Tag Archives: Edge

Pioneers winners: only you can save us

Post Syndicated from Erin Brindley original https://www.raspberrypi.org/blog/pioneers-winners-only-you-can-save-us/

She asked for help, and you came to her aid. Pioneers, the winners of the Only you can save us challenge have been picked!

Can you see me? Only YOU can save us!

I need your help. This is a call out for those between 11- and 16-years-old in the UK and Republic of Ireland. Something has gone very, very wrong and only you can save us. I’ve collected together as much information for you as I can. You’ll find it at http://www.raspberrypi.org/pioneers.

The challenge

In August we intercepted an emergency communication from a lonesome survivor. She seemed to be in quite a bit of trouble, and asked all you young people aged 11 to 16 to come up with something to help tackle the oncoming crisis, using whatever technology you had to hand. You had ten weeks to work in teams of two to five with an adult mentor to fulfil your mission.

The judges

We received your world-saving ideas, and our savvy survivor pulled together a ragtag bunch of apocalyptic experts to help us judge which ones would be the winning entries.

Dr Shini Somara

Dr Shini Somara is an advocate for STEM education and a mechanical engineer. She was host of The Health Show and has appeared in documentaries for the BBC, PBS Digital, and Sky. You can check out her work hosting Crash Course Physics on YouTube.

Prof Lewis Dartnell is an astrobiologist and author of the book The Knowledge: How to Rebuild Our World From Scratch.

Emma Stephenson has a background in aeronautical engineering and currently works in the Shell Foundation’s Access to Energy and Sustainable Mobility portfolio.

Currently sifting through the entries with the other judges of #makeyourideas with @raspberrypifoundation @_raspberrypi_

151 Likes, 3 Comments – Shini Somara (@drshinisomara) on Instagram: “Currently sifting through the entries with the other judges of #makeyourideas with…”

The winners

Our survivor is currently putting your entries to good use repairing, rebuilding, and defending her base. Our judges chose the following projects as outstanding examples of world-saving digital making.

Theme winner: Computatron

Raspberry Pioneers 2017 – Nerfus Dislikus Killer Robot

This is our entry to the pioneers ‘Only you can save us’ competition. Our team name is Computatrum. Hope you enjoy!

Are you facing an unknown enemy whose only weakness is Nerf bullets? Then this is the robot for you! We loved the especially apocalyptic feel of the Computatron’s cleverly hacked and repurposed elements. The team even used an old floppy disc mechanism to help fire their bullets!

Technically brilliant: Robot Apocalypse Committee

Pioneers Apocalypse 2017 – RationalPi

Thousands of lines of code… Many sheets of acrylic… A camera, touchscreen and fingerprint scanner… This is our entry into the Raspberry Pi Pioneers2017 ‘Only YOU can Save Us’ theme. When zombies or other survivors break into your base, you want a secure way of storing your crackers.

The Robot Apocalypse Committee is back, and this time they’ve brought cheese! The crew designed a cheese- and cracker-dispensing machine complete with face and fingerprint recognition to ensure those rations last until the next supply drop.

Best explanation: Pi Chasers

Tala – Raspberry Pi Pioneers Project

Hi! We are PiChasers and we entered the Raspberry Pi Pionners challenge last time when the theme was “Make it Outdoors!” but now we’ve been faced with another theme “Apocolypse”. We spent a while thinking of an original thing that would help in an apocolypse and decided upon a ‘text-only phone’ which uses local radio communication rather than cellular.

This text-based communication device encased in a tupperware container could be a lifesaver in a crisis! And luckily, the Pi Chasers produced an excellent video and amazing GitHub repo, ensuring that any and all survivors will be able to build their own in the safety of their base.

Most inspiring journey: Three Musketeers

Pioneers Entry – The Apocalypse

Pioneers Entry Team Name: The Three Musketeers Team Participants: James, Zach and Tom

We all know that zombies are terrible at geometry, and the Three Musketeers used this fact to their advantage when building their zombie security system. We were impressed to see the team working together to overcome the roadblocks they faced along the way.

We appreciate what you’re trying to do: Zombie Trolls

Zombie In The Middle

Uploaded by CDA Bodgers on 2017-12-01.

Playing piggy in the middle with zombies sure is a unique way of saving humankind from total extinction! We loved this project idea, and although the Zombie Trolls had a little trouble with their motors, we’re sure with a little more tinkering this zombie-fooling contraption could save us all.

Most awesome

Our judges also wanted to give a special commendation to the following teams for their equally awesome apocalypse-averting ideas:

  • PiRates, for their multifaceted zombie-proofing defence system and the high production value of their video
  • Byte them Pis, for their beautiful zombie-detecting doormat
  • Unatecxon, for their impressive bunker security system
  • Team Crompton, for their pressure-activated door system
  • Team Ernest, for their adventures in LEGO

The prizes

All our winning teams have secured exclusive digital maker boxes. These are jam-packed with tantalising tech to satisfy all tinkering needs, including:

Our theme winners have also secured themselves a place at Coolest Projects 2018 in Dublin, Ireland!

Thank you to everyone who got involved in this round of Pioneers. Look out for your awesome submission swag arriving in the mail!

The post Pioneers winners: only you can save us appeared first on Raspberry Pi.

Managing AWS Lambda Function Concurrency

Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/managing-aws-lambda-function-concurrency/

One of the key benefits of serverless applications is the ease in which they can scale to meet traffic demands or requests, with little to no need for capacity planning. In AWS Lambda, which is the core of the serverless platform at AWS, the unit of scale is a concurrent execution. This refers to the number of executions of your function code that are happening at any given time.

Thinking about concurrent executions as a unit of scale is a fairly unique concept. In this post, I dive deeper into this and talk about how you can make use of per function concurrency limits in Lambda.

Understanding concurrency in Lambda

Instead of diving right into the guts of how Lambda works, here’s an appetizing analogy: a magical pizza.
Yes, a magical pizza!

This magical pizza has some unique properties:

  • It has a fixed maximum number of slices, such as 8.
  • Slices automatically re-appear after they are consumed.
  • When you take a slice from the pizza, it does not re-appear until it has been completely consumed.
  • One person can take multiple slices at a time.
  • You can easily ask to have the number of slices increased, but they remain fixed at any point in time otherwise.

Now that the magical pizza’s properties are defined, here’s a hypothetical situation of some friends sharing this pizza.

Shawn, Kate, Daniela, Chuck, Ian and Avleen get together every Friday to share a pizza and catch up on their week. As there is just six of them, they can easily all enjoy a slice of pizza at a time. As they finish each slice, it re-appears in the pizza pan and they can take another slice again. Given the magical properties of their pizza, they can continue to eat all they want, but with two very important constraints:

  • If any of them take too many slices at once, the others may not get as much as they want.
  • If they take too many slices, they might also eat too much and get sick.

One particular week, some of the friends are hungrier than the rest, taking two slices at a time instead of just one. If more than two of them try to take two pieces at a time, this can cause contention for pizza slices. Some of them would wait hungry for the slices to re-appear. They could ask for a pizza with more slices, but then run the same risk again later if more hungry friends join than planned for.

What can they do?

If the friends agreed to accept a limit for the maximum number of slices they each eat concurrently, both of these issues are avoided. Some could have a maximum of 2 of the 8 slices, or other concurrency limits that were more or less. Just so long as they kept it at or under eight total slices to be eaten at one time. This would keep any from going hungry or eating too much. The six friends can happily enjoy their magical pizza without worry!

Concurrency in Lambda

Concurrency in Lambda actually works similarly to the magical pizza model. Each AWS Account has an overall AccountLimit value that is fixed at any point in time, but can be easily increased as needed, just like the count of slices in the pizza. As of May 2017, the default limit is 1000 “slices” of concurrency per AWS Region.

Also like the magical pizza, each concurrency “slice” can only be consumed individually one at a time. After consumption, it becomes available to be consumed again. Services invoking Lambda functions can consume multiple slices of concurrency at the same time, just like the group of friends can take multiple slices of the pizza.

Let’s take our example of the six friends and bring it back to AWS services that commonly invoke Lambda:

  • Amazon S3
  • Amazon Kinesis
  • Amazon DynamoDB
  • Amazon Cognito

In a single account with the default concurrency limit of 1000 concurrent executions, any of these four services could invoke enough functions to consume the entire limit or some part of it. Just like with the pizza example, there is the possibility for two issues to pop up:

  • One or more of these services could invoke enough functions to consume a majority of the available concurrency capacity. This could cause others to be starved for it, causing failed invocations.
  • A service could consume too much concurrent capacity and cause a downstream service or database to be overwhelmed, which could cause failed executions.

For Lambda functions that are launched in a VPC, you have the potential to consume the available IP addresses in a subnet or the maximum number of elastic network interfaces to which your account has access. For more information, see Configuring a Lambda Function to Access Resources in an Amazon VPC. For information about elastic network interface limits, see Network Interfaces section in the Amazon VPC Limits topic.

One way to solve both of these problems is applying a concurrency limit to the Lambda functions in an account.

Configuring per function concurrency limits

You can now set a concurrency limit on individual Lambda functions in an account. The concurrency limit that you set reserves a portion of your account level concurrency for a given function. All of your functions’ concurrent executions count against this account-level limit by default.

If you set a concurrency limit for a specific function, then that function’s concurrency limit allocation is deducted from the shared pool and assigned to that specific function. AWS also reserves 100 units of concurrency for all functions that don’t have a specified concurrency limit set. This helps to make sure that future functions have capacity to be consumed.

Going back to the example of the consuming services, you could set throttles for the functions as follows:

Amazon S3 function = 350
Amazon Kinesis function = 200
Amazon DynamoDB function = 200
Amazon Cognito function = 150
Total = 900

With the 100 reserved for all non-concurrency reserved functions, this totals the account limit of 1000.

Here’s how this works. To start, create a basic Lambda function that is invoked via Amazon API Gateway. This Lambda function returns a single “Hello World” statement with an added sleep time between 2 and 5 seconds. The sleep time simulates an API providing some sort of capability that can take a varied amount of time. The goal here is to show how an API that is underloaded can reach its concurrency limit, and what happens when it does.
To create the example function

  1. Open the Lambda console.
  2. Choose Create Function.
  3. For Author from scratch, enter the following values:
    1. For Name, enter a value (such as concurrencyBlog01).
    2. For Runtime, choose Python 3.6.
    3. For Role, choose Create new role from template and enter a name aligned with this function, such as concurrencyBlogRole.
  4. Choose Create function.
  5. The function is created with some basic example code. Replace that code with the following:

import time
from random import randint
seconds = randint(2, 5)

def lambda_handler(event, context):
time.sleep(seconds)
return {"statusCode": 200,
"body": ("Hello world, slept " + str(seconds) + " seconds"),
"headers":
{
"Access-Control-Allow-Headers": "Content-Type,X-Amz-Date,Authorization,X-Api-Key,X-Amz-Security-Token",
"Access-Control-Allow-Methods": "GET,OPTIONS",
}}

  1. Under Basic settings, set Timeout to 10 seconds. While this function should only ever take up to 5-6 seconds (with the 5-second max sleep), this gives you a little bit of room if it takes longer.

  1. Choose Save at the top right.

At this point, your function is configured for this example. Test it and confirm this in the console:

  1. Choose Test.
  2. Enter a name (it doesn’t matter for this example).
  3. Choose Create.
  4. In the console, choose Test again.
  5. You should see output similar to the following:

Now configure API Gateway so that you have an HTTPS endpoint to test against.

  1. In the Lambda console, choose Configuration.
  2. Under Triggers, choose API Gateway.
  3. Open the API Gateway icon now shown as attached to your Lambda function:

  1. Under Configure triggers, leave the default values for API Name and Deployment stage. For Security, choose Open.
  2. Choose Add, Save.

API Gateway is now configured to invoke Lambda at the Invoke URL shown under its configuration. You can take this URL and test it in any browser or command line, using tools such as “curl”:


$ curl https://ofixul557l.execute-api.us-east-1.amazonaws.com/prod/concurrencyBlog01
Hello world, slept 2 seconds

Throwing load at the function

Now start throwing some load against your API Gateway + Lambda function combo. Right now, your function is only limited by the total amount of concurrency available in an account. For this example account, you might have 850 unreserved concurrency out of a full account limit of 1000 due to having configured a few concurrency limits already (also the 100 concurrency saved for all functions without configured limits). You can find all of this information on the main Dashboard page of the Lambda console:

For generating load in this example, use an open source tool called “hey” (https://github.com/rakyll/hey), which works similarly to ApacheBench (ab). You test from an Amazon EC2 instance running the default Amazon Linux AMI from the EC2 console. For more help with configuring an EC2 instance, follow the steps in the Launch Instance Wizard.

After the EC2 instance is running, SSH into the host and run the following:


sudo yum install go
go get -u github.com/rakyll/hey

“hey” is easy to use. For these tests, specify a total number of tests (5,000) and a concurrency of 50 against the API Gateway URL as follows(replace the URL here with your own):


$ ./go/bin/hey -n 5000 -c 50 https://ofixul557l.execute-api.us-east-1.amazonaws.com/prod/concurrencyBlog01

The output from “hey” tells you interesting bits of information:


$ ./go/bin/hey -n 5000 -c 50 https://ofixul557l.execute-api.us-east-1.amazonaws.com/prod/concurrencyBlog01

Summary:
Total: 381.9978 secs
Slowest: 9.4765 secs
Fastest: 0.0438 secs
Average: 3.2153 secs
Requests/sec: 13.0891
Total data: 140024 bytes
Size/request: 28 bytes

Response time histogram:
0.044 [1] |
0.987 [2] |
1.930 [0] |
2.874 [1803] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
3.817 [1518] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
4.760 [719] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
5.703 [917] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
6.647 [13] |
7.590 [14] |
8.533 [9] |
9.477 [4] |

Latency distribution:
10% in 2.0224 secs
25% in 2.0267 secs
50% in 3.0251 secs
75% in 4.0269 secs
90% in 5.0279 secs
95% in 5.0414 secs
99% in 5.1871 secs

Details (average, fastest, slowest):
DNS+dialup: 0.0003 secs, 0.0000 secs, 0.0332 secs
DNS-lookup: 0.0000 secs, 0.0000 secs, 0.0046 secs
req write: 0.0000 secs, 0.0000 secs, 0.0005 secs
resp wait: 3.2149 secs, 0.0438 secs, 9.4472 secs
resp read: 0.0000 secs, 0.0000 secs, 0.0004 secs

Status code distribution:
[200] 4997 responses
[502] 3 responses

You can see a helpful histogram and latency distribution. Remember that this Lambda function has a random sleep period in it and so isn’t entirely representational of a real-life workload. Those three 502s warrant digging deeper, but could be due to Lambda cold-start timing and the “second” variable being the maximum of 5, causing the Lambda functions to time out. AWS X-Ray and the Amazon CloudWatch logs generated by both API Gateway and Lambda could help you troubleshoot this.

Configuring a concurrency reservation

Now that you’ve established that you can generate this load against the function, I show you how to limit it and protect a backend resource from being overloaded by all of these requests.

  1. In the console, choose Configure.
  2. Under Concurrency, for Reserve concurrency, enter 25.

  1. Click on Save in the top right corner.

You could also set this with the AWS CLI using the Lambda put-function-concurrency command or see your current concurrency configuration via Lambda get-function. Here’s an example command:


$ aws lambda get-function --function-name concurrencyBlog01 --output json --query Concurrency
{
"ReservedConcurrentExecutions": 25
}

Either way, you’ve set the Concurrency Reservation to 25 for this function. This acts as both a limit and a reservation in terms of making sure that you can execute 25 concurrent functions at all times. Going above this results in the throttling of the Lambda function. Depending on the invoking service, throttling can result in a number of different outcomes, as shown in the documentation on Throttling Behavior. This change has also reduced your unreserved account concurrency for other functions by 25.

Rerun the same load generation as before and see what happens. Previously, you tested at 50 concurrency, which worked just fine. By limiting the Lambda functions to 25 concurrency, you should see rate limiting kick in. Run the same test again:


$ ./go/bin/hey -n 5000 -c 50 https://ofixul557l.execute-api.us-east-1.amazonaws.com/prod/concurrencyBlog01

While this test runs, refresh the Monitoring tab on your function detail page. You see the following warning message:

This is great! It means that your throttle is working as configured and you are now protecting your downstream resources from too much load from your Lambda function.

Here is the output from a new “hey” command:


$ ./go/bin/hey -n 5000 -c 50 https://ofixul557l.execute-api.us-east-1.amazonaws.com/prod/concurrencyBlog01
Summary:
Total: 379.9922 secs
Slowest: 7.1486 secs
Fastest: 0.0102 secs
Average: 1.1897 secs
Requests/sec: 13.1582
Total data: 164608 bytes
Size/request: 32 bytes

Response time histogram:
0.010 [1] |
0.724 [3075] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
1.438 [0] |
2.152 [811] |∎∎∎∎∎∎∎∎∎∎∎
2.866 [11] |
3.579 [566] |∎∎∎∎∎∎∎
4.293 [214] |∎∎∎
5.007 [1] |
5.721 [315] |∎∎∎∎
6.435 [4] |
7.149 [2] |

Latency distribution:
10% in 0.0130 secs
25% in 0.0147 secs
50% in 0.0205 secs
75% in 2.0344 secs
90% in 4.0229 secs
95% in 5.0248 secs
99% in 5.0629 secs

Details (average, fastest, slowest):
DNS+dialup: 0.0004 secs, 0.0000 secs, 0.0537 secs
DNS-lookup: 0.0002 secs, 0.0000 secs, 0.0184 secs
req write: 0.0000 secs, 0.0000 secs, 0.0016 secs
resp wait: 1.1892 secs, 0.0101 secs, 7.1038 secs
resp read: 0.0000 secs, 0.0000 secs, 0.0005 secs

Status code distribution:
[502] 3076 responses
[200] 1924 responses

This looks fairly different from the last load test run. A large percentage of these requests failed fast due to the concurrency throttle failing them (those with the 0.724 seconds line). The timing shown here in the histogram represents the entire time it took to get a response between the EC2 instance and API Gateway calling Lambda and being rejected. It’s also important to note that this example was configured with an edge-optimized endpoint in API Gateway. You see under Status code distribution that 3076 of the 5000 requests failed with a 502, showing that the backend service from API Gateway and Lambda failed the request.

Other uses

Managing function concurrency can be useful in a few other ways beyond just limiting the impact on downstream services and providing a reservation of concurrency capacity. Here are two other uses:

  • Emergency kill switch
  • Cost controls

Emergency kill switch

On occasion, due to issues with applications I’ve managed in the past, I’ve had a need to disable a certain function or capability of an application. By setting the concurrency reservation and limit of a Lambda function to zero, you can do just that.

With the reservation set to zero every invocation of a Lambda function results in being throttled. You could then work on the related parts of the infrastructure or application that aren’t working, and then reconfigure the concurrency limit to allow invocations again.

Cost controls

While I mentioned how you might want to use concurrency limits to control the downstream impact to services or databases that your Lambda function might call, another resource that you might be cautious about is money. Setting the concurrency throttle is another way to help control costs during development and testing of your application.

You might want to prevent against a function performing a recursive action too quickly or a development workload generating too high of a concurrency. You might also want to protect development resources connected to this function from generating too much cost, such as APIs that your Lambda function calls.

Conclusion

Concurrent executions as a unit of scale are a fairly unique characteristic about Lambda functions. Placing limits on how many concurrency “slices” that your function can consume can prevent a single function from consuming all of the available concurrency in an account. Limits can also prevent a function from overwhelming a backend resource that isn’t as scalable.

