Tag Archives: Whitepaper

Cloudflare Kicking ‘Daily Stormer’ is Bad News For Pirate Sites

Post Syndicated from Ernesto original https://torrentfreak.com/cloudflare-kicking-daily-stormer-is-bad-news-for-pirate-sites-170817/

“I woke up this morning in a bad mood and decided to kick them off the Internet.”

Those are the words of Cloudflare CEO Matthew Prince, who decided to terminate the account of controversial Neo-Nazi site Daily Stormer.

Bam. Gone. At least for a while.

Although many people are happy to see the site go offline, the decision is not without consequence. It goes directly against what many saw as the core values of the company.

For years on end, Cloudflare has been asked to remove terrorist propaganda, pirate sites, and other possibly unacceptable content. Each time, Cloudflare replied that it doesn’t take action without a court order. No exceptions.

“Even if it were able to, Cloudfare does not monitor, evaluate, judge or store content appearing on a third party website,” the company wrote just a few weeks ago, in its whitepaper on intermediary liability.

“We’re the plumbers of the internet. We make the pipes work but it’s not right for us to inspect what is or isn’t going through the pipes,” Cloudflare CEO Matthew Prince himself said not too long ago.

“If companies like ours or ISPs start censoring there would be an uproar. It would lead us down a path of internet censors and controls akin to a country like China,” he added.

The same arguments were repeated in different contexts, over and over.

This strong position was also one of the reasons why Cloudflare was dragged into various copyright infringement court cases. In these cases, the company repeatedly stressed that removing a site from Cloudflare’s service would not make infringing content disappear.

Pirate sites would just require a simple DNS reconfiguration to continue their operation, after all.

“[T]here are no measures of any kind that CloudFlare could take to prevent this alleged infringement, because the termination of CloudFlare’s CDN services would have no impact on the existence and ability of these allegedly infringing websites to continue to operate,” it said.

That comment looks rather misplaced now that the CEO of the same company has decided to “kick” a website “off the Internet” after an emotional, but deliberate, decision.

Taking a page from Cloudflare’s (old) playbook we’re not going to make any judgments here. Just search Twitter or any social media site and you’ll see plenty of opinions, both for and against the company’s actions.

We do have a prediction though. During the months and years to come, Cloudflare is likely to be dragged into many more copyright lawsuits, and when they are, their counterparts are going to bring up Cloudflare’s voluntary decision to kick a website off the Internet.

Unless Cloudflare suddenly decides to pull all pirate sites from its service tomorrow, of course.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

The First AWS Regional Financial Services Guide Focuses on Singapore

Post Syndicated from Jodi Scrofani original https://aws.amazon.com/blogs/security/the-first-aws-regional-financial-services-guide-focuses-on-singapore/

Financial Services image

To help Financial Services clients address Singapore’s regulations on financial institutions in a shared responsibility environment, AWS has published the AWS User Guide to Financial Services Regulations and Guidelines in Singapore. This first-ever AWS Financial Services guide is the culmination of the work AWS has done in the last year to help customers navigate the Monetary Authority of Singapore’s 2016 updated guidelines about cloud services.

This new guide examines Singaporean requirements and guidelines, providing information that will help you conduct due diligence on AWS with regard to IT security and risk management. The guide also shares leading practices to empower you to develop your own governance programs by using AWS.

The guide focuses on three top considerations for financial institutions operating in Singapore:

  • Outsourcing guidelines – Conduct a self-assessment of AWS services and align your governance requirements within a shared responsibility model.
  • Technology risk management – Take a deeper look at where shared responsibility exists for technology implementation and perform a self-assessment of AWS service responsibilities.
  • Cloud computing implementation – Assess additional responsibilities to ensure security and compliance with local guidelines.

We will release additional AWS Financial Services resource guides this year to help you understand the requirements in other markets around the globe. These guides will be posted on the AWS Compliance Resources page.

If you have questions or comments about this new guide, submit them in the “Comments” section below.

– Jodi

Time-lapse Visualizes Game of Thrones Piracy Around The Globe

Post Syndicated from Ernesto original https://torrentfreak.com/time-lapse-visualizes-game-of-thrones-piracy-around-the-globe-17-730/

Game of Thrones has been the most pirated TV-show online for years, and this isn’t expected to change anytime soon.

While most of today’s piracy takes place through streaming services, BitTorrent traffic remains significant as well. The show’s episodes are generally downloaded millions of times each, by people from all over the world.

In recent years there have been several attempts to quantify this piracy bonanza. While MILLIONS of downloads make for a good headline, there are some other trends worth looking at as well.

TorrentFreak spoke to Abigail De Kosnik, an Associate Professor at the University of California, Berkeley. Together with computer scientist and artist Benjamin De Kosnik, she runs the BitTorrent-oriented research project “alpha60.”

The goal of alpha60 is to quantify and map BitTorrent activity around various media titles, to make this “shadow economy” visible to media scholars and the general public. Over the past two weeks, they’ve taken a close look at Game of Thrones downloads.

Their tracking software collected swarm data from 72 torrents that were released shortly after the first episode premiered. Before being anonymized, the collected IP-addresses were first translated to geographical locations, to reveal various traffic patterns.

The results, summarized in a white paper, reveal that during the first five days, alpha60 registered an estimated 1.77 million downloads. Of particular interest is the five-day time-lapse of the worldwide swarm activity.

Five-day Game of Thrones piracy timelapse

The time-lapse shows that download patterns vary depending on the time of the day. There is a lot of activity in Asia, but cities such as Athens, Toronto, and Sao Paulo also pop up regularly.

When looking at the absolute numbers, Seoul comes out on top as the Game of Thrones download capital of the world, followed by Athens, São Paulo, Guangzhou, Mumbai, and Bangalore.

Perhaps more interesting is the view of the number of downloads relative to the population, or the “over-pirating” cities, as alpha60 calls them. Here, Dallas comes out on top, before Brisbane, Chicago, Riyadh, Saudi Arabia, Seattle, and Perth.

Of course, VPNs may skew the results somewhat, but overall the data should give a pretty accurate impression of the download traffic around the globe.

Below are the complete top tens of most active cities, both in absolute numbers and relative to the population. Further insights and additional information is available in the full whitepaper, which can be accessed here.

Note: The download totals reported by alpha60 are significantly lower than the MUSO figures that came out last week. Alpha60 stresses, however, that their methods and data are accurate. MUSO, for its part, has made some dubious claims in the past.

Most downloads (absolute)

1 Seoul, Rep. of Korea
2 Athens, Greece
3 São Paulo, Brazil
4 Guangzhou, China
5 Mumbai, India
6 Bangalore, India
7 Shanghai, China
8 Riyadh, Saudi Arabia
9 Delhi, India
10 Beijing, China

Most downloads (relative)

1 Dallas, USA
2 Brisbane, Australia
3 Chicago, USA
4 Riyadh, Saudi Arabia
5 Seattle, USA
6 Perth, Australia
7 Phoenix, USA
8 Toronto, Canada
9 Athens, Greece
10 Guangzhou, China

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Which Domain Names Are Safe From Copyright Bullies?

Post Syndicated from Ernesto original https://torrentfreak.com/which-domain-names-are-safe-from-copyright-bullies-170728/

There are plenty options for copyright holders to frustrate the operation of pirate sites, but one of the most effective is to attack their domain names.

The strategy has been deployed most famously against The Pirate Bay. Over the past couple of years, the site has lost more than a handful following copyright holder complaints.

While less public, hundreds of smaller sites have suffered the same fate. Sometimes these sites are clear infringers, but in other cases it’s less obvious. In these instances, a simple complaint can also be enough to have a domain name suspended.

Electronic Frontier Foundation (EFF) and Public Knowledge address this ‘copyright bullying’ problem in a newly published whitepaper. According to the digital rights groups, site owners should pick their domain names carefully, and go for a registry that shields website owners from this type of abuse.

“It turns out that not every top-level domain is created equal when it comes to protecting the domain holder’s rights. Depending on where you register your domain, a rival, troll, or officious regulator who doesn’t like what you’re doing with it could wrongly take it away,” the groups warn.

The whitepaper includes a detailed analysis of the policies of various domain name registries. For each, it lists the home country, under which conditions domain names are removed, and whether the WHOIS details of registrants are protected.

When it comes to “copyright bullies,” the digital rights groups highlight the MPAA’s voluntary agreements with the Radix and Donuts registries. The agreement allows the MPAA to report infringing sites directly to the registry. These can then be removed after a careful review but without a court order.

“Our whitepaper illustrates why remedies for copyright infringement on the Internet should not come from the domain name system, and in particular should not be wielded by commercial actors in an unaccountable process. Organizations such as the MPAA are not known for advancing a balanced approach to copyright enforcement,” the EFF explains.

While EFF and Public Knowledge don’t recommend any TLDs in particular, they do signal some that site owners may want to avoid. The Radix and Donuts domain names are obviously not the best choice, in this regard.

“To avoid having your website taken down by your domain registry in response to a copyright complaint, our whitepaper sets out a number of options, including registering in a domain whose registry requires a court order before it will take down a domain, or at the very least one that doesn’t have a special arrangement with the MPAA or another special interest for the streamlined takedown of domains,” the groups write.

Aside from the information gathered in the whitepaper, The Pirate Bay itself has also proven to be an excellent test case of which domain names are most resistant to copyright holder complaints.

In 2015, the notorious torrent site found out that exotic domain names are not always the best option after losing its .GS, .LA, .VG, .AM, .MN, and .GD TLDs in a matter of months. The good old .ORG is still up and running as of today, however, despite being operated by a United States-based registry.

EFF and Public knowledge’s full whitepaper is available here (pdf).

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

AWS HIPAA Eligibility Update (July 2017) – Eight Additional Services

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-hipaa-eligibility-update-july-2017-eight-additional-services/

It is time for an update on our on-going effort to make AWS a great host for healthcare and life sciences applications. As you can see from our Health Customer Stories page, Philips, VergeHealth, and Cambia (to choose a few) trust AWS with Protected Health Information (PHI) and Personally Identifying Information (PII) as part of their efforts to comply with HIPAA and HITECH.

In May we announced that we added Amazon API Gateway, AWS Direct Connect, AWS Database Migration Service, and Amazon Simple Queue Service (SQS) to our list of HIPAA eligible services and discussed our how customers and partners are putting them to use.

Eight More Eligible Services
Today I am happy to share the news that we are adding another eight services to the list:

Amazon CloudFront can now be utilized to enhance the delivery and transfer of Protected Health Information data to applications on the Internet. By providing a completely secure and encryptable pathway, CloudFront can now be used as a part of applications that need to cache PHI. This includes applications for viewing lab results or imaging data, and those that transfer PHI from Healthcare Information Exchanges (HIEs).

AWS WAF can now be used to protect applications running on AWS which operate on PHI such as patient care portals, patient scheduling systems, and HIEs. Requests and responses containing encrypted PHI and PII can now pass through AWS WAF.

AWS Shield can now be used to protect web applications such as patient care portals and scheduling systems that operate on encrypted PHI from DDoS attacks.

Amazon S3 Transfer Acceleration can now be used to accelerate the bulk transfer of large amounts of research, genetics, informatics, insurance, or payer/payment data containing PHI/PII information. Transfers can take place between a pair of AWS Regions or from an on-premises system and an AWS Region.

Amazon WorkSpaces can now be used by researchers, informaticists, hospital administrators and other users to analyze, visualize or process PHI/PII data using on-demand Windows virtual desktops.

AWS Directory Service can now be used to connect the authentication and authorization systems of organizations that use or process PHI/PII to their resources in the AWS Cloud. For example, healthcare providers operating hybrid cloud environments can now use AWS Directory Services to allow their users to easily transition between cloud and on-premises resources.

Amazon Simple Notification Service (SNS) can now be used to send notifications containing encrypted PHI/PII as part of patient care, payment processing, and mobile applications.

Amazon Cognito can now be used to authenticate users into mobile patient portal and payment processing applications that use PHI/PII identifiers for accounts.

Additional HIPAA Resources
Here are some additional resources that will help you to build applications that comply with HIPAA and HITECH:

Keep in Touch
In order to make use of any AWS service in any manner that involves PHI, you must first enter into an AWS Business Associate Addendum (BAA). You can contact us to start the process.

Jeff;

Analyze OpenFDA Data in R with Amazon S3 and Amazon Athena

Post Syndicated from Ryan Hood original https://aws.amazon.com/blogs/big-data/analyze-openfda-data-in-r-with-amazon-s3-and-amazon-athena/

One of the great benefits of Amazon S3 is the ability to host, share, or consume public data sets. This provides transparency into data to which an external data scientist or developer might not normally have access. By exposing the data to the public, you can glean many insights that would have been difficult with a data silo.

The openFDA project creates easy access to the high value, high priority, and public access data of the Food and Drug Administration (FDA). The data has been formatted and documented in consumer-friendly standards. Critical data related to drugs, devices, and food has been harmonized and can easily be called by application developers and researchers via API calls. OpenFDA has published two whitepapers that drill into the technical underpinnings of the API infrastructure as well as how to properly analyze the data in R. In addition, FDA makes openFDA data available on S3 in raw format.

In this post, I show how to use S3, Amazon EMR, and Amazon Athena to analyze the drug adverse events dataset. A drug adverse event is an undesirable experience associated with the use of a drug, including serious drug side effects, product use errors, product quality programs, and therapeutic failures.

Data considerations

Keep in mind that this data does have limitations. In addition, in the United States, these adverse events are submitted to the FDA voluntarily from consumers so there may not be reports for all events that occurred. There is no certainty that the reported event was actually due to the product. The FDA does not require that a causal relationship between a product and event be proven, and reports do not always contain the detail necessary to evaluate an event. Because of this, there is no way to identify the true number of events. The important takeaway to all this is that the information contained in this data has not been verified to produce cause and effect relationships. Despite this disclaimer, many interesting insights and value can be derived from the data to accelerate drug safety research.

Data analysis using SQL

For application developers who want to perform targeted searching and lookups, the API endpoints provided by the openFDA project are “ready to go” for software integration using a standard API powered by Elasticsearch, NodeJS, and Docker. However, for data analysis purposes, it is often easier to work with the data using SQL and statistical packages that expect a SQL table structure. For large-scale analysis, APIs often have query limits, such as 5000 records per query. This can cause extra work for data scientists who want to analyze the full dataset instead of small subsets of data.

To address the concern of requiring all the data in a single dataset, the openFDA project released the full 100 GB of harmonized data files that back the openFDA project onto S3. Athena is an interactive query service that makes it easy to analyze data in S3 using standard SQL. It’s a quick and easy way to answer your questions about adverse events and aspirin that does not require you to spin up databases or servers.

While you could point tools directly at the openFDA S3 files, you can find greatly improved performance and use of the data by following some of the preparation steps later in this post.

Architecture

This post explains how to use the following architecture to take the raw data provided by openFDA, leverage several AWS services, and derive meaning from the underlying data.

Steps:

  1. Load the openFDA /drug/event dataset into Spark and convert it to gzip to allow for streaming.
  2. Transform the data in Spark and save the results as a Parquet file in S3.
  3. Query the S3 Parquet file with Athena.
  4. Perform visualization and analysis of the data in R and Python on Amazon EC2.

Optimizing public data sets: A primer on data preparation

Those who want to jump right into preparing the files for Athena may want to skip ahead to the next section.

Transforming, or pre-processing, files is a common task for using many public data sets. Before you jump into the specific steps for transforming the openFDA data files into a format optimized for Athena, I thought it would be worthwhile to provide a quick exploration on the problem.

Making a dataset in S3 efficiently accessible with minimal transformation for the end user has two key elements:

  1. Partitioning the data into objects that contain a complete part of the data (such as data created within a specific month).
  2. Using file formats that make it easy for applications to locate subsets of data (for example, gzip, Parquet, ORC, etc.).

With these two key elements in mind, you can now apply transformations to the openFDA adverse event data to prepare it for Athena. You might find the data techniques employed in this post to be applicable to many of the questions you might want to ask of the public data sets stored in Amazon S3.

Before you get started, I encourage those who are interested in doing deeper healthcare analysis on AWS to make sure that you first read the AWS HIPAA Compliance whitepaper. This covers the information necessary for processing and storing patient health information (PHI).

Also, the adverse event analysis shown for aspirin is strictly for demonstration purposes and should not be used for any real decision or taken as anything other than a demonstration of AWS capabilities. However, there have been robust case studies published that have explored a causal relationship between aspirin and adverse reactions using OpenFDA data. If you are seeking research on aspirin or its risks, visit organizations such as the Centers for Disease Control and Prevention (CDC) or the Institute of Medicine (IOM).

Preparing data for Athena

For this walkthrough, you will start with the FDA adverse events dataset, which is stored as JSON files within zip archives on S3. You then convert it to Parquet for analysis. Why do you need to convert it? The original data download is stored in objects that are partitioned by quarter.

Here is a small sample of what you find in the adverse events (/drugs/event) section of the openFDA website.

If you were looking for events that happened in a specific quarter, this is not a bad solution. For most other scenarios, such as looking across the full history of aspirin events, it requires you to access a lot of data that you won’t need. The zip file format is not ideal for using data in place because zip readers must have random access to the file, which means the data can’t be streamed. Additionally, the zip files contain large JSON objects.

To read the data in these JSON files, a streaming JSON decoder must be used or a computer with a significant amount of RAM must decode the JSON. Opening up these files for public consumption is a great start. However, you still prepare the data with a few lines of Spark code so that the JSON can be streamed.

Step 1:  Convert the file types

Using Apache Spark on EMR, you can extract all of the zip files and pull out the events from the JSON files. To do this, use the Scala code below to deflate the zip file and create a text file. In addition, compress the JSON files with gzip to improve Spark’s performance and reduce your overall storage footprint. The Scala code can be run in either the Spark Shell or in an Apache Zeppelin notebook on your EMR cluster.

If you are unfamiliar with either Apache Zeppelin or the Spark Shell, the following posts serve as great references:

 

import scala.io.Source
import java.util.zip.ZipInputStream
import org.apache.spark.input.PortableDataStream
import org.apache.hadoop.io.compress.GzipCodec

// Input Directory
val inputFile = "s3://download.open.fda.gov/drug/event/2015q4/*.json.zip";

// Output Directory
val outputDir = "s3://{YOUR OUTPUT BUCKET HERE}/output/2015q4/";

// Extract zip files from 
val zipFiles = sc.binaryFiles(inputFile);

// Process zip file to extract the json as text file and save it
// in the output directory 
val rdd = zipFiles.flatMap((file: (String, PortableDataStream)) => {
    val zipStream = new ZipInputStream(file.2.open)
    val entry = zipStream.getNextEntry
    val iter = Source.fromInputStream(zipStream).getLines
    iter
}).map(.replaceAll("\s+","")).saveAsTextFile(outputDir, classOf[GzipCodec])

Step 2:  Transform JSON into Parquet

With just a few more lines of Scala code, you can use Spark’s abstractions to convert the JSON into a Spark DataFrame and then export the data back to S3 in Parquet format.

Spark requires the JSON to be in JSON Lines format to be parsed correctly into a DataFrame.

// Output Parquet directory
val outputDir = "s3://{YOUR OUTPUT BUCKET NAME}/output/drugevents"
// Input json file
val inputJson = "s3://{YOUR OUTPUT BUCKET NAME}/output/2015q4/*”
// Load dataframe from json file multiline 
val df = spark.read.json(sc.wholeTextFiles(inputJson).values)
// Extract results from dataframe
val results = df.select("results")
// Save it to Parquet
results.write.parquet(outputDir)

Step 3:  Create an Athena table

With the data cleanly prepared and stored in S3 using the Parquet format, you can now place an Athena table on top of it to get a better understanding of the underlying data.

Because the openFDA data structure incorporates several layers of nesting, it can be a complex process to try to manually derive the underlying schema in a Hive-compatible format. To shorten this process, you can load the top row of the DataFrame from the previous step into a Hive table within Zeppelin and then extract the “create  table” statement from SparkSQL.

results.createOrReplaceTempView("data")

val top1 = spark.sql("select * from data tablesample(1 rows)")

top1.write.format("parquet").mode("overwrite").saveAsTable("drugevents")

val show_cmd = spark.sql("show create table drugevents”).show(1, false)

This returns a “create table” statement that you can almost paste directly into the Athena console. Make some small modifications (adding the word “external” and replacing “using with “stored as”), and then execute the code in the Athena query editor. The table is created.

For the openFDA data, the DDL returns all string fields, as the date format used in your dataset does not conform to the yyy-mm-dd hh:mm:ss[.f…] format required by Hive. For your analysis, the string format works appropriately but it would be possible to extend this code to use a Presto function to convert the strings into time stamps.

CREATE EXTERNAL TABLE  drugevents (
   companynumb  string, 
   safetyreportid  string, 
   safetyreportversion  string, 
   receiptdate  string, 
   patientagegroup  string, 
   patientdeathdate  string, 
   patientsex  string, 
   patientweight  string, 
   serious  string, 
   seriousnesscongenitalanomali  string, 
   seriousnessdeath  string, 
   seriousnessdisabling  string, 
   seriousnesshospitalization  string, 
   seriousnesslifethreatening  string, 
   seriousnessother  string, 
   actiondrug  string, 
   activesubstancename  string, 
   drugadditional  string, 
   drugadministrationroute  string, 
   drugcharacterization  string, 
   drugindication  string, 
   drugauthorizationnumb  string, 
   medicinalproduct  string, 
   drugdosageform  string, 
   drugdosagetext  string, 
   reactionoutcome  string, 
   reactionmeddrapt  string, 
   reactionmeddraversionpt  string)
STORED AS parquet
LOCATION
  's3://{YOUR TARGET BUCKET}/output/drugevents'

With the Athena table in place, you can start to explore the data by running ad hoc queries within Athena or doing more advanced statistical analysis in R.

Using SQL and R to analyze adverse events

Using the openFDA data with Athena makes it very easy to translate your questions into SQL code and perform quick analysis on the data. After you have prepared the data for Athena, you can begin to explore the relationship between aspirin and adverse drug events, as an example. One of the most common metrics to measure adverse drug events is the Proportional Reporting Ratio (PRR). It is defined as:

PRR = (m/n)/( (M-m)/(N-n) )
Where
m = #reports with drug and event
n = #reports with drug
M = #reports with event in database
N = #reports in database

Gastrointestinal haemorrhage has the highest PRR of any reaction to aspirin when viewed in aggregate. One question you may want to ask is how the PRR has trended on a yearly basis for gastrointestinal haemorrhage since 2005.

Using the following query in Athena, you can see the PRR trend of “GASTROINTESTINAL HAEMORRHAGE” reactions with “ASPIRIN” since 2005:

with drug_and_event as 
(select rpad(receiptdate, 4, 'NA') as receipt_year
    , reactionmeddrapt
    , count(distinct (concat(safetyreportid,receiptdate,reactionmeddrapt))) as reports_with_drug_and_event 
from fda.drugevents
where rpad(receiptdate,4,'NA') 
     between '2005' and '2015' 
     and medicinalproduct = 'ASPIRIN'
     and reactionmeddrapt= 'GASTROINTESTINAL HAEMORRHAGE'
group by reactionmeddrapt, rpad(receiptdate, 4, 'NA') 
), reports_with_drug as 
(
select rpad(receiptdate, 4, 'NA') as receipt_year
    , count(distinct (concat(safetyreportid,receiptdate,reactionmeddrapt))) as reports_with_drug 
 from fda.drugevents 
 where rpad(receiptdate,4,'NA') 
     between '2005' and '2015' 
     and medicinalproduct = 'ASPIRIN'
group by rpad(receiptdate, 4, 'NA') 
), reports_with_event as 
(
   select rpad(receiptdate, 4, 'NA') as receipt_year
    , count(distinct (concat(safetyreportid,receiptdate,reactionmeddrapt))) as reports_with_event 
   from fda.drugevents
   where rpad(receiptdate,4,'NA') 
     between '2005' and '2015' 
     and reactionmeddrapt= 'GASTROINTESTINAL HAEMORRHAGE'
   group by rpad(receiptdate, 4, 'NA')
), total_reports as 
(
   select rpad(receiptdate, 4, 'NA') as receipt_year
    , count(distinct (concat(safetyreportid,receiptdate,reactionmeddrapt))) as total_reports 
   from fda.drugevents
   where rpad(receiptdate,4,'NA') 
     between '2005' and '2015' 
   group by rpad(receiptdate, 4, 'NA')
)
select  drug_and_event.receipt_year, 
(1.0 * drug_and_event.reports_with_drug_and_event/reports_with_drug.reports_with_drug)/ (1.0 * (reports_with_event.reports_with_event- drug_and_event.reports_with_drug_and_event)/(total_reports.total_reports-reports_with_drug.reports_with_drug)) as prr
, drug_and_event.reports_with_drug_and_event
, reports_with_drug.reports_with_drug
, reports_with_event.reports_with_event
, total_reports.total_reports
from drug_and_event
    inner join reports_with_drug on  drug_and_event.receipt_year = reports_with_drug.receipt_year   
    inner join reports_with_event on  drug_and_event.receipt_year = reports_with_event.receipt_year
    inner join total_reports on  drug_and_event.receipt_year = total_reports.receipt_year
order by  drug_and_event.receipt_year


One nice feature of Athena is that you can quickly connect to it via R or any other tool that can use a JDBC driver to visualize the data and understand it more clearly.

With this quick R script that can be run in R Studio either locally or on an EC2 instance, you can create a visualization of the PRR and Reporting Odds Ratio (RoR) for “GASTROINTESTINAL HAEMORRHAGE” reactions from “ASPIRIN” since 2005 to better understand these trends.

# connect to ATHENA
conn <- dbConnect(drv, '<Your JDBC URL>',s3_staging_dir="<Your S3 Location>",user=Sys.getenv(c("USER_NAME"),password=Sys.getenv(c("USER_PASSWORD"))

# Declare Adverse Event
adverseEvent <- "'GASTROINTESTINAL HAEMORRHAGE'"

# Build SQL Blocks
sqlFirst <- "SELECT rpad(receiptdate, 4, 'NA') as receipt_year, count(DISTINCT safetyreportid) as event_count FROM fda.drugsflat WHERE rpad(receiptdate,4,'NA') between '2005' and '2015'"
sqlEnd <- "GROUP BY rpad(receiptdate, 4, 'NA') ORDER BY receipt_year"

# Extract Aspirin with adverse event counts
sql <- paste(sqlFirst,"AND medicinalproduct ='ASPIRIN' AND reactionmeddrapt=",adverseEvent, sqlEnd,sep=" ")
aspirinAdverseCount = dbGetQuery(conn,sql)

# Extract Aspirin counts
sql <- paste(sqlFirst,"AND medicinalproduct ='ASPIRIN'", sqlEnd,sep=" ")
aspirinCount = dbGetQuery(conn,sql)

# Extract adverse event counts
sql <- paste(sqlFirst,"AND reactionmeddrapt=",adverseEvent, sqlEnd,sep=" ")
adverseCount = dbGetQuery(conn,sql)

# All Drug Adverse event Counts
sql <- paste(sqlFirst, sqlEnd,sep=" ")
allDrugCount = dbGetQuery(conn,sql)

# Select correct rows
selAll =  allDrugCount$receipt_year == aspirinAdverseCount$receipt_year
selAspirin = aspirinCount$receipt_year == aspirinAdverseCount$receipt_year
selAdverse = adverseCount$receipt_year == aspirinAdverseCount$receipt_year

# Calculate Numbers
m <- c(aspirinAdverseCount$event_count)
n <- c(aspirinCount[selAspirin,2])
M <- c(adverseCount[selAdverse,2])
N <- c(allDrugCount[selAll,2])

# Calculate proptional reporting ratio
PRR = (m/n)/((M-m)/(N-n))

# Calculate reporting Odds Ratio
d = n-m
D = N-M
ROR = (m/d)/(M/D)

# Plot the PRR and ROR
g_range <- range(0, PRR,ROR)
g_range[2] <- g_range[2] + 3
yearLen = length(aspirinAdverseCount$receipt_year)
axis(1,1:yearLen,lab=ax)
plot(PRR, type="o", col="blue", ylim=g_range,axes=FALSE, ann=FALSE)
axis(1,1:yearLen,lab=ax)
axis(2, las=1, at=1*0:g_range[2])
box()
lines(ROR, type="o", pch=22, lty=2, col="red")

As you can see, the PRR and RoR have both remained fairly steady over this time range. With the R Script above, all you need to do is change the adverseEvent variable from GASTROINTESTINAL HAEMORRHAGE to another type of reaction to analyze and compare those trends.

Summary

In this walkthrough:

  • You used a Scala script on EMR to convert the openFDA zip files to gzip.
  • You then transformed the JSON blobs into flattened Parquet files using Spark on EMR.
  • You created an Athena DDL so that you could query these Parquet files residing in S3.
  • Finally, you pointed the R package at the Athena table to analyze the data without pulling it into a database or creating your own servers.

If you have questions or suggestions, please comment below.


Next Steps

Take your skills to the next level. Learn how to optimize Amazon S3 for an architecture commonly used to enable genomic data analysis. Also, be sure to read more about running R on Amazon Athena.

 

 

 

 

 


About the Authors

Ryan Hood is a Data Engineer for AWS. He works on big data projects leveraging the newest AWS offerings. In his spare time, he enjoys watching the Cubs win the World Series and attempting to Sous-vide anything he can find in his refrigerator.

 

 

Vikram Anand is a Data Engineer for AWS. He works on big data projects leveraging the newest AWS offerings. In his spare time, he enjoys playing soccer and watching the NFL & European Soccer leagues.

 

 

Dave Rocamora is a Solutions Architect at Amazon Web Services on the Open Data team. Dave is based in Seattle and when he is not opening data, he enjoys biking and drinking coffee outside.

 

 

 

 

New Security Whitepaper Now Available: Use AWS WAF to Mitigate OWASP’s Top 10 Web Application Vulnerabilities

Post Syndicated from Vlad Vlasceanu original https://aws.amazon.com/blogs/security/new-security-whitepaper-now-available-use-aws-waf-to-mitigate-owasps-top-10-web-application-vulnerabilities/

Whitepaper image

Today, we released a new security whitepaper: Use AWS WAF to Mitigate OWASP’s Top 10 Web Application Vulnerabilities. This whitepaper describes how you can use AWS WAF, a web application firewall, to address the top application security flaws as named by the Open Web Application Security Project (OWASP). Using AWS WAF, you can write rules to match patterns of exploitation attempts in HTTP requests and block requests from reaching your web servers. This whitepaper discusses manifestations of these security vulnerabilities, AWS WAF–based mitigation strategies, and other AWS services or solutions that can help address these threats.

– Vlad

Blue/Green Deployments with Amazon EC2 Container Service

Post Syndicated from Nathan Taber original https://aws.amazon.com/blogs/compute/bluegreen-deployments-with-amazon-ecs/

This post and accompanying code was generously contributed by:

Jeremy Cowan
Solutions Architect
Anuj Sharma
DevOps Cloud Architect
Peter Dalbhanjan
Solutions Architect

Deploying software updates in traditional non-containerized environments is hard and fraught with risk. When you write your deployment package or script, you have to assume that the target machine is in a particular state. If your staging environment is not an exact mirror image of your production environment, your deployment could fail. These failures frequently cause outages that persist until you re-deploy the last known good version of your application. If you are an Operations Manager, this is what keeps you up at night.

Increasingly, customers want to do testing in production environments without exposing customers to the new version until the release has been vetted. Others want to expose a small percentage of their customers to the new release to gather feedback about a feature before it’s released to the broader population. This is often referred to as canary analysis or canary testing. In this post, I introduce patterns to implement blue/green and canary deployments using Application Load Balancers and target groups.

If you’d like to try this approach to blue/green deployments, we have open sourced the code and AWS CloudFormation templates in the ecs-blue-green-deployment GitHub repo. The workflow builds an automated CI/CD pipeline that deploys your service onto an ECS cluster and offers a controlled process to swap target groups when you’re ready to promote the latest version of your code to production. You can quickly set up the environment in three steps and see the blue/green swap in action. We’d love for you to try it and send us your feedback!

Benefits of blue/green

Blue/green deployments are a type of immutable deployment that help you deploy software updates with less risk. The risk is reduced by creating separate environments for the current running or “blue” version of your application, and the new or “green” version of your application.

This type of deployment gives you an opportunity to test features in the green environment without impacting the current running version of your application. When you’re satisfied that the green version is working properly, you can gradually reroute the traffic from the old blue environment to the new green environment by modifying DNS. By following this method, you can update and roll back features with near zero downtime.

A typical blue/green deployment involves shifting traffic between 2 distinct environments.

This ability to quickly roll traffic back to the still-operating blue environment is one of the key benefits of blue/green deployments. With blue/green, you should be able to roll back to the blue environment at any time during the deployment process. This limits downtime to the time it takes to realize there’s an issue in the green environment and shift the traffic back to the blue environment. Furthermore, the impact of the outage is limited to the portion of traffic going to the green environment, not all traffic. If the blast radius of deployment errors is reduced, so is the overall deployment risk.

Containers make it simpler

Historically, blue/green deployments were not often used to deploy software on-premises because of the cost and complexity associated with provisioning and managing multiple environments. Instead, applications were upgraded in place.

Although this approach worked, it had several flaws, including the ability to roll back quickly from failures. Rollbacks typically involved re-deploying a previous version of the application, which could affect the length of an outage caused by a bad release. Fixing the issue took precedence over the need to debug, so there were fewer opportunities to learn from your mistakes.

Containers can ease the adoption of blue/green deployments because they’re easily packaged and behave consistently as they’re moved between environments. This consistency comes partly from their immutability. To change the configuration of a container, update its Dockerfile and rebuild and re-deploy the container rather than updating the software in place.

Containers also provide process and namespace isolation for your applications, which allows you to run multiple versions of them side by side on the same Docker host without conflicts. Given their small sizes relative to virtual machines, you can binpack more containers per host than VMs. This lets you make more efficient use of your computing resources, reducing the cost of blue/green deployments.

Fully Managed Updates with Amazon ECS

Amazon EC2 Container Service (ECS) performs rolling updates when you update an existing Amazon ECS service. A rolling update involves replacing the current running version of the container with the latest version. The number of containers Amazon ECS adds or removes from service during a rolling update is controlled by adjusting the minimum and maximum number of healthy tasks allowed during service deployments.

When you update your service’s task definition with the latest version of your container image, Amazon ECS automatically starts replacing the old version of your container with the latest version. During a deployment, Amazon ECS drains connections from the current running version and registers your new containers with the Application Load Balancer as they come online.

Target groups

A target group is a logical construct that allows you to run multiple services behind the same Application Load Balancer. This is possible because each target group has its own listener.

When you create an Amazon ECS service that’s fronted by an Application Load Balancer, you have to designate a target group for your service. Ordinarily, you would create a target group for each of your Amazon ECS services. However, the approach we’re going to explore here involves creating two target groups: one for the blue version of your service, and one for the green version of your service. We’re also using a different listener port for each target group so that you can test the green version of your service using the same path as the blue service.

With this configuration, you can run both environments in parallel until you’re ready to cut over to the green version of your service. You can also do things such as restricting access to the green version to testers on your internal network, using security group rules and placement constraints. For example, you can target the green version of your service to only run on instances that are accessible from your corporate network.

Swapping Over

When you’re ready to replace the old blue service with the new green service, call the ModifyListener API operation to swap the listener’s rules for the target group rules. The change happens instantaneously. Afterward, the green service is running in the target group with the port 80 listener and the blue service is running in the target group with the port 8080 listener. The diagram below is an illustration of the approach described.

Scenario

Two services are defined, each with their own target group registered to the same Application Load Balancer but listening on different ports. Deployment is completed by swapping the listener rules between the two target groups.

The second service is deployed with a new target group listening on a different port but registered to the same Application Load Balancer.

By using 2 listeners, requests to blue services are directed to the target group with the port 80 listener, while requests to the green services are directed to target group with the port 8080 listener.

After automated or manual testing, the deployment can be completed by swapping the listener rules on the Application Load Balancer and sending traffic to the green service.

Caveats

There are a few caveats to be mindful of when using this approach. This method:

  • Assumes that your application code is completely stateless. Store state outside of the container.
  • Doesn’t gracefully drain connections. The swapping of target groups is sudden and abrupt. Therefore, be cautious about using this approach if your service has long-running transactions.
  • Doesn’t allow you to perform canary deployments. While the method gives you the ability to quickly switch between different versions of your service, it does not allow you to divert a portion of the production traffic to a canary or control the rate at which your service is deployed across the cluster.

Canary testing

While this type of deployment automates much of the heavy lifting associated with rolling deployments, it doesn’t allow you to interrupt the deployment if you discover an issue midstream. Rollbacks using the standard Amazon ECS deployment require updating the service’s task definition with the last known good version of the container. Then, you wait for Amazon ECS to schedule and deploy it across the cluster. If the latest version introduces a breaking change that went undiscovered during testing, this might be too slow.

With canary testing, if you discover the green environment is not operating as expected, there is no impact on the blue environment. You can route traffic back to it, minimizing impaired operation or downtime, and limiting the blast radius of impact.

This type of deployment is particularly useful for A/B testing where you want to expose a new feature to a subset of users to get their feedback before making it broadly available.

For canary style deployments, you can use a variation of the blue/green swap that involves deploying the blue and the green service to the same target group. Although this method is not as fast as the swap, it allows you to control the rate at which your containers are replaced by adjusting the task count for each service. Furthermore, it gives you the ability to roll back by adjusting the number of tasks for the blue and green services respectively. Unlike the swap approach described above, connections to your containers are drained gracefully. We plan to address canary style deployments for Amazon ECS in a future post.

Conclusion

With AWS, you can operationalize your blue/green deployments using Amazon ECS, an Application Load Balancer, and target groups. I encourage you to adapt the code published to the ecs-blue-green-deployment GitHub repo for your use cases and look forward to reading your feedback.

If you’re interested in learning more, I encourage you to read the Blue/Green Deployments on AWS and Practicing Continuous Integration and Continuous Delivery on AWS whitepapers.

If you have questions or suggestions, please comment below.

How to Create an AMI Builder with AWS CodeBuild and HashiCorp Packer – Part 2

Post Syndicated from Heitor Lessa original https://aws.amazon.com/blogs/devops/how-to-create-an-ami-builder-with-aws-codebuild-and-hashicorp-packer-part-2/

Written by AWS Solutions Architects Jason Barto and Heitor Lessa

 
In Part 1 of this post, we described how AWS CodeBuild, AWS CodeCommit, and HashiCorp Packer can be used to build an Amazon Machine Image (AMI) from the latest version of Amazon Linux. In this post, we show how to use AWS CodePipeline, AWS CloudFormation, and Amazon CloudWatch Events to continuously ship new AMIs. We use Ansible by Red Hat to harden the OS on the AMIs through a well-known set of security controls outlined by the Center for Internet Security in its CIS Amazon Linux Benchmark.

You’ll find the source code for this post in our GitHub repo.

At the end of this post, we will have the following architecture:

Requirements

 
To follow along, you will need Git and a text editor. Make sure Git is configured to work with AWS CodeCommit, as described in Part 1.

Technologies

 
In addition to the services and products used in Part 1 of this post, we also use these AWS services and third-party software:

AWS CloudFormation gives developers and systems administrators an easy way to create and manage a collection of related AWS resources, provisioning and updating them in an orderly and predictable fashion.

Amazon CloudWatch Events enables you to react selectively to events in the cloud and in your applications. Specifically, you can create CloudWatch Events rules that match event patterns, and take actions in response to those patterns.

AWS CodePipeline is a continuous integration and continuous delivery service for fast and reliable application and infrastructure updates. AWS CodePipeline builds, tests, and deploys your code every time there is a code change, based on release process models you define.

Amazon SNS is a fast, flexible, fully managed push notification service that lets you send individual messages or to fan out messages to large numbers of recipients. Amazon SNS makes it simple and cost-effective to send push notifications to mobile device users or email recipients. The service can even send messages to other distributed services.

Ansible is a simple IT automation system that handles configuration management, application deployment, cloud provisioning, ad-hoc task-execution, and multinode orchestration.

Getting Started

 
We use CloudFormation to bootstrap the following infrastructure:

Component Purpose
AWS CodeCommit repository Git repository where the AMI builder code is stored.
S3 bucket Build artifact repository used by AWS CodePipeline and AWS CodeBuild.
AWS CodeBuild project Executes the AWS CodeBuild instructions contained in the build specification file.
AWS CodePipeline pipeline Orchestrates the AMI build process, triggered by new changes in the AWS CodeCommit repository.
SNS topic Notifies subscribed email addresses when an AMI build is complete.
CloudWatch Events rule Defines how the AMI builder should send a custom event to notify an SNS topic.
Region AMI Builder Launch Template
N. Virginia (us-east-1)
Ireland (eu-west-1)

After launching the CloudFormation template linked here, we will have a pipeline in the AWS CodePipeline console. (Failed at this stage simply means we don’t have any data in our newly created AWS CodeCommit Git repository.)

Next, we will clone the newly created AWS CodeCommit repository.

If this is your first time connecting to a AWS CodeCommit repository, please see instructions in our documentation on Setup steps for HTTPS Connections to AWS CodeCommit Repositories.

To clone the AWS CodeCommit repository (console)

  1. From the AWS Management Console, open the AWS CloudFormation console.
  2. Choose the AMI-Builder-Blogpost stack, and then choose Output.
  3. Make a note of the Git repository URL.
  4. Use git to clone the repository.

For example: git clone https://git-codecommit.eu-west-1.amazonaws.com/v1/repos/AMI-Builder_repo

To clone the AWS CodeCommit repository (CLI)

# Retrieve CodeCommit repo URL
git_repo=$(aws cloudformation describe-stacks --query 'Stacks[0].Outputs[?OutputKey==`GitRepository`].OutputValue' --output text --stack-name "AMI-Builder-Blogpost")

# Clone repository locally
git clone ${git_repo}

Bootstrap the Repo with the AMI Builder Structure

 
Now that our infrastructure is ready, download all the files and templates required to build the AMI.

Your local Git repo should have the following structure:

.
├── ami_builder_event.json
├── ansible
├── buildspec.yml
├── cloudformation
├── packer_cis.json

Next, push these changes to AWS CodeCommit, and then let AWS CodePipeline orchestrate the creation of the AMI:

git add .
git commit -m "My first AMI"
git push origin master

AWS CodeBuild Implementation Details

 
While we wait for the AMI to be created, let’s see what’s changed in our AWS CodeBuild buildspec.yml file:

...
phases:
  ...
  build:
    commands:
      ...
      - ./packer build -color=false packer_cis.json | tee build.log
  post_build:
    commands:
      - egrep "${AWS_REGION}\:\sami\-" build.log | cut -d' ' -f2 > ami_id.txt
      # Packer doesn't return non-zero status; we must do that if Packer build failed
      - test -s ami_id.txt || exit 1
      - sed -i.bak "s/<<AMI-ID>>/$(cat ami_id.txt)/g" ami_builder_event.json
      - aws events put-events --entries file://ami_builder_event.json
      ...
artifacts:
  files:
    - ami_builder_event.json
    - build.log
  discard-paths: yes

In the build phase, we capture Packer output into a file named build.log. In the post_build phase, we take the following actions:

  1. Look up the AMI ID created by Packer and save its findings to a temporary file (ami_id.txt).
  2. Forcefully make AWS CodeBuild to fail if the AMI ID (ami_id.txt) is not found. This is required because Packer doesn’t fail if something goes wrong during the AMI creation process. We have to tell AWS CodeBuild to stop by informing it that an error occurred.
  3. If an AMI ID is found, we update the ami_builder_event.json file and then notify CloudWatch Events that the AMI creation process is complete.
  4. CloudWatch Events publishes a message to an SNS topic. Anyone subscribed to the topic will be notified in email that an AMI has been created.

Lastly, the new artifacts phase instructs AWS CodeBuild to upload files built during the build process (ami_builder_event.json and build.log) to the S3 bucket specified in the Outputs section of the CloudFormation template. These artifacts can then be used as an input artifact in any later stage in AWS CodePipeline.

For information about customizing the artifacts sequence of the buildspec.yml, see the Build Specification Reference for AWS CodeBuild.

CloudWatch Events Implementation Details

 
CloudWatch Events allow you to extend the AMI builder to not only send email after the AMI has been created, but to hook up any of the supported targets to react to the AMI builder event. This event publication means you can decouple from Packer actions you might take after AMI completion and plug in other actions, as you see fit.

For more information about targets in CloudWatch Events, see the CloudWatch Events API Reference.

In this case, CloudWatch Events should receive the following event, match it with a rule we created through CloudFormation, and publish a message to SNS so that you can receive an email.

Example CloudWatch custom event

[
        {
            "Source": "com.ami.builder",
            "DetailType": "AmiBuilder",
            "Detail": "{ \"AmiStatus\": \"Created\"}",
            "Resources": [ "ami-12cd5guf" ]
        }
]

Cloudwatch Events rule

{
  "detail-type": [
    "AmiBuilder"
  ],
  "source": [
    "com.ami.builder"
  ],
  "detail": {
    "AmiStatus": [
      "Created"
    ]
  }
}

Example SNS message sent in email

{
    "version": "0",
    "id": "f8bdede0-b9d7...",
    "detail-type": "AmiBuilder",
    "source": "com.ami.builder",
    "account": "<<aws_account_number>>",
    "time": "2017-04-28T17:56:40Z",
    "region": "eu-west-1",
    "resources": ["ami-112cd5guf "],
    "detail": {
        "AmiStatus": "Created"
    }
}

Packer Implementation Details

 
In addition to the build specification file, there are differences between the current version of the HashiCorp Packer template (packer_cis.json) and the one used in Part 1.

Variables

  "variables": {
    "vpc": "{{env `BUILD_VPC_ID`}}",
    "subnet": "{{env `BUILD_SUBNET_ID`}}",
         “ami_name”: “Prod-CIS-Latest-AMZN-{{isotime \”02-Jan-06 03_04_05\”}}”
  },
  • ami_name: Prefixes a name used by Packer to tag resources during the Builders sequence.
  • vpc and subnet: Environment variables defined by the CloudFormation stack parameters.

We no longer assume a default VPC is present and instead use the VPC and subnet specified in the CloudFormation parameters. CloudFormation configures the AWS CodeBuild project to use these values as environment variables. They are made available throughout the build process.

That allows for more flexibility should you need to change which VPC and subnet will be used by Packer to launch temporary resources.

Builders

  "builders": [{
    ...
    "ami_name": “{{user `ami_name`| clean_ami_name}}”,
    "tags": {
      "Name": “{{user `ami_name`}}”,
    },
    "run_tags": {
      "Name": “{{user `ami_name`}}",
    },
    "run_volume_tags": {
      "Name": “{{user `ami_name`}}",
    },
    "snapshot_tags": {
      "Name": “{{user `ami_name`}}",
    },
    ...
    "vpc_id": "{{user `vpc` }}",
    "subnet_id": "{{user `subnet` }}"
  }],

We now have new properties (*_tag) and a new function (clean_ami_name) and launch temporary resources in a VPC and subnet specified in the environment variables. AMI names can only contain a certain set of ASCII characters. If the input in project deviates from the expected characters (for example, includes whitespace or slashes), Packer’s clean_ami_name function will fix it.

For more information, see functions on the HashiCorp Packer website.

Provisioners

  "provisioners": [
    {
        "type": "shell",
        "inline": [
            "sudo pip install ansible"
        ]
    }, 
    {
        "type": "ansible-local",
        "playbook_file": "ansible/playbook.yaml",
        "role_paths": [
            "ansible/roles/common"
        ],
        "playbook_dir": "ansible",
        "galaxy_file": "ansible/requirements.yaml"
    },
    {
      "type": "shell",
      "inline": [
        "rm .ssh/authorized_keys ; sudo rm /root/.ssh/authorized_keys"
      ]
    }

We used shell provisioner to apply OS patches in Part 1. Now, we use shell to install Ansible on the target machine and ansible-local to import, install, and execute Ansible roles to make our target machine conform to our standards.

Packer uses shell to remove temporary keys before it creates an AMI from the target and temporary EC2 instance.

Ansible Implementation Details

 
Ansible provides OS patching through a custom Common role that can be easily customized for other tasks.

CIS Benchmark and Cloudwatch Logs are implemented through two Ansible third-party roles that are defined in ansible/requirements.yaml as seen in the Packer template.

The Ansible provisioner uses Ansible Galaxy to download these roles onto the target machine and execute them as instructed by ansible/playbook.yaml.

For information about how these components are organized, see the Playbook Roles and Include Statements in the Ansible documentation.

The following Ansible playbook (ansible</playbook.yaml) controls the execution order and custom properties:

---
- hosts: localhost
  connection: local
  gather_facts: true    # gather OS info that is made available for tasks/roles
  become: yes           # majority of CIS tasks require root
  vars:
    # CIS Controls whitepaper:  http://bit.ly/2mGAmUc
    # AWS CIS Whitepaper:       http://bit.ly/2m2Ovrh
    cis_level_1_exclusions:
    # 3.4.2 and 3.4.3 effectively blocks access to all ports to the machine
    ## This can break automation; ignoring it as there are stronger mechanisms than that
      - 3.4.2 
      - 3.4.3
    # CloudWatch Logs will be used instead of Rsyslog/Syslog-ng
    ## Same would be true if any other software doesn't support Rsyslog/Syslog-ng mechanisms
      - 4.2.1.4
      - 4.2.2.4
      - 4.2.2.5
    # Autofs is not installed in newer versions, let's ignore
      - 1.1.19
    # Cloudwatch Logs role configuration
    logs:
      - file: /var/log/messages
        group_name: "system_logs"
  roles:
    - common
    - anthcourtney.cis-amazon-linux
    - dharrisio.aws-cloudwatch-logs-agent

Both third-party Ansible roles can be easily configured through variables (vars). We use Ansible playbook variables to exclude CIS controls that don’t apply to our case and to instruct the CloudWatch Logs agent to stream the /var/log/messages log file to CloudWatch Logs.

If you need to add more OS or application logs, you can easily duplicate the playbook and make changes. The CloudWatch Logs agent will ship configured log messages to CloudWatch Logs.

For more information about parameters you can use to further customize third-party roles, download Ansible roles for the Cloudwatch Logs Agent and CIS Amazon Linux from the Galaxy website.

Committing Changes

 
Now that Ansible and CloudWatch Events are configured as a part of the build process, commiting any changes to the AWS CodeComit Git Repository will triger a new AMI build process that can be followed through the AWS CodePipeline console.

When the build is complete, an email will be sent to the email address you provided as a part of the CloudFormation stack deployment. The email serves as notification that an AMI has been built and is ready for use.

Summary

 
We used AWS CodeCommit, AWS CodePipeline, AWS CodeBuild, Packer, and Ansible to build a pipeline that continuously builds new, hardened CIS AMIs. We used Amazon SNS so that email addresses subscribed to a SNS topic are notified upon completion of the AMI build.

By treating our AMI creation process as code, we can iterate and track changes over time. In this way, it’s no different from a software development workflow. With that in mind, software patches, OS configuration, and logs that need to be shipped to a central location are only a git commit away.

Next Steps

 
Here are some ideas to extend this AMI builder:

  • Hook up a Lambda function in Cloudwatch Events to update EC2 Auto Scaling configuration upon completion of the AMI build.
  • Use AWS CodePipeline parallel steps to build multiple Packer images.
  • Add a commit ID as a tag for the AMI you created.
  • Create a scheduled Lambda function through Cloudwatch Events to clean up old AMIs based on timestamp (name or additional tag).
  • Implement Windows support for the AMI builder.
  • Create a cross-account or cross-region AMI build.

Cloudwatch Events allow the AMI builder to decouple AMI configuration and creation so that you can easily add your own logic using targets (AWS Lambda, Amazon SQS, Amazon SNS) to add events or recycle EC2 instances with the new AMI.

If you have questions or other feedback, feel free to leave it in the comments or contribute to the AMI Builder repo on GitHub.

New AWS Certification Specialty Exam for Big Data

Post Syndicated from Sara Snedeker original https://aws.amazon.com/blogs/big-data/new-aws-certification-specialty-exam-for-big-data/

AWS Certifications validate technical knowledge with an industry-recognized credential. Today, the AWS Certification team released the AWS Certified Big Data – Specialty exam. This new exam validates technical skills and experience in designing and implementing AWS services to derive value from data. The exam requires a current Associate AWS Certification and is intended for individuals who perform complex big data analyses.

Individuals who are interested in sitting for this exam should know how to do the following:

  • Implement core AWS big data services according to basic architectural best practices
  • Design and maintain big data
  • Leverage tools to automate data analysis

To prepare for the exam, we recommend the Big Data on AWS course, plus AWS whitepapers and documentation that are focused on big data.

This credential can help you stand out from the crowd, get recognized, and provide more evidence of your unique technical skills.

The AWS Certification team also released an AWS Certified Advanced Networking – Specialty exam and new AWS Certification Benefits. You can read more about these new releases on the AWS Blog.

Have more questions about AWS Certification? See our AWS Certification FAQ.

New Whitepaper: Aligning to the NIST Cybersecurity Framework in the AWS Cloud

Post Syndicated from Chris Gile original https://aws.amazon.com/blogs/security/new-whitepaper-aligning-to-the-nist-cybersecurity-framework-in-the-aws-cloud/

NIST logo

Today, we released the Aligning to the NIST Cybersecurity Framework in the AWS Cloud whitepaper. Both public and commercial sector organizations can use this whitepaper to assess the AWS environment against the National Institute of Standards and Technology (NIST) Cybersecurity Framework (CSF) and improve the security measures they implement and operate (also known as security in the cloud). The whitepaper also provides a third-party auditor letter attesting to the AWS Cloud offering’s conformance to NIST CSF risk management practices (also known as security of the cloud), allowing organizations to properly protect their data across AWS.

In February 2014, NIST published the Framework for Improving Critical Infrastructure Cybersecurity in response to Presidential Executive Order 13636, “Improving Critical Infrastructure Cybersecurity,” which called for the development of a voluntary framework to help organizations improve the cybersecurity, risk management, and resilience of their systems. The Cybersecurity Enhancement Act of 2014 reinforced the legitimacy and authority of the NIST CSF by codifying it and its voluntary adoption into law, and federal agency Federal Information Security Modernization Act (FISMA) reporting metrics now align to the NIST CSF. Though it is intended for adoption by the critical infrastructure sector, the foundational set of security disciplines in the NIST CSF has been endorsed by government and industry as a recommended baseline for use by any organization, regardless of its sector or size.

We recognize the additional level of effort an organization has to expend for each new security assurance framework it implements. To reduce that burden, we provide a detailed breakout of AWS Cloud offerings and associated customer and AWS responsibilities to facilitate alignment with the NIST CSF. Organizations ranging from federal and state agencies to regulated entities to large enterprises can use this whitepaper as a guide for implementing AWS solutions to achieve the risk management outcomes in the NIST CSF.

Security, compliance, and customer data protection are our top priorities, and we will continue to provide the resources and services for you to meet your desired outcomes while integrating security best practices in the AWS environment. When you use AWS solutions, you can be confident that we protect your data with a level of assurance that meets, if not exceeds, your requirements and needs, and gives you the resources to secure your AWS environment. To request support for implementing the NIST CSF in your organization by using AWS services, contact your AWS account manager.

– Chris Gile, Senior Manager, Security Assurance

Roundup of AWS HIPAA Eligible Service Announcements

Post Syndicated from Ana Visneski original https://aws.amazon.com/blogs/aws/roundup-of-aws-hipaa-eligible-service-announcements/

At AWS we have had a number of HIPAA eligible service announcements. Patrick Combes, the Healthcare and Life Sciences Global Technical Leader at AWS, and Aaron Friedman, a Healthcare and Life Sciences Partner Solutions Architect at AWS, have written this post to tell you all about it.

-Ana


We are pleased to announce that the following AWS services have been added to the BAA in recent weeks: Amazon API Gateway, AWS Direct Connect, AWS Database Migration Service, and Amazon SQS. All four of these services facilitate moving data into and through AWS, and we are excited to see how customers will be using these services to advance their solutions in healthcare. While we know the use cases for each of these services are vast, we wanted to highlight some ways that customers might use these services with Protected Health Information (PHI).

As with all HIPAA-eligible services covered under the AWS Business Associate Addendum (BAA), PHI must be encrypted while at-rest or in-transit. We encourage you to reference our HIPAA whitepaper, which details how you might configure each of AWS’ HIPAA-eligible services to store, process, and transmit PHI. And of course, for any portion of your application that does not touch PHI, you can use any of our 90+ services to deliver the best possible experience to your users. You can find some ideas on architecting for HIPAA on our website.

Amazon API Gateway
Amazon API Gateway is a web service that makes it easy for developers to create, publish, monitor, and secure APIs at any scale. With PHI now able to securely transit API Gateway, applications such as patient/provider directories, patient dashboards, medical device reports/telemetry, HL7 message processing and more can securely accept and deliver information to any number and type of applications running within AWS or client presentation layers.

One particular area we are excited to see how our customers leverage Amazon API Gateway is with the exchange of healthcare information. The Fast Healthcare Interoperability Resources (FHIR) specification will likely become the next-generation standard for how health information is shared between entities. With strong support for RESTful architectures, FHIR can be easily codified within an API on Amazon API Gateway. For more information on FHIR, our AWS Healthcare Competency partner, Datica, has an excellent primer.

AWS Direct Connect
Some of our healthcare and life sciences customers, such as Johnson & Johnson, leverage hybrid architectures and need to connect their on-premises infrastructure to the AWS Cloud. Using AWS Direct Connect, you can establish private connectivity between AWS and your datacenter, office, or colocation environment, which in many cases can reduce your network costs, increase bandwidth throughput, and provide a more consistent network experience than Internet-based connections.

In addition to a hybrid-architecture strategy, AWS Direct Connect can assist with the secure migration of data to AWS, which is the first step to using the wide array of our HIPAA-eligible services to store and process PHI, such as Amazon S3 and Amazon EMR. Additionally, you can connect to third-party/externally-hosted applications or partner-provided solutions as well as securely and reliably connect end users to those same healthcare applications, such as a cloud-based Electronic Medical Record system.

AWS Database Migration Service (DMS)
To date, customers have migrated over 20,000 databases to AWS through the AWS Database Migration Service. Customers often use DMS as part of their cloud migration strategy, and now it can be used to securely and easily migrate your core databases containing PHI to the AWS Cloud. As your source database remains fully operational during the migration with DMS, you minimize downtime for these business-critical applications as you migrate your databases to AWS. This service can now be utilized to securely transfer such items as patient directories, payment/transaction record databases, revenue management databases and more into AWS.

Amazon Simple Queue Service (SQS)
Amazon Simple Queue Service (SQS) is a message queueing service for reliably communicating among distributed software components and microservices at any scale. One way that we envision customers using SQS with PHI is to buffer requests between application components that pass HL7 or FHIR messages to other parts of their application. You can leverage features like SQS FIFO to ensure your messages containing PHI are passed in the order they are received and delivered in the order they are received, and available until a consumer processes and deletes it. This is important for applications with patient record updates or processing payment information in a hospital.

Let’s get building!
We are beyond excited to see how our customers will use our newly HIPAA-eligible services as part of their healthcare applications. What are you most excited for? Leave a comment below.

Near Zero Downtime Migration from MySQL to DynamoDB

Post Syndicated from YongSeong Lee original https://aws.amazon.com/blogs/big-data/near-zero-downtime-migration-from-mysql-to-dynamodb/

Many companies consider migrating from relational databases like MySQL to Amazon DynamoDB, a fully managed, fast, highly scalable, and flexible NoSQL database service. For example, DynamoDB can increase or decrease capacity based on traffic, in accordance with business needs. The total cost of servicing can be optimized more easily than for the typical media-based RDBMS.

However, migrations can have two common issues:

  • Service outage due to downtime, especially when customer service must be seamlessly available 24/7/365
  • Different key design between RDBMS and DynamoDB

This post introduces two methods of seamlessly migrating data from MySQL to DynamoDB, minimizing downtime and converting the MySQL key design into one more suitable for NoSQL.

AWS services

I’ve included sample code that uses the following AWS services:

  • AWS Database Migration Service (AWS DMS) can migrate your data to and from most widely used commercial and open-source databases. It supports homogeneous and heterogeneous migrations between different database platforms.
  • Amazon EMR is a managed Hadoop framework that helps you process vast amounts of data quickly. Build EMR clusters easily with preconfigured software stacks that include Hive and other business software.
  • Amazon Kinesis can continuously capture and retain a vast amount of data such as transaction, IT logs, or clickstreams for up to 7 days.
  • AWS Lambda helps you run your code without provisioning or managing servers. Your code can be automatically triggered by other AWS services such Amazon Kinesis Streams.

Migration solutions

Here are the two options I describe in this post:

  1. Use AWS DMS

AWS DMS supports migration to a DynamoDB table as a target. You can use object mapping to restructure original data to the desired structure of the data in DynamoDB during migration.

  1. Use EMR, Amazon Kinesis, and Lambda with custom scripts

Consider this method when more complex conversion processes and flexibility are required. Fine-grained user control is needed for grouping MySQL records into fewer DynamoDB items, determining attribute names dynamically, adding business logic programmatically during migration, supporting more data types, or adding parallel control for one big table.

After the initial load/bulk-puts are finished, and the most recent real-time data is caught up by the CDC (change data capture) process, you can change the application endpoint to DynamoDB.

The method of capturing changed data in option 2 is covered in the AWS Database post Streaming Changes in a Database with Amazon Kinesis. All code in this post is available in the big-data-blog GitHub repo, including test codes.

Solution architecture

The following diagram shows the overall architecture of both options.

Option 1:  Use AWS DMS

This section discusses how to connect to MySQL, read the source data, and then format the data for consumption by the target DynamoDB database using DMS.

Create the replication instance and source and target endpoints

Create a replication instance that has sufficient storage and processing power to perform the migration job, as mentioned in the AWS Database Migration Service Best Practices whitepaper. For example, if your migration involves a large number of tables, or if you intend to run multiple concurrent replication tasks, consider using one of the larger instances. The service consumes a fair amount of memory and CPU.

As the MySQL user, connect to MySQL and retrieve data from the database with the privileges of SUPER, REPLICATION CLIENT. Enable the binary log and set the binlog_format parameter to ROW for CDC in the MySQL configuration. For more information about how to use DMS, see Getting Started  in the AWS Database Migration Service User Guide.

mysql> CREATE USER 'repl'@'%' IDENTIFIED BY 'welcome1';
mysql> GRANT all ON <database name>.* TO 'repl'@'%';
mysql> GRANT SUPER,REPLICATION CLIENT  ON *.* TO 'repl'@'%';

Before you begin to work with a DynamoDB database as a target for DMS, make sure that you create an IAM role for DMS to assume, and grant access to the DynamoDB target tables. Two endpoints must be created to connect the source and target. The following screenshot shows sample endpoints.

The following screenshot shows the details for one of the endpoints, source-mysql.

Create a task with an object mapping rule

In this example, assume that the MySQL table has a composite primary key (customerid + orderid + productid). You are going to restructure the key to the desired structure of the data in DynamoDB, using an object mapping rule.

In this case, the DynamoDB table has the hash key that is a combination of the customerid and orderid columns, and the sort key is the productid column. However, the partition key should be decided by the user in an actual migration, based on data ingestion and access pattern. You would usually use high-cardinality attributes. For more information about how to choose the right DynamoDB partition key, see the Choosing the Right DynamoDB Partition Key AWS Database blog post.

DMS automatically creates a corresponding attribute on the target DynamoDB table for the quantity column from the source table because rule-action is set to map-record-to-record and the column is not listed in the exclude-columns attribute list. For more information about map-record-to-record and map-record-to-document, see Using an Amazon DynamoDB Database as a Target for AWS Database Migration Service.

Migration starts immediately after the task is created, unless you clear the Start task on create option. I recommend enabling logging to make sure that you are informed about what is going on with the migration task in the background.

The following screenshot shows the task creation page.

You can use the console to specify the individual database tables to migrate and the schema to use for the migration, including transformations. On the Guided tab, use the Where section to specify the schema, table, and action (include or exclude). Use the Filter section to specify the column name in a table and the conditions to apply.

Table mappings also can be created in JSON format. On the JSON tab, check Enable JSON editing.

Here’s an example of an object mapping rule that determines where the source data is located in the target. If you copy the code, replace the values of the following attributes. For more examples, see Using an Amazon DynamoDB Database as a Target for AWS Database Migration Service.

  • schema-name
  • table-name
  • target-table-name
  • mapping-parameters
  • attribute-mappings
{
  "rules": [
   {
      "rule-type": "selection",
      "rule-id": "1",
      "rule-name": "1",
      "object-locator": {
        "schema-name": "mydatabase",
        "table-name": "purchase"
      },
      "rule-action": "include"
    },
    {
      "rule-type": "object-mapping",
      "rule-id": "2",
      "rule-name": "2",
      "rule-action": "map-record-to-record",
      "object-locator": {
        "schema-name": "mydatabase",
        "table-name": "purchase"
 
      },
      "target-table-name": "purchase",
      "mapping-parameters": {
        "partition-key-name": "customer_orderid",
        "sort-key-name": "productid",
        "exclude-columns": [
          "customerid",
          "orderid"           
        ],
        "attribute-mappings": [
          {
            "target-attribute-name": "customer_orderid",
            "attribute-type": "scalar",
            "attribute-sub-type": "string",
            "value": "${customerid}|${orderid}"
          },
          {
            "target-attribute-name": "productid",
            "attribute-type": "scalar",
            "attribute-sub-type": "string",
            "value": "${productid}"
          }
        ]
      }
    }
  ]
}

Start the migration task

If the target table specified in the target-table-name property does not exist in DynamoDB, DMS creates the table according to data type conversion rules for source and target data types. There are many metrics to monitor the progress of migration. For more information, see Monitoring AWS Database Migration Service Tasks.

The following screenshot shows example events and errors recorded by CloudWatch Logs.

DMS replication instances that you used for the migration should be deleted once all migration processes are completed. Any CloudWatch logs data older than the retention period is automatically deleted.

Option 2: Use EMR, Amazon Kinesis, and Lambda

This section discusses an alternative option using EMR, Amazon Kinesis, and Lambda to provide more flexibility and precise control. If you have a MySQL replica in your environment, it would be better to dump data from the replica.

Change the key design

When you decide to change your database from RDMBS to NoSQL, you need to find a more suitable key design for NoSQL, for performance as well as cost-effectiveness.

Similar to option #1, assume that the MySQL source has a composite primary key (customerid + orderid + productid). However, for this option, group the MySQL records into fewer DynamoDB items by customerid (hash key) and orderid (sort key). Also, remove the last column (productid) of the composite key by converting the record values productid column in MySQL to the attribute name in DynamoDB, and setting the attribute value as quantity.

This conversion method reduces the number of items. You can retrieve the same amount of information with fewer read capacity units, resulting in cost savings and better performance. For more information about how to calculate read/write capacity units, see Provisioned Throughput.

Migration steps

Option 2 has two paths for migration, performed at the same time:

  • Batch-puts: Export MySQL data, upload it to Amazon S3, and import into DynamoDB.
  • Real-time puts: Capture changed data in MySQL, send the insert/update/delete transaction to Amazon Kinesis Streams, and trigger the Lambda function to put data into DynamoDB.

To keep the data consistency and integrity, capturing and feeding data to Amazon Kinesis Streams should be started before the batch-puts process. The Lambda function should stand by and Streams should retain the captured data in the stream until the batch-puts process on EMR finishes. Here’s the order:

  1. Start real-time puts to Amazon Kinesis Streams.
  2. As soon as real-time puts commences, start batch-puts.
  3. After batch-puts finishes, trigger the Lambda function to execute put_item from Amazon Kinesis Streams to DynamoDB.
  4. Change the application endpoints from MySQL to DynamoDB.

Step 1:  Capture changing data and put into Amazon Kinesis Streams

Firstly, create an Amazon Kinesis stream to retain transaction data from MySQL. Set the Data retention period value based on your estimate for the batch-puts migration process. For data integrity, the retention period should be enough to hold all transactions until batch-puts migration finishes. However you do not necessarily need to select the maximum retention period. It depends on the amount of data to migrate.

In the MySQL configuration, set binlog_format to ROW to capture transactions by using the BinLogStreamReader module. The log_bin parameter must be set as well to enable the binlog. For more information, see the Streaming Changes in a Database with Amazon Kinesis AWS Database blog post.

 

[mysqld]
secure-file-priv = ""
log_bin=/data/binlog/binlog
binlog_format=ROW
server-id = 1
tmpdir=/data/tmp

The following sample code is a Python example that captures transactions and sends them to Amazon Kinesis Streams.

 

#!/usr/bin/env python
from pymysqlreplication import BinLogStreamReader
from pymysqlreplication.row_event import (
  DeleteRowsEvent,
  UpdateRowsEvent,
  WriteRowsEvent,
)

def main():
  kinesis = boto3.client("kinesis")

  stream = BinLogStreamReader(
    connection_settings= {
      "host": "<host IP address>",
      "port": <port number>,
      "user": "<user name>",
      "passwd": "<password>"},
    server_id=100,
    blocking=True,
    resume_stream=True,
    only_events=[DeleteRowsEvent, WriteRowsEvent, UpdateRowsEvent])

  for binlogevent in stream:
    for row in binlogevent.rows:
      event = {"schema": binlogevent.schema,
      "table": binlogevent.table,
      "type": type(binlogevent).__name__,
      "row": row
      }

      kinesis.put_record(StreamName="<Amazon Kinesis stream name>", Data=json.dumps(event), PartitionKey="default")
      print json.dumps(event)

if __name__ == "__main__":
main()

The following code is sample JSON data generated by the Python script. The type attribute defines the transaction recorded by that JSON record:

  • WriteRowsEvent = INSERT
  • UpdateRowsEvent = UPDATE
  • DeleteRowsEvent = DELETE
{"table": "purchase_temp", "row": {"values": {"orderid": "orderidA1", "quantity": 100, "customerid": "customeridA74187", "productid": "productid1"}}, "type": "WriteRowsEvent", "schema": "test"}
{"table": "purchase_temp", "row": {"before_values": {"orderid": "orderid1", "quantity": 1, "customerid": "customerid74187", "productid": "productid1"}, "after_values": {"orderid": "orderid1", "quantity": 99, "customerid": "customerid74187", "productid": "productid1"}}, "type": "UpdateRowsEvent", "schema": "test"}
{"table": "purchase_temp", "row": {"values": {"orderid": "orderid100", "quantity": 1, "customerid": "customerid74187", "productid": "productid1"}}, "type": "DeleteRowsEvent", "schema": "test"}

Step 2. Dump data from MySQL to DynamoDB

The easiest way is to use DMS, which recently added Amazon S3 as a migration target. For an S3 target, both full load and CDC data is written to CSV format. However, CDC is not a good fit as UPDATE and DELETE statements are not supported. For more information, see Using Amazon S3 as a Target for AWS Database Migration Service.

Another way to upload data to Amazon S3 is to use the INTO OUTFILE SQL clause and aws s3 sync CLI command in parallel with your own script. The degree of parallelism depends on your server capacity and local network bandwidth. You might find a third-party tool useful, such as pt-archiver (part of the Percona Toolkit see the appendix for details).

SELECT * FROM purchase WHERE <condition_1>
INTO OUTFILE '/data/export/purchase/1.csv' FIELDS TERMINATED BY ',' ESCAPED BY '\\' LINES TERMINATED BY '\n';
SELECT * FROM purchase WHERE <condition_2>
INTO OUTFILE '/data/export/purchase/2.csv' FIELDS TERMINATED BY ',' ESCAPED BY '\\' LINES TERMINATED BY '\n';
...
SELECT * FROM purchase WHERE <condition_n>
INTO OUTFILE '/data/export/purchase/n.csv' FIELDS TERMINATED BY ',' ESCAPED BY '\\' LINES TERMINATED BY '\n';

I recommend the aws s3 sync command for this use case. This command works internally with the S3 multipart upload feature. Pattern matching can exclude or include particular files. In addition, if the sync process crashes in the middle of processing, you do not need to upload the same files again. The sync command compares the size and modified time of files between local and S3 versions, and synchronizes only local files whose size and modified time are different from those in S3. For more information, see the sync command in the S3 section of the AWS CLI Command Reference.

$ aws s3 sync /data/export/purchase/ s3://<your bucket name>/purchase/ 
$ aws s3 sync /data/export/<other path_1>/ s3://<your bucket name>/<other path_1>/
...
$ aws s3 sync /data/export/<other path_n>/ s3://<your bucket name>/<other path_n>/ 

After all data is uploaded to S3, put it into DynamoDB. There are two ways to do this:

  • Use Hive with an external table
  • Write MapReduce code

Hive with an external table

Create a Hive external table against the data on S3 and insert it into another external table against the DynamoDB table, using the org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler property. To improve productivity and the scalability, consider using Brickhouse, which is a collection of UDFs for Hive.

The following sample code assumes that the Hive table for DynamoDB is created with the products column, which is of type ARRAY<STRING >.  The productid and quantity columns are aggregated, grouping by customerid and orderid, and inserted into the products column with the CollectUDAF columns provided by Brickhouse.

hive> DROP TABLE purchase_ext_s3; 
--- To read data from S3 
hive> CREATE EXTERNAL TABLE purchase_ext_s3 (
customerid string,
orderid    string,
productid  string,
quantity   string) 
ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' 
LOCATION 's3://<your bucket name>/purchase/';

Hive> drop table purchase_ext_dynamodb ; 
--- To connect to DynamoDB table  
Hive> CREATE EXTERNAL TABLE purchase_ext_dynamodb (
      customerid STRING, orderid STRING, products ARRAY<STRING>)
      STORED BY 'org.apache.hadoop.hive.dynamodb.DynamoDBStorageHandler' 
      TBLPROPERTIES ("dynamodb.table.name" = "purchase", 
      "dynamodb.column.mapping" = "customerid:customerid,orderid:orderid,products:products");

--- Batch-puts to DynamoDB using Brickhouse 
hive> add jar /<jar file path>/brickhouse-0.7.1-SNAPSHOT.jar ; 
hive> create temporary function collect as 'brickhouse.udf.collect.CollectUDAF';
hive> INSERT INTO purchase_ext_dynamodb 
select customerid as customerid , orderid as orderid
       ,collect(concat(productid,':' ,quantity)) as products
      from purchase_ext_s3
      group by customerid, orderid; 

Unfortunately, the MAP, LIST, BOOLEAN, and NULL data types are not supported by the  DynamoDBStorageHandler class, so the ARRAY<STRING> data type has been chosen. The products column of ARRAY<STRING> data type in Hive is matched to the StringSet type attribute in DynamoDB. The sample code mostly shows how Brickhouse works, and only for those who want to aggregate multiple records into one StringSet type attribute in DynamoDB.

Python MapReduce with Hadoop Streaming

A mapper task reads each record from the input data on S3, and maps input key-value pairs to intermediate key-value pairs. It divides source data from S3 into two parts (key part and value part) delimited by a TAB character (“\t”). Mapper data is sorted in order by their intermediate key (customerid and orderid) and sent to the reducer. Records are put into DynamoDB in the reducer step.

#!/usr/bin/env python
import sys
 
# get all lines from stdin
for line in sys.stdin:
    line = line.strip()
    cols = line.split(',')
# divide source data into Key and attribute part.
# example output : “cusotmer1,order1	product1,10”
    print '%s,%s\t%s,%s' % (cols[0],cols[1],cols[2],cols[3] )

Generally, the reduce task receives the output produced after map processing (which is key/list-of-values pairs) and then performs an operation on the list of values against each key.

In this case, the reducer is written in Python and is based on STDIN/STDOUT/hadoop streaming. The enumeration data type is not available. The reducer receives data sorted and ordered by the intermediate key set in the mapper, customerid and orderid (cols[0],cols[1]) in this case, and stores all attributes for the specific key in the item_data dictionary. The attributes in the item_data dictionary are put, or flushed, into DynamoDB every time a new intermediate key comes from sys.stdin.

#!/usr/bin/env python
import sys
import boto.dynamodb
 
# create connection to DynamoDB
current_keys = None
conn = boto.dynamodb.connect_to_region( '<region>', aws_access_key_id='<access key id>', aws_secret_access_key='<secret access key>')
table = conn.get_table('<dynamodb table name>')
item_data = {}

# input comes from STDIN emitted by Mapper
for line in sys.stdin:
    line = line.strip()
    dickeys, items  = line.split('\t')
    products = items.split(',')
    if current_keys == dickeys:
       item_data[products[0]]=products[1]  
    else:
        if current_keys:
          try:
              mykeys = current_keys.split(',') 
              item = table.new_item(hash_key=mykeys[0],range_key=mykeys[1], attrs=item_data )
              item.put() 
          except Exception ,e:
              print 'Exception occurred! :', e.message,'==> Data:' , mykeys
        item_data = {}
        item_data[products[0]]=products[1]
        current_keys = dickeys

# put last data
if current_keys == dickeys:
   print 'Last one:' , current_keys #, item_data
   try:
       mykeys = dickeys.split(',')
       item = table.new_item(hash_key=mykeys[0] , range_key=mykeys[1], attrs=item_data )
       item.put()
   except Exception ,e:
print 'Exception occurred! :', e.message, '==> Data:' , mykeys

To run the MapReduce job, connect to the EMR master node and run a Hadoop streaming job. The hadoop-streaming.jar file location or name could be different, depending on your EMR version. Exception messages that occur while reducers run are stored at the directory assigned as the –output option. Hash key and range key values are also logged to identify which data causes exceptions or errors.

$ hadoop fs -rm -r s3://<bucket name>/<output path>
$ hadoop jar /usr/lib/hadoop-mapreduce/hadoop-streaming.jar \
           -input s3://<bucket name>/<input path> -output s3://<bucket name>/<output path>\
           -file /<local path>/mapper.py -mapper /<local path>/mapper.py \
           -file /<local path>/reducer.py -reducer /<local path>/reducer.py

In my migration experiment using the above scripts, with self-generated test data, I found the following results, including database size and the time taken to complete the migration.

Server MySQL instance m4.2xlarge
EMR cluster

master : 1 x m3.xlarge

core  : 2 x m4.4xlarge

DynamoDB 2000 write capacity unit
Data Number of records 1,000,000,000
Database file size (.ibc) 100.6 GB
CSV files size 37 GB
Performance (time) Export to CSV 6 min 10 sec
Upload to S3 (sync) 3 min 30 sec
Import to DynamoDB depending on write capacity unit

 

The following screenshot shows the performance results by write capacity.

Note that the performance result is flexible and can vary depending on the server capacity, network bandwidth, degree of parallelism, conversion logic, program language, and other conditions. All provisioned write capacity units are consumed by the MapReduce job for data import, so the more you increase the size of the EMR cluster and write capacity units of DynamoDB table, the less time it takes to complete. Java-based MapReduce code would be more flexible for function and MapReduce framework.

Step 3: Amazon Lambda function updates DynamoDB by reading data from Amazon Kinesis

In the Lambda console, choose Create a Lambda function and the kinesis-process-record-python blueprint. Next, in the Configure triggers page, select the stream that you just created.

The Lambda function must have an IAM role with permissions to read from Amazon Kinesis and put items into DynamoDB.

The Lambda function can recognize the transaction type of the record by looking up the type attribute. The transaction type determines the method for conversion and update.

For example, when a JSON record is passed to the function, the function looks up the type attribute. It also checks whether an existing item in the DynamoDB table has the same key with the incoming record. If so, the existing item must be retrieved and saved in a dictionary variable (item, in this case). Apply a new update information command to the item dictionary before it is put back into DynamoDB table. This prevents the existing item from being overwritten by the incoming record.

from __future__ import print_function

import base64
import json
import boto3

print('Loading function')
client = boto3.client('dynamodb')

def lambda_handler(event, context):
    #print("Received event: " + json.dumps(event, indent=2))
    for record in event['Records']:
        # Amazon Kinesis data is base64-encoded so decode here
        payload = base64.b64decode(record['kinesis']['data'])
        print("Decoded payload: " + payload)
        data = json.loads(payload)
        
        # user logic for data triggered by WriteRowsEvent
        if data["type"] == "WriteRowsEvent":
            my_table = data["table"]
            my_hashkey = data["row"]["values"]["customerid"]
            my_rangekey = data["row"]["values"]["orderid"]
            my_productid = data["row"]["values"]["productid"]
            my_quantity = str( data["row"]["values"]["quantity"] )
            try:
                response = client.get_item( Key={'customerid':{'S':my_hashkey} , 'orderid':{'S':my_rangekey}} ,TableName = my_table )
                if 'Item' in response:
                    item = response['Item']
                    item[data["row"]["values"]["productid"]] = {"S":my_quantity}
                    result1 = client.put_item(Item = item , TableName = my_table )
                else:
                    item = { 'customerid':{'S':my_hashkey} , 'orderid':{'S':my_rangekey} , my_productid :{"S":my_quantity}  }
                    result2 = client.put_item( Item = item , TableName = my_table )
            except Exception, e:
                print( 'WriteRowsEvent Exception ! :', e.message  , '==> Data:' ,data["row"]["values"]["customerid"]  , data["row"]["values"]["orderid"] )
        
        # user logic for data triggered by UpdateRowsEvent
        if data["type"] == "UpdateRowsEvent":
            my_table = data["table"]
            
        # user logic for data triggered by DeleteRowsEvent    
        if data["type"] == "DeleteRowsEvent":
            my_table = data["table"]
            
            
    return 'Successfully processed {} records.'.format(len(event['Records']))

Step 4:  Switch the application endpoint to DynamoDB

Application codes need to be refactored when you change from MySQL to DynamoDB. The following simple Java code snippets focus on the connection and query part because it is difficult to cover all cases for all applications. For more information, see Programming with DynamoDB and the AWS SDKs.

Query to MySQL

The following sample code shows a common way to connect to MySQL and retrieve data.

import java.sql.* ;
...
try {
    Connection conn =  DriverManager.getConnection("jdbc:mysql://<host name>/<database name>" , "<user>" , "<password>");
    stmt = conn.createStatement();
    String sql = "SELECT quantity as quantity FROM purchase WHERE customerid = '<customerid>' and orderid = '<orderid>' and productid = '<productid>'";
    ResultSet rs = stmt.executeQuery(sql);

    while(rs.next()){ 
       int quantity  = rs.getString("quantity");   //Retrieve by column name 
       System.out.print("quantity: " + quantity);  //Display values 
       }
} catch (SQLException ex) {
    // handle any errors
    System.out.println("SQLException: " + ex.getMessage());}
...
==== Output ====
quantity:1
Query to DynamoDB

To retrieve items from DynamoDB, follow these steps:

  1. Create an instance of the DynamoDB
  2. Create an instance of the Table
  3. Add the withHashKey and withRangeKeyCondition methods to an instance of the QuerySpec
  4. Execute the query method with the querySpec instance previously created. Items are retrieved as JSON format, so use the getJSON method to look up a specific attribute in an item.
...
DynamoDB dynamoDB = new DynamoDB( new AmazonDynamoDBClient(new ProfileCredentialsProvider()));

Table table = dynamoDB.getTable("purchase");

QuerySpec querySpec = new QuerySpec()
        .withHashKey("customerid" , "customer1")  // hashkey name and its value 
        .withRangeKeyCondition(new RangeKeyCondition("orderid").eq("order1") ) ; // Ranage key and its condition value 

ItemCollection<QueryOutcome> items = table.query(querySpec); 

Iterator<Item> iterator = items.iterator();          
while (iterator.hasNext()) {
Item item = iterator.next();
System.out.println(("quantity: " + item.getJSON("product1"));   // 
}
...
==== Output ====
quantity:1

Conclusion

In this post, I introduced two options for seamlessly migrating data from MySQL to DynamoDB and minimizing downtime during the migration. Option #1 used DMS, and option #2 combined EMR, Amazon Kinesis, and Lambda. I also showed you how to convert the key design in accordance with database characteristics to improve read/write performance and reduce costs. Each option has advantages and disadvantages, so the best option depends on your business requirements.

The sample code in this post is not enough for a complete, efficient, and reliable data migration code base to be reused across many different environments. Use it to get started, but design for other variables in your actual migration.

I hope this post helps you plan and implement your migration and minimizes service outages. If you have questions or suggestions, please leave a comment below.

Appendix

To install the Percona Toolkit:

# Install Percona Toolkit

$ wget https://www.percona.com/downloads/percona-toolkit/3.0.2/binary/redhat/6/x86_64/percona-toolkit-3.0.2-1.el6.x86_64.rpm

$ yum install perl-IO-Socket-SSL

$ yum install perl-TermReadKey

$ rpm -Uvh percona-toolkit-3.0.2-1.el6.x86_64.rpm

# run pt-archiver

Example command:

$ pt-archiver –source h=localhost,D=blog,t=purchase –file ‘/data/export/%Y-%m-%d-%D.%t’  –where “1=1” –limit 10000 –commit-each

 


About the Author

Yong Seong Lee is a Cloud Support Engineer for AWS Big Data Services. He is interested in every technology related to data/databases and helping customers who have difficulties in using AWS services. His motto is “Enjoy life, be curious and have maximum experience.”

 

 

 


Converging Data Silos to Amazon Redshift Using AWS DMS

 

New Whitepaper Available: AWS Key Management Service Best Practices

Post Syndicated from Matt Bretan original https://aws.amazon.com/blogs/security/new-whitepaper-available-aws-key-management-service-best-practices/

AWS KMS service image

Today, we are happy to announce the release of a new whitepaper: AWS Key Management Service Best Practices. This whitepaper takes knowledge learned from some of the largest adopters of AWS Key Management Service (AWS KMS) and makes it available to all AWS customers. AWS KMS is a managed service that makes it easy for you to create and control the keys used to encrypt your data and uses hardware security modules to protect the security of your keys.

This new whitepaper is structured around the AWS Cloud Adoption Framework (AWS CAF) Security Perspective. The AWS CAF provides guidance to help organizations that are moving to the AWS Cloud and is broken into a number of areas of focus that are relevant to implementing cloud-based IT systems, which we call Perspectives. The Security Perspective organizes the principles that help drive the transformation of your organization’s security through Identity and Access Management, Detective Control, Infrastructure Security, Data Protection, and Incident Response. For each of the capabilities, the new whitepaper provides not only details about how your organization should use KMS to protect sensitive information across use cases but also the means of measuring progress.

Whether you have already implemented your key management infrastructure using KMS or are just starting to do so, this whitepaper provides insight into some of the best practices we recommend to our customers across industries and compliance regimes.

– Matt