation have an exception depending on the organization size, so “I’m small, GDPR does not concern me” is a myth.

It is important to know what “personal data” is. Basically, it’s every piece of data that can be used to uniquely identify a person or data that is about an already identified person. It’s data that the user has explicitly provided, but also data that you have collected about them from either 3rd parties or based on their activities on the site (what they’ve been looking at, what they’ve purchased, etc.)

Having said that, I’ll list a number of features that will have to be implemented and some hints on how to do that, followed by some do’s and don’t’s.

  • “Forget me” – you should have a method that takes a userId and deletes all personal data about that user (in case they have been collected on the basis of consent, and not due to contract enforcement or legal obligation). It is actually useful for integration tests to have that feature (to cleanup after the test), but it may be hard to implement depending on the data model. In a regular data model, deleting a record may be easy, but some foreign keys may be violated. That means you have two options – either make sure you allow nullable foreign keys (for example an order usually has a reference to the user that made it, but when the user requests his data be deleted, you can set the userId to null), or make sure you delete all related data (e.g. via cascades). This may not be desirable, e.g. if the order is used to track available quantities or for accounting purposes. It’s a bit trickier for event-sourcing data models, or in extreme cases, ones that include some sort of blcokchain/hash chain/tamper-evident data structure. With event sourcing you should be able to remove a past event and re-generate intermediate snapshots. For blockchain-like structures – be careful what you put in there and avoid putting personal data of users. There is an option to use a chameleon hash function, but that’s suboptimal. Overall, you must constantly think of how you can delete the personal data. And “our data model doesn’t allow it” isn’t an excuse.
  • Notify 3rd parties for erasure – deleting things from your system may be one thing, but you are also obligated to inform all third parties that you have pushed that data to. So if you have sent personal data to, say, Salesforce, Hubspot, twitter, or any cloud service provider, you should call an API of theirs that allows for the deletion of personal data. If you are such a provider, obviously, your “forget me” endpoint should be exposed. Calling the 3rd party APIs to remove data is not the full story, though. You also have to make sure the information does not appear in search results. Now, that’s tricky, as Google doesn’t have an API for removal, only a manual process. Fortunately, it’s only about public profile pages that are crawlable by Google (and other search engines, okay…), but you still have to take measures. Ideally, you should make the personal data page return a 404 HTTP status, so that it can be removed.
  • Restrict processing – in your admin panel where there’s a list of users, there should be a button “restrict processing”. The user settings page should also have that button. When clicked (after reading the appropriate information), it should mark the profile as restricted. That means it should no longer be visible to the backoffice staff, or publicly. You can implement that with a simple “restricted” flag in the users table and a few if-clasues here and there.
  • Export data – there should be another button – “export data”. When clicked, the user should receive all the data that you hold about them. What exactly is that data – depends on the particular usecase. Usually it’s at least the data that you delete with the “forget me” functionality, but may include additional data (e.g. the orders the user has made may not be delete, but should be included in the dump). The structure of the dump is not strictly defined, but my recommendation would be to reuse schema.org definitions as much as possible, for either JSON or XML. If the data is simple enough, a CSV/XLS export would also be fine. Sometimes data export can take a long time, so the button can trigger a background process, which would then notify the user via email when his data is ready (twitter, for example, does that already – you can request all your tweets and you get them after a while).
  • Allow users to edit their profile – this seems an obvious rule, but it isn’t always followed. Users must be able to fix all data about them, including data that you have collected from other sources (e.g. using a “login with facebook” you may have fetched their name and address). Rule of thumb – all the fields in your “users” table should be editable via the UI. Technically, rectification can be done via a manual support process, but that’s normally more expensive for a business than just having the form to do it. There is one other scenario, however, when you’ve obtained the data from other sources (i.e. the user hasn’t provided their details to you directly). In that case there should still be a page where they can identify somehow (via email and/or sms confirmation) and get access to the data about them.
  • Consent checkboxes – this is in my opinion the biggest change that the regulation brings. “I accept the terms and conditions” would no longer be sufficient to claim that the user has given their consent for processing their data. So, for each particular processing activity there should be a separate checkbox on the registration (or user profile) screen. You should keep these consent checkboxes in separate columns in the database, and let the users withdraw their consent (by unchecking these checkboxes from their profile page – see the previous point). Ideally, these checkboxes should come directly from the register of processing activities (if you keep one). Note that the checkboxes should not be preselected, as this does not count as “consent”.
  • Re-request consent – if the consent users have given was not clear (e.g. if they simply agreed to terms & conditions), you’d have to re-obtain that consent. So prepare a functionality for mass-emailing your users to ask them to go to their profile page and check all the checkboxes for the personal data processing activities that you have.
  • “See all my data” – this is very similar to the “Export” button, except data should be displayed in the regular UI of the application rather than an XML/JSON format. For example, Google Maps shows you your location history – all the places that you’ve been to. It is a good implementation of the right to access. (Though Google is very far from perfect when privacy is concerned)
  • Age checks – you should ask for the user’s age, and if the user is a child (below 16), you should ask for parent permission. There’s no clear way how to do that, but my suggestion is to introduce a flow, where the child should specify the email of a parent, who can then confirm. Obviosuly, children will just cheat with their birthdate, or provide a fake parent email, but you will most likely have done your job according to the regulation (this is one of the “wishful thinking” aspects of the regulation).