Unlike monolithic applications or even microservices where there are mixed capabilities in a single service, Lambda functions encourage a sort of “nano-service” of small business logic directly related to the integration model connected to the function. I hope you’ve enjoyed this post and configure your concurrency limits today!

CoderDojo: 2000 Dojos ever

Post Syndicated from Giustina Mizzoni original https://www.raspberrypi.org/blog/2000-dojos-ever/

Every day of the week, we verify new Dojos all around the world, and each Dojo is championed by passionate volunteers. Last week, a huge milestone for the CoderDojo community went by relatively unnoticed: in the history of the movement, more than 2000 Dojos have now been verified!

CoderDojo banner — 2000 Dojos

2000 Dojos

This is a phenomenal achievement for a movement that’s just six years old and powered by volunteers. Presently, there are more than 1650 active Dojos running weekly, fortnightly, or monthly, and all of them are free for participants — for example, the Dojos run by Joel Bayubasire in Kampala, Uganda:

Joel Bayubasire with Ninjas at his Ugandan Dojo — 2000 Dojos

Empowering refugee children

This week, Joel set up his second Dojo and verified it on our global map. Joel is a Congolese refugee living in Kampala, Uganda, where he is currently completing his PhD in Economics at Madison International Institute and Business School.

Joel understands first-hand the challenges faced by refugees who were forced to leave their country due to war or conflict. Uganda is currently hosting more than 1.2 million refugees, 60% of which are children (World Bank, 2017). As refugees, children are only allowed to attend local schools until the age of 12. This results in lower educational attainment, which will likely affect their future employment prospects.

Two girls at a laptop. Joel Bayubasire CoderDojo — 2000 Dojos

Joel has the motivation to overcome these challenges, because he understands the power of education. Therefore, he initiated a number of community-based activities to provide educational opportunities for refugee children. As part of this, he founded his first Dojo earlier in the year, with the aim of giving these children a chance to compete in today’s global knowledge-based economy.

Two boys at a laptop. Joel Bayubasire CoderDojo — 2000 Dojos

Aware that securing volunteer mentors would be a challenge, Joel trained eight young people from the community to become youth mentors to their peers. He explains:

I believe that the mastery of computer coding allows talented young people to thrive professionally and enables them to not only be consumers but creators of the interconnected world of today!

Based on the success of Joel’s first Dojo, he has now expanded the CoderDojo initiative in his community; his plan is to provide computer science training for more than 300 refugee youths in Kampala by 2019. If you’d like to learn more about Joel’s efforts, head to this website.

Join the movement

If you are interested in creating opportunities for the young people in your community, then join the growing CoderDojo movement — you can volunteer to start a Dojo or to support an existing one today!

The post CoderDojo: 2000 Dojos ever appeared first on Raspberry Pi.

Is blockchain a security topic? (Opensource.com)

Post Syndicated from jake original https://lwn.net/Articles/740929/rss

At Opensource.com, Mike Bursell looks at blockchain security from the angle of trust. Unlike cryptocurrencies, which are pseudonymous typically, other kinds of blockchains will require mapping users to real-life identities; that raises the trust issue.

What’s really interesting is that, if you’re thinking about moving to a permissioned blockchain or distributed ledger with permissioned actors, then you’re going to have to spend some time thinking about trust. You’re unlikely to be using a proof-of-work system for making blocks—there’s little point in a permissioned system—so who decides what comprises a “valid” block that the rest of the system should agree on? Well, you can rotate around some (or all) of the entities, or you can have a random choice, or you can elect a small number of über-trusted entities. Combinations of these schemes may also work.

If these entities all exist within one trust domain, which you control, then fine, but what if they’re distributors, or customers, or partners, or other banks, or manufacturers, or semi-autonomous drones, or vehicles in a commercial fleet? You really need to ensure that the trust relationships that you’re encoding into your implementation/deployment truly reflect the legal and IRL [in real life] trust relationships that you have with the entities that are being represented in your system.

And the problem is that, once you’ve deployed that system, it’s likely to be very difficult to backtrack, adjust, or reset the trust relationships that you’ve designed.”

Game night 1: Lisa, Lisa, MOOP

Post Syndicated from Eevee original https://eev.ee/blog/2017/12/05/game-night-1-lisa-lisa-moop/

For the last few weeks, glip (my partner) and I have spent a couple hours most nights playing indie games together. We started out intending to play a short list of games that had been recommended to glip, but this turns out to be a nice way to wind down, so we’ve been keeping it up and clicking on whatever looks interesting in the itch app.

Most of the games are small and made by one or two people, so they tend to be pretty tightly scoped and focus on a few particular kinds of details. I’ve found myself having brain thoughts about all that, so I thought I’d write some of them down.

I also know that some people (cough) tend not to play games they’ve never heard of, even if they want something new to play. If that’s you, feel free to play some of these, now that you’ve heard of them!

Also, I’m still figuring the format out here, so let me know if this is interesting or if you hope I never do it again!

First up:

  • Lisa: The Painful
  • Lisa: The Joyful
  • MOOP

These are impressions, not reviews. I try to avoid major/ending spoilers, but big plot points do tend to leave impressions.

Lisa: The Painful

long · classic rpg · dec 2014 · lin/mac/win · $10 on itch or steam · website

(cw: basically everything??)

Lisa: The Painful is true to its name. I hesitate to describe it as fun, exactly, but I’m glad we played it.

Everything about the game is dark. It’s a (somewhat loose) sequel to another game called Lisa, whose titular character ultimately commits suicide; her body hanging from a noose is the title screen for this game.

Ah, but don’t worry, it gets worse. This game takes place in a post-apocalyptic wasteland, where every female human — women, children, babies — is dead. You play as Brad (Lisa’s brother), who has discovered the lone exception: a baby girl he names Buddy and raises like a daughter. Now, Buddy has been kidnapped, and you have to go rescue her, presumably from being raped.

Ah, but don’t worry, it gets worse.


I’ve had a hard time putting my thoughts in order here, because so much of what stuck with me is the way the game entangles the plot with the mechanics.

I love that kind of thing, but it’s so hard to do well. I can’t really explain why, but I feel like most attempts to do it fall flat — they have a glimmer of an idea, but they don’t integrate it well enough, or they don’t run nearly as far as they could have. I often get the same feeling as, say, a hyped-up big moral choice that turns out to be picking “yes” or “no” from a menu. The idea is there, but the execution is so flimsy that it leaves no impact on me at all.

An obvious recent success here is Undertale, where the entire story is about violence and whether you choose to engage or avoid it (and whether you can do that). If you choose to eschew violence, not only does the game become more difficult, it arguably becomes a different game entirely. Granted, the contrast is lost if you (like me) tried to play as a pacifist from the very beginning. I do feel that you could go further with the idea than Undertale, but Undertale itself doesn’t feel incomplete.

Christ, I’m not even talking about the right game any more.

Okay, so: this game is a “classic” RPG, by which I mean, it was made with RPG Maker. (It’s kinda funny that RPG Maker was designed to emulate a very popular battle style, and now the only games that use that style are… made with RPG Maker.) The main loop, on the surface, is standard RPG fare: you walk around various places, talk to people, solve puzzles, recruit party members, and get into turn-based fights.

Now, Brad is addicted to a drug called Joy. He will regularly go into withdrawal, which manifests in the game as a status effect that cuts his stats (even his max HP!) dramatically.

It is really, really, incredibly inconvenient. And therein lies the genius here. The game could have simply told me that Brad is an addict, and I don’t think I would’ve cared too much. An addiction to a fantasy drug in a wasteland doesn’t mean anything to me, especially about this tiny sprite man I just met, so I would’ve filed this away as a sterile fact and forgotten about it. By making his addiction affect me, I’m now invested in it. I wish Brad weren’t addicted, even if only because it’s annoying. I found a party member once who turned out to have the same addiction, and I felt dread just from seeing the icon for the status effect. I’ve been looped into the events of this story through the medium I use to interact with it: the game.

It’s a really good use of games as a medium. Even before I’m invested in the characters, I’m invested in what’s happening to them, because it impacts the game!

Incidentally, you can get Joy as an item, which will temporarily cure your withdrawal… but you mostly find it by looting the corpses of grotesque mutant flesh horrors you encounter. I don’t think the game would have the player abruptly mutate out of nowhere, but I wasn’t about to find out, either. We never took any.


Virtually every staple of the RPG genre has been played with in some way to tie it into the theme/setting. I love it, and I think it works so well precisely because it plays with expectations of how RPGs usually work.

Most obviously, the game is a sidescroller, not top-down. You can’t jump freely, but you can hop onto one-tile-high boxes and climb ropes. You can also drop off off ledges… but your entire party will take fall damage, which gets rapidly more severe the further you fall.

This wouldn’t be too much of a problem, except that healing is hard to come by for most of the game. Several hub areas have campfires you can sleep next to to restore all your health and MP, but when you wake up, something will have happened to you. Maybe just a weird cutscene, or maybe one of your party members has decided to leave permanently.

Okay, so use healing items instead? Good luck; money is also hard to come by, and honestly so are shops, and many of the healing items are woefully underpowered.

Grind for money? Good luck there, too! While the game has plenty of battles, virtually every enemy is a unique overworld human who only appears once, and then is dead, because you killed him. Only a handful of places have unlimited random encounters, and grinding is not especially pleasant.

The “best” way to get a reliable heal is to savescum — save the game, sleep by the campfire, and reload if you don’t like what you wake up to.

In a similar vein, there’s a part of the game where you’re forced to play Russian Roulette. You choose a party member; he and an opponent will take turns shooting themselves in the head until someone finds a loaded chamber. If your party member loses, he is dead. And you have to keep playing until you win three times, so there’s no upper limit on how many people you might lose. I couldn’t find any way to influence who won, so I just had to savescum for a good half hour until I made it through with minimal losses.

It was maddening, but also a really good idea. Games don’t often incorporate the existence of saves into the gameplay, and when they do, they usually break the fourth wall and get all meta about it. Saves are never acknowledged in-universe here (aside from the existence of save points), but surely these parts of the game were designed knowing that the best way through them is by reloading. It’s rarely done, it can easily feel unfair, and it drove me up the wall — but it was certainly painful, as intended, and I kinda love that.

(Naturally, I’m told there’s a hard mode, where you can only use each save point once.)

The game also drives home the finality of death much better than most. It’s not hard to overlook the death of a redshirt, a character with a bit part who simply doesn’t appear any more. This game permanently kills your party members. Russian Roulette isn’t even the only way you can lose them! Multiple cutscenes force you to choose between losing a life or some other drastic consequence. (Even better, you can try to fight the person forcing this choice on you, and he will decimate you.) As the game progresses, you start to encounter enemies who can simply one-shot murder your party members.

It’s such a great angle. Just like with Brad’s withdrawal, you don’t want to avoid their deaths because it’d be emotional — there are dozens of party members you can recruit (though we only found a fraction of them), and most of them you only know a paragraph about — but because it would inconvenience you personally. Chances are, you have your strongest dudes in your party at any given time, so losing one of them sucks. And with few random encounters, you can’t just grind someone else up to an appropriate level; it feels like there’s a finite amount of XP in the game, and if someone high-level dies, you’ve lost all the XP that went into them.


The battles themselves are fairly straightforward. You can attack normally or use a special move that costs MP. SP? Some kind of points.

Two things in particular stand out. One I mentioned above: the vast majority of the encounters are one-time affairs against distinct named NPCs, who you then never see again, because they are dead, because you killed them.

The other is the somewhat unusual set of status effects. The staples like poison and sleep are here, but don’t show up all that often; more frequent are statuses like weird, drunk, stink, or cool. If you do take Joy (which also cures depression), you become joyed for a short time.

The game plays with these in a few neat ways, besides just Brad’s withdrawal. Some party members have a status like stink or cool permanently. Some battles are against people who don’t want to fight at all — and so they’ll spend most of the battle crying, purely for flavor impact. Seeing that for the first time hit me pretty hard; until then we’d only seen crying as a mechanical side effect of having sand kicked in one’s face.


The game does drag on a bit. I think we poured 10 in-game hours into it, which doesn’t count time spent reloading. It doesn’t help that you walk not super fast.

My biggest problem was with getting my bearings; I’m sure we spent a lot of that time wandering around accomplishing nothing. Most of the world is focused around one of a few hub areas, and once you’ve completed one hub, you can move onto the next one. That’s fine. Trouble is, you can go any of a dozen different directions from each hub, and most of those directions will lead you to very similar-looking hills built out of the same tiny handful of tiles. The connections between places are mostly cave entrances, which also largely look the same. Combine that with needing to backtrack for puzzle or progression reasons, and it’s incredibly difficult to keep track of where you’ve been, what you’ve done, and where you need to go next.

I don’t know that the game is wrong here; the aesthetic and world layout are fantastic at conveying a desolate wasteland. I wouldn’t even be surprised if the navigation were deliberately designed this way. (On the other hand, assuming every annoyance in a despair-ridden game is deliberate might be giving it too much credit.) But damn it’s still frustrating.

I felt a little lost in the battle system, too. Towards the end of the game, Brad in particular had over a dozen skills he could use, but I still couldn’t confidently tell you which were the strongest. New skills sometimes appear in the middle of the list or cost less than previous skills, and the game doesn’t outright tell you how much damage any of them do. I know this is the “classic RPG” style, and I don’t think it was hugely inconvenient, but it feels weird to barely know how my own skills work. I think this puts me off getting into new RPGs, just generally; there’s a whole new set of things I have to learn about, and games in this style often won’t just tell me anything, so there’s this whole separate meta-puzzle to figure out before I can play the actual game effectively.

Also, the sound could use a little bit of… mastering? Some music and sound effects are significantly louder and screechier than others. Painful, you could say.


The world is full of side characters with their own stuff going on, which is also something I love seeing in games; too often, the whole world feels like an obstacle course specifically designed for you.

Also, many of those characters are, well, not great people. Really, most of the game is kinda fucked up. Consider: the weird status effect is most commonly inflicted by the “Grope” skill. It makes you feel weird, you see. Oh, and the currency is porn magazines.

And then there are the gangs, the various spins on sex clubs, the forceful drug kingpins, and the overall violence that permeates everything (you stumble upon an alarming number of corpses). The game neither condones nor condemns any of this; it simply offers some ideas of how people might behave at the end of the world. It’s certainly the grittiest interpretation I’ve seen.

I don’t usually like post-apocalypses, because they try to have these very hopeful stories, but then at the end the world is still a blighted hellscape so what was the point of any of that? I like this game much better for being a blighted hellscape throughout. The story is worth following to see where it goes, not just because you expect everything wrapped up neatly at the end.

…I realize I’ve made this game sound monumentally depressing throughout, but it manages to pack in a lot of funny moments as well, from the subtle to the overt. In retrospect, it’s actually really good at balancing the mood so it doesn’t get too depressing. If nothing else, it’s hilarious to watch this gruff, solemn, battle-scarred, middle-aged man pedal around on a kid’s bike he found.


An obvious theme of the game is despair, but the more I think about it, the more I wonder if ambiguity is a theme as well. It certainly fits the confusing geography.

Even the premise is a little ambiguous. Is/was Olathe a city, a country, a whole planet? Did the apocalypse affect only Olathe, or the whole world? Does it matter in an RPG, where the only world that exists is the one mapped out within the game?

Towards the end of the game, you catch up with Buddy, but she rejects you, apparently resentful that you kept her hidden away for her entire life. Brad presses on anyway, insisting on protecting her.

At that point I wasn’t sure I was still on Brad’s side. But he’s not wrong, either. Is he? Maybe it depends on how old Buddy is — but the game never tells us. Her sprite is a bit smaller than the men’s, but it’s hard to gauge much from small exaggerated sprites, and she might just be shorter. In the beginning of the game, she was doing kid-like drawings, but we don’t know how much time passed after that. Everyone seems to take for granted that she’s capable of bearing children, and she talks like an adult. So is she old enough to be making this decision, or young enough for parent figure Brad to overrule her? What is the appropriate age of agency, anyway, when you’re the last girl/woman left more than a decade after the end of the world?

Can you repopulate a species with only one woman, anyway?


Well, that went on a bit longer than I intended. This game has a lot of small touches that stood out to me, and they all wove together very well.

Should you play it? I have absolutely no idea.

FINAL SCORE: 1 out of 6 chambers

Lisa: The Joyful

fairly short · classic rpg · aug 2015 · lin/mac/win · $5 on itch or steam

Surprise! There’s a third game to round out this trilogy.

Lisa: The Joyful is much shorter, maybe three hours long — enough to be played in a night rather than over the better part of a week.

This one picks up immediately after the end of Painful, with you now playing as Buddy. It takes a drastic turn early on: Buddy decides that, rather than hide from the world, she must conquer it. She sets out to murder all the big bosses and become queen.

The battle system has been inherited from the previous game, but battles are much more straightforward this time around. You can’t recruit any party members; for much of the game, it’s just you and a sword.

There is a catch! Of course.

The catch is that you do not have enough health to survive most boss battles without healing. With no party members, you cannot heal via skills. I don’t think you could buy healing items anywhere, either. You have a few when the game begins, but once you run out, that’s it.

Except… you also have… some Joy. Which restores you to full health and also makes you crit with every hit. And drops off of several enemies.

We didn’t even recognize Joy as a healing item at first, since we never used it in Painful; it’s description simply says that it makes you feel nothing, and we’d assumed the whole point of it was to stave off withdrawal, which Buddy doesn’t experience. Luckily, the game provided a hint in the form of an NPC who offers to switch on easy mode:

What’s that? Bad guys too tough? Not enough jerky? You don’t want to take Joy!? Say no more, you’ve come to the right place!

So the game is aware that it’s unfairly difficult, and it’s deliberately forcing you to take Joy, and it is in fact entirely constructed around this concept. I guess the title is a pretty good hint, too.

I don’t feel quite as strongly about Joyful as I do about Painful. (Admittedly, I was really tired and starting to doze off towards the end of Joyful.) Once you get that the gimmick is to force you to use Joy, the game basically reduces to a moderate-difficulty boss rush. Other than that, the only thing that stood out to me mechanically was that Buddy learns a skill where she lifts her shirt to inflict flustered as a status effect — kind of a lingering echo of how outrageous the previous game could be.

You do get a healthy serving of plot, which is nice and ties a few things together. I wouldn’t say it exactly wraps up the story, but it doesn’t feel like it’s missing anything either; it’s exactly as murky as you’d expect.

I think it’s worth playing Joyful if you’ve played Painful. It just didn’t have the same impact on me. It probably doesn’t help that I don’t like Buddy as a person. She seems cold, violent, and cruel. Appropriate for the world and a product of her environment, I suppose.

FINAL SCORE: 300 Mags

MOOP

fairly short · inventory game · nov 2017 · win · free on itch

Finally, as something of a palate cleanser, we have MOOP: a delightful and charming little inventory game.

I don’t think “inventory game” is a real genre, but I mean the kind of game where you go around collecting items and using them in the right place. Puzzle-driven, but with “puzzles” that can largely be solved by simply trying everything everywhere. I’d put a lot of point and click adventures in the same category, despite having a radically different interface. Is that fair? Yes, because it’s my blog.

MOOP was almost certainly also made in RPG Maker, but it breaks the mold in a very different way by not being an RPG. There are no battles whatsoever, only interactions on the overworld; you progress solely via dialogue and puzzle-solving. Examining something gives you a short menu of verbs — use, talk, get — reminiscent of interactive fiction, or perhaps the graphical “adventure” games that took inspiration from interactive fiction. (God, “adventure game” is the worst phrase. Every game is an adventure! It doesn’t mean anything!)

Everything about the game is extremely chill. I love the monochrome aesthetic combined with a large screen resolution; it feels like I’m peeking into an alternate universe where the Game Boy got bigger but never gained color. I played halfway through the game before realizing that the protagonist (Moop) doesn’t have a walk animation; they simply slide around. Somehow, it works.

The puzzles are a little clever, yet low-pressure; the world is small enough that you can examine everything again if you get stuck, and there’s no way to lose or be set back. The music is lovely, too. It just feels good to wander around in a world that manages to make sepia look very pretty.

The story manages to pack a lot into a very short time. It’s… gosh, I don’t know. It has a very distinct texture to it that I’m not sure I’ve seen before. The plot weaves through several major events that each have very different moods, and it moves very quickly — but it’s well-written and doesn’t feel rushed or disjoint. It’s lighthearted, but takes itself seriously enough for me to get invested. It’s fucking witchcraft.

I think there was even a non-binary character! Just kinda nonchalantly in there. Awesome.

What a happy, charming game. Play if you would like to be happy and charmed.

FINAL SCORE: 1 waxing moon

AWS Contributes to Milestone 1.0 Release and Adds Model Serving Capability for Apache MXNet

Post Syndicated from Ana Visneski original https://aws.amazon.com/blogs/aws/aws-contributes-to-milestone-1-0-release-and-adds-model-serving-capability-for-apache-mxnet/

Post by Dr. Matt Wood

Today AWS announced contributions to the milestone 1.0 release of the Apache MXNet deep learning engine including the introduction of a new model-serving capability for MXNet. The new capabilities in MXNet provide the following benefits to users:

1) MXNet is easier to use: The model server for MXNet is a new capability introduced by AWS, and it packages, runs, and serves deep learning models in seconds with just a few lines of code, making them accessible over the internet via an API endpoint and thus easy to integrate into applications. The 1.0 release also includes an advanced indexing capability that enables users to perform matrix operations in a more intuitive manner.

  • Model Serving enables set up of an API endpoint for prediction: It saves developers time and effort by condensing the task of setting up an API endpoint for running and integrating prediction functionality into an application to just a few lines of code. It bridges the barrier between Python-based deep learning frameworks and production systems through a Docker container-based deployment model.
  • Advanced indexing for array operations in MXNet: It is now more intuitive for developers to leverage the powerful array operations in MXNet. They can use the advanced indexing capability by leveraging existing knowledge of NumPy/SciPy arrays. For example, it supports MXNet NDArray and Numpy ndarray as index, e.g. (a[mx.nd.array([1,2], dtype = ‘int32’]).

2) MXNet is faster: The 1.0 release includes implementation of cutting-edge features that optimize the performance of training and inference. Gradient compression enables users to train models up to five times faster by reducing communication bandwidth between compute nodes without loss in convergence rate or accuracy. For speech recognition acoustic modeling like the Alexa voice, this feature can reduce network bandwidth by up to three orders of magnitude during training. With the support of NVIDIA Collective Communication Library (NCCL), users can train a model 20% faster on multi-GPU systems.

  • Optimize network bandwidth with gradient compression: In distributed training, each machine must communicate frequently with others to update the weight-vectors and thereby collectively build a single model, leading to high network traffic. Gradient compression algorithm enables users to train models up to five times faster by compressing the model changes communicated by each instance.
  • Optimize the training performance by taking advantage of NCCL: NCCL implements multi-GPU and multi-node collective communication primitives that are performance optimized for NVIDIA GPUs. NCCL provides communication routines that are optimized to achieve high bandwidth over interconnection between multi-GPUs. MXNet supports NCCL to train models about 20% faster on multi-GPU systems.

3) MXNet provides easy interoperability: MXNet now includes a tool for converting neural network code written with the Caffe framework to MXNet code, making it easier for users to take advantage of MXNet’s scalability and performance.

  • Migrate Caffe models to MXNet: It is now possible to easily migrate Caffe code to MXNet, using the new source code translation tool for converting Caffe code to MXNet code.

MXNet has helped developers and researchers make progress with everything from language translation to autonomous vehicles and behavioral biometric security. We are excited to see the broad base of users that are building production artificial intelligence applications powered by neural network models developed and trained with MXNet. For example, the autonomous driving company TuSimple recently piloted a self-driving truck on a 200-mile journey from Yuma, Arizona to San Diego, California using MXNet. This release also includes a full-featured and performance optimized version of the Gluon programming interface. The ease-of-use associated with it combined with the extensive set of tutorials has led significant adoption among developers new to deep learning. The flexibility of the interface has driven interest within the research community, especially in the natural language processing domain.

Getting started with MXNet
Getting started with MXNet is simple. To learn more about the Gluon interface and deep learning, you can reference this comprehensive set of tutorials, which covers everything from an introduction to deep learning to how to implement cutting-edge neural network models. If you’re a contributor to a machine learning framework, check out the interface specs on GitHub.

To get started with the Model Server for Apache MXNet, install the library with the following command:

$ pip install mxnet-model-server

The Model Server library has a Model Zoo with 10 pre-trained deep learning models, including the SqueezeNet 1.1 object classification model. You can start serving the SqueezeNet model with just the following command:

$ mxnet-model-server \
  --models squeezenet=https://s3.amazonaws.com/model-server/models/squeezenet_v1.1/squeezenet_v1.1.model \
  --service dms/model_service/mxnet_vision_service.py

Learn more about the Model Server and view the source code, reference examples, and tutorials here: https://github.com/awslabs/mxnet-model-server/

-Dr. Matt Wood

Digital Rights Groups Warn Against Copyright “Parking Tickets” Bill

Post Syndicated from Ernesto original https://torrentfreak.com/digital-rights-groups-warn-against-copyright-parking-tickets-bill-171203/

Nearly five years ago, US lawmakers agreed to carry out a comprehensive review of United States copyright law.

In the following years, the House Judiciary Committee held dozens of hearings on various topics, from DMCA reform and fair use exemptions to the possibility of a small claims court for copyright offenses.

While many of the topics never got far beyond the discussion stage, there’s now a new bill on the table that introduces a small claims process for copyright offenses.

The CASE Act, short for Copyright Alternative in Small-Claims Enforcement, proposes to establish a small claims court to resolve copyright disputes outside the federal courts. This means that legal costs will be significantly reduced.

The idea behind the bill is to lower the barrier for smaller copyright holders with limited resources, who usually refrain from going to court. Starting a federal case with proper representation is quite costly, while the outcome is rather uncertain.

While this may sound noble, digital rights groups, including the Electronic Frontier Foundation (EFF) and Public Knowledge, warn that the bill could do more harm than good.

One of the problems they signal is that the proposed “Copyright Claims Board” would be connected to the US Copyright Office. Given this connection, the groups fear that the three judges might be somewhat biased towards copyright holders.

“Unfortunately, the Copyright Office has a history of putting copyright holders’ interests ahead of other important legal rights and policy concerns. We fear that any small claims process the Copyright Office conducts will tend to follow that pattern,” EFF’s Mitch Stoltz warns.

The copyright claims board will have three judges who can hear cases from all over the country. They can award damages awards of up to $15,000 per infringement, or $30,000 per case.

Participation is voluntary and potential defendants can opt-out. However, if they fail to do so, any order against them can still be binding and enforceable through a federal court.

An opt-in system would be much better, according to EFF, as that would prevent abuse by copyright holders who are looking for cheap default judgments.

“[A]n opt-in approach would help ensure that both participants affirmatively choose to litigate their dispute in this new court, and help prevent copyright holders from abusing the system to obtain inexpensive default judgments that will be hard to appeal.”

While smart defendants would opt-out in certain situations, those who are less familiar with the law might become the target of what are essentially copyright parking tickets.

“Knowledgeable defendants will opt out of such proceedings, while legally unsophisticated targets, including ordinary Internet users, could find themselves committed to an unfair, accelerated process handing out largely unappealable $5,000 copyright parking tickets,” EFF adds.

In its current form, the small claims court may prove to be an ideal tool for copyright trolls, including those who made a business out of filing federal cases against alleged BitTorrent pirates.

This copyright troll issue angle highlighted by both EFF and Public Knowlege, who urge lawmakers to revise the bill.

“[I]t’s not hard to see how trolls and default judgments could come to dominate the system,” Public Knowledge says.

“Instead of creating a reliable, fair mechanism for independent artists to pursue scaled infringement claims online, it would establish an opaque, unaccountable legislation mill that will likely get bogged down by copyright trolls and questionable claimants looking for a payout,” they conclude.

Various copyright holder groups are more positive about the bill. The Copyright Alliance, for example, says that it will empower creators with smaller budgets to protect their rights.

“The next generation of creators deserves copyright protection that is as pioneering and forward-thinking as they are. They deserve practical solutions to the real-life problems they face as creators. This bill is the first step.”

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Glenn’s Take on re:Invent Part 2

Post Syndicated from Glenn Gore original https://aws.amazon.com/blogs/architecture/glenns-take-on-reinvent-part-2/

Glenn Gore here, Chief Architect for AWS. I’m in Las Vegas this week — with 43K others — for re:Invent 2017. We’ve got a lot of exciting announcements this week. I’m going to check in to the Architecture blog with my take on what’s interesting about some of the announcements from an cloud architectural perspective. My first post can be found here.

The Media and Entertainment industry has been a rapid adopter of AWS due to the scale, reliability, and low costs of our services. This has enabled customers to create new, online, digital experiences for their viewers ranging from broadcast to streaming to Over-the-Top (OTT) services that can be a combination of live, scheduled, or ad-hoc viewing, while supporting devices ranging from high-def TVs to mobile devices. Creating an end-to-end video service requires many different components often sourced from different vendors with different licensing models, which creates a complex architecture and a complex environment to support operationally.

AWS Media Services
Based on customer feedback, we have developed AWS Media Services to help simplify distribution of video content. AWS Media Services is comprised of five individual services that can either be used together to provide an end-to-end service or individually to work within existing deployments: AWS Elemental MediaConvert, AWS Elemental MediaLive, AWS Elemental MediaPackage, AWS Elemental MediaStore and AWS Elemental MediaTailor. These services can help you with everything from storing content safely and durably to setting up a live-streaming event in minutes without having to be concerned about the underlying infrastructure and scalability of the stream itself.

In my role, I participate in many AWS and industry events and often work with the production and event teams that put these shows together. With all the logistical tasks they have to deal with, the biggest question is often: “Will the live stream work?” Compounding this fear is the reality that, as users, we are also quick to jump on social media and make noise when a live stream drops while we are following along remotely. Worse is when I see event organizers actively selecting not to live stream content because of the risk of failure and and exposure — leading them to decide to take the safe option and not stream at all.

With AWS Media Services addressing many of the issues around putting together a high-quality media service, live streaming, and providing access to a library of content through a variety of mechanisms, I can’t wait to see more event teams use live streaming without the concern and worry I’ve seen in the past. I am excited for what this also means for non-media companies, as video becomes an increasingly common way of sharing information and adding a more personalized touch to internally- and externally-facing content.

AWS Media Services will allow you to focus more on the content and not worry about the platform. Awesome!

Amazon Neptune
As a civilization, we have been developing new ways to record and store information and model the relationships between sets of information for more than a thousand years. Government census data, tax records, births, deaths, and marriages were all recorded on medium ranging from knotted cords in the Inca civilization, clay tablets in ancient Babylon, to written texts in Western Europe during the late Middle Ages.

One of the first challenges of computing was figuring out how to store and work with vast amounts of information in a programmatic way, especially as the volume of information was increasing at a faster rate than ever before. We have seen different generations of how to organize this information in some form of database, ranging from flat files to the Information Management System (IMS) used in the 1960s for the Apollo space program, to the rise of the relational database management system (RDBMS) in the 1970s. These innovations drove a lot of subsequent innovations in information management and application development as we were able to move from thousands of records to millions and billions.

Today, as architects and developers, we have a vast variety of database technologies to select from, which have different characteristics that are optimized for different use cases:

  • Relational databases are well understood after decades of use in the majority of companies who required a database to store information. Amazon Relational Database (Amazon RDS) supports many popular relational database engines such as MySQL, Microsoft SQL Server, PostgreSQL, MariaDB, and Oracle. We have even brought the traditional RDBMS into the cloud world through Amazon Aurora, which provides MySQL and PostgreSQL support with the performance and reliability of commercial-grade databases at 1/10th the cost.
  • Non-relational databases (NoSQL) provided a simpler method of storing and retrieving information that was often faster and more scalable than traditional RDBMS technology. The concept of non-relational databases has existed since the 1960s but really took off in the early 2000s with the rise of web-based applications that required performance and scalability that relational databases struggled with at the time. AWS published this Dynamo whitepaper in 2007, with DynamoDB launching as a service in 2012. DynamoDB has quickly become one of the critical design elements for many of our customers who are building highly-scalable applications on AWS. We continue to innovate with DynamoDB, and this week launched global tables and on-demand backup at re:Invent 2017. DynamoDB excels in a variety of use cases, such as tracking of session information for popular websites, shopping cart information on e-commerce sites, and keeping track of gamers’ high scores in mobile gaming applications, for example.
  • Graph databases focus on the relationship between data items in the store. With a graph database, we work with nodes, edges, and properties to represent data, relationships, and information. Graph databases are designed to make it easy and fast to traverse and retrieve complex hierarchical data models. Graph databases share some concepts from the NoSQL family of databases such as key-value pairs (properties) and the use of a non-SQL query language such as Gremlin. Graph databases are commonly used for social networking, recommendation engines, fraud detection, and knowledge graphs. We released Amazon Neptune to help simplify the provisioning and management of graph databases as we believe that graph databases are going to enable the next generation of smart applications.

A common use case I am hearing every week as I talk to customers is how to incorporate chatbots within their organizations. Amazon Lex and Amazon Polly have made it easy for customers to experiment and build chatbots for a wide range of scenarios, but one of the missing pieces of the puzzle was how to model decision trees and and knowledge graphs so the chatbot could guide the conversation in an intelligent manner.

Graph databases are ideal for this particular use case, and having Amazon Neptune simplifies the deployment of a graph database while providing high performance, scalability, availability, and durability as a managed service. Security of your graph database is critical. To help ensure this, you can store your encrypted data by running AWS in Amazon Neptune within your Amazon Virtual Private Cloud (Amazon VPC) and using encryption at rest integrated with AWS Key Management Service (AWS KMS). Neptune also supports Amazon VPC and AWS Identity and Access Management (AWS IAM) to help further protect and restrict access.

Our customers now have the choice of many different database technologies to ensure that they can optimize each application and service for their specific needs. Just as DynamoDB has unlocked and enabled many new workloads that weren’t possible in relational databases, I can’t wait to see what new innovations and capabilities are enabled from graph databases as they become easier to use through Amazon Neptune.

Look for more on DynamoDB and Amazon S3 from me on Monday.

 

Glenn at Tour de Mont Blanc

 

 

NSA "Red Disk" Data Leak

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/11/nsa_red_disk_da.html

ZDNet is reporting about another data leak, this one from US Army’s Intelligence and Security Command (INSCOM), which is also within to the NSA.

The disk image, when unpacked and loaded, is a snapshot of a hard drive dating back to May 2013 from a Linux-based server that forms part of a cloud-based intelligence sharing system, known as Red Disk. The project, developed by INSCOM’s Futures Directorate, was slated to complement the Army’s so-called distributed common ground system (DCGS), a legacy platform for processing and sharing intelligence, surveillance, and reconnaissance information.

[…]

Red Disk was envisioned as a highly customizable cloud system that could meet the demands of large, complex military operations. The hope was that Red Disk could provide a consistent picture from the Pentagon to deployed soldiers in the Afghan battlefield, including satellite images and video feeds from drones trained on terrorists and enemy fighters, according to a Foreign Policy report.

[…]

Red Disk was a modular, customizable, and scalable system for sharing intelligence across the battlefield, like electronic intercepts, drone footage and satellite imagery, and classified reports, for troops to access with laptops and tablets on the battlefield. Marking files found in several directories imply the disk is “top secret,” and restricted from being shared to foreign intelligence partners.

A couple of points. One, this isn’t particularly sensitive. It’s an intelligence distribution system under development. It’s not raw intelligence. Two, this doesn’t seem to be classified data. Even the article hedges, using the unofficial term of “highly sensitive.” Three, it doesn’t seem that Chris Vickery, the researcher that discovered the data, has published it.

Chris Vickery, director of cyber risk research at security firm UpGuard, found the data and informed the government of the breach in October. The storage server was subsequently secured, though its owner remains unknown.

This doesn’t feel like a big deal to me.

Slashdot thread.

Announcing Amazon FreeRTOS – Enabling Billions of Devices to Securely Benefit from the Cloud

Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/announcing-amazon-freertos/

I was recently reading an article on ReadWrite.com titled “IoT devices go forth and multiply, to increase 200% by 2021“, and while the article noted the benefit for consumers and the industry of this growth, two things in the article stuck with me. The first was the specific statement that read “researchers warned that the proliferation of IoT technology will create a new bevvy of challenges. Particularly troublesome will be IoT deployments at scale for both end-users and providers.” Not only was that sentence a mouthful, but it really addressed some of the challenges that can come building solutions and deployment of this exciting new technology area. The second sentiment in the article that stayed with me was that Security issues could grow.

So the article got me thinking, how can we create these cool IoT solutions using low-cost efficient microcontrollers with a secure operating system that can easily connect to the cloud. Luckily the answer came to me by way of an exciting new open-source based offering coming from AWS that I am happy to announce to you all today. Let’s all welcome, Amazon FreeRTOS to the technology stage.

Amazon FreeRTOS is an IoT microcontroller operating system that simplifies development, security, deployment, and maintenance of microcontroller-based edge devices. Amazon FreeRTOS extends the FreeRTOS kernel, a popular real-time operating system, with libraries that enable local and cloud connectivity, security, and (coming soon) over-the-air updates.

So what are some of the great benefits of this new exciting offering, you ask. They are as follows:

  • Easily to create solutions for Low Power Connected Devices: provides a common operating system (OS) and libraries that make the development of common IoT capabilities easy for devices. For example; over-the-air (OTA) updates (coming soon) and device configuration.
  • Secure Data and Device Connections: devices only run trusted software using the Code Signing service, Amazon FreeRTOS provides a secure connection to the AWS using TLS, as well as, the ability to securely store keys and sensitive data on the device.
  • Extensive Ecosystem: contains an extensive hardware and technology ecosystem that allows you to choose a variety of qualified chipsets, including Texas Instruments, Microchip, NXP Semiconductors, and STMicroelectronics.
  • Cloud or Local Connections:  Devices can connect directly to the AWS Cloud or via AWS Greengrass.

 

What’s cool is that it is easy to get started. 

The Amazon FreeRTOS console allows you to select and download the software that you need for your solution.

There is a Qualification Program that helps to assure you that the microcontroller you choose will run consistently across several hardware options.

Finally, Amazon FreeRTOS kernel is an open-source FreeRTOS operating system that is freely available on GitHub for download.

But I couldn’t leave you without at least showing you a few snapshots of the Amazon FreeRTOS Console.

Within the Amazon FreeRTOS Console, I can select a predefined software configuration that I would like to use.

If I want to have a more customized software configuration, Amazon FreeRTOS allows you to customize a solution that is targeted for your use by adding or removing libraries.

Summary

Thanks for checking out the new Amazon FreeRTOS offering. To learn more go to the Amazon FreeRTOS product page or review the information provided about this exciting IoT device targeted operating system in the AWS documentation.

Can’t wait to see what great new IoT systems are will be enabled and created with it! Happy Coding.

Tara

 

Our brand-new Christmas resources

Post Syndicated from Laura Sach original https://www.raspberrypi.org/blog/christmas-resources-2017/

It’s never too early for Christmas-themed resources — especially when you want to make the most of them in your school, Code Club or CoderDojo! So here’s the ever-wonderful Laura Sach with an introduction of our newest festive projects.

A cartoon of people singing Christmas carols - Raspberry Pi Christmas Resources

In the immortal words of Noddy Holder: “it’s Christmaaaaaaasssss!” Well, maybe it isn’t quite Christmas yet, but since the shops have been playing Mariah Carey on a loop since the last pumpkin lantern hit the bargain bin, you’re hopefully well prepared.

To get you in the mood with some festive fun, we’ve put together a selection of seasonal free resources for you. Each project has a difficulty level in line with our Digital Making Curriculum, so you can check which might suit you best. Why not try them out at your local Raspberry Jam, CoderDojo, or Code Club, at school, or even on a cold day at home with a big mug of hot chocolate?

Jazzy jumpers

A cartoon of someone remembering pairs of jumper designs - Raspberry Pi Christmas Resources

Jazzy jumpers (Creator level): as a child in the eighties, you’d always get an embarrassing and probably badly sized jazzy jumper at Christmas from some distant relative. Thank goodness the trend has gone hipster and dreadful jumpers are now cool!

This resource shows you how to build a memory game in Scratch where you must remember the colour and picture of a jazzy jumper before recreating it. How many jumpers can you successfully recall in a row?

Sense HAT advent calendar

A cartoon Sense HAT lit up in the design of a Christmas pudding - Raspberry Pi Christmas Resources

Sense HAT advent calendar (Builder level): put the lovely lights on your Sense HAT to festive use by creating an advent calendar you can open day by day. However, there’s strictly no cheating with this calendar — we teach you how to use Python to detect the current date and prevent would-be premature peekers!

Press the Enter key to open today’s door:

(Note: no chocolate will be dispensed from your Raspberry Pi. Sorry about that.)

Code a carol

A cartoon of people singing Christmas carols - Raspberry Pi Christmas Resources

Code a carol (Developer level): Have you ever noticed how much repetition there is in carols and other songs? This resource teaches you how to break down the Twelve days of Christmas tune into its component parts and code it up in Sonic Pi the lazy way: get the computer to do all the repetition for you!

No musical knowledge required — just follow our lead, and you’ll have yourself a rocking doorbell tune in no time!

Naughty and nice

A cartoon of Santa judging people by their tweets - Raspberry Pi Christmas Resources

Naughty and nice (Maker level): Have you been naughty or nice? Find out by using sentiment analysis on your tweets to see what sort of things you’ve been talking about throughout the year. For added fun, why not use your program on the Twitter account of your sibling/spouse/arch nemesis and report their level of naughtiness to Santa with an @ mention?

raspberry_pi is 65.5 percent NICE, with an accuracy of 0.9046692607003891

It’s Christmaaaaaasssss

With the festive season just around the corner, it’s time to get started on your Christmas projects! Whether you’re planning to run your Christmas lights via a phone app, install a home assistant inside an Elf on a Shelf, or work through our Christmas resources, we would like to see what you make. So do share your festive builds with us on social media, or by posting links in the comments.

The post Our brand-new Christmas resources appeared first on Raspberry Pi.

Object models

Post Syndicated from Eevee original https://eev.ee/blog/2017/11/28/object-models/

Anonymous asks, with dollars:

More about programming languages!

Well then!

I’ve written before about what I think objects are: state and behavior, which in practice mostly means method calls.

I suspect that the popular impression of what objects are, and also how they should work, comes from whatever C++ and Java happen to do. From that point of view, the whole post above is probably nonsense. If the baseline notion of “object” is a rigid definition woven tightly into the design of two massively popular languages, then it doesn’t even make sense to talk about what “object” should mean — it does mean the features of those languages, and cannot possibly mean anything else.

I think that’s a shame! It piles a lot of baggage onto a fairly simple idea. Polymorphism, for example, has nothing to do with objects — it’s an escape hatch for static type systems. Inheritance isn’t the only way to reuse code between objects, but it’s the easiest and fastest one, so it’s what we get. Frankly, it’s much closer to a speed tradeoff than a fundamental part of the concept.

We could do with more experimentation around how objects work, but that’s impossible in the languages most commonly thought of as object-oriented.

Here, then, is a (very) brief run through the inner workings of objects in four very dynamic languages. I don’t think I really appreciated objects until I’d spent some time with Python, and I hope this can help someone else whet their own appetite.

Python 3

Of the four languages I’m going to touch on, Python will look the most familiar to the Java and C++ crowd. For starters, it actually has a class construct.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
class Vector:
    def __init__(self, x, y):
        self.x = x
        self.y = y

    def __neg__(self):
        return Vector(-self.x, -self.y)

    def __div__(self, denom):
        return Vector(self.x / denom, self.y / denom)

    @property
    def magnitude(self):
        return (self.x ** 2 + self.y ** 2) ** 0.5

    def normalized(self):
        return self / self.magnitude

The __init__ method is an initializer, which is like a constructor but named differently (because the object already exists in a usable form by the time the initializer is called). Operator overloading is done by implementing methods with other special __dunder__ names. Properties can be created with @property, where the @ is syntax for applying a wrapper function to a function as it’s defined. You can do inheritance, even multiply:

1
2
3
4
class Foo(A, B, C):
    def bar(self, x, y, z):
        # do some stuff
        super().bar(x, y, z)

Cool, a very traditional object model.

Except… for some details.

Some details

For one, Python objects don’t have a fixed layout. Code both inside and outside the class can add or remove whatever attributes they want from whatever object they want. The underlying storage is just a dict, Python’s mapping type. (Or, rather, something like one. Also, it’s possible to change, which will probably be the case for everything I say here.)

If you create some attributes at the class level, you’ll start to get a peek behind the curtains:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
class Foo:
    values = []

    def add_value(self, value):
        self.values.append(value)

a = Foo()
b = Foo()
a.add_value('a')
print(a.values)  # ['a']
b.add_value('b')
print(b.values)  # ['a', 'b']

The [] assigned to values isn’t a default assigned to each object. In fact, the individual objects don’t know about it at all! You can use vars(a) to get at the underlying storage dict, and you won’t see a values entry in there anywhere.

Instead, values lives on the class, which is a value (and thus an object) in its own right. When Python is asked for self.values, it checks to see if self has a values attribute; in this case, it doesn’t, so Python keeps going and asks the class for one.

Python’s object model is secretly prototypical — a class acts as a prototype, as a shared set of fallback values, for its objects.

In fact, this is also how method calls work! They aren’t syntactically special at all, which you can see by separating the attribute lookup from the call.

1
2
3
print("abc".startswith("a"))  # True
meth = "abc".startswith
print(meth("a"))  # True

Reading obj.method looks for a method attribute; if there isn’t one on obj, Python checks the class. Here, it finds one: it’s a function from the class body.

Ah, but wait! In the code I just showed, meth seems to “know” the object it came from, so it can’t just be a plain function. If you inspect the resulting value, it claims to be a “bound method” or “built-in method” rather than a function, too. Something funny is going on here, and that funny something is the descriptor protocol.

Descriptors

Python allows attributes to implement their own custom behavior when read from or written to. Such an attribute is called a descriptor. I’ve written about them before, but here’s a quick overview.

If Python looks up an attribute, finds it in a class, and the value it gets has a __get__ method… then instead of using that value, Python will use the return value of its __get__ method.

The @property decorator works this way. The magnitude property in my original example was shorthand for doing this:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
class MagnitudeDescriptor:
    def __get__(self, instance, owner):
        if instance is None:
            return self
        return (instance.x ** 2 + instance.y ** 2) ** 0.5

class Vector:
    def __init__(self, x, y):
        self.x = x
        self.y = y

    magnitude = MagnitudeDescriptor()

When you ask for somevec.magnitude, Python checks somevec but doesn’t find magnitude, so it consults the class instead. The class does have a magnitude, and it’s a value with a __get__ method, so Python calls that method and somevec.magnitude evaluates to its return value. (The instance is None check is because __get__ is called even if you get the descriptor directly from the class via Vector.magnitude. A descriptor intended to work on instances can’t do anything useful in that case, so the convention is to return the descriptor itself.)

You can also intercept attempts to write to or delete an attribute, and do absolutely whatever you want instead. But note that, similar to operating overloading in Python, the descriptor must be on a class; you can’t just slap one on an arbitrary object and have it work.

This brings me right around to how “bound methods” actually work. Functions are descriptors! The function type implements __get__, and when a function is retrieved from a class via an instance, that __get__ bundles the function and the instance together into a tiny bound method object. It’s essentially:

1
2
3
4
5
class FunctionType:
    def __get__(self, instance, owner):
        if instance is None:
            return self
        return functools.partial(self, instance)

The self passed as the first argument to methods is not special or magical in any way. It’s built out of a few simple pieces that are also readily accessible to Python code.

Note also that because obj.method() is just an attribute lookup and a call, Python doesn’t actually care whether method is a method on the class or just some callable thing on the object. You won’t get the auto-self behavior if it’s on the object, but otherwise there’s no difference.

More attribute access, and the interesting part

Descriptors are one of several ways to customize attribute access. Classes can implement __getattr__ to intervene when an attribute isn’t found on an object; __setattr__ and __delattr__ to intervene when any attribute is set or deleted; and __getattribute__ to implement unconditional attribute access. (That last one is a fantastic way to create accidental recursion, since any attribute access you do within __getattribute__ will of course call __getattribute__ again.)

Here’s what I really love about Python. It might seem like a magical special case that descriptors only work on classes, but it really isn’t. You could implement exactly the same behavior yourself, in pure Python, using only the things I’ve just told you about. Classes are themselves objects, remember, and they are instances of type, so the reason descriptors only work on classes is that type effectively does this:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
class type:
    def __getattribute__(self, name):
        value = super().__getattribute__(name)
        # like all op overloads, __get__ must be on the type, not the instance
        ty = type(value)
        if hasattr(ty, '__get__'):
            # it's a descriptor!  this is a class access so there is no instance
            return ty.__get__(value, None, self)
        else:
            return value

You can even trivially prove to yourself that this is what’s going on by skipping over types behavior:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
class Descriptor:
    def __get__(self, instance, owner):
        print('called!')

class Foo:
    bar = Descriptor()

Foo.bar  # called!
type.__getattribute__(Foo, 'bar')  # called!
object.__getattribute__(Foo, 'bar')  # ...

And that’s not all! The mysterious super function, used to exhaustively traverse superclass method calls even in the face of diamond inheritance, can also be expressed in pure Python using these primitives. You could write your own superclass calling convention and use it exactly the same way as super.

This is one of the things I really like about Python. Very little of it is truly magical; virtually everything about the object model exists in the types rather than the language, which means virtually everything can be customized in pure Python.

Class creation and metaclasses

A very brief word on all of this stuff, since I could talk forever about Python and I have three other languages to get to.

The class block itself is fairly interesting. It looks like this:

1
2
class Name(*bases, **kwargs):
    # code

I’ve said several times that classes are objects, and in fact the class block is one big pile of syntactic sugar for calling type(...) with some arguments to create a new type object.

The Python documentation has a remarkably detailed description of this process, but the gist is:

  • Python determines the type of the new class — the metaclass — by looking for a metaclass keyword argument. If there isn’t one, Python uses the “lowest” type among the provided base classes. (If you’re not doing anything special, that’ll just be type, since every class inherits from object and object is an instance of type.)

  • Python executes the class body. It gets its own local scope, and any assignments or method definitions go into that scope.

  • Python now calls type(name, bases, attrs, **kwargs). The name is whatever was right after class; the bases are position arguments; and attrs is the class body’s local scope. (This is how methods and other class attributes end up on the class.) The brand new type is then assigned to Name.

Of course, you can mess with most of this. You can implement __prepare__ on a metaclass, for example, to use a custom mapping as storage for the local scope — including any reads, which allows for some interesting shenanigans. The only part you can’t really implement in pure Python is the scoping bit, which has a couple extra rules that make sense for classes. (In particular, functions defined within a class block don’t close over the class body; that would be nonsense.)

Object creation

Finally, there’s what actually happens when you create an object — including a class, which remember is just an invocation of type(...).

Calling Foo(...) is implemented as, well, a call. Any type can implement calls with the __call__ special method, and you’ll find that type itself does so. It looks something like this:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
# oh, a fun wrinkle that's hard to express in pure python: type is a class, so
# it's an instance of itself
class type:
    def __call__(self, *args, **kwargs):
        # remember, here 'self' is a CLASS, an instance of type.
        # __new__ is a true constructor: object.__new__ allocates storage
        # for a new blank object
        instance = self.__new__(self, *args, **kwargs)
        # you can return whatever you want from __new__ (!), and __init__
        # is only called on it if it's of the right type
        if isinstance(instance, self):
            instance.__init__(*args, **kwargs)
        return instance

Again, you can trivially confirm this by asking any type for its __call__ method. Assuming that type doesn’t implement __call__ itself, you’ll get back a bound version of types implementation.

1
2
>>> list.__call__
<method-wrapper '__call__' of type object at 0x7fafb831a400>

You can thus implement __call__ in your own metaclass to completely change how subclasses are created — including skipping the creation altogether, if you like.

And… there’s a bunch of stuff I haven’t even touched on.

The Python philosophy

Python offers something that, on the surface, looks like a “traditional” class/object model. Under the hood, it acts more like a prototypical system, where failed attribute lookups simply defer to a superclass or metaclass.

The language also goes to almost superhuman lengths to expose all of its moving parts. Even the prototypical behavior is an implementation of __getattribute__ somewhere, which you are free to completely replace in your own types. Proxying and delegation are easy.

Also very nice is that these features “bundle” well, by which I mean a library author can do all manner of convoluted hijinks, and a consumer of that library doesn’t have to see any of it or understand how it works. You only need to inherit from a particular class (which has a metaclass), or use some descriptor as a decorator, or even learn any new syntax.

This meshes well with Python culture, which is pretty big on the principle of least surprise. These super-advanced features tend to be tightly confined to single simple features (like “makes a weak attribute“) or cordoned with DSLs (e.g., defining a form/struct/database table with a class body). In particular, I’ve never seen a metaclass in the wild implement its own __call__.

I have mixed feelings about that. It’s probably a good thing overall that the Python world shows such restraint, but I wonder if there are some very interesting possibilities we’re missing out on. I implemented a metaclass __call__ myself, just once, in an entity/component system that strove to minimize fuss when communicating between components. It never saw the light of day, but I enjoyed seeing some new things Python could do with the same relatively simple syntax. I wouldn’t mind seeing, say, an object model based on composition (with no inheritance) built atop Python’s primitives.

Lua

Lua doesn’t have an object model. Instead, it gives you a handful of very small primitives for building your own object model. This is pretty typical of Lua — it’s a very powerful language, but has been carefully constructed to be very small at the same time. I’ve never encountered anything else quite like it, and “but it starts indexing at 1!” really doesn’t do it justice.

The best way to demonstrate how objects work in Lua is to build some from scratch. We need two key features. The first is metatables, which bear a passing resemblance to Python’s metaclasses.

Tables and metatables

The table is Lua’s mapping type and its primary data structure. Keys can be any value other than nil. Lists are implemented as tables whose keys are consecutive integers starting from 1. Nothing terribly surprising. The dot operator is sugar for indexing with a string key.

1
2
3
4
5
local t = { a = 1, b = 2 }
print(t['a'])  -- 1
print(t.b)  -- 2
t.c = 3
print(t['c'])  -- 3

A metatable is a table that can be associated with another value (usually another table) to change its behavior. For example, operator overloading is implemented by assigning a function to a special key in a metatable.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
local t = { a = 1, b = 2 }
--print(t + 0)  -- error: attempt to perform arithmetic on a table value

local mt = {
    __add = function(left, right)
        return 12
    end,
}
setmetatable(t, mt)
print(t + 0)  -- 12

Now, the interesting part: one of the special keys is __index, which is consulted when the base table is indexed by a key it doesn’t contain. Here’s a table that claims every key maps to itself.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
local t = {}
local mt = {
    __index = function(table, key)
        return key
    end,
}
setmetatable(t, mt)
print(t.foo)  -- foo
print(t.bar)  -- bar
print(t[3])  -- 3

__index doesn’t have to be a function, either. It can be yet another table, in which case that table is simply indexed with the key. If the key still doesn’t exist and that table has a metatable with an __index, the process repeats.

With this, it’s easy to have several unrelated tables that act as a single table. Call the base table an object, fill the __index table with functions and call it a class, and you have half of an object system. You can even get prototypical inheritance by chaining __indexes together.

At this point things are a little confusing, since we have at least three tables going on, so here’s a diagram. Keep in mind that Lua doesn’t actually have anything called an “object”, “class”, or “method” — those are just convenient nicknames for a particular structure we might build with Lua’s primitives.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
                    ╔═══════════╗        ...
                    ║ metatable ║         ║
                    ╟───────────╢   ┌─────╨───────────────────────┐
                    ║ __index   ╫───┤ lookup table ("superclass") │
                    ╚═══╦═══════╝   ├─────────────────────────────┤
  ╔═══════════╗         ║           │ some other method           ┼─── function() ... end
  ║ metatable ║         ║           └─────────────────────────────┘
  ╟───────────╢   ┌─────╨──────────────────┐
  ║ __index   ╫───┤ lookup table ("class") │
  ╚═══╦═══════╝   ├────────────────────────┤
      ║           │ some method            ┼─── function() ... end
      ║           └────────────────────────┘
┌─────╨─────────────────┐
│ base table ("object") │
└───────────────────────┘

Note that a metatable is not the same as a class; it defines behavior, not methods. Conversely, if you try to use a class directly as a metatable, it will probably not do much. (This is pretty different from e.g. Python, where operator overloads are just methods with funny names. One nice thing about the Lua approach is that you can keep interface-like functionality separate from methods, and avoid clogging up arbitrary objects’ namespaces. You could even use a dummy table as a key and completely avoid name collisions.)

Anyway, code!

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
local class = {
    foo = function(a)
        print("foo got", a)
    end,
}
local mt = { __index = class }
-- setmetatable returns its first argument, so this is nice shorthand
local obj1 = setmetatable({}, mt)
local obj2 = setmetatable({}, mt)
obj1.foo(7)  -- foo got 7
obj2.foo(9)  -- foo got 9

Wait, wait, hang on. Didn’t I call these methods? How do they get at the object? Maybe Lua has a magical this variable?

Methods, sort of

Not quite, but this is where the other key feature comes in: method-call syntax. It’s the lightest touch of sugar, just enough to have method invocation.

1
2
3
4
5
6
7
8
9
-- note the colon!
a:b(c, d, ...)

-- exactly equivalent to this
-- (except that `a` is only evaluated once)
a.b(a, c, d, ...)

-- which of course is really this
a["b"](a, c, d, ...)

Now we can write methods that actually do something.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
local class = {
    bar = function(self)
        print("our score is", self.score)
    end,
}
local mt = { __index = class }
local obj1 = setmetatable({ score = 13 }, mt)
local obj2 = setmetatable({ score = 25 }, mt)
obj1:bar()  -- our score is 13
obj2:bar()  -- our score is 25

And that’s all you need. Much like Python, methods and data live in the same namespace, and Lua doesn’t care whether obj:method() finds a function on obj or gets one from the metatable’s __index. Unlike Python, the function will be passed self either way, because self comes from the use of : rather than from the lookup behavior.

(Aside: strictly speaking, any Lua value can have a metatable — and if you try to index a non-table, Lua will always consult the metatable’s __index. Strings all have the string library as a metatable, so you can call methods on them: try ("%s %s"):format(1, 2). I don’t think Lua lets user code set the metatable for non-tables, so this isn’t that interesting, but if you’re writing Lua bindings from C then you can wrap your pointers in metatables to give them methods implemented in C.)

Bringing it all together

Of course, writing all this stuff every time is a little tedious and error-prone, so instead you might want to wrap it all up inside a little function. No problem.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
local function make_object(body)
    -- create a metatable
    local mt = { __index = body }
    -- create a base table to serve as the object itself
    local obj = setmetatable({}, mt)
    -- and, done
    return obj
end

-- you can leave off parens if you're only passing in 
local Dog = {
    -- this acts as a "default" value; if obj.barks is missing, __index will
    -- kick in and find this value on the class.  but if obj.barks is assigned
    -- to, it'll go in the object and shadow the value here.
    barks = 0,

    bark = function(self)
        self.barks = self.barks + 1
        print("woof!")
    end,
}

local mydog = make_object(Dog)
mydog:bark()  -- woof!
mydog:bark()  -- woof!
mydog:bark()  -- woof!
print(mydog.barks)  -- 3
print(Dog.barks)  -- 0

It works, but it’s fairly barebones. The nice thing is that you can extend it pretty much however you want. I won’t reproduce an entire serious object system here — lord knows there are enough of them floating around — but the implementation I have for my LÖVE games lets me do this:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
local Animal = Object:extend{
    cries = 0,
}

-- called automatically by Object
function Animal:init()
    print("whoops i couldn't think of anything interesting to put here")
end

-- this is just nice syntax for adding a first argument called 'self', then
-- assigning this function to Animal.cry
function Animal:cry()
    self.cries = self.cries + 1
end

local Cat = Animal:extend{}

function Cat:cry()
    print("meow!")
    Cat.__super.cry(self)
end

local cat = Cat()
cat:cry()  -- meow!
cat:cry()  -- meow!
print(cat.cries)  -- 2

When I say you can extend it however you want, I mean that. I could’ve implemented Python (2)-style super(Cat, self):cry() syntax; I just never got around to it. I could even make it work with multiple inheritance if I really wanted to — or I could go the complete opposite direction and only implement composition. I could implement descriptors, customizing the behavior of individual table keys. I could add pretty decent syntax for composition/proxying. I am trying very hard to end this section now.

The Lua philosophy

Lua’s philosophy is to… not have a philosophy? It gives you the bare minimum to make objects work, and you can do absolutely whatever you want from there. Lua does have something resembling prototypical inheritance, but it’s not so much a first-class feature as an emergent property of some very simple tools. And since you can make __index be a function, you could avoid the prototypical behavior and do something different entirely.

The very severe downside, of course, is that you have to find or build your own object system — which can get pretty confusing very quickly, what with the multiple small moving parts. Third-party code may also have its own object system with subtly different behavior. (Though, in my experience, third-party code tries very hard to avoid needing an object system at all.)

It’s hard to say what the Lua “culture” is like, since Lua is an embedded language that’s often a little different in each environment. I imagine it has a thousand millicultures, instead. I can say that the tedium of building my own object model has led me into something very “traditional”, with prototypical inheritance and whatnot. It’s partly what I’m used to, but it’s also just really dang easy to get working.

Likewise, while I love properties in Python and use them all the dang time, I’ve yet to use a single one in Lua. They wouldn’t be particularly hard to add to my object model, but having to add them myself (or shop around for an object model with them and also port all my code to use it) adds a huge amount of friction. I’ve thought about designing an interesting ECS with custom object behavior, too, but… is it really worth the effort? For all the power and flexibility Lua offers, the cost is that by the time I have something working at all, I’m too exhausted to actually use any of it.

JavaScript

JavaScript is notable for being preposterously heavily used, yet not having a class block.

Well. Okay. Yes. It has one now. It didn’t for a very long time, and even the one it has now is sugar.

Here’s a vector class again:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
class Vector {
    constructor(x, y) {
        this.x = x;
        this.y = y;
    }

    get magnitude() {
        return Math.sqrt(this.x * this.x + this.y * this.y);
    }

    dot(other) {
        return this.x * other.x + this.y * other.y;
    }
}

In “classic” JavaScript, this would be written as:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
function Vector(x, y) {
    this.x = x;
    this.y = y;
}

Object.defineProperty(Vector.prototype, 'magnitude', {
    configurable: true,
    enumerable: true,
    get: function() {
        return Math.sqrt(this.x * this.x + this.y * this.y);
    },
});


Vector.prototype.dot = function(other) {
    return this.x * other.x + this.y * other.y;
};

Hm, yes. I can see why they added class.

The JavaScript model

In JavaScript, a new type is defined in terms of a function, which is its constructor.

Right away we get into trouble here. There is a very big difference between these two invocations, which I actually completely forgot about just now after spending four hours writing about Python and Lua:

1
2
let vec = Vector(3, 4);
let vec = new Vector(3, 4);

The first calls the function Vector. It assigns some properties to this, which here is going to be window, so now you have a global x and y. It then returns nothing, so vec is undefined.

The second calls Vector with this set to a new empty object, then evaluates to that object. The result is what you’d actually expect.

(You can detect this situation with the strange new.target expression, but I have never once remembered to do so.)

From here, we have true, honest-to-god, first-class prototypical inheritance. The word “prototype” is even right there. When you write this:

1
vec.dot(vec2)

JavaScript will look for dot on vec and (presumably) not find it. It then consults vecs prototype, an object you can see for yourself by using Object.getPrototypeOf(). Since vec is a Vector, its prototype is Vector.prototype.

I stress that Vector.prototype is not the prototype for Vector. It’s the prototype for instances of Vector.

(I say “instance”, but the true type of vec here is still just object. If you want to find Vector, it’s automatically assigned to the constructor property of its own prototype, so it’s available as vec.constructor.)

Of course, Vector.prototype can itself have a prototype, in which case the process would continue if dot were not found. A common (and, arguably, very bad) way to simulate single inheritance is to set Class.prototype to an instance of a superclass to get the prototype right, then tack on the methods for Class. Nowadays we can do Object.create(Superclass.prototype).

Now that I’ve been through Python and Lua, though, this isn’t particularly surprising. I kinda spoiled it.

I suppose one difference in JavaScript is that you can tack arbitrary attributes directly onto Vector all you like, and they will remain invisible to instances since they aren’t in the prototype chain. This is kind of backwards from Lua, where you can squirrel stuff away in the metatable.

Another difference is that every single object in JavaScript has a bunch of properties already tacked on — the ones in Object.prototype. Every object (and by “object” I mean any mapping) has a prototype, and that prototype defaults to Object.prototype, and it has a bunch of ancient junk like isPrototypeOf.

(Nit: it’s possible to explicitly create an object with no prototype via Object.create(null).)

Like Lua, and unlike Python, JavaScript doesn’t distinguish between keys found on an object and keys found via a prototype. Properties can be defined on prototypes with Object.defineProperty(), but that works just as well directly on an object, too. JavaScript doesn’t have a lot of operator overloading, but some things like Symbol.iterator also work on both objects and prototypes.

About this

You may, at this point, be wondering what this is. Unlike Lua and Python (and the last language below), this is a special built-in value — a context value, invisibly passed for every function call.

It’s determined by where the function came from. If the function was the result of an attribute lookup, then this is set to the object containing that attribute. Otherwise, this is set to the global object, window. (You can also set this to whatever you want via the call method on functions.)

This decision is made lexically, i.e. from the literal source code as written. There are no Python-style bound methods. In other words:

1
2
3
4
5
// this = obj
obj.method()
// this = window
let meth = obj.method
meth()

Also, because this is reassigned on every function call, it cannot be meaningfully closed over, which makes using closures within methods incredibly annoying. The old approach was to assign this to some other regular name like self (which got syntax highlighting since it’s also a built-in name in browsers); then we got Function.bind, which produced a callable thing with a fixed context value, which was kind of nice; and now finally we have arrow functions, which explicitly close over the current this when they’re defined and don’t change it when called. Phew.

Class syntax

I already showed class syntax, and it’s really just one big macro for doing all the prototype stuff The Right Way. It even prevents you from calling the type without new. The underlying model is exactly the same, and you can inspect all the parts.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
class Vector { ... }

console.log(Vector.prototype);  // { dot: ..., magnitude: ..., ... }
let vec = new Vector(3, 4);
console.log(Object.getPrototypeOf(vec));  // same as Vector.prototype

// i don't know why you would subclass vector but let's roll with it
class Vectest extends Vector { ... }

console.log(Vectest.prototype);  // { ... }
console.log(Object.getPrototypeOf(Vectest.prototype))  // same as Vector.prototype

Alas, class syntax has a couple shortcomings. You can’t use the class block to assign arbitrary data to either the type object or the prototype — apparently it was deemed too confusing that mutations would be shared among instances. Which… is… how prototypes work. How Python works. How JavaScript itself, one of the most popular languages of all time, has worked for twenty-two years. Argh.

You can still do whatever assignment you want outside of the class block, of course. It’s just a little ugly, and not something I’d think to look for with a sugary class.

A more subtle result of this behavior is that a class block isn’t quite the same syntax as an object literal. The check for data isn’t a runtime thing; class Foo { x: 3 } fails to parse. So JavaScript now has two largely but not entirely identical styles of key/value block.

Attribute access

Here’s where things start to come apart at the seams, just a little bit.

JavaScript doesn’t really have an attribute protocol. Instead, it has two… extension points, I suppose.

One is Object.defineProperty, seen above. For common cases, there’s also the get syntax inside a property literal, which does the same thing. But unlike Python’s @property, these aren’t wrappers around some simple primitives; they are the primitives. JavaScript is the only language of these four to have “property that runs code on access” as a completely separate first-class concept.

If you want to intercept arbitrary attribute access (and some kinds of operators), there’s a completely different primitive: the Proxy type. It doesn’t let you intercept attribute access or operators; instead, it produces a wrapper object that supports interception and defers to the wrapped object by default.

It’s cool to see composition used in this way, but also, extremely weird. If you want to make your own type that overloads in or calling, you have to return a Proxy that wraps your own type, rather than actually returning your own type. And (unlike the other three languages in this post) you can’t return a different type from a constructor, so you have to throw that away and produce objects only from a factory. And instanceof would be broken, but you can at least fix that with Symbol.hasInstance — which is really operator overloading, implement yet another completely different way.

I know the design here is a result of legacy and speed — if any object could intercept all attribute access, then all attribute access would be slowed down everywhere. Fair enough. It still leaves the surface area of the language a bit… bumpy?

The JavaScript philosophy

It’s a little hard to tell. The original idea of prototypes was interesting, but it was hidden behind some very awkward syntax. Since then, we’ve gotten a bunch of extra features awkwardly bolted on to reflect the wildly varied things the built-in types and DOM API were already doing. We have class syntax, but it’s been explicitly designed to avoid exposing the prototype parts of the model.

I admit I don’t do a lot of heavy JavaScript, so I might just be overlooking it, but I’ve seen virtually no code that makes use of any of the recent advances in object capabilities. Forget about custom iterators or overloading call; I can’t remember seeing any JavaScript in the wild that even uses properties yet. I don’t know if everyone’s waiting for sufficient browser support, nobody knows about them, or nobody cares.

The model has advanced recently, but I suspect JavaScript is still shackled to its legacy of “something about prototypes, I don’t really get it, just copy the other code that’s there” as an object model. Alas! Prototypes are so good. Hopefully class syntax will make it a bit more accessible, as it has in Python.

Perl 5

Perl 5 also doesn’t have an object system and expects you to build your own. But where Lua gives you two simple, powerful tools for building one, Perl 5 feels more like a puzzle with half the pieces missing. Clearly they were going for something, but they only gave you half of it.

In brief, a Perl object is a reference that has been blessed with a package.

I need to explain a few things. Honestly, one of the biggest problems with the original Perl object setup was how many strange corners and unique jargon you had to understand just to get off the ground.

(If you want to try running any of this code, you should stick a use v5.26; as the first line. Perl is very big on backwards compatibility, so you need to opt into breaking changes, and even the mundane say builtin is behind a feature gate.)

References

A reference in Perl is sort of like a pointer, but its main use is very different. See, Perl has the strange property that its data structures try very hard to spill their contents all over the place. Despite having dedicated syntax for arrays — @foo is an array variable, distinct from the single scalar variable $foo — it’s actually impossible to nest arrays.

1
2
3
my @foo = (1, 2, 3, 4);
my @bar = (@foo, @foo);
# @bar is now a flat list of eight items: 1, 2, 3, 4, 1, 2, 3, 4

The idea, I guess, is that an array is not one thing. It’s not a container, which happens to hold multiple things; it is multiple things. Anywhere that expects a single value, such as an array element, cannot contain an array, because an array fundamentally is not a single value.

And so we have “references”, which are a form of indirection, but also have the nice property that they’re single values. They add containment around arrays, and in general they make working with most of Perl’s primitive types much more sensible. A reference to a variable can be taken with the \ operator, or you can use [ ... ] and { ... } to directly create references to anonymous arrays or hashes.

1
2
3
my @foo = (1, 2, 3, 4);
my @bar = (\@foo, \@foo);
# @bar is now a nested list of two items: [1, 2, 3, 4], [1, 2, 3, 4]

(Incidentally, this is the sole reason I initially abandoned Perl for Python. Non-trivial software kinda requires nesting a lot of data structures, so you end up with references everywhere, and the syntax for going back and forth between a reference and its contents is tedious and ugly.)

A Perl object must be a reference. Perl doesn’t care what kind of reference — it’s usually a hash reference, since hashes are a convenient place to store arbitrary properties, but it could just as well be a reference to an array, a scalar, or even a sub (i.e. function) or filehandle.

I’m getting a little ahead of myself. First, the other half: blessing and packages.

Packages and blessing

Perl packages are just namespaces. A package looks like this:

1
2
3
4
5
6
7
package Foo::Bar;

sub quux {
    say "hi from quux!";
}

# now Foo::Bar::quux() can be called from anywhere

Nothing shocking, right? It’s just a named container. A lot of the details are kind of weird, like how a package exists in some liminal quasi-value space, but the basic idea is a Bag Of Stuff.

The final piece is “blessing,” which is Perl’s funny name for binding a package to a reference. A very basic class might look like this:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
package Vector;

# the name 'new' is convention, not special
sub new {
    # perl argument passing is weird, don't ask
    my ($class, $x, $y) = @_;

    # create the object itself -- here, unusually, an array reference makes sense
    my $self = [ $x, $y ];

    # associate the package with that reference
    # note that $class here is just the regular string, 'Vector'
    bless $self, $class;

    return $self;
}

sub x {
    my ($self) = @_;
    return $self->[0];
}

sub y {
    my ($self) = @_;
    return $self->[1];
}

sub magnitude {
    my ($self) = @_;
    return sqrt($self->x ** 2 + $self->y ** 2);
}

# switch back to the "default" package
package main;

# -> is method call syntax, which passes the invocant as the first argument;
# for a package, that's just the package name
my $vec = Vector->new(3, 4);
say $vec->magnitude;  # 5

A few things of note here. First, $self->[0] has nothing to do with objects; it’s normal syntax for getting the value of a index 0 out of an array reference called $self. (Most classes are based on hashrefs and would use $self->{value} instead.) A blessed reference is still a reference and can be treated like one.

In general, -> is Perl’s dereferencey operator, but its exact behavior depends on what follows. If it’s followed by brackets, then it’ll apply the brackets to the thing in the reference: ->{} to index a hash reference, ->[] to index an array reference, and ->() to call a function reference.

But if -> is followed by an identifier, then it’s a method call. For packages, that means calling a function in the package and passing the package name as the first argument. For objects — blessed references — that means calling a function in the associated package and passing the object as the first argument.

This is a little weird! A blessed reference is a superposition of two things: its normal reference behavior, and some completely orthogonal object behavior. Also, object behavior has no notion of methods vs data; it only knows about methods. Perl lets you omit parentheses in a lot of places, including when calling a method with no arguments, so $vec->magnitude is really $vec->magnitude().

Perl’s blessing bears some similarities to Lua’s metatables, but ultimately Perl is much closer to Ruby’s “message passing” approach than the above three languages’ approaches of “get me something and maybe it’ll be callable”. (But this is no surprise — Ruby is a spiritual successor to Perl 5.)

All of this leads to one little wrinkle: how do you actually expose data? Above, I had to write x and y methods. Am I supposed to do that for every single attribute on my type?

Yes! But don’t worry, there are third-party modules to help with this incredibly fundamental task. Take Class::Accessor::Fast, so named because it’s faster than Class::Accessor:

1
2
3
package Foo;
use base qw(Class::Accessor::Fast);
__PACKAGE__->mk_accessors(qw(fred wilma barney));

(__PACKAGE__ is the lexical name of the current package; qw(...) is a list literal that splits its contents on whitespace.)

This assumes you’re using a hashref with keys of the same names as the attributes. $obj->fred will return the fred key from your hashref, and $obj->fred(4) will change it to 4.

You also, somewhat bizarrely, have to inherit from Class::Accessor::Fast. Speaking of which,

Inheritance

Inheritance is done by populating the package-global @ISA array with some number of (string) names of parent packages. Most code instead opts to write use base ...;, which does the same thing. Or, more commonly, use parent ...;, which… also… does the same thing.

Every package implicitly inherits from UNIVERSAL, which can be freely modified by Perl code.

A method can call its superclass method with the SUPER:: pseudo-package:

1
2
3
4
sub foo {
    my ($self) = @_;
    $self->SUPER::foo;
}

However, this does a depth-first search, which means it almost certainly does the wrong thing when faced with multiple inheritance. For a while the accepted solution involved a third-party module, but Perl eventually grew an alternative you have to opt into: C3, which may be more familiar to you as the order Python uses.

1
2
3
4
5
6
use mro 'c3';

sub foo {
    my ($self) = @_;
    $self->next::method;
}

Offhand, I’m not actually sure how next::method works, seeing as it was originally implemented in pure Perl code. I suspect it involves peeking at the caller’s stack frame. If so, then this is a very different style of customizability from e.g. Python — the MRO was never intended to be pluggable, and the use of a special pseudo-package means it isn’t really, but someone was determined enough to make it happen anyway.

Operator overloading and whatnot

Operator overloading looks a little weird, though really it’s pretty standard Perl.

1
2
3
4
5
6
7
8
package MyClass;

use overload '+' => \&_add;

sub _add {
    my ($self, $other, $swap) = @_;
    ...
}

use overload here is a pragma, where “pragma” means “regular-ass module that does some wizardry when imported”.

\&_add is how you get a reference to the _add sub so you can pass it to the overload module. If you just said &_add or _add, that would call it.

And that’s it; you just pass a map of operators to functions to this built-in module. No worry about name clashes or pollution, which is pretty nice. You don’t even have to give references to functions that live in the package, if you don’t want them to clog your namespace; you could put them in another package, or even inline them anonymously.

One especially interesting thing is that Perl lets you overload every operator. Perl has a lot of operators. It considers some math builtins like sqrt and trig functions to be operators, or at least operator-y enough that you can overload them. You can also overload the “file text” operators, such as -e $path to test whether a file exists. You can overload conversions, including implicit conversion to a regex. And most fascinating to me, you can overload dereferencing — that is, the thing Perl does when you say $hashref->{key} to get at the underlying hash. So a single object could pretend to be references of multiple different types, including a subref to implement callability. Neat.

Somewhat related: you can overload basic operators (indexing, etc.) on basic types (not references!) with the tie function, which is designed completely differently and looks for methods with fixed names. Go figure.

You can intercept calls to nonexistent methods by implementing a function called AUTOLOAD, within which the $AUTOLOAD global will contain the name of the method being called. Originally this feature was, I think, intended for loading binary components or large libraries on-the-fly only when needed, hence the name. Offhand I’m not sure I ever saw it used the way __getattr__ is used in Python.

Is there a way to intercept all method calls? I don’t think so, but it is Perl, so I must be forgetting something.

Actually no one does this any more

Like a decade ago, a council of elder sages sat down and put together a whole whizbang system that covers all of it: Moose.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
package Vector;
use Moose;

has x => (is => 'rw', isa => 'Int');
has y => (is => 'rw', isa => 'Int');

sub magnitude {
    my ($self) = @_;
    return sqrt($self->x ** 2 + $self->y ** 2);
}

Moose has its own way to do pretty much everything, and it’s all built on the same primitives. Moose also adds metaclasses, somehow, despite that the underlying model doesn’t actually support them? I’m not entirely sure how they managed that, but I do remember doing some class introspection with Moose and it was much nicer than the built-in way.

(If you’re wondering, the built-in way begins with looking at the hash called %Vector::. No, that’s not a typo.)

I really cannot stress enough just how much stuff Moose does, but I don’t want to delve into it here since Moose itself is not actually the language model.

The Perl philosophy

I hope you can see what I meant with what I first said about Perl, now. It has multiple inheritance with an MRO, but uses the wrong one by default. It has extensive operator overloading, which looks nothing like how inheritance works, and also some of it uses a totally different mechanism with special method names instead. It only understands methods, not data, leaving you to figure out accessors by hand.

There’s 70% of an object system here with a clear general design it was gunning for, but none of the pieces really look anything like each other. It’s weird, in a distinctly Perl way.

The result is certainly flexible, at least! It’s especially cool that you can use whatever kind of reference you want for storage, though even as I say that, I acknowledge it’s no different from simply subclassing list or something in Python. It feels different in Perl, but maybe only because it looks so different.

I haven’t written much Perl in a long time, so I don’t know what the community is like any more. Moose was already ubiquitous when I left, which you’d think would let me say “the community mostly focuses on the stuff Moose can do” — but even a decade ago, Moose could already do far more than I had ever seen done by hand in Perl. It’s always made a big deal out of roles (read: interfaces), for instance, despite that I’d never seen anyone care about them in Perl before Moose came along. Maybe their presence in Moose has made them more popular? Who knows.

Also, I wrote Perl seriously, but in the intervening years I’ve only encountered people who only ever used Perl for one-offs. Maybe it’ll come as a surprise to a lot of readers that Perl has an object model at all.

End

Well, that was fun! I hope any of that made sense.

Special mention goes to Rust, which doesn’t have an object model you can fiddle with at runtime, but does do things a little differently.

It’s been really interesting thinking about how tiny differences make a huge impact on what people do in practice. Take the choice of storage in Perl versus Python. Perl’s massively common URI class uses a string as the storage, nothing else; I haven’t seen anything like that in Python aside from markupsafe, which is specifically designed as a string type. I would guess this is partly because Perl makes you choose — using a hashref is an obvious default, but you have to make that choice one way or the other. In Python (especially 3), inheriting from object and getting dict-based storage is the obvious thing to do; the ability to use another type isn’t quite so obvious, and doing it “right” involves a tiny bit of extra work.

Or, consider that Lua could have descriptors, but the extra bit of work (especially design work) has been enough of an impediment that I’ve never implemented them. I don’t think the object implementations I’ve looked at have included them, either. Super weird!

In that light, it’s only natural that objects would be so strongly associated with the features Java and C++ attach to them. I think that makes it all the more important to play around! Look at what Moose has done. No, really, you should bear in mind my description of how Perl does stuff and flip through the Moose documentation. It’s amazing what they’ve built.

Amazon GuardDuty – Continuous Security Monitoring & Threat Detection

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/amazon-guardduty-continuous-security-monitoring-threat-detection/

Threats to your IT infrastructure (AWS accounts & credentials, AWS resources, guest operating systems, and applications) come in all shapes and sizes! The online world can be a treacherous place and we want to make sure that you have the tools, knowledge, and perspective to keep your IT infrastructure safe & sound.

Amazon GuardDuty is designed to give you just that. Informed by a multitude of public and AWS-generated data feeds and powered by machine learning, GuardDuty analyzes billions of events in pursuit of trends, patterns, and anomalies that are recognizable signs that something is amiss. You can enable it with a click and see the first findings within minutes.

How it Works
GuardDuty voraciously consumes multiple data streams, including several threat intelligence feeds, staying aware of malicious IP addresses, devious domains, and more importantly, learning to accurately identify malicious or unauthorized behavior in your AWS accounts. In combination with information gleaned from your VPC Flow Logs, AWS CloudTrail Event Logs, and DNS logs, this allows GuardDuty to detect many different types of dangerous and mischievous behavior including probes for known vulnerabilities, port scans and probes, and access from unusual locations. On the AWS side, it looks for suspicious AWS account activity such as unauthorized deployments, unusual CloudTrail activity, patterns of access to AWS API functions, and attempts to exceed multiple service limits. GuardDuty will also look for compromised EC2 instances talking to malicious entities or services, data exfiltration attempts, and instances that are mining cryptocurrency.

GuardDuty operates completely on AWS infrastructure and does not affect the performance or reliability of your workloads. You do not need to install or manage any agents, sensors, or network appliances. This clean, zero-footprint model should appeal to your security team and allow them to green-light the use of GuardDuty across all of your AWS accounts.

Findings are presented to you at one of three levels (low, medium, or high), accompanied by detailed evidence and recommendations for remediation. The findings are also available as Amazon CloudWatch Events; this allows you to use your own AWS Lambda functions to automatically remediate specific types of issues. This mechanism also allows you to easily push GuardDuty findings into event management systems such as Splunk, Sumo Logic, and PagerDuty and to workflow systems like JIRA, ServiceNow, and Slack.

A Quick Tour
Let’s take a quick tour. I open up the GuardDuty Console and click on Get started:

Then I confirm that I want to enable GuardDuty. This gives it permission to set up the appropriate service-linked roles and to analyze my logs by clicking on Enable GuardDuty:

My own AWS environment isn’t all that exciting, so I visit the General Settings and click on Generate sample findings to move ahead. Now I’ve got some intriguing findings:

I can click on a finding to learn more:

The magnifying glass icons allow me to create inclusion or exclusion filters for the associated resource, action, or other value. I can filter for all of the findings related to this instance:

I can customize GuardDuty by adding lists of trusted IP addresses and lists of malicious IP addresses that are peculiar to my environment:

After I enable GuardDuty in my administrator account, I can invite my other accounts to participate:

Once the accounts decide to participate, GuardDuty will arrange for their findings to be shared with the administrator account.

I’ve barely scratched the surface of GuardDuty in the limited space and time that I have. You can try it out at no charge for 30 days; after that you pay based on the number of entries it processes from your VPC Flow, CloudTrail, and DNS logs.

Available Now
Amazon GuardDuty is available in production form in the US East (Northern Virginia), US East (Ohio), US West (Oregon), US West (Northern California), EU (Ireland), EU (Frankfurt), EU (London), South America (São Paulo), Canada (Central), Asia Pacific (Tokyo), Asia Pacific (Seoul), Asia Pacific (Singapore), Asia Pacific (Sydney), and Asia Pacific (Mumbai) Regions and you can start using it today!

Jeff;

Amazon EC2 Bare Metal Instances with Direct Access to Hardware

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/new-amazon-ec2-bare-metal-instances-with-direct-access-to-hardware/

When customers come to us with new and unique requirements for AWS, we listen closely, ask lots of questions, and do our best to understand and address their needs. When we do this, we make the resulting service or feature generally available; we do not build one-offs or “snowflakes” for individual customers. That model is messy and hard to scale and is not the way we work.

Instead, every AWS customer has access to whatever it is that we build, and everyone benefits. VMware Cloud on AWS is a good example of this strategy in action. They told us that they wanted to run their virtualization stack directly on the hardware, within the AWS Cloud, giving their customers access to the elasticity, security, and reliability (not to mention the broad array of services) that AWS offers.

We knew that other customers also had interesting use cases for bare metal hardware and didn’t want to take the performance hit of nested virtualization. They wanted access to the physical resources for applications that take advantage of low-level hardware features such as performance counters and Intel® VT that are not always available or fully supported in virtualized environments, and also for applications intended to run directly on the hardware or licensed and supported for use in non-virtualized environments.

Our multi-year effort to move networking, storage, and other EC2 features out of our virtualization platform and into dedicated hardware was already well underway and provided the perfect foundation for a possible solution. This work, as I described in Now Available – Compute-Intensive C5 Instances for Amazon EC2, includes a set of dedicated hardware accelerators.

Now that we have provided VMware with the bare metal access that they requested, we are doing the same for all AWS customers. I’m really looking forward to seeing what you can do with them!

New Bare Metal Instances
Today we are launching a public preview the i3.metal instance, the first in a series of EC2 instances that offer the best of both worlds, allowing the operating system to run directly on the underlying hardware while still providing access to all of the benefits of the cloud. The instance gives you direct access to the processor and other hardware, and has the following specifications:

  • Processing – Two Intel Xeon E5-2686 v4 processors running at 2.3 GHz, with a total of 36 hyperthreaded cores (72 logical processors).
  • Memory – 512 GiB.
  • Storage – 15.2 terabytes of local, SSD-based NVMe storage.
  • Network – 25 Gbps of ENA-based enhanced networking.

Bare Metal instances are full-fledged members of the EC2 family and can take advantage of Elastic Load Balancing, Auto Scaling, Amazon CloudWatch, Auto Recovery, and so forth. They can also access the full suite of AWS database, IoT, mobile, analytics, artificial intelligence, and security services.

Previewing Now
We are launching a public preview of the Bare Metal instances today; please sign up now if you want to try them out.

You can now bring your specialized applications or your own stack of virtualized components to AWS and run them on Bare Metal instances. If you are using or thinking about using containers, these instances make a great host for CoreOS.

An AMI that works on one of the new C5 instances should also work on an I3 Bare Metal Instance. It must have the ENA and NVMe drivers, and must be tagged for ENA.

Jeff;

 

Amazon MQ – Managed Message Broker Service for ActiveMQ

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/amazon-mq-managed-message-broker-service-for-activemq/

Messaging holds the parts of a distributed application together, while also adding resiliency and enabling the implementation of highly scalable architectures. For example, earlier this year, Amazon Simple Queue Service (SQS) and Amazon Simple Notification Service (SNS) supported the processing of customer orders on Prime Day, collectively processing 40 billion messages at a rate of 10 million per second, with no customer-visible issues.

SQS and SNS have been used extensively for applications that were born in the cloud. However, many of our larger customers are already making use of open-sourced or commercially-licensed message brokers. Their applications are mission-critical, and so is the messaging that powers them. Our customers describe the setup and on-going maintenance of their messaging infrastructure as “painful” and report that they spend at least 10 staff-hours per week on this chore.

New Amazon MQ
Today we are launching Amazon MQ – a managed message broker service for Apache ActiveMQ that lets you get started in minutes with just three clicks! As you may know, ActiveMQ is a popular open-source message broker that is fast & feature-rich. It offers queues and topics, durable and non-durable subscriptions, push-based and poll-based messaging, and filtering.

As a managed service, Amazon MQ takes care of the administration and maintenance of ActiveMQ. This includes responsibility for broker provisioning, patching, failure detection & recovery for high availability, and message durability. With Amazon MQ, you get direct access to the ActiveMQ console and industry standard APIs and protocols for messaging, including JMS, NMS, AMQP, STOMP, MQTT, and WebSocket. This allows you to move from any message broker that uses these standards to Amazon MQ–along with the supported applications–without rewriting code.

You can create a single-instance Amazon MQ broker for development and testing, or an active/standby pair that spans AZs, with quick, automatic failover. Either way, you get data replication across AZs and a pay-as-you-go model for the broker instance and message storage.

Amazon MQ is a full-fledged part of the AWS family, including the use of AWS Identity and Access Management (IAM) for authentication and authorization to use the service API. You can use Amazon CloudWatch metrics to keep a watchful eye metrics such as queue depth and initiate Auto Scaling of your consumer fleet as needed.

Launching an Amazon MQ Broker
To get started, I open up the Amazon MQ Console, select the desired AWS Region, enter a name for my broker, and click on Next step:

Then I choose the instance type, indicate that I want to create a standby , and click on Create broker (I can select a VPC and fine-tune other settings in the Advanced settings section):

My broker will be created and ready to use in 5-10 minutes:

The URLs and endpoints that I use to access my broker are all available at a click:

I can access the ActiveMQ Web Console at the link provided:

The broker publishes instance, topic, and queue metrics to CloudWatch. Here are the instance metrics:

Available Now
Amazon MQ is available now and you can start using it today in the US East (Northern Virginia), US East (Ohio), US West (Oregon), EU (Ireland), EU (Frankfurt), and Asia Pacific (Sydney) Regions.

The AWS Free Tier lets you use a single-AZ micro instance for up to 750 hours and to store up to 1 gigabyte each month, for one year. After that, billing is based on instance-hours and message storage, plus charges Internet data transfer if the broker is accessed from outside of AWS.

Jeff;

Introducing AWS AppSync – Build data-driven apps with real-time and off-line capabilities

Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/introducing-amazon-appsync/

In this day and age, it is almost impossible to do without our mobile devices and the applications that help make our lives easier. As our dependency on our mobile phone grows, the mobile application market has exploded with millions of apps vying for our attention. For mobile developers, this means that we must ensure that we build applications that provide the quality, real-time experiences that app users desire.  Therefore, it has become essential that mobile applications are developed to include features such as multi-user data synchronization, offline network support, and data discovery, just to name a few.  According to several articles, I read recently about mobile development trends on publications like InfoQ, DZone, and the mobile development blog AlleviateTech, one of the key elements in of delivering the aforementioned capabilities is with cloud-driven mobile applications.  It seems that this is especially true, as it related to mobile data synchronization and data storage.

That being the case, it is a perfect time for me to announce a new service for building innovative mobile applications that are driven by data-intensive services in the cloud; AWS AppSync. AWS AppSync is a fully managed serverless GraphQL service for real-time data queries, synchronization, communications and offline programming features. For those not familiar, let me briefly share some information about the open GraphQL specification. GraphQL is a responsive data query language and server-side runtime for querying data sources that allow for real-time data retrieval and dynamic query execution. You can use GraphQL to build a responsive API for use in when building client applications. GraphQL works at the application layer and provides a type system for defining schemas. These schemas serve as specifications to define how operations should be performed on the data and how the data should be structured when retrieved. Additionally, GraphQL has a declarative coding model which is supported by many client libraries and frameworks including React, React Native, iOS, and Android.

Now the power of the GraphQL open standard query language is being brought to you in a rich managed service with AWS AppSync.  With AppSync developers can simplify the retrieval and manipulation of data across multiple data sources with ease, allowing them to quickly prototype, build and create robust, collaborative, multi-user applications. AppSync keeps data updated when devices are connected, but enables developers to build solutions that work offline by caching data locally and synchronizing local data when connections become available.

Let’s discuss some key concepts of AWS AppSync and how the service works.

AppSync Concepts

  • AWS AppSync Client: service client that defines operations, wraps authorization details of requests, and manage offline logic.
  • Data Source: the data storage system or a trigger housing data
  • Identity: a set of credentials with permissions and identification context provided with requests to GraphQL proxy
  • GraphQL Proxy: the GraphQL engine component for processing and mapping requests, handling conflict resolution, and managing Fine Grained Access Control
  • Operation: one of three GraphQL operations supported in AppSync
    • Query: a read-only fetch call to the data
    • Mutation: a write of the data followed by a fetch,
    • Subscription: long-lived connections that receive data in response to events.
  • Action: a notification to connected subscribers from a GraphQL subscription.
  • Resolver: function using request and response mapping templates that converts and executes payload against data source

How It Works

A schema is created to define types and capabilities of the desired GraphQL API and tied to a Resolver function.  The schema can be created to mirror existing data sources or AWS AppSync can create tables automatically based the schema definition. Developers can also use GraphQL features for data discovery without having knowledge of the backend data sources. After a schema definition is established, an AWS AppSync client can be configured with an operation request, like a Query operation. The client submits the operation request to GraphQL Proxy along with an identity context and credentials. The GraphQL Proxy passes this request to the Resolver which maps and executes the request payload against pre-configured AWS data services like an Amazon DynamoDB table, an AWS Lambda function, or a search capability using Amazon Elasticsearch. The Resolver executes calls to one or all of these services within a single network call minimizing CPU cycles and bandwidth needs and returns the response to the client. Additionally, the client application can change data requirements in code on demand and the AppSync GraphQL API will dynamically map requests for data accordingly, allowing prototyping and faster development.

In order to take a quick peek at the service, I’ll go to the AWS AppSync console. I’ll click the Create API button to get started.

 

When the Create new API screen opens, I’ll give my new API a name, TarasTestApp, and since I am just exploring the new service I will select the Sample schema option.  You may notice from the informational dialog box on the screen that in using the sample schema, AWS AppSync will automatically create the DynamoDB tables and the IAM roles for me.It will also deploy the TarasTestApp API on my behalf.  After review of the sample schema provided by the console, I’ll click the Create button to create my test API.

After the TaraTestApp API has been created and the associated AWS resources provisioned on my behalf, I can make updates to the schema, data source, or connect my data source(s) to a resolver. I also can integrate my GraphQL API into an iOS, Android, Web, or React Native application by cloning the sample repo from GitHub and downloading the accompanying GraphQL schema.  These application samples are great to help get you started and they are pre-configured to function in offline scenarios.

If I select the Schema menu option on the console, I can update and view the TarasTestApp GraphQL API schema.


Additionally, if I select the Data Sources menu option in the console, I can see the existing data sources.  Within this screen, I can update, delete, or add data sources if I so desire.

Next, I will select the Query menu option which takes me to the console tool for writing and testing queries. Since I chose the sample schema and the AWS AppSync service did most of the heavy lifting for me, I’ll try a query against my new GraphQL API.

I’ll use a mutation to add data for the event type in my schema. Since this is a mutation and it first writes data and then does a read of the data, I want the query to return values for name and where.

If I go to the DynamoDB table created for the event type in the schema, I will see that the values from my query have been successfully written into the table. Now that was a pretty simple task to write and retrieve data based on a GraphQL API schema from a data source, don’t you think.


 Summary

AWS AppSync is currently in AWS AppSync is in Public Preview and you can sign up today. It supports development for iOS, Android, and JavaScript applications. You can take advantage of this managed GraphQL service by going to the AWS AppSync console or learn more by reviewing more details about the service by reading a tutorial in the AWS documentation for the service or checking out our AWS AppSync Developer Guide.

Tara

 

Raspberry Pi clusters come of age

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/raspberry-pi-clusters-come-of-age/

In today’s guest post, Bruce Tulloch, CEO and Managing Director of BitScope Designs, discusses the uses of cluster computing with the Raspberry Pi, and the recent pilot of the Los Alamos National Laboratory 3000-Pi cluster built with the BitScope Blade.

Raspberry Pi cluster

High-performance computing and Raspberry Pi are not normally uttered in the same breath, but Los Alamos National Laboratory is building a Raspberry Pi cluster with 3000 cores as a pilot before scaling up to 40 000 cores or more next year.

That’s amazing, but why?

I was asked this question more than any other at The International Conference for High-Performance Computing, Networking, Storage and Analysis in Denver last week, where one of the Los Alamos Raspberry Pi Cluster Modules was on display at the University of New Mexico’s Center for Advanced Research Computing booth.

The short answer to this question is: the Raspberry Pi cluster enables Los Alamos National Laboratory (LANL) to conduct exascale computing R&D.

The Pi cluster breadboard

Exascale refers to computing systems at least 50 times faster than the most powerful supercomputers in use today. The problem faced by LANL and similar labs building these things is one of scale. To get the required performance, you need a lot of nodes, and to make it work, you need a lot of R&D.

However, there’s a catch-22: how do you write the operating systems, networks stacks, launch and boot systems for such large computers without having one on which to test it all? Use an existing supercomputer? No — the existing large clusters are fully booked 24/7 doing science, they cost millions of dollars per year to run, and they may not have the architecture you need for your next-generation machine anyway. Older machines retired from science may be available, but at this scale they cost far too much to use and are usually very hard to maintain.

The Los Alamos solution? Build a “model supercomputer” with Raspberry Pi!

Think of it as a “cluster development breadboard”.

The idea is to design, develop, debug, and test new network architectures and systems software on the “breadboard”, but at a scale equivalent to the production machines you’re currently building. Raspberry Pi may be a small computer, but it can run most of the system software stacks that production machines use, and the ratios of its CPU speed, local memory, and network bandwidth scale proportionately to the big machines, much like an architect’s model does when building a new house. To learn more about the project, see the news conference and this interview with insideHPC at SC17.

Traditional Raspberry Pi clusters

Like most people, we love a good cluster! People have been building them with Raspberry Pi since the beginning, because it’s inexpensive, educational, and fun. They’ve been built with the original Pi, Pi 2, Pi 3, and even the Pi Zero, but none of these clusters have proven to be particularly practical.

That’s not stopped them being useful though! I saw quite a few Raspberry Pi clusters at the conference last week.

One tiny one that caught my eye was from the people at openio.io, who used a small Raspberry Pi Zero W cluster to demonstrate their scalable software-defined object storage platform, which on big machines is used to manage petabytes of data, but which is so lightweight that it runs just fine on this:

Raspberry Pi Zero cluster

There was another appealing example at the ARM booth, where the Berkeley Labs’ singularity container platform was demonstrated running very effectively on a small cluster built with Raspberry Pi 3s.

Raspberry Pi 3 cluster demo at a conference stall

My show favourite was from the Edinburgh Parallel Computing Center (EPCC): Nick Brown used a cluster of Pi 3s to explain supercomputers to kids with an engaging interactive application. The idea was that visitors to the stand design an aircraft wing, simulate it across the cluster, and work out whether an aircraft that uses the new wing could fly from Edinburgh to New York on a full tank of fuel. Mine made it, fortunately!

Raspberry Pi 3 cluster demo at a conference stall

Next-generation Raspberry Pi clusters

We’ve been building small-scale industrial-strength Raspberry Pi clusters for a while now with BitScope Blade.

When Los Alamos National Laboratory approached us via HPC provider SICORP with a request to build a cluster comprising many thousands of nodes, we considered all the options very carefully. It needed to be dense, reliable, low-power, and easy to configure and to build. It did not need to “do science”, but it did need to work in almost every other way as a full-scale HPC cluster would.

Some people argue Compute Module 3 is the ideal cluster building block. It’s very small and just as powerful as Raspberry Pi 3, so one could, in theory, pack a lot of them into a very small space. However, there are very good reasons no one has ever successfully done this. For a start, you need to build your own network fabric and I/O, and cooling the CM3s, especially when densely packed in a cluster, is tricky given their tiny size. There’s very little room for heatsinks, and the tiny PCBs dissipate very little excess heat.

Instead, we saw the potential for Raspberry Pi 3 itself to be used to build “industrial-strength clusters” with BitScope Blade. It works best when the Pis are properly mounted, powered reliably, and cooled effectively. It’s important to avoid using micro SD cards and to connect the nodes using wired networks. It has the added benefit of coming with lots of “free” USB I/O, and the Pi 3 PCB, when mounted with the correct air-flow, is a remarkably good heatsink.

When Gordon announced netboot support, we became convinced the Raspberry Pi 3 was the ideal candidate when used with standard switches. We’d been making smaller clusters for a while, but netboot made larger ones practical. Assembling them all into compact units that fit into existing racks with multiple 10 Gb uplinks is the solution that meets LANL’s needs. This is a 60-node cluster pack with a pair of managed switches by Ubiquiti in testing in the BitScope Lab:

60-node Raspberry Pi cluster pack

Two of these packs, built with Blade Quattro, and one smaller one comprising 30 nodes, built with Blade Duo, are the components of the Cluster Module we exhibited at the show. Five of these modules are going into Los Alamos National Laboratory for their pilot as I write this.

Bruce Tulloch at a conference stand with a demo of the Raspberry Pi cluster for LANL

It’s not only research clusters like this for which Raspberry Pi is well suited. You can build very reliable local cloud computing and data centre solutions for research, education, and even some industrial applications. You’re not going to get much heavy-duty science, big data analytics, AI, or serious number crunching done on one of these, but it is quite amazing to see just how useful Raspberry Pi clusters can be for other purposes, whether it’s software-defined networks, lightweight MaaS, SaaS, PaaS, or FaaS solutions, distributed storage, edge computing, industrial IoT, and of course, education in all things cluster and parallel computing. For one live example, check out Mythic Beasts’ educational compute cloud, built with Raspberry Pi 3.

For more information about Raspberry Pi clusters, drop by BitScope Clusters.

I’ll read and respond to your thoughts in the comments below this post too.

Editor’s note:

Here is a photo of Bruce wearing a jetpack. Cool, right?!

Bruce Tulloch wearing a jetpack

The post Raspberry Pi clusters come of age appeared first on Raspberry Pi.

Potential impact of the Intel ME vulnerability

Post Syndicated from Matthew Garrett original https://mjg59.dreamwidth.org/49611.html

(Note: this is my personal opinion based on public knowledge around this issue. I have no knowledge of any non-public details of these vulnerabilities, and this should not be interpreted as the position or opinion of my employer)

Intel’s Management Engine (ME) is a small coprocessor built into the majority of Intel CPUs[0]. Older versions were based on the ARC architecture[1] running an embedded realtime operating system, but from version 11 onwards they’ve been small x86 cores running Minix. The precise capabilities of the ME have not been publicly disclosed, but it is at minimum capable of interacting with the network[2], display[3], USB, input devices and system flash. In other words, software running on the ME is capable of doing a lot, without requiring any OS permission in the process.

Back in May, Intel announced a vulnerability in the Advanced Management Technology (AMT) that runs on the ME. AMT offers functionality like providing a remote console to the system (so IT support can connect to your system and interact with it as if they were physically present), remote disk support (so IT support can reinstall your machine over the network) and various other bits of system management. The vulnerability meant that it was possible to log into systems with enabled AMT with an empty authentication token, making it possible to log in without knowing the configured password.

This vulnerability was less serious than it could have been for a couple of reasons – the first is that “consumer”[4] systems don’t ship with AMT, and the second is that AMT is almost always disabled (Shodan found only a few thousand systems on the public internet with AMT enabled, out of many millions of laptops). I wrote more about it here at the time.

How does this compare to the newly announced vulnerabilities? Good question. Two of the announced vulnerabilities are in AMT. The previous AMT vulnerability allowed you to bypass authentication, but restricted you to doing what AMT was designed to let you do. While AMT gives an authenticated user a great deal of power, it’s also designed with some degree of privacy protection in mind – for instance, when the remote console is enabled, an animated warning border is drawn on the user’s screen to alert them.

This vulnerability is different in that it allows an authenticated attacker to execute arbitrary code within the AMT process. This means that the attacker shouldn’t have any capabilities that AMT doesn’t, but it’s unclear where various aspects of the privacy protection are implemented – for instance, if the warning border is implemented in AMT rather than in hardware, an attacker could duplicate that functionality without drawing the warning. If the USB storage emulation for remote booting is implemented as a generic USB passthrough, the attacker could pretend to be an arbitrary USB device and potentially exploit the operating system through bugs in USB device drivers. Unfortunately we don’t currently know.

Note that this exploit still requires two things – first, AMT has to be enabled, and second, the attacker has to be able to log into AMT. If the attacker has physical access to your system and you don’t have a BIOS password set, they will be able to enable it – however, if AMT isn’t enabled and the attacker isn’t physically present, you’re probably safe. But if AMT is enabled and you haven’t patched the previous vulnerability, the attacker will be able to access AMT over the network without a password and then proceed with the exploit. This is bad, so you should probably (1) ensure that you’ve updated your BIOS and (2) ensure that AMT is disabled unless you have a really good reason to use it.

The AMT vulnerability applies to a wide range of versions, everything from version 6 (which shipped around 2008) and later. The other vulnerability that Intel describe is restricted to version 11 of the ME, which only applies to much more recent systems. This vulnerability allows an attacker to execute arbitrary code on the ME, which means they can do literally anything the ME is able to do. This probably also means that they are able to interfere with any other code running on the ME. While AMT has been the most frequently discussed part of this, various other Intel technologies are tied to ME functionality.

Intel’s Platform Trust Technology (PTT) is a software implementation of a Trusted Platform Module (TPM) that runs on the ME. TPMs are intended to protect access to secrets and encryption keys and record the state of the system as it boots, making it possible to determine whether a system has had part of its boot process modified and denying access to the secrets as a result. The most common usage of TPMs is to protect disk encryption keys – Microsoft Bitlocker defaults to storing its encryption key in the TPM, automatically unlocking the drive if the boot process is unmodified. In addition, TPMs support something called Remote Attestation (I wrote about that here), which allows the TPM to provide a signed copy of information about what the system booted to a remote site. This can be used for various purposes, such as not allowing a compute node to join a cloud unless it’s booted the correct version of the OS and is running the latest firmware version. Remote Attestation depends on the TPM having a unique cryptographic identity that is tied to the TPM and inaccessible to the OS.

PTT allows manufacturers to simply license some additional code from Intel and run it on the ME rather than having to pay for an additional chip on the system motherboard. This seems great, but if an attacker is able to run code on the ME then they potentially have the ability to tamper with PTT, which means they can obtain access to disk encryption secrets and circumvent Bitlocker. It also means that they can tamper with Remote Attestation, “attesting” that the system booted a set of software that it didn’t or copying the keys to another system and allowing that to impersonate the first. This is, uh, bad.

Intel also recently announced Intel Online Connect, a mechanism for providing the functionality of security keys directly in the operating system. Components of this are run on the ME in order to avoid scenarios where a compromised OS could be used to steal the identity secrets – if the ME is compromised, this may make it possible for an attacker to obtain those secrets and duplicate the keys.

It’s also not entirely clear how much of Intel’s Secure Guard Extensions (SGX) functionality depends on the ME. The ME does appear to be required for SGX Remote Attestation (which allows an application using SGX to prove to a remote site that it’s the SGX app rather than something pretending to be it), and again if those secrets can be extracted from a compromised ME it may be possible to compromise some of the security assumptions around SGX. Again, it’s not clear how serious this is because it’s not publicly documented.

Various other things also run on the ME, including stuff like video DRM (ensuring that high resolution video streams can’t be intercepted by the OS). It may be possible to obtain encryption keys from a compromised ME that allow things like Netflix streams to be decoded and dumped. From a user privacy or security perspective, these things seem less serious.

The big problem at the moment is that we have no idea what the actual process of compromise is. Intel state that it requires local access, but don’t describe what kind. Local access in this case could simply require the ability to send commands to the ME (possible on any system that has the ME drivers installed), could require direct hardware access to the exposed ME (which would require either kernel access or the ability to install a custom driver) or even the ability to modify system flash (possible only if the attacker has physical access and enough time and skill to take the system apart and modify the flash contents with an SPI programmer). The other thing we don’t know is whether it’s possible for an attacker to modify the system such that the ME is persistently compromised or whether it needs to be re-compromised every time the ME reboots. Note that even the latter is more serious than you might think – the ME may only be rebooted if the system loses power completely, so even a “temporary” compromise could affect a system for a long period of time.

It’s also almost impossible to determine if a system is compromised. If the ME is compromised then it’s probably possible for it to roll back any firmware updates but still report that it’s been updated, giving admins a false sense of security. The only way to determine for sure would be to dump the system flash and compare it to a known good image. This is impractical to do at scale.

So, overall, given what we know right now it’s hard to say how serious this is in terms of real world impact. It’s unlikely that this is the kind of vulnerability that would be used to attack individual end users – anyone able to compromise a system like this could just backdoor your browser instead with much less effort, and that already gives them your banking details. The people who have the most to worry about here are potential targets of skilled attackers, which means activists, dissidents and companies with interesting personal or business data. It’s hard to make strong recommendations about what to do here without more insight into what the vulnerability actually is, and we may not know that until this presentation next month.

Summary: Worst case here is terrible, but unlikely to be relevant to the vast majority of users.

[0] Earlier versions of the ME were built into the motherboard chipset, but as portions of that were incorporated onto the CPU package the ME followed
[1] A descendent of the SuperFX chip used in Super Nintendo cartridges such as Starfox, because why not
[2] Without any OS involvement for wired ethernet and for wireless networks in the system firmware, but requires OS support for wireless access once the OS drivers have loaded
[3] Assuming you’re using integrated Intel graphics
[4] “Consumer” is a bit of a misnomer here – “enterprise” laptops like Thinkpads ship with AMT, but are often bought by consumers.

comment count unavailable comments

Using Amazon Redshift Spectrum, Amazon Athena, and AWS Glue with Node.js in Production

Post Syndicated from Rafi Ton original https://aws.amazon.com/blogs/big-data/using-amazon-redshift-spectrum-amazon-athena-and-aws-glue-with-node-js-in-production/

This is a guest post by Rafi Ton, founder and CEO of NUVIAD. NUVIAD is, in their own words, “a mobile marketing platform providing professional marketers, agencies and local businesses state of the art tools to promote their products and services through hyper targeting, big data analytics and advanced machine learning tools.”

At NUVIAD, we’ve been using Amazon Redshift as our main data warehouse solution for more than 3 years.

We store massive amounts of ad transaction data that our users and partners analyze to determine ad campaign strategies. When running real-time bidding (RTB) campaigns in large scale, data freshness is critical so that our users can respond rapidly to changes in campaign performance. We chose Amazon Redshift because of its simplicity, scalability, performance, and ability to load new data in near real time.

Over the past three years, our customer base grew significantly and so did our data. We saw our Amazon Redshift cluster grow from three nodes to 65 nodes. To balance cost and analytics performance, we looked for a way to store large amounts of less-frequently analyzed data at a lower cost. Yet, we still wanted to have the data immediately available for user queries and to meet their expectations for fast performance. We turned to Amazon Redshift Spectrum.

In this post, I explain the reasons why we extended Amazon Redshift with Redshift Spectrum as our modern data warehouse. I cover how our data growth and the need to balance cost and performance led us to adopt Redshift Spectrum. I also share key performance metrics in our environment, and discuss the additional AWS services that provide a scalable and fast environment, with data available for immediate querying by our growing user base.

Amazon Redshift as our foundation

The ability to provide fresh, up-to-the-minute data to our customers and partners was always a main goal with our platform. We saw other solutions provide data that was a few hours old, but this was not good enough for us. We insisted on providing the freshest data possible. For us, that meant loading Amazon Redshift in frequent micro batches and allowing our customers to query Amazon Redshift directly to get results in near real time.

The benefits were immediately evident. Our customers could see how their campaigns performed faster than with other solutions, and react sooner to the ever-changing media supply pricing and availability. They were very happy.

However, this approach required Amazon Redshift to store a lot of data for long periods, and our data grew substantially. In our peak, we maintained a cluster running 65 DC1.large nodes. The impact on our Amazon Redshift cluster was evident, and we saw our CPU utilization grow to 90%.

Why we extended Amazon Redshift to Redshift Spectrum

Redshift Spectrum gives us the ability to run SQL queries using the powerful Amazon Redshift query engine against data stored in Amazon S3, without needing to load the data. With Redshift Spectrum, we store data where we want, at the cost that we want. We have the data available for analytics when our users need it with the performance they expect.

Seamless scalability, high performance, and unlimited concurrency

Scaling Redshift Spectrum is a simple process. First, it allows us to leverage Amazon S3 as the storage engine and get practically unlimited data capacity.

Second, if we need more compute power, we can leverage Redshift Spectrum’s distributed compute engine over thousands of nodes to provide superior performance – perfect for complex queries running against massive amounts of data.

Third, all Redshift Spectrum clusters access the same data catalog so that we don’t have to worry about data migration at all, making scaling effortless and seamless.

Lastly, since Redshift Spectrum distributes queries across potentially thousands of nodes, they are not affected by other queries, providing much more stable performance and unlimited concurrency.

Keeping it SQL

Redshift Spectrum uses the same query engine as Amazon Redshift. This means that we did not need to change our BI tools or query syntax, whether we used complex queries across a single table or joins across multiple tables.

An interesting capability introduced recently is the ability to create a view that spans both Amazon Redshift and Redshift Spectrum external tables. With this feature, you can query frequently accessed data in your Amazon Redshift cluster and less-frequently accessed data in Amazon S3, using a single view.

Leveraging Parquet for higher performance

Parquet is a columnar data format that provides superior performance and allows Redshift Spectrum (or Amazon Athena) to scan significantly less data. With less I/O, queries run faster and we pay less per query. You can read all about Parquet at https://parquet.apache.org/ or https://en.wikipedia.org/wiki/Apache_Parquet.

Lower cost

From a cost perspective, we pay standard rates for our data in Amazon S3, and only small amounts per query to analyze data with Redshift Spectrum. Using the Parquet format, we can significantly reduce the amount of data scanned. Our costs are now lower, and our users get fast results even for large complex queries.

What we learned about Amazon Redshift vs. Redshift Spectrum performance

When we first started looking at Redshift Spectrum, we wanted to put it to the test. We wanted to know how it would compare to Amazon Redshift, so we looked at two key questions:

  1. What is the performance difference between Amazon Redshift and Redshift Spectrum on simple and complex queries?
  2. Does the data format impact performance?

During the migration phase, we had our dataset stored in Amazon Redshift and S3 as CSV/GZIP and as Parquet file formats. We tested three configurations:

  • Amazon Redshift cluster with 28 DC1.large nodes
  • Redshift Spectrum using CSV/GZIP
  • Redshift Spectrum using Parquet

We performed benchmarks for simple and complex queries on one month’s worth of data. We tested how much time it took to perform the query, and how consistent the results were when running the same query multiple times. The data we used for the tests was already partitioned by date and hour. Properly partitioning the data improves performance significantly and reduces query times.

Simple query

First, we tested a simple query aggregating billing data across a month:

SELECT 
  user_id, 
  count(*) AS impressions, 
  SUM(billing)::decimal /1000000 AS billing 
FROM <table_name> 
WHERE 
  date >= '2017-08-01' AND 
  date <= '2017-08-31'  
GROUP BY 
  user_id;

We ran the same query seven times and measured the response times (red marking the longest time and green the shortest time):

Execution Time (seconds)
  Amazon Redshift Redshift Spectrum
CSV
Redshift Spectrum Parquet
Run #1 39.65 45.11 11.92
Run #2 15.26 43.13 12.05
Run #3 15.27 46.47 13.38
Run #4 21.22 51.02 12.74
Run #5 17.27 43.35 11.76
Run #6 16.67 44.23 13.67
Run #7 25.37 40.39 12.75
Average 21.53  44.82 12.61

For simple queries, Amazon Redshift performed better than Redshift Spectrum, as we thought, because the data is local to Amazon Redshift.

What was surprising was that using Parquet data format in Redshift Spectrum significantly beat ‘traditional’ Amazon Redshift performance. For our queries, using Parquet data format with Redshift Spectrum delivered an average 40% performance gain over traditional Amazon Redshift. Furthermore, Redshift Spectrum showed high consistency in execution time with a smaller difference between the slowest run and the fastest run.

Comparing the amount of data scanned when using CSV/GZIP and Parquet, the difference was also significant:

Data Scanned (GB)
CSV (Gzip) 135.49
Parquet 2.83

Because we pay only for the data scanned by Redshift Spectrum, the cost saving of using Parquet is evident and substantial.

Complex query

Next, we compared the same three configurations with a complex query.

Execution Time (seconds)
  Amazon Redshift Redshift Spectrum CSV Redshift Spectrum Parquet
Run #1 329.80 84.20 42.40
Run #2 167.60 65.30 35.10
Run #3 165.20 62.20 23.90
Run #4 273.90 74.90 55.90
Run #5 167.70 69.00 58.40
Average 220.84 71.12 43.14

This time, Redshift Spectrum using Parquet cut the average query time by 80% compared to traditional Amazon Redshift!

Bottom line: For complex queries, Redshift Spectrum provided a 67% performance gain over Amazon Redshift. Using the Parquet data format, Redshift Spectrum delivered an 80% performance improvement over Amazon Redshift. For us, this was substantial.

Optimizing the data structure for different workloads

Because the cost of S3 is relatively inexpensive and we pay only for the data scanned by each query, we believe that it makes sense to keep our data in different formats for different workloads and different analytics engines. It is important to note that we can have any number of tables pointing to the same data on S3. It all depends on how we partition the data and update the table partitions.

Data permutations

For example, we have a process that runs every minute and generates statistics for the last minute of data collected. With Amazon Redshift, this would be done by running the query on the table with something as follows:

SELECT 
  user, 
  COUNT(*) 
FROM 
  events_table 
WHERE 
  ts BETWEEN ‘2017-08-01 14:00:00’ AND ‘2017-08-01 14:00:59’ 
GROUP BY 
  user;

(Assuming ‘ts’ is your column storing the time stamp for each event.)

With Redshift Spectrum, we pay for the data scanned in each query. If the data is partitioned by the minute instead of the hour, a query looking at one minute would be 1/60th the cost. If we use a temporary table that points only to the data of the last minute, we save that unnecessary cost.

Creating Parquet data efficiently

On the average, we have 800 instances that process our traffic. Each instance sends events that are eventually loaded into Amazon Redshift. When we started three years ago, we would offload data from each server to S3 and then perform a periodic copy command from S3 to Amazon Redshift.

Recently, Amazon Kinesis Firehose added the capability to offload data directly to Amazon Redshift. While this is now a viable option, we kept the same collection process that worked flawlessly and efficiently for three years.

This changed, however, when we incorporated Redshift Spectrum. With Redshift Spectrum, we needed to find a way to:

  • Collect the event data from the instances.
  • Save the data in Parquet format.
  • Partition the data effectively.

To accomplish this, we save the data as CSV and then transform it to Parquet. The most effective method to generate the Parquet files is to:

  1. Send the data in one-minute intervals from the instances to Kinesis Firehose with an S3 temporary bucket as the destination.
  2. Aggregate hourly data and convert it to Parquet using AWS Lambda and AWS Glue.
  3. Add the Parquet data to S3 by updating the table partitions.

With this new process, we had to give more attention to validating the data before we sent it to Kinesis Firehose, because a single corrupted record in a partition fails queries on that partition.

Data validation

To store our click data in a table, we considered the following SQL create table command:

create external TABLE spectrum.blog_clicks (
    user_id varchar(50),
    campaign_id varchar(50),
    os varchar(50),
    ua varchar(255),
    ts bigint,
    billing float
)
partitioned by (date date, hour smallint)  
stored as parquet
location 's3://nuviad-temp/blog/clicks/';

The above statement defines a new external table (all Redshift Spectrum tables are external tables) with a few attributes. We stored ‘ts’ as a Unix time stamp and not as Timestamp, and billing data is stored as float and not decimal (more on that later). We also said that the data is partitioned by date and hour, and then stored as Parquet on S3.

First, we need to get the table definitions. This can be achieved by running the following query:

SELECT 
  * 
FROM 
  svv_external_columns 
WHERE 
  tablename = 'blog_clicks';

This query lists all the columns in the table with their respective definitions:

schemaname tablename columnname external_type columnnum part_key
spectrum blog_clicks user_id varchar(50) 1 0
spectrum blog_clicks campaign_id varchar(50) 2 0
spectrum blog_clicks os varchar(50) 3 0
spectrum blog_clicks ua varchar(255) 4 0
spectrum blog_clicks ts bigint 5 0
spectrum blog_clicks billing double 6 0
spectrum blog_clicks date date 7 1
spectrum blog_clicks hour smallint 8 2

Now we can use this data to create a validation schema for our data:

const rtb_request_schema = {
    "name": "clicks",
    "items": {
        "user_id": {
            "type": "string",
            "max_length": 100
        },
        "campaign_id": {
            "type": "string",
            "max_length": 50
        },
        "os": {
            "type": "string",
            "max_length": 50            
        },
        "ua": {
            "type": "string",
            "max_length": 255            
        },
        "ts": {
            "type": "integer",
            "min_value": 0,
            "max_value": 9999999999999
        },
        "billing": {
            "type": "float",
            "min_value": 0,
            "max_value": 9999999999999
        }
    }
};

Next, we create a function that uses this schema to validate data:

function valueIsValid(value, item_schema) {
    if (schema.type == 'string') {
        return (typeof value == 'string' && value.length <= schema.max_length);
    }
    else if (schema.type == 'integer') {
        return (typeof value == 'number' && value >= schema.min_value && value <= schema.max_value);
    }
    else if (schema.type == 'float' || schema.type == 'double') {
        return (typeof value == 'number' && value >= schema.min_value && value <= schema.max_value);
    }
    else if (schema.type == 'boolean') {
        return typeof value == 'boolean';
    }
    else if (schema.type == 'timestamp') {
        return (new Date(value)).getTime() > 0;
    }
    else {
        return true;
    }
}

Near real-time data loading with Kinesis Firehose

On Kinesis Firehose, we created a new delivery stream to handle the events as follows:

Delivery stream name: events
Source: Direct PUT
S3 bucket: nuviad-events
S3 prefix: rtb/
IAM role: firehose_delivery_role_1
Data transformation: Disabled
Source record backup: Disabled
S3 buffer size (MB): 100
S3 buffer interval (sec): 60
S3 Compression: GZIP
S3 Encryption: No Encryption
Status: ACTIVE
Error logging: Enabled

This delivery stream aggregates event data every minute, or up to 100 MB, and writes the data to an S3 bucket as a CSV/GZIP compressed file. Next, after we have the data validated, we can safely send it to our Kinesis Firehose API:

if (validated) {
    let itemString = item.join('|')+'\n'; //Sending csv delimited by pipe and adding new line

    let params = {
        DeliveryStreamName: 'events',
        Record: {
            Data: itemString
        }
    };

    firehose.putRecord(params, function(err, data) {
        if (err) {
            console.error(err, err.stack);        
        }
        else {
            // Continue to your next step 
        }
    });
}

Now, we have a single CSV file representing one minute of event data stored in S3. The files are named automatically by Kinesis Firehose by adding a UTC time prefix in the format YYYY/MM/DD/HH before writing objects to S3. Because we use the date and hour as partitions, we need to change the file naming and location to fit our Redshift Spectrum schema.

Automating data distribution using AWS Lambda

We created a simple Lambda function triggered by an S3 put event that copies the file to a different location (or locations), while renaming it to fit our data structure and processing flow. As mentioned before, the files generated by Kinesis Firehose are structured in a pre-defined hierarchy, such as:

S3://your-bucket/your-prefix/2017/08/01/20/events-4-2017-08-01-20-06-06-536f5c40-6893-4ee4-907d-81e4d3b09455.gz

All we need to do is parse the object name and restructure it as we see fit. In our case, we did the following (the event is an object received in the Lambda function with all the data about the object written to S3):

/*
	object key structure in the event object:
your-prefix/2017/08/01/20/event-4-2017-08-01-20-06-06-536f5c40-6893-4ee4-907d-81e4d3b09455.gz
	*/

let key_parts = event.Records[0].s3.object.key.split('/'); 

let event_type = key_parts[0];
let date = key_parts[1] + '-' + key_parts[2] + '-' + key_parts[3];
let hour = key_parts[4];
if (hour.indexOf('0') == 0) {
 		hour = parseInt(hour, 10) + '';
}
    
let parts1 = key_parts[5].split('-');
let minute = parts1[7];
if (minute.indexOf('0') == 0) {
        minute = parseInt(minute, 10) + '';
}

Now, we can redistribute the file to the two destinations we need—one for the minute processing task and the other for hourly aggregation:

    copyObjectToHourlyFolder(event, date, hour, minute)
        .then(copyObjectToMinuteFolder.bind(null, event, date, hour, minute))
        .then(addPartitionToSpectrum.bind(null, event, date, hour, minute))
        .then(deleteOldMinuteObjects.bind(null, event))
        .then(deleteStreamObject.bind(null, event))        
        .then(result => {
            callback(null, { message: 'done' });            
        })
        .catch(err => {
            console.error(err);
            callback(null, { message: err });            
        }); 

Kinesis Firehose stores the data in a temporary folder. We copy the object to another folder that holds the data for the last processed minute. This folder is connected to a small Redshift Spectrum table where the data is being processed without needing to scan a much larger dataset. We also copy the data to a folder that holds the data for the entire hour, to be later aggregated and converted to Parquet.

Because we partition the data by date and hour, we created a new partition on the Redshift Spectrum table if the processed minute is the first minute in the hour (that is, minute 0). We ran the following:

ALTER TABLE 
  spectrum.events 
ADD partition
  (date='2017-08-01', hour=0) 
  LOCATION 's3://nuviad-temp/events/2017-08-01/0/';

After the data is processed and added to the table, we delete the processed data from the temporary Kinesis Firehose storage and from the minute storage folder.

Migrating CSV to Parquet using AWS Glue and Amazon EMR

The simplest way we found to run an hourly job converting our CSV data to Parquet is using Lambda and AWS Glue (and thanks to the awesome AWS Big Data team for their help with this).

Creating AWS Glue jobs

What this simple AWS Glue script does:

  • Gets parameters for the job, date, and hour to be processed
  • Creates a Spark EMR context allowing us to run Spark code
  • Reads CSV data into a DataFrame
  • Writes the data as Parquet to the destination S3 bucket
  • Adds or modifies the Redshift Spectrum / Amazon Athena table partition for the table
import sys
import sys
from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job
import boto3

## @params: [JOB_NAME]
args = getResolvedOptions(sys.argv, ['JOB_NAME','day_partition_key', 'hour_partition_key', 'day_partition_value', 'hour_partition_value' ])

#day_partition_key = "partition_0"
#hour_partition_key = "partition_1"
#day_partition_value = "2017-08-01"
#hour_partition_value = "0"

day_partition_key = args['day_partition_key']
hour_partition_key = args['hour_partition_key']
day_partition_value = args['day_partition_value']
hour_partition_value = args['hour_partition_value']

print("Running for " + day_partition_value + "/" + hour_partition_value)

sc = SparkContext()
glueContext = GlueContext(sc)
spark = glueContext.spark_session
job = Job(glueContext)
job.init(args['JOB_NAME'], args)

df = spark.read.option("delimiter","|").csv("s3://nuviad-temp/events/"+day_partition_value+"/"+hour_partition_value)
df.registerTempTable("data")

df1 = spark.sql("select _c0 as user_id, _c1 as campaign_id, _c2 as os, _c3 as ua, cast(_c4 as bigint) as ts, cast(_c5 as double) as billing from data")

df1.repartition(1).write.mode("overwrite").parquet("s3://nuviad-temp/parquet/"+day_partition_value+"/hour="+hour_partition_value)

client = boto3.client('athena', region_name='us-east-1')

response = client.start_query_execution(
    QueryString='alter table parquet_events add if not exists partition(' + day_partition_key + '=\'' + day_partition_value + '\',' + hour_partition_key + '=' + hour_partition_value + ')  location \'s3://nuviad-temp/parquet/' + day_partition_value + '/hour=' + hour_partition_value + '\'' ,
    QueryExecutionContext={
        'Database': 'spectrumdb'
    },
    ResultConfiguration={
        'OutputLocation': 's3://nuviad-temp/convertresults'
    }
)

response = client.start_query_execution(
    QueryString='alter table parquet_events partition(' + day_partition_key + '=\'' + day_partition_value + '\',' + hour_partition_key + '=' + hour_partition_value + ') set location \'s3://nuviad-temp/parquet/' + day_partition_value + '/hour=' + hour_partition_value + '\'' ,
    QueryExecutionContext={
        'Database': 'spectrumdb'
    },
    ResultConfiguration={
        'OutputLocation': 's3://nuviad-temp/convertresults'
    }
)

job.commit()

Note: Because Redshift Spectrum and Athena both use the AWS Glue Data Catalog, we could use the Athena client to add the partition to the table.

Here are a few words about float, decimal, and double. Using decimal proved to be more challenging than we expected, as it seems that Redshift Spectrum and Spark use them differently. Whenever we used decimal in Redshift Spectrum and in Spark, we kept getting errors, such as:

S3 Query Exception (Fetch). Task failed due to an internal error. File 'https://s3-external-1.amazonaws.com/nuviad-temp/events/2017-08-01/hour=2/part-00017-48ae5b6b-906e-4875-8cde-bc36c0c6d0ca.c000.snappy.parquet has an incompatible Parquet schema for column 's3://nuviad-events/events.lat'. Column type: DECIMAL(18, 8), Parquet schema:\noptional float lat [i:4 d:1 r:0]\n (https://s3-external-1.amazonaws.com/nuviad-temp/events/2017-08-01/hour=2/part-00017-48ae5b6b-906e-4875-8cde-bc36c0c6d0ca.c000.snappy.parq

We had to experiment with a few floating-point formats until we found that the only combination that worked was to define the column as double in the Spark code and float in Spectrum. This is the reason you see billing defined as float in Spectrum and double in the Spark code.

Creating a Lambda function to trigger conversion

Next, we created a simple Lambda function to trigger the AWS Glue script hourly using a simple Python code:

import boto3
import json
from datetime import datetime, timedelta
 
client = boto3.client('glue')
 
def lambda_handler(event, context):
    last_hour_date_time = datetime.now() - timedelta(hours = 1)
    day_partition_value = last_hour_date_time.strftime("%Y-%m-%d") 
    hour_partition_value = last_hour_date_time.strftime("%-H") 
    response = client.start_job_run(
    JobName='convertEventsParquetHourly',
    Arguments={
         '--day_partition_key': 'date',
         '--hour_partition_key': 'hour',
         '--day_partition_value': day_partition_value,
         '--hour_partition_value': hour_partition_value
         }
    )

Using Amazon CloudWatch Events, we trigger this function hourly. This function triggers an AWS Glue job named ‘convertEventsParquetHourly’ and runs it for the previous hour, passing job names and values of the partitions to process to AWS Glue.

Redshift Spectrum and Node.js

Our development stack is based on Node.js, which is well-suited for high-speed, light servers that need to process a huge number of transactions. However, a few limitations of the Node.js environment required us to create workarounds and use other tools to complete the process.

Node.js and Parquet

The lack of Parquet modules for Node.js required us to implement an AWS Glue/Amazon EMR process to effectively migrate data from CSV to Parquet. We would rather save directly to Parquet, but we couldn’t find an effective way to do it.

One interesting project in the works is the development of a Parquet NPM by Marc Vertes called node-parquet (https://www.npmjs.com/package/node-parquet). It is not in a production state yet, but we think it would be well worth following the progress of this package.

Timestamp data type

According to the Parquet documentation, Timestamp data are stored in Parquet as 64-bit integers. However, JavaScript does not support 64-bit integers, because the native number type is a 64-bit double, giving only 53 bits of integer range.

The result is that you cannot store Timestamp correctly in Parquet using Node.js. The solution is to store Timestamp as string and cast the type to Timestamp in the query. Using this method, we did not witness any performance degradation whatsoever.

Lessons learned

You can benefit from our trial-and-error experience.

Lesson #1: Data validation is critical

As mentioned earlier, a single corrupt entry in a partition can fail queries running against this partition, especially when using Parquet, which is harder to edit than a simple CSV file. Make sure that you validate your data before scanning it with Redshift Spectrum.

Lesson #2: Structure and partition data effectively

One of the biggest benefits of using Redshift Spectrum (or Athena for that matter) is that you don’t need to keep nodes up and running all the time. You pay only for the queries you perform and only for the data scanned per query.

Keeping different permutations of your data for different queries makes a lot of sense in this case. For example, you can partition your data by date and hour to run time-based queries, and also have another set partitioned by user_id and date to run user-based queries. This results in faster and more efficient performance of your data warehouse.

Storing data in the right format

Use Parquet whenever you can. The benefits of Parquet are substantial. Faster performance, less data to scan, and much more efficient columnar format. However, it is not supported out-of-the-box by Kinesis Firehose, so you need to implement your own ETL. AWS Glue is a great option.

Creating small tables for frequent tasks

When we started using Redshift Spectrum, we saw our Amazon Redshift costs jump by hundreds of dollars per day. Then we realized that we were unnecessarily scanning a full day’s worth of data every minute. Take advantage of the ability to define multiple tables on the same S3 bucket or folder, and create temporary and small tables for frequent queries.

Lesson #3: Combine Athena and Redshift Spectrum for optimal performance

Moving to Redshift Spectrum also allowed us to take advantage of Athena as both use the AWS Glue Data Catalog. Run fast and simple queries using Athena while taking advantage of the advanced Amazon Redshift query engine for complex queries using Redshift Spectrum.

Redshift Spectrum excels when running complex queries. It can push many compute-intensive tasks, such as predicate filtering and aggregation, down to the Redshift Spectrum layer, so that queries use much less of your cluster’s processing capacity.

Lesson #4: Sort your Parquet data within the partition

We achieved another performance improvement by sorting data within the partition using sortWithinPartitions(sort_field). For example:

df.repartition(1).sortWithinPartitions("campaign_id")…

Conclusion

We were extremely pleased with using Amazon Redshift as our core data warehouse for over three years. But as our client base and volume of data grew substantially, we extended Amazon Redshift to take advantage of scalability, performance, and cost with Redshift Spectrum.

Redshift Spectrum lets us scale to virtually unlimited storage, scale compute transparently, and deliver super-fast results for our users. With Redshift Spectrum, we store data where we want at the cost we want, and have the data available for analytics when our users need it with the performance they expect.


About the Author

With 7 years of experience in the AdTech industry and 15 years in leading technology companies, Rafi Ton is the founder and CEO of NUVIAD. He enjoys exploring new technologies and putting them to use in cutting edge products and services, in the real world generating real money. Being an experienced entrepreneur, Rafi believes in practical-programming and fast adaptation of new technologies to achieve a significant market advantage.

 

 

Announcing Tumbleweed Snapshots

Post Syndicated from corbet original https://lwn.net/Articles/740052/rss

The newly announced openSUSE “Tumbleweed snapshots” feature is an attempt to make
rolling distributions a little easier for those who don’t want to stay on
the leading edge all the time. In essence, it keeps a snapshot of the
state of the distribution at regular intervals and enables users to install
applications from their particular snapshot. That allows the installation
of new applications without the need to drag in everything else that may
have changed since the system as a whole was updated.
Tumbleweed Snapshots
provides the best of both worlds, the latest packages when you want them and the
one package you need in the middle of working on a project.