Tag Archives: PCI DSS

How to use the AWS Security Hub PCI DSS v3.2.1 standard

Post Syndicated from Rima Tanash original https://aws.amazon.com/blogs/security/how-to-use-the-aws-security-hub-pci-dss-v3-2-1-standard/

On February 13, 2020, AWS added partial support for the Payment Card Industry Data Security Standard (PCI DSS) version 3.2.1 requirements to AWS Security Hub.

This update enables you to validate a subset of PCI DSS’s requirements and helps with ongoing PCI DSS security activities by conducting continuous and automated checks. The new Security Hub standard also makes it easier to proactively monitor AWS resources, which is critical for any company involved with the storage, processing, or transmission of cardholder data. There’s also a Security score feature for the Security Hub standard, which can help support preparations for PCI DSS assessment.

Use this post to learn how to:

  • Enable the AWS Security Hub PCI DSS v3.2.1 standard and navigating results
  • Interpret your security score
  • Remediate failed security checks
  • Understand requirements related to findings

Enable Security Hub’s PCI DSS v3.2.1 standard and navigate results

Note: This section assumes that you have Security Hub enabled in one or more accounts. To learn how to enable Security Hub, follow these instructions. If you don’t have Security Hub enabled, the first time you enable Security Hub you will be given the option to enable PCI DSS v3.2.1.

To enable the PCI DSS v3.2.1 security standard in Security Hub:

  1. Open Security Hub and enable PCI DSS v3.2.1 Security standards.
    (Once enabled, Security Hub will begin evaluating related resources in the current AWS account and region against the AWS controls within the standard. The scope of the assessment is the current AWS account).
  2. When the evaluation completes, select View results.
  3. Now you are on the PCI DSS v3.2.1 page (Figure 1). You can see all 32 currently-implemented security controls in this standard, their severities, and their status for this account and region. Use search and filters to narrow down the controls by status, severity, title, or related requirement.

    Figure 1: PCI DSS v3.2.1 standard results page

    Figure 1: PCI DSS v3.2.1 standard results page

  4. Select the name of the control to review detailed information about it. This action will take you to the control’s detail page (Figure 2), which gives you related findings.

    Figure 2: Detailed control information

    Figure 2: Detailed control information

  5. If a specific control is not relevant for you, you can disable the control by selecting Disable and providing a Reason for disabling. (See Disabling Individual Compliance Controls for instructions).

How to interpret and improve your “Security score”

After enabling the PCI DSS v3.2.1 standard in Security Hub, you will notice a Security score appear for the standard itself, and for your account overall. These scores range between 0% and 100%.

Figure 3: Security score for PCI DSS standard (left) and overall (right)

Figure 3: Security score for PCI DSS standard (left) and overall (right)

The PCI DSS standard’s Security score represents the proportion of passed PCI DSS controls over enabled PCI DSS controls. The score is displayed as a percentage. Similarly, the overall Security score represents the proportion of passed controls over enabled controls, including controls from every enabled Security Hub standard, displayed as a percentage.

Your aim should be to pass all enabled security checks to reach a score of 100%. Reaching a 100% security score for the AWS Security Hub PCI DSS standard will help you prepare for a PCI DSS assessment. The PCI DSS Compliance Standard in Security Hub is designed to help you with your ongoing PCI DSS security activities.

An important note, the controls cannot verify whether your systems are compliant with the PCI DSS standard. They can neither replace internal efforts nor guarantee that you will pass a PCI DSS assessment.

Remediating failed security checks

To remediate a failed control, you need to remediate every failed finding for that control.

  1. To prioritize remediation, we recommend filtering by Failed controls and then remediating issues starting with critical– and ending with low severity controls.
  2. Identify a control you want to remediate and visit the control detail page.
  3. Follow the Remediation instructions link, and then follow the step-by-step remediation instructions, applying them for every failed finding.

    Figure 4: The control detail page, with a link to the remediation instructions

    Figure 4: The control detail page, with a link to the remediation instructions

How to interpret “Related requirements”

Every control displays Related requirements in the control card and in the control’s detail page. For PCI DSS, the Related requirements show which PCI DSS requirements are related to the Security Hub PCI DSS control. A single AWS control might relate to multiple PCI DSS requirements.

Figure 5: Related requirements in the control detail page

Figure 5: Related requirements in the control detail page

The user guide lists the related PCI DSS requirements and explains how the specific Security Hub PCI DSS control is related to the requirement.

For example, the AWS Config rule cmk-backing-key-rotation-enabled checks that key rotation is enabled for each customer master key (CMK), but it doesn’t check for CMKs that are using key material imported with the AWS Key Management Service (AWS KMS) BYOK mechanism. The related PCI DSS requirement that is mapped to this rule is PCI DSS 3.6.4 – “Cryptographic keys should be changed once they have reached the end of their cryptoperiod.” Although PCI DSS doesn’t specify the time frame for cryptoperiods, this rule is mapped because, if key rotation is enabled, rotation occurs annually by default with a customer-managed CMK.

Conclusion

The new AWS Security Hub PCI DSS v3.2.1 standard is fundamental for any company involved with storing, processing, or transmitting cardholder data. In this post, you learned how to enable the standard to begin proactively monitoring your AWS resources against the Security Hub PCI DSS controls. You also learned how to navigate the PCI DSS results within Security Hub. By frequently reviewing failed security checks, prioritizing their remediation, and aiming to achieve a 100% security score for PCI DSS within Security Hub, you’ll be better prepared for a PCI DSS assessment.

Further reading

If you have feedback about this post, submit comments in the Comments section below. If you have questions, please start a new thread on the Security Hub forums.

Want more AWS Security how-to content, news, and feature announcements? Follow us on Twitter.

Author

Rima Tanash

Rima Tanash is the Lead Security Engineer on the Amazon Security Hub service team. At Amazon Web Services, she applies automated technologies to audit various access and security configurations. She has a research background in data privacy using graph properties and machine learning.

Author

Michael Guzman

Michael is a Security Assurance Consultant with AWS Security Assurance Services. He is a current Qualified Security Assessor (QSA), certified by the PCI SSC. Michael has 20+ years of experience in IT in the financial, professional services, and retail industry. He helps customers on their cloud journey of critical workloads to the AWS cloud in a PCI DSS compliant manner.

Author

Logan Culotta

Logan Culotta is a Security Assurance Consultant on the AWS Security Assurance team. He is also a current Qualified Security Assessor (QSA), certified by the PCI SSC. Logan enjoys finding ways to automate compliance and security in the AWS cloud. In his free time, you can find him spending time with family, road cycling, and cooking.

Author

Avik Mukherjee

Avik is a Security Architect with over a decade of experience in IT governance, security, risk, and compliance. He’s been a Qualified Security Assessor for PCI DSS and Point-to-Point-Encryption and has deep knowledge of security advisory and assessment work in various industries, including retail, financial, and technology. He loves spending time with family and working on his culinary skills.

Fall 2019 PCI DSS report now available with 7 services added in scope

Post Syndicated from Nivetha Chandran original https://aws.amazon.com/blogs/security/fall-2019-pci-dss-report-available-7-services-added/

We’re pleased to announce that seven services have been added to the scope of our Payment Card Industry Data Security Standard (PCI DSS) certification, providing our customers more options to process and store their payment card data and architect their Cardholder Data Environment (CDE) securely in AWS.

In the past year we have increased the scope of our PCI DSS certification by 19%. With these additions, you can now select from a total of 118 PCI-certified services. You can see the full list on our Services in Scope by Compliance program page. The seven new services are:

We were evaluated by third-party auditors from Coalfire and their report is available through AWS Artifact.

To learn more about our PCI program and other compliance and security programs, see the AWS Compliance Programs page. As always, we value your feedback and questions; reach out to the team through the Contact Us page.

Want more AWS Security how-to content, news, and feature announcements? Follow us on Twitter.

Nivetha Chandran

Nivetha is a Security Assurance Manager at Amazon Web Services on the Global Audits team, managing the PCI compliance program. Nivetha holds a Master’s degree in Information Management from the University of Washington.