Now some “do’s”, which are mostly about the technical measures needed to protect personal data. They may be more “ops” than “dev”, but often the application also has to be extended to support them. I’ve listed most of what I could think of in a previous post.

  • Encrypt the data in transit. That means that communication between your application layer and your database (or your message queue, or whatever component you have) should be over TLS. The certificates could be self-signed (and possibly pinned), or you could have an internal CA. Different databases have different configurations, just google “X encrypted connections. Some databases need gossiping among the nodes – that should also be configured to use encryption
  • Encrypt the data at rest – this again depends on the database (some offer table-level encryption), but can also be done on machine-level. E.g. using LUKS. The private key can be stored in your infrastructure, or in some cloud service like AWS KMS.
  • Encrypt your backups – kind of obvious
  • Implement pseudonymisation – the most obvious use-case is when you want to use production data for the test/staging servers. You should change the personal data to some “pseudonym”, so that the people cannot be identified. When you push data for machine learning purposes (to third parties or not), you can also do that. Technically, that could mean that your User object can have a “pseudonymize” method which applies hash+salt/bcrypt/PBKDF2 for some of the data that can be used to identify a person
  • Protect data integrity – this is a very broad thing, and could simply mean “have authentication mechanisms for modifying data”. But you can do something more, even as simple as a checksum, or a more complicated solution (like the one I’m working on). It depends on the stakes, on the way data is accessed, on the particular system, etc. The checksum can be in the form of a hash of all the data in a given database record, which should be updated each time the record is updated through the application. It isn’t a strong guarantee, but it is at least something.
  • Have your GDPR register of processing activities in something other than Excel – Article 30 says that you should keep a record of all the types of activities that you use personal data for. That sounds like bureaucracy, but it may be useful – you will be able to link certain aspects of your application with that register (e.g. the consent checkboxes, or your audit trail records). It wouldn’t take much time to implement a simple register, but the business requirements for that should come from whoever is responsible for the GDPR compliance. But you can advise them that having it in Excel won’t make it easy for you as a developer (imagine having to fetch the excel file internally, so that you can parse it and implement a feature). Such a register could be a microservice/small application deployed separately in your infrastructure.
  • Log access to personal data – every read operation on a personal data record should be logged, so that you know who accessed what and for what purpose
  • Register all API consumers – you shouldn’t allow anonymous API access to personal data. I’d say you should request the organization name and contact person for each API user upon registration, and add those to the data processing register. Note: some have treated article 30 as a requirement to keep an audit log. I don’t think it is saying that – instead it requires 250+ companies to keep a register of the types of processing activities (i.e. what you use the data for). There are other articles in the regulation that imply that keeping an audit log is a best practice (for protecting the integrity of the data as well as to make sure it hasn’t been processed without a valid reason)

Finally, some “don’t’s”.

  • Don’t use data for purposes that the user hasn’t agreed with – that’s supposed to be the spirit of the regulation. If you want to expose a new API to a new type of clients, or you want to use the data for some machine learning, or you decide to add ads to your site based on users’ behaviour, or sell your database to a 3rd party – think twice. I would imagine your register of processing activities could have a button to send notification emails to users to ask them for permission when a new processing activity is added (or if you use a 3rd party register, it should probably give you an API). So upon adding a new processing activity (and adding that to your register), mass email all users from whom you’d like consent.
  • Don’t log personal data – getting rid of the personal data from log files (especially if they are shipped to a 3rd party service) can be tedious or even impossible. So log just identifiers if needed. And make sure old logs files are cleaned up, just in case
  • Don’t put fields on the registration/profile form that you don’t need – it’s always tempting to just throw as many fields as the usability person/designer agrees on, but unless you absolutely need the data for delivering your service, you shouldn’t collect it. Names you should probably always collect, but unless you are delivering something, a home address or phone is unnecessary.
  • Don’t assume 3rd parties are compliant – you are responsible if there’s a data breach in one of the 3rd parties (e.g. “processors”) to which you send personal data. So before you send data via an API to another service, make sure they have at least a basic level of data protection. If they don’t, raise a flag with management.
  • Don’t assume having ISO XXX makes you compliant – information security standards and even personal data standards are a good start and they will probably 70% of what the regulation requires, but they are not sufficient – most of the things listed above are not covered in any of those standards

Overall, the purpose of the regulation is to make you take conscious decisions when processing personal data. It imposes best practices in a legal way. If you follow the above advice and design your data model, storage, data flow , API calls with data protection in mind, then you shouldn’t worry about the huge fines that the regulation prescribes – they are for extreme cases, like Equifax for example. Regulators (data protection authorities) will most likely have some checklists into which you’d have to somehow fit, but if you follow best practices, that shouldn’t be an issue.

I think all of the above features can be implemented in a few weeks by a small team. Be suspicious when a big vendor offers you a generic plug-and-play “GDPR compliance” solution. GDPR is not just about the technical aspects listed above – it does have organizational/process implications. But also be suspicious if a consultant claims GDPR is complicated. It’s not – it relies on a few basic principles that are in fact best practices anyway. Just don’t ignore them.

The post GDPR – A Practical Guide For Developers appeared first on Bozho's tech blog.