Spring 2019 PCI DSS report now available, 12 services added in scope

Post Syndicated from Chris Gile original https://aws.amazon.com/blogs/security/spring-2019-pci-dss-report-now-available-12-services-added-in-scope/

At AWS Security, continuously raising the cloud security bar for our customers is central to all that we do. Part of that work is focused on our formal compliance certifications, which enable our customers to use the AWS cloud for highly sensitive and/or regulated workloads. We see our customers constantly developing creative and innovative solutions—and in order for them to continue to do so, we need to increase the availability of services within our certifications. I’m pleased to tell you that in the past year, we’ve increased our Payment Card Industry – Data Security Standard (PCI DSS) certification scope by 79%, from 62 services to 111 services, including 12 newly added services in our latest PCI report (listed below), and we were audited by our third-party auditor, Coalfire.

The PCI DSS report and certification cover the 111 services currently in scope that are used by our customers to architect a secure Cardholder Data Environment (CDE) to protect important workloads. The full list of PCI DSS certified AWS services is available on our Services in Scope by Compliance program page. The 12 newly added services for our Spring 2019 report are:

Our compliance reports, including this latest PCI report, are available on-demand through AWS Artifact.

To learn more about our PCI program and other compliance and security programs, please visit the AWS Compliance Programs page.

Want more AWS Security how-to content, news, and feature announcements? Follow us on Twitter.

New whitepaper available: Architecting for PCI DSS Segmentation and Scoping on AWS

Post Syndicated from Avik Mukherjee original https://aws.amazon.com/blogs/security/new-whitepaper-available-architecting-for-pci-dss-segmentation-and-scoping-on-aws/

AWS has published a whitepaper, Architecting for PCI DSS Scoping and Segmentation on AWS, to provide guidance on how to properly define the scope of your Payment Card Industry (PCI) Data Security Standard (DSS) workloads running on the AWS Cloud. The whitepaper looks at how to define segmentation boundaries between your in-scope and out-of-scope resources using cloud native AWS services.

The whitepaper is intended for engineers and solution builders, but it also serves as a guide for Qualified Security Assessors (QSAs) and internal security assessors (ISAs) to better understand the different segmentation controls available within AWS products and services, along with associated scoping considerations.

Compared to on-premises environments, software defined networking on AWS transforms the scoping process for applications by providing additional segmentation controls beyond network segmentation. Thoughtful design of your applications and selection of security-impacting services for implementing your required controls can reduce the number of systems and services in your cardholder data environment (CDE).

The whitepaper is based on the PCI Council’s Information Supplement: Guidance for PCI DSS Scoping and Network Segmentation.

If you have questions or want to learn more, contact your account executive, or leave a comment below.

Want more AWS Security how-to content, news, and feature announcements? Follow us on Twitter.

Avik Mukherjee

Avik is a Security Architect with more than a decade of experience in IT governance, security, risk, and compliance. He’s a Qualified Security Assessor (QSA) for Payment Card Industry (PCI) Data Security Standard (DSS) and Point-to-Point-Encryption (P2PE) and has deep knowledge of security advisory and assessment work in various industries, including retail, financial, and technology. He’s part of the AWS professional services teams that work with clients to assist them in their journey to transform the security posture of their resources running on AWS. He loves spending time with his family and working on his culinary skills.

Alerting, monitoring, and reporting for PCI-DSS awareness with Amazon Elasticsearch Service and AWS Lambda

Post Syndicated from Michael Coyne original https://aws.amazon.com/blogs/security/alerting-monitoring-and-reporting-for-pci-dss-awareness-with-amazon-elasticsearch-service-and-aws-lambda/

Logging account activity within your AWS infrastructure is paramount to your security posture and could even be required by compliance standards such as PCI-DSS (Payment Card Industry Security Standard). Organizations often analyze these logs to adapt to changes and respond quickly to security events. For example, if users are reporting that their resources are unable to communicate with the public internet, it would be beneficial to know if a network access list had been changed just prior to the incident. Many of our customers ship AWS CloudTrail event logs to an Amazon Elasticsearch Service cluster for this type of analysis. However, security best practices and compliance standards could require additional considerations. Common concerns include how to analyze log data without the data leaving the security constraints of your private VPC.

In this post, I’ll show you not only how to store your logs, but how to put them to work to help you meet your compliance goals. This implementation deploys an Amazon Elasticsearch Service domain with Amazon Virtual Private Cloud (Amazon VPC) support by utilizing VPC endpoints. A VPC endpoint enables you to privately connect your VPC to Amazon Elasticsearch without requiring an internet gateway, NAT device, VPN connection, or AWS Direct Connect connection. An AWS Lambda function is used to ship AWS CloudTrail event logs to the Elasticsearch cluster. A separate AWS Lambda function performs scheduled queries on log sets to look for patterns of concern. Amazon Simple Notification Service (SNS) generates automated reports based on a sample set of PCI guidelines discussed further in this post and notifies stakeholders when specific events occur. Kibana serves as the command center, providing visualizations of CloudTrail events that need to be logged based on the provided sample set of PCI-DSS compliance guidelines. The automated report and dashboard that are constructed around the sample PCI-DSS guidelines assist in event awareness regarding your security posture and should not be viewed as a de facto means of achieving certification. This solution serves as an additional tool to provide visibility in to the actions and events within your environment. Deployment is made simple with a provided AWS CloudFormation template.
 

Figure 1: Architectural diagram

Figure 1: Architectural diagram

The figure above depicts the architecture discussed in this post. An Elasticsearch cluster with VPC support is deployed within an AWS Region and Availability Zone. This creates a VPC endpoint in a private subnet within a VPC. Kibana is an Elasticsearch plugin that resides within the Elasticsearch cluster, it is accessed through a provided endpoint in the output section of the CloudFormation template. CloudTrail is enabled in the VPC and ships CloudTrail events to both an S3 bucket and CloudWatch Log Group. The CloudWatch Log Group triggers a custom Lambda function that ships the CloudTrail Event logs to the Elasticsearch domain through the VPC endpoint. An additional Lambda function is created that performs a periodic set of Elasticsearch queries and produces a report that is sent to an SNS Topic. A Windows-based EC2 instance is deployed in a public subnet so users will have the ability to view and interact with a Kibana dashboard. Access to the EC2 instance can be restricted to an allowed CIDR range through a parameter set in the CloudFormation deployment. Access to the Elasticsearch cluster and Kibana is restricted to a Security Group that is created and is associated with the EC2 instance and custom Lambda functions.

Sample PCI-DSS Guidelines

This solution provides a sample set of (10) PCI-DSS guidelines for events that need to be logged.

  • All Commands, API action taken by AWS root user
  • All failed logins at the AWS platform level
  • Action related to RDS (configuration changes)
  • Action related to enabling/disabling/changing of CloudTrail, CloudWatch logs
  • All access to S3 bucket that stores the AWS logs
  • Action related to VPCs (creation, deletion and changes)
  • Action related to changes to SGs/NACLs (creation, deletion and changes)
  • Action related to IAM users, roles, and groups (creation, deletion and changes)
  • Action related to route tables (creation, deletion and changes)
  • Action related to subnets (creation, deletion and changes)

Solution overview

In this walkthrough, you’ll create an Elasticsearch cluster within an Amazon VPC environment. You’ll ship AWS CloudTrail logs to both an Amazon S3 Bucket (to maintain an immutable copy of the logs) and to a custom AWS Lambda function that will stream the logs to the Elasticsearch cluster. You’ll also create an additional Lambda function that will run once a day and build a report of the number of CloudTrail events that occurred based on the example set of 10 PCI-DSS guidelines and then notify stakeholders via SNS. Here’s what you’ll need for this solution:

To make it easier to get started, I’ve included an AWS CloudFormation template that will automatically deploy the solution. The CloudFormation template along with additional files can be downloaded from this link. You’ll need the following resources to set it up:

  • An S3 bucket to upload and store the sample AWS Lambda code and sample Kibana dashboards. This bucket name will be requested during the CloudFormation template deployment.
  • An Amazon Virtual Private Cloud (Amazon VPC).

If you’re unfamiliar with how CloudFormation templates work, you can find more info in the CloudFormation Getting Started guide.

AWS CloudFormation deployment

The following parameters are available in this template.

ParameterDefaultDescription
Elasticsearch Domain NameName of the Amazon Elasticsearch Service domain.
Elasticsearch Version6.2Version of Elasticsearch to deploy.
Elasticsearch Instance Count3The number of data nodes to deploy in to the Elasticsearch cluster.
Elasticsearch Instance ClassThe instance class to deploy for the Elasticsearch data nodes.
Elasticsearch Instance Volume Size10The size of the volume for each Elasticsearch data node in GB.
VPC to launch intoThe VPC to launch the Amazon Elasticsearch Service cluster into.
Availability Zone to launch intoThe Availability Zone to launch the Amazon Elasticsearch Service cluster into.
Private Subnet IDThe subnet to launch the Amazon Elasticsearch Service cluster into.
Elasticsearch Security GroupA new Security Group is created that will be associated with the Amazon Elasticsearch Service cluster.
Security Group DescriptionA description for the above created Security Group.
Windows EC2 Instance Classm5.largeWindows instance for interaction with Kibana.
EC2 Key PairEC2 Key Pair to associate with the Windows EC2 instance.
Public SubnetPublic subnet to associate with the Windows EC2 instance for access.
Remote Access Allowed CIDR0.0.0.0/0The CIDR range to allow remote access (port 3389) to the EC2 instance.
S3 Bucket Name—Lambda FunctionsS3 Bucket that contains custom AWS Lambda functions.
Private SubnetPrivate subnet to associate with AWS Lambda functions that are deployed within a VPC.
CloudWatch Log Group NameThis will create a CloudWatch Log Group for the AWS CloudTrail event logs.
S3 Bucket Name—CloudTrail loggingThis will create a new Amazon S3 Bucket for logging CloudTrail events. Name must be a globally unique value.
Date range to perform queriesnow-1d(examples: now-1d, now-7d, now-90d)
Lambda Subnet CIDRCreate a Subnet CIDR to deploy AWS Lambda Elasticsearch query function in to
Availability Zone—LambdaThe availability zone to associate with the preceding AWS Lambda Subnet
Email Address[email protected]Email address for reporting to notify stakeholders via SNS. You must accept the subscription by selecting the link sent to this address before alerts will arrive.

It takes 30-45 minutes for this stack to be created. When it’s complete, the CloudFormation console will display the following resource values in the Outputs tab. These values can be referenced at any time and will be needed in the following sections.

oElasticsearchDomainEndpointElasticsearch Domain Endpoint Hostname
oKibanaEndpointKibana Endpoint Hostname
oEC2InstanceWindows EC2 Instance Name used for Kibana access
oSNSSubscriberSNS Subscriber Email Address
oElasticsearchDomainArnArn of the Elasticsearch Domain
oEC2InstancePublicIpPublic IP address of the Windows EC2 instance

Managing and testing the solution

Now that you’ve set up the environment, it’s time to configure the Kibana dashboard.

Kibana configuration

From the AWS CloudFormation output, gather information related to the Windows-based EC2 instance. Once you have retrieved that information, move on to the next steps.

Initial configuration and index pattern

  1. Log into the Windows EC2 instance via Remote Desktop Protocol (RDP) from a resource that is within the allowed CIDR range for remote access to the instance.
  2. Open a browser window and navigate to the Kibana endpoint hostname URL from the output of the AWS CloudFormation stack. Access to the Elasticsearch cluster and Kibana is restricted to the security group that is associated with the EC2 instance and custom Lambda functions during deployment.
  3. In the Kibana dashboard, select Management from the left panel and choose the link for Index Patterns.
  4. Add one index pattern containing the following: cwl-*
     
    Figure 2: Define the index pattern

    Figure 2: Define the index pattern

  5. Select Next Step.
  6. Select the Time Filter Field named @timestamp.
     
    Figure 3: Select "@timestamp"

    Figure 3: Select “@timestamp”

  7. Select Create index pattern.

At this point we’ve launched our environment and have accessed the Kibana console. Within the Kibana console, we’ve configured the index pattern for the CloudWatch logs that will contain the CloudTrail events. Next, we’ll configure visualizations and a dashboard.

Importing sample PCI DSS queries and Kibana dashboard

  1. Copy the export.json from the location you extracted the downloaded zip file to the EC2 Kibana bastion.
  2. Select Management on the left panel and choose the link for Saved Objects.
  3. Select Import in upper right corner and navigate to export.json.
  4. Select Yes, overwrite all saved objects, then select Index Pattern cwl-* and confirm all changes.
  5. Once the import completes, select PCI DSS Dashboard to see the sample dashboard and queries.

Note: You might encounter an error during the import that looks like this:
 

Figure 4: Error message

Figure 4: Error message

This simply means that your streamed logs do not have login-type events in the time period since your deployment. To correct this, you can add a field with a null event.

  1. From the left panel, select Dev Tools and copy the following JSON into the left panel of the console:
    
            POST /cwl-/default/
            {
                "userIdentity": {
                    "userName": "test"
                }
            }              
     

  2. Select the green Play triangle to execute the POST of a document with the missing field.
     
    Figure 5: Select the "Play" button

    Figure 5: Select the “Play” button

  3. Now reimport the dashboard using the steps in Importing Sample PCI DSS Queries and Kibana Dashboard. You should be able to complete the import with no errors.

At this point, you should have CloudTrail events that have been streamed to the Elasticsearch cluster, with a configured Kibana dashboard that looks similar to the following graphic:
 

Figure 6: A configured Kibana dashboard

Figure 6: A configured Kibana dashboard

Automated Reports

A custom AWS Lambda function was created during the deployment of the Amazon CloudFormation stack. This function uses the sample PCI-DSS guidelines from the Kibana dashboard to build a daily report. The Lambda function is triggered every 24 hours and performs a series of Elasticsearch time-based queries of now-1day (the last 24 hours) on the sample guidelines. The results are compiled into a message that is forwarded to Amazon Simple Notification Service (SNS), which sends a report to stakeholders based on the email address you provided in the CloudFormation deployment.

The Lambda function will be named <CloudFormation Stack Name>-ES-Query-LambdaFunction. The Lambda Function enables environment variables such as your query time window to be adjusted or additional functionality like additional Elasticsearch queries to be added to the code. The below sample report allows you to monitor any events against the sample PCI-DSS guidelines. These reports can then be further analyzed in the Kibana dashboard.


    Logging Compliance Report - Wednesday, 11. July 2018 01:06PM
    Violations for time period: 'now-1d'
    
    All Failed login attempts
    - No Alerts Found
    All Commands, API action taken by AWS root user
    - No Alerts Found
    Action related to RDS (configuration changes)
    - No Alerts Found
    Action related to enabling/disabling/changing of CloudTrail CloudWatch logs
    - 3 API calls indicating alteration of log sources detected
    All access to S3 bucket that stores the AWS logs
    - No Alerts Found
    Action related to VPCs (creation, deletion and changes)
    - No Alerts Found
    Action related to changes to SGs/NACLs (creation, deletion and changes)
    - No Alerts Found
    Action related to changes to IAM roles, users, and groups (creation, deletion and changes)
    - 2 API calls indicating creation, alteration or deletion of IAM roles, users, and groups
    Action related to changes to Route Tables (creation, deletion and changes)
    - No Alerts Found
    Action related to changes to Subnets (creation, deletion and changes)
    - No Alerts Found         

Summary

At this point, you have now created a private Elasticsearch cluster with Kibana dashboards that monitors AWS CloudTrail events on a sample set of PCI-DSS guidelines and uses Amazon SNS to send a daily report providing awareness in to your environment—all isolated securely within a VPC. In addition to CloudTrail events streaming to the Elasticsearch cluster, events are also shipped to an Amazon S3 bucket to maintain an immutable source of your log files. The provided Lambda functions can be further modified to add additional or more complex search queries and to create more customized reports for your organization. With minimal effort, you could begin sending additional log data from your instances or containers to gain even more insight as to the security state of your environment. The more data you retain, the more visibility you have into your resources and the closer you are to achieving Compliance-on-Demand.

Want more AWS Security how-to content, news, and feature announcements? Follow us on Twitter.

Author

Michael Coyne

Michael is a consultant for AWS Professional Services. He enjoys the fast-paced environment of ever-changing technology and assisting customers in solving complex issues. Away from AWS, Michael can typically be found with a guitar and spending time with his wife and two young kiddos. He holds a BS in Computer Science from WGU.

New AWS services launch with HIPAA, PCI, ISO, and SOC – a company first

Post Syndicated from Chris Gile original https://aws.amazon.com/blogs/security/new-aws-services-launch-with-hipaa-pci-iso-and-soc/

Our security culture is one of the things that sets AWS apart. Security is job zero — it is the foundation for all AWS employees and impacts the work we do every day, across the company. And that’s reflected in our services, which undergo exacting internal and external security reviews before being released. From there, we have historically waited for customer demand to begin the complex process of third-party assessment and validating services under specific compliance programs. However, we’ve heard you tell us you want every generally available (GA) service in scope to keep up with the pace of your innovation and at the same time, meet rigorous compliance and regulatory requirements.

I wanted to share how we’re meeting this challenge with a more proactive approach to service certification by certifying services at launch. For the first time, we’ve launched new GA services with PCI DSS, ISO 9001/27001/27017/27018, SOC 2, and HIPAA eligibility. That means customers who rely on or require these compliance programs can select from 10 brand new services right away, without having to wait for one or more trailing audit cycles.

Verifying the security and compliance of the following new services is as simple as going to the console and using AWS Artifact to download the audit reports.

  • Amazon DocumentDB (with MongoDB compatibility) [HIPAA, PCI, ISO, SOC 2]
  • Amazon FSx [HIPAA, PCI, ISO]
  • Amazon Route 53 Resolver [ISO]
  • AWS Amplify [HIPAA, ISO]
  • AWS DataSync [HIPAA, PCI, ISO]
  • AWS Elemental MediaConnect [HIPAA, PCI, ISO]
  • AWS Global Accelerator [PCI, ISO]
  • AWS License Manager [ISO]
  • AWS RoboMaker [HIPAA, PCI, ISO]
  • AWS Transfer for SFTP [HIPAA, PCI, ISO]

This proactive compliance approach means we move upstream in the product development process. Over the last several months, we’ve made significant process improvements to deliver additional services with compliance certifications and HIPAA eligibility. Our security, compliance, and service teams have partnered in new ways to implement controls and audit earlier in a service’s development phase to demonstrate operating effectiveness. We also integrated auditing mechanisms into multiple stages of the launch process, enabling our security and compliance teams, as well as auditors, to assess controls throughout a service’s preview period. Additionally, we increased our audit frequency to meet services’ GA deadlines.

The work reflects a meaningful shift in our business. We’re excited to get these services into your hands sooner and wanted to report our overall progress. We also ask for your continued feedback since it drives our decisions and prioritization. Because going forward, we’ll continue to iterate and innovate until all of our services are certified at launch.

New PCI DSS report now available, 31 services added to scope

Post Syndicated from Chris Gile original https://aws.amazon.com/blogs/security/new-pci-dss-report-now-available-31-services-added-to-scope/

In just the last 6 months, we’ve increased the number of Payment Card Industry Data Security Standard (PCI DSS) certified services by 50%. We were evaluated by third-party auditors from Coalfire and the latest report is now available on AWS Artifact.

I would like to especially call out the six new services (marked with asterisks) that just launched generally available at re:Invent with PCI certification. We’re increasing the rate we add existing services in scope and are also launching new services PCI certified, enabling you to use them for regulated workloads sooner. The goal is for all of our services to have compliance certifications so you never have to wait to verify their security and compliance posture. Additional work to that end is already underway, and we’ll be updating you about our progress at every significant milestone.

With the addition of the following 31 services, you can now select from a total of 93 PCI-compliant services. To see the full list, go to our Services in Scope by Compliance Program page.

  • Amazon Athena
  • Amazon Comprehend
  • Amazon Elastic Container Service for Kubernetes (EKS)
  • Amazon Elasticsearch Service
  • Amazon FreeRTOS
  • Amazon FSx*
  • Amazon GuardDuty
  • Amazon Kinesis Data Analytics
  • Amazon Kinesis Data Firehose
  • Amazon Kinesis Video Streams
  • Amazon MQ
  • Amazon Neptune
  • Amazon Rekognition
  • Amazon Transcribe
  • Amazon Translate
  • AWS AppSync
  • AWS Certificate Manager (ACM)
  • AWS DataSync*
  • AWS Elemental MediaConnect*
  • AWS Global Accelerator*
  • AWS Glue
  • AWS Greengrass
  • AWS IoT Core {includes Device Management}
  • AWS OpsWorks for Chef Automate {includes Puppet Enterprise}
  • AWS RoboMaker*
  • AWS Secrets Manager
  • AWS Serverless Application Repository
  • AWS Server Migration Service (SMS)
  • AWS Step Functions
  • AWS Transfer for SFTP*
  • VM Import/Export

*New Service

If you want to know more about our compliance programs or provide feedback, please contact us. Your feedback helps us prioritize our decisions and innovate our programs.

Want more AWS Security news? Follow us on Twitter.

Are KMS custom key stores right for you?

Post Syndicated from Richard Moulds original https://aws.amazon.com/blogs/security/are-kms-custom-key-stores-right-for-you/

You can use the AWS Key Management Service (KMS) custom key store feature to gain more control over your KMS keys. The KMS custom key store integrates KMS with AWS CloudHSM to help satisfy compliance obligations that would otherwise require the use of on-premises hardware security modules (HSMs) while providing the AWS service integrations of KMS. However, the additional control comes with increased cost and potential impact on performance and availability. This post will help you decide if this feature is the best approach for you.

KMS is a fully managed service that generates encryption keys and helps you manage their use across more than 45 AWS services. It also supports the AWS Encryption SDK and other client-side encryption tools, and you can integrate it into your own applications. KMS is designed to meet the requirements of the vast majority of AWS customers. However, there are situations where customers need to manage their keys in single-tenant HSMs that they exclusively control. Previously, KMS did not meet these requirements since it offered only the ability to store keys in shared HSMs that are managed by KMS.

AWS CloudHSM is a service that’s primarily intended to support customer-managed applications that are specifically designed to use HSMs. It provides direct control over HSM resources, but the service isn’t, by itself, widely integrated with other AWS managed services. Before custom key store, this meant that if you required direct control of your HSMs but still wanted to use and store regulated data in AWS managed services, you had to choose between changing those requirements, not using a given AWS service, or building your own solution. KMS custom key store gives you another option.

How does a custom key store work?

With custom key store, you can configure your own CloudHSM cluster and authorize KMS to use it as a dedicated key store for your keys rather than the default KMS key store. Then, when you create keys in KMS, you can choose to generate the key material in your CloudHSM cluster. Your KMS customer master keys (CMKs) never leave the CloudHSM instances, and all KMS operations that use those keys are only performed in your HSMs. In all other respects, the master keys stored in your custom key store are used in a way that is consistent with other KMS CMKs.

This diagram illustrates the primary components of the service and shows how a cluster of two CloudHSM instances is connected to KMS to create a customer controlled key store.
 

Figure 1: A cluster of two CloudHSM instances is connected to the KMS front-end hosts to create a customer controlled key store

Figure 1: A cluster of two CloudHSM instances is connected to KMS to create a customer controlled key store

Because you control your CloudHSM cluster, you can take direct action to manage certain aspects of the lifecycle of your keys, independently of KMS. Specifically, you can verify that KMS correctly created keys in your HSMs and you can delete key material and restore keys from backup at any time. You can also choose to connect and disconnect the CloudHSM cluster from KMS, effectively isolating your keys from KMS. However, with more control comes more responsibility. It’s important that you understand the availability and durability impact of using this feature, and I discuss the issues in the next section.

Decision criteria

KMS customers who plan to use a custom key store tell us they expect to use the feature selectively, deciding on a key-by-key basis where to store them. To help you decide if and how you might use the new feature, here are some important issues to consider.

Here are some reasons you might want to store a key in a custom key store:

  • You have keys that are required to be protected in a single-tenant HSM or in an HSM over which you have direct control.
  • You have keys that are explicitly required to be stored in an HSM validated at FIPS 140-2 level 3 overall (the HSMs used in the default KMS key store are validated to level 2 overall, with level 3 in several categories, including physical security).
  • You have keys that are required to be auditable independently of KMS.

And here are some considerations that might influence your decision to use a custom key store:

  • Cost — Each custom key store requires that your CloudHSM cluster contains at least two HSMs. CloudHSM charges vary by region, but you should expect costs of at least $1,000 per month, per HSM, if each device is permanently provisioned. This cost occurs regardless of whether you make any requests of the KMS API directly or indirectly through an AWS service.
  • Performance — The number of HSMs determines the rate at which keys can be used. It’s important that you understand the intended usage patterns for your keys and ensure that you have provisioned your HSM resources appropriately.
  • Availability — The number of HSMs and the use of availability zones (AZs) impacts the availability of your cluster and, therefore, your keys. The risk of your configuration errors that result in a custom key store being disconnected, or key material being deleted and unrecoverable, must be understood and assessed.
  • Operations — By using the custom key store feature, you will perform certain tasks that are normally handled by KMS. You will need to set up HSM clusters, configure HSM users, and potentially restore HSMs from backup. These are security-sensitive tasks for which you should have the appropriate resources and organizational controls in place to perform.

Getting Started

Here’s a basic rundown of the steps that you’ll take to create your first key in a custom key store within a given region.

  1. Create your CloudHSM cluster, initialize it, and add HSMs to the cluster. If you already have a CloudHSM cluster, you can use it as a custom key store in addition to your existing applications.
  2. Create a CloudHSM user so that KMS can access your cluster to create and use keys.
  3. Create a custom key store entry in KMS, give it a name, define which CloudHSM cluster you want it to use, and give KMS the credentials to access your cluster.
  4. Instruct KMS to make a connection to your cluster and log in.
  5. Create a CMK in KMS in the usual way except now select CloudHSM as the source of your key material. You’ll define administrators, users, and policies for the key as you would for any other CMK.
  6. Use the key via the existing KMS APIs, AWS CLI, or the AWS Encryption SDK. Requests to use the key don’t need to be context-aware of whether the key is stored in a custom key store or the default KMS key store.

Summary

Some customers need specific controls in place before they can use KMS to manage encryption keys in AWS. The new KMS custom key store feature is intended to satisfy that requirement. You can now apply the controls provided by CloudHSM to keys managed in KMS, without changing access control policies or service integration.

However, by using the new feature, you take responsibility for certain operational aspects that would otherwise be handled by KMS. It’s important that you have the appropriate controls in place and understand the performance and availability requirements of each key that you create in a custom key store.

If you’ve been prevented from migrating sensitive data to AWS because of specific key management requirements that are currently not met by KMS, consider using the new KMS custom key store feature.

If you have feedback about this blog post, submit comments in the Comments section below. If you have questions about this blog post, start a new thread on the AWS Key Management Service discussion forum.

Want more AWS Security news? Follow us on Twitter.

Author

Richard Moulds

Richard is a Principal Product Manager at AWS. He’s a member of the KMS team and is primarily focused on helping to define the product roadmap and satisfy customer requirements. Richard has more than 15 years experience in helping customers build encryption and key management systems to protect their data. His attraction to cryptography stems from the challenge of taking such a complex subject and translating it into simple solutions that customers should be able to take for granted, on a grand scale. When he’s not thinking ahead he’s focused on the past, restoring classic cars, the more rust the better.

New PCI DSS report now available, eight services added in scope

Post Syndicated from Chris Gile original https://aws.amazon.com/blogs/security/new-pci-dss-report-now-available-eight-services-added-in-scope/

We continue to expand the scope of our assurance programs to support your most important workloads. I’m pleased to tell you that eight services have been added to the scope of our Payment Card Industry Data Security Standard (PCI DSS) certification. With these additions, you can now select from a total of 62 PCI-compliant services. You can see the full list on our Services in Scope by Compliance program page. The eight newly added services are:

Amazon ElastiCache for Redis

Amazon Elastic File System

Amazon Elastic Container Registry

Amazon Polly

AWS CodeCommit

AWS Firewall Manager

AWS Service Catalog

AWS Storage Gateway

We were evaluated by third-party auditors from Coalfire and their report is available on-demand through AWS Artifact. When you go to AWS Artifact, you’ll find something new. We’ve made the full Responsibility Summary, listing each requirement and control, available in a spreadsheet. This includes a break down of the shared responsibility for each control – yours and ours – with a mapping to our services. We hope this new format makes it easier to evaluate and use the information from the audit.

To learn more about our PCI program and other compliance and security programs, please go to the AWS Compliance Programs page. As always, we value your feedback and questions, reach out to the team through the Contact Us page.

Securing messages published to Amazon SNS with AWS PrivateLink

Post Syndicated from Otavio Ferreira original https://aws.amazon.com/blogs/security/securing-messages-published-to-amazon-sns-with-aws-privatelink/

Amazon Simple Notification Service (SNS) now supports VPC Endpoints (VPCE) via AWS PrivateLink. You can use VPC Endpoints to privately publish messages to SNS topics, from an Amazon Virtual Private Cloud (VPC), without traversing the public internet. When you use AWS PrivateLink, you don’t need to set up an Internet Gateway (IGW), Network Address Translation (NAT) device, or Virtual Private Network (VPN) connection. You don’t need to use public IP addresses, either.

VPC Endpoints doesn’t require code changes and can bring additional security to Pub/Sub Messaging use cases that rely on SNS. VPC Endpoints helps promote data privacy and is aligned with assurance programs, including the Health Insurance Portability and Accountability Act (HIPAA), FedRAMP, and others discussed below.

VPC Endpoints for SNS in action

Here’s how VPC Endpoints for SNS works. The following example is based on a banking system that processes mortgage applications. This banking system, which has been deployed to a VPC, publishes each mortgage application to an SNS topic. The SNS topic then fans out the mortgage application message to two subscribing AWS Lambda functions:

  • Save-Mortgage-Application stores the application in an Amazon DynamoDB table. As the mortgage application contains personally identifiable information (PII), the message must not traverse the public internet.
  • Save-Credit-Report checks the applicant’s credit history against an external Credit Reporting Agency (CRA), then stores the final credit report in an Amazon S3 bucket.

The following diagram depicts the underlying architecture for this banking system:
 
Diagram depicting the architecture for the example banking system
 
To protect applicants’ data, the financial institution responsible for developing this banking system needed a mechanism to prevent PII data from traversing the internet when publishing mortgage applications from their VPC to the SNS topic. Therefore, they created a VPC endpoint to enable their publisher Amazon EC2 instance to privately connect to the SNS API. As shown in the diagram, when the VPC endpoint is created, an Elastic Network Interface (ENI) is automatically placed in the same VPC subnet as the publisher EC2 instance. This ENI exposes a private IP address that is used as the entry point for traffic destined to SNS. This ensures that traffic between the VPC and SNS doesn’t leave the Amazon network.

Set up VPC Endpoints for SNS

The process for creating a VPC endpoint to privately connect to SNS doesn’t require code changes: access the VPC Management Console, navigate to the Endpoints section, and create a new Endpoint. Three attributes are required:

  • The SNS service name.
  • The VPC and Availability Zones (AZs) from which you’ll publish your messages.
  • The Security Group (SG) to be associated with the endpoint network interface. The Security Group controls the traffic to the endpoint network interface from resources in your VPC. If you don’t specify a Security Group, the default Security Group for your VPC will be associated.

Help ensure your security and compliance

SNS can support messaging use cases in regulated market segments, such as healthcare provider systems subject to the Health Insurance Portability and Accountability Act (HIPAA) and financial systems subject to the Payment Card Industry Data Security Standard (PCI DSS), and is also in-scope with the following Assurance Programs:

The SNS API is served through HTTP Secure (HTTPS), and encrypts all messages in transit with Transport Layer Security (TLS) certificates issued by Amazon Trust Services (ATS). The certificates verify the identity of the SNS API server when encrypted connections are established. The certificates help establish proof that your SNS API client (SDK, CLI) is communicating securely with the SNS API server. A Certificate Authority (CA) issues the certificate to a specific domain. Hence, when a domain presents a certificate that’s issued by a trusted CA, the SNS API client knows it’s safe to make the connection.

Summary

VPC Endpoints can increase the security of your pub/sub messaging use cases by allowing you to publish messages to SNS topics, from instances in your VPC, without traversing the internet. Setting up VPC Endpoints for SNS doesn’t require any code changes because the SNS API address remains the same.

VPC Endpoints for SNS is now available in all AWS Regions where AWS PrivateLink is available. For information on pricing and regional availability, visit the VPC pricing page.
For more information and on-boarding, see Publishing to Amazon SNS Topics from Amazon Virtual Private Cloud in the SNS documentation.

If you have comments about this post, submit them in the Comments section below. If you have questions about anything in this post, start a new thread on the Amazon SNS forum or contact AWS Support.

Want more AWS Security news? Follow us on Twitter.

AWS Adds 16 More Services to Its PCI DSS Compliance Program

Post Syndicated from Chad Woolf original https://aws.amazon.com/blogs/security/aws-adds-16-more-services-to-its-pci-dss-compliance-program/

PCI logo

AWS has added 16 more AWS services to its Payment Card Industry Data Security Standard (PCI DSS) compliance program, giving you more options, flexibility, and functionality to process and store sensitive payment card data in the AWS Cloud. The services were audited by Coalfire to ensure that they meet strict PCI DSS standards.

The newly compliant AWS services are:

AWS now offers 58 services that are officially PCI DSS compliant, giving administrators more service options for implementing a PCI-compliant cardholder environment.

For more information about the AWS PCI DSS compliance program, see Compliance ResourcesAWS Services in Scope by Compliance Program, and PCI DSS Compliance.

– Chad Woolf

Scale Your Web Application — One Step at a Time

Post Syndicated from Saurabh Shrivastava original https://aws.amazon.com/blogs/architecture/scale-your-web-application-one-step-at-a-time/

I often encounter people experiencing frustration as they attempt to scale their e-commerce or WordPress site—particularly around the cost and complexity related to scaling. When I talk to customers about their scaling plans, they often mention phrases such as horizontal scaling and microservices, but usually people aren’t sure about how to dive in and effectively scale their sites.

Now let’s talk about different scaling options. For instance if your current workload is in a traditional data center, you can leverage the cloud for your on-premises solution. This way you can scale to achieve greater efficiency with less cost. It’s not necessary to set up a whole powerhouse to light a few bulbs. If your workload is already in the cloud, you can use one of the available out-of-the-box options.

Designing your API in microservices and adding horizontal scaling might seem like the best choice, unless your web application is already running in an on-premises environment and you’ll need to quickly scale it because of unexpected large spikes in web traffic.

So how to handle this situation? Take things one step at a time when scaling and you may find horizontal scaling isn’t the right choice, after all.

For example, assume you have a tech news website where you did an early-look review of an upcoming—and highly-anticipated—smartphone launch, which went viral. The review, a blog post on your website, includes both video and pictures. Comments are enabled for the post and readers can also rate it. For example, if your website is hosted on a traditional Linux with a LAMP stack, you may find yourself with immediate scaling problems.

Let’s get more details on the current scenario and dig out more:

  • Where are images and videos stored?
  • How many read/write requests are received per second? Per minute?
  • What is the level of security required?
  • Are these synchronous or asynchronous requests?

We’ll also want to consider the following if your website has a transactional load like e-commerce or banking:

How is the website handling sessions?

  • Do you have any compliance requests—like the Payment Card Industry Data Security Standard (PCI DSS compliance) —if your website is using its own payment gateway?
  • How are you recording customer behavior data and fulfilling your analytics needs?
  • What are your loading balancing considerations (scaling, caching, session maintenance, etc.)?

So, if we take this one step at a time:

Step 1: Ease server load. We need to quickly handle spikes in traffic, generated by activity on the blog post, so let’s reduce server load by moving image and video to some third -party content delivery network (CDN). AWS provides Amazon CloudFront as a CDN solution, which is highly scalable with built-in security to verify origin access identity and handle any DDoS attacks. CloudFront can direct traffic to your on-premises or cloud-hosted server with its 113 Points of Presence (102 Edge Locations and 11 Regional Edge Caches) in 56 cities across 24 countries, which provides efficient caching.
Step 2: Reduce read load by adding more read replicas. MySQL provides a nice mirror replication for databases. Oracle has its own Oracle plug for replication and AWS RDS provide up to five read replicas, which can span across the region and even the Amazon database Amazon Aurora can have 15 read replicas with Amazon Aurora autoscaling support. If a workload is highly variable, you should consider Amazon Aurora Serverless database  to achieve high efficiency and reduced cost. While most mirror technologies do asynchronous replication, AWS RDS can provide synchronous multi-AZ replication, which is good for disaster recovery but not for scalability. Asynchronous replication to mirror instance means replication data can sometimes be stale if network bandwidth is low, so you need to plan and design your application accordingly.

I recommend that you always use a read replica for any reporting needs and try to move non-critical GET services to read replica and reduce the load on the master database. In this case, loading comments associated with a blog can be fetched from a read replica—as it can handle some delay—in case there is any issue with asynchronous reflection.

Step 3: Reduce write requests. This can be achieved by introducing queue to process the asynchronous message. Amazon Simple Queue Service (Amazon SQS) is a highly-scalable queue, which can handle any kind of work-message load. You can process data, like rating and review; or calculate Deal Quality Score (DQS) using batch processing via an SQS queue. If your workload is in AWS, I recommend using a job-observer pattern by setting up Auto Scaling to automatically increase or decrease the number of batch servers, using the number of SQS messages, with Amazon CloudWatch, as the trigger.  For on-premises workloads, you can use SQS SDK to create an Amazon SQS queue that holds messages until they’re processed by your stack. Or you can use Amazon SNS  to fan out your message processing in parallel for different purposes like adding a watermark in an image, generating a thumbnail, etc.

Step 4: Introduce a more robust caching engine. You can use Amazon Elastic Cache for Memcached or Redis to reduce write requests. Memcached and Redis have different use cases so if you can afford to lose and recover your cache from your database, use Memcached. If you are looking for more robust data persistence and complex data structure, use Redis. In AWS, these are managed services, which means AWS takes care of the workload for you and you can also deploy them in your on-premises instances or use a hybrid approach.

Step 5: Scale your server. If there are still issues, it’s time to scale your server.  For the greatest cost-effectiveness and unlimited scalability, I suggest always using horizontal scaling. However, use cases like database vertical scaling may be a better choice until you are good with sharding; or use Amazon Aurora Serverless for variable workloads. It will be wise to use Auto Scaling to manage your workload effectively for horizontal scaling. Also, to achieve that, you need to persist the session. Amazon DynamoDB can handle session persistence across instances.

If your server is on premises, consider creating a multisite architecture, which will help you achieve quick scalability as required and provide a good disaster recovery solution.  You can pick and choose individual services like Amazon Route 53, AWS CloudFormation, Amazon SQS, Amazon SNS, Amazon RDS, etc. depending on your needs.

Your multisite architecture will look like the following diagram:

In this architecture, you can run your regular workload on premises, and use your AWS workload as required for scalability and disaster recovery. Using Route 53, you can direct a precise percentage of users to an AWS workload.

If you decide to move all of your workloads to AWS, the recommended multi-AZ architecture would look like the following:

In this architecture, you are using a multi-AZ distributed workload for high availability. You can have a multi-region setup and use Route53 to distribute your workload between AWS Regions. CloudFront helps you to scale and distribute static content via an S3 bucket and DynamoDB, maintaining your application state so that Auto Scaling can apply horizontal scaling without loss of session data. At the database layer, RDS with multi-AZ standby provides high availability and read replica helps achieve scalability.

This is a high-level strategy to help you think through the scalability of your workload by using AWS even if your workload in on premises and not in the cloud…yet.

I highly recommend creating a hybrid, multisite model by placing your on-premises environment replica in the public cloud like AWS Cloud, and using Amazon Route53 DNS Service and Elastic Load Balancing to route traffic between on-premises and cloud environments. AWS now supports load balancing between AWS and on-premises environments to help you scale your cloud environment quickly, whenever required, and reduce it further by applying Amazon auto-scaling and placing a threshold on your on-premises traffic using Route 53.

Now Open – Third AWS Availability Zone in London

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/now-open-third-aws-availability-zone-in-london/

We expand AWS by picking a geographic area (which we call a Region) and then building multiple, isolated Availability Zones in that area. Each Availability Zone (AZ) has multiple Internet connections and power connections to multiple grids.

Today I am happy to announce that we are opening our 50th AWS Availability Zone, with the addition of a third AZ to the EU (London) Region. This will give you additional flexibility to architect highly scalable, fault-tolerant applications that run across multiple AZs in the UK.

Since launching the EU (London) Region, we have seen an ever-growing set of customers, particularly in the public sector and in regulated industries, use AWS for new and innovative applications. Here are a couple of examples, courtesy of my AWS colleagues in the UK:

Enterprise – Some of the UK’s most respected enterprises are using AWS to transform their businesses, including BBC, BT, Deloitte, and Travis Perkins. Travis Perkins is one of the largest suppliers of building materials in the UK and is implementing the biggest systems and business change in its history, including an all-in migration of its data centers to AWS.

Startups – Cross-border payments company Currencycloud has migrated its entire payments production, and demo platform to AWS resulting in a 30% saving on their infrastructure costs. Clearscore, with plans to disrupting the credit score industry, has also chosen to host their entire platform on AWS. UnderwriteMe is using the EU (London) Region to offer an underwriting platform to their customers as a managed service.

Public Sector -The Met Office chose AWS to support the Met Office Weather App, available for iPhone and Android phones. Since the Met Office Weather App went live in January 2016, it has attracted more than half a million users. Using AWS, the Met Office has been able to increase agility, speed, and scalability while reducing costs. The Driver and Vehicle Licensing Agency (DVLA) is using the EU (London) Region for services such as the Strategic Card Payments platform, which helps the agency achieve PCI DSS compliance.

The AWS EU (London) Region has achieved Public Services Network (PSN) assurance, which provides UK Public Sector customers with an assured infrastructure on which to build UK Public Sector services. In conjunction with AWS’s Standardized Architecture for UK-OFFICIAL, PSN assurance enables UK Public Sector organizations to move their UK-OFFICIAL classified data to the EU (London) Region in a controlled and risk-managed manner.

For a complete list of AWS Regions and Services, visit the AWS Global Infrastructure page. As always, pricing for services in the Region can be found on the detail pages; visit our Cloud Products page to get started.

Jeff;

Now Open AWS EU (Paris) Region

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/now-open-aws-eu-paris-region/

Today we are launching our 18th AWS Region, our fourth in Europe. Located in the Paris area, AWS customers can use this Region to better serve customers in and around France.

The Details
The new EU (Paris) Region provides a broad suite of AWS services including Amazon API Gateway, Amazon Aurora, Amazon CloudFront, Amazon CloudWatch, CloudWatch Events, Amazon CloudWatch Logs, Amazon DynamoDB, Amazon Elastic Compute Cloud (EC2), EC2 Container Registry, Amazon ECS, Amazon Elastic Block Store (EBS), Amazon EMR, Amazon ElastiCache, Amazon Elasticsearch Service, Amazon Glacier, Amazon Kinesis Streams, Polly, Amazon Redshift, Amazon Relational Database Service (RDS), Amazon Route 53, Amazon Simple Notification Service (SNS), Amazon Simple Queue Service (SQS), Amazon Simple Storage Service (S3), Amazon Simple Workflow Service (SWF), Amazon Virtual Private Cloud, Auto Scaling, AWS Certificate Manager (ACM), AWS CloudFormation, AWS CloudTrail, AWS CodeDeploy, AWS Config, AWS Database Migration Service, AWS Direct Connect, AWS Elastic Beanstalk, AWS Identity and Access Management (IAM), AWS Key Management Service (KMS), AWS Lambda, AWS Marketplace, AWS OpsWorks Stacks, AWS Personal Health Dashboard, AWS Server Migration Service, AWS Service Catalog, AWS Shield Standard, AWS Snowball, AWS Snowball Edge, AWS Snowmobile, AWS Storage Gateway, AWS Support (including AWS Trusted Advisor), Elastic Load Balancing, and VM Import.

The Paris Region supports all sizes of C5, M5, R4, T2, D2, I3, and X1 instances.

There are also four edge locations for Amazon Route 53 and Amazon CloudFront: three in Paris and one in Marseille, all with AWS WAF and AWS Shield. Check out the AWS Global Infrastructure page to learn more about current and future AWS Regions.

The Paris Region will benefit from three AWS Direct Connect locations. Telehouse Voltaire is available today. AWS Direct Connect will also become available at Equinix Paris in early 2018, followed by Interxion Paris.

All AWS infrastructure regions around the world are designed, built, and regularly audited to meet the most rigorous compliance standards and to provide high levels of security for all AWS customers. These include ISO 27001, ISO 27017, ISO 27018, SOC 1 (Formerly SAS 70), SOC 2 and SOC 3 Security & Availability, PCI DSS Level 1, and many more. This means customers benefit from all the best practices of AWS policies, architecture, and operational processes built to satisfy the needs of even the most security sensitive customers.

AWS is certified under the EU-US Privacy Shield, and the AWS Data Processing Addendum (DPA) is GDPR-ready and available now to all AWS customers to help them prepare for May 25, 2018 when the GDPR becomes enforceable. The current AWS DPA, as well as the AWS GDPR DPA, allows customers to transfer personal data to countries outside the European Economic Area (EEA) in compliance with European Union (EU) data protection laws. AWS also adheres to the Cloud Infrastructure Service Providers in Europe (CISPE) Code of Conduct. The CISPE Code of Conduct helps customers ensure that AWS is using appropriate data protection standards to protect their data, consistent with the GDPR. In addition, AWS offers a wide range of services and features to help customers meet the requirements of the GDPR, including services for access controls, monitoring, logging, and encryption.

From Our Customers
Many AWS customers are preparing to use this new Region. Here’s a small sample:

Societe Generale, one of the largest banks in France and the world, has accelerated their digital transformation while working with AWS. They developed SG Research, an application that makes reports from Societe Generale’s analysts available to corporate customers in order to improve the decision-making process for investments. The new AWS Region will reduce latency between applications running in the cloud and in their French data centers.

SNCF is the national railway company of France. Their mobile app, powered by AWS, delivers real-time traffic information to 14 million riders. Extreme weather, traffic events, holidays, and engineering works can cause usage to peak at hundreds of thousands of users per second. They are planning to use machine learning and big data to add predictive features to the app.

Radio France, the French public radio broadcaster, offers seven national networks, and uses AWS to accelerate its innovation and stay competitive.

Les Restos du Coeur, a French charity that provides assistance to the needy, delivering food packages and participating in their social and economic integration back into French society. Les Restos du Coeur is using AWS for its CRM system to track the assistance given to each of their beneficiaries and the impact this is having on their lives.

AlloResto by JustEat (a leader in the French FoodTech industry), is using AWS to to scale during traffic peaks and to accelerate their innovation process.

AWS Consulting and Technology Partners
We are already working with a wide variety of consulting, technology, managed service, and Direct Connect partners in France. Here’s a partial list:

AWS Premier Consulting PartnersAccenture, Capgemini, Claranet, CloudReach, DXC, and Edifixio.

AWS Consulting PartnersABC Systemes, Atos International SAS, CoreExpert, Cycloid, Devoteam, LINKBYNET, Oxalide, Ozones, Scaleo Information Systems, and Sopra Steria.

AWS Technology PartnersAxway, Commerce Guys, MicroStrategy, Sage, Software AG, Splunk, Tibco, and Zerolight.

AWS in France
We have been investing in Europe, with a focus on France, for the last 11 years. We have also been developing documentation and training programs to help our customers to improve their skills and to accelerate their journey to the AWS Cloud.

As part of our commitment to AWS customers in France, we plan to train more than 25,000 people in the coming years, helping them develop highly sought after cloud skills. They will have access to AWS training resources in France via AWS Academy, AWSome days, AWS Educate, and webinars, all delivered in French by AWS Technical Trainers and AWS Certified Trainers.

Use it Today
The EU (Paris) Region is open for business now and you can start using it today!

Jeff;

 

Catching Up on Some Recent AWS Launches and Publications

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/catching-up-on-some-recent-aws-launches-and-publications/

As I have noted in the past, the AWS Blog Team is working hard to make sure that you know about as many AWS launches and publications as possible, without totally burying you in content! As part of our balancing act, we will occasionally publish catch-up posts to clear our queues and to bring more information to your attention. Here’s what I have in store for you today:

  • Monitoring for Cross-Region Replication of S3 Objects
  • Tags for Spot Fleet Instances
  • PCI DSS Compliance for 12 More Services
  • HIPAA Eligibility for WorkDocs
  • VPC Resizing
  • AppStream 2.0 Graphics Design Instances
  • AMS Connector App for ServiceNow
  • Regtech in the Cloud
  • New & Revised Quick Starts

Let’s jump right in!

Monitoring for Cross-Region Replication of S3 Objects
I told you about cross-region replication for S3 a couple of years ago. As I showed you at the time, you simply enable versioning for the source bucket and then choose a destination region and bucket. You can check the replication status manually, or you can create an inventory (daily or weekly) of the source and destination buckets.

The Cross-Region Replication Monitor (CRR Monitor for short) solution checks the replication status of objects across regions and gives you metrics and failure notifications in near real-time.

To learn more, read the CRR Monitor Implementation Guide and then use the AWS CloudFormation template to Deploy the CRR Monitor.

Tags for Spot Instances
Spot Instances and Spot Fleets (collections of Spot Instances) give you access to spare compute capacity. We recently gave you the ability to enter tags (key/value pairs) as part of your spot requests and to have those tags applied to the EC2 instances launched to fulfill the request:

To learn more, read Tag Your Spot Fleet EC2 Instances.

PCI DSS Compliance for 12 More Services
As first announced on the AWS Security Blog, we recently added 12 more services to our PCI DSS compliance program, raising the total number of in-scope services to 42. To learn more, check out our Compliance Resources.

HIPAA Eligibility for WorkDocs
In other compliance news, we announced that Amazon WorkDocs has achieved HIPAA eligibility and PCI DSS compliance in all AWS Regions where WorkDocs is available.

VPC Resizing
This feature allows you to extend an existing Virtual Private Cloud (VPC) by adding additional blocks of addresses. This gives you more flexibility and should help you to deal with growth. You can add up to four secondary /16 CIDRs per VPC. You can also edit the secondary CIDRs by deleting them and adding new ones. Simply select the VPC and choose Edit CIDRs from the menu:

Then add or remove CIDR blocks as desired:

To learn more, read about VPCs and Subnets.

AppStream 2.0 Graphics Design Instances
Powered by AMD FirePro S7150x2 Server GPUs and equipped with AMD Multiuser GPU technology, the new Graphics Design instances for Amazon AppStream 2.0 will let you run and stream graphics applications more cost-effectively than ever. The instances are available in four sizes, with 2-16 vCPUs and 7.5 GB to 61 GB of memory.

To learn more, read Introducing Amazon AppStream 2.0 Graphics Design, a New Lower Costs Instance Type for Streaming Graphics Applications.

AMS Connector App for ServiceNow
AWS Managed Services (AMS) provides Infrastructure Operations Management for the Enterprise. Designed to accelerate cloud adoption, it automates common operations such as change requests, patch management, security and backup.

The new AMS integration App for ServiceNow lets you interact with AMS from within ServiceNow, with no need for any custom development or API integration.

To learn more, read Cloud Management Made Easier: AWS Managed Services Now Integrates with ServiceNow.

Regtech in the Cloud
Regtech (as I learned while writing this), is short for regulatory technology, and is all about using innovative technology such as cloud computing, analytics, and machine learning to address regulatory challenges.

Working together with APN Consulting Partner Cognizant, TABB Group recently published a thought leadership paper that explains why regulations and compliance pose huge challenges for our customers in the financial services, and shows how AWS can help!

New & Revised Quick Starts
Our Quick Starts team has been cranking out new solutions and making significant updates to the existing ones. Here’s a roster:

Alfresco Content Services (v2)Atlassian ConfluenceConfluent PlatformData Lake
Datastax EnterpriseGitHub EnterpriseHashicorp NomadHIPAA
Hybrid Data Lake with Wandisco FusionIBM MQIBM Spectrum ScaleInformatica EIC
Magento (v2)Linux Bastion (v2)Modern Data Warehouse with TableauMongoDB (v2)
NetApp ONTAPNGINX (v2)RD GatewayRed Hat Openshift
SAS GridSIOS DatakeeperStorReduceSQL Server (v2)

And that’s all I have for today!

Jeff;

How to Query Personally Identifiable Information with Amazon Macie

Post Syndicated from Chad Woolf original https://aws.amazon.com/blogs/security/how-to-query-personally-identifiable-information-with-amazon-macie/

Amazon Macie logo

In August 2017 at the AWS Summit New York, AWS launched a new security and compliance service called Amazon Macie. Macie uses machine learning to automatically discover, classify, and protect sensitive data in AWS. In this blog post, I demonstrate how you can use Macie to help enable compliance with applicable regulations, starting with data retention.

How to query retained PII with Macie

Data retention and mandatory data deletion are common topics across compliance frameworks, so knowing what is stored and how long it has been or needs to be stored is of critical importance. For example, you can use Macie for Payment Card Industry Data Security Standard (PCI DSS) 3.2, requirement 3, “Protect stored cardholder data,” which mandates a “quarterly process for identifying and securely deleting stored cardholder data that exceeds defined retention.” You also can use Macie for ISO 27017 requirement 12.3.1, which calls for “retention periods for backup data.” In each of these cases, you can use Macie’s built-in queries to identify the age of data in your Amazon S3 buckets and to help meet your compliance needs.

To get started with Macie and run your first queries of personally identifiable information (PII) and sensitive data, follow the initial setup as described in the launch post on the AWS Blog. After you have set up Macie, walk through the following steps to start running queries. Start by focusing on the S3 buckets that you want to inventory and capture important compliance related activity and data.

To start running Macie queries:

  1. In the AWS Management Console, launch the Macie console (you can type macie to find the console).
  2. Click Dashboard in the navigation pane. This shows you an overview of the risk level and data classification type of all inventoried S3 buckets, categorized by date and type.
    Screenshot of "Dashboard" in the navigation pane
  3. Choose S3 objects by PII priority. This dashboard lets you sort by PII priority and PII types.
    Screenshot of "S3 objects by PII priority"
  4. In this case, I want to find information about credit card numbers. I choose the magnifying glass for the type cc_number (note that PII types can be used for custom queries). This view shows the events where PII classified data has been uploaded to S3. When I scroll down, I see the individual files that have been identified.
    Screenshot showing the events where PII classified data has been uploaded to S3
  5. Before looking at the files, I want to continue to build the query by only showing items with high priority. To do so, I choose the row called Object PII Priority and then the magnifying glass icon next to High.
    Screenshot of refining the query for high priority events
  6. To view the results matching these queries, I scroll down and choose any file listed. This shows vital information such as creation date, location, and object access control list (ACL).
  7. The piece I am most interested in this case is the Object PII details line to understand more about what was found in the file. In this case, I see name and credit card information, which is what caused the high priority. Scrolling up again, I also see that the query fields have updated as I interacted with the UI.
    Screenshot showing "Object PII details"

Let’s say that I want to get an alert every time Macie finds new data matching this query. This alert can be used to automate response actions by using AWS Lambda and Amazon CloudWatch Events.

  1. I choose the left green icon called Save query as alert.
    Screenshot of "Save query as alert" button
  2. I can customize the alert and change things like category or severity to fit my needs based on the alert data.
  3. Another way to find the information I am looking for is to run custom queries. To start using custom queries, I choose Research in the navigation pane.
    1. To learn more about custom Macie queries and what you can do on the Research tab, see Using the Macie Research Tab.
  4. I change the type of query I want to run from CloudTrail data to S3 objects in the drop-down list menu.
    Screenshot of choosing "S3 objects" from the drop-down list menu
  5. Because I want PII data, I start typing in the query box, which has an autocomplete feature. I choose the pii_types: query. I can now type the data I want to look for. In this case, I want to see all files matching the credit card filter so I type cc_number and press Enter. The query box now says, pii_types:cc_number. I press Enter again to enable autocomplete, and then I type AND pii_types:email to require both a credit card number and email address in a single object.
    The query looks for all files matching the credit card filter ("cc_number")
  6. I choose the magnifying glass to search and Macie shows me all S3 objects that are tagged as PII of type Credit Cards. I can further specify that I only want to see PII of type Credit Card that are classified as High priority by adding AND and pii_impact:high to the query.
    Screenshot showing narrowing the query results furtherAs before, I can save this new query as an alert by clicking Save query as alert, which will be triggered by data matching the query going forward.

Advanced tip

Try the following advanced queries using Lucene query syntax and save the queries as alerts in Macie.

  • Use a regular-expression based query to search for a minimum of 10 credit card numbers and 10 email addresses in a single object:
    • pii_explain.cc_number:/([1-9][0-9]|[0-9]{3,}) distinct Credit Card Numbers.*/ AND pii_explain.email:/([1-9][0-9]|[0-9]{3,}) distinct Email Addresses.*/
  • Search for objects containing at least one credit card, name, and email address that have an object policy enabling global access (searching for S3 AllUsers or AuthenticatedUsers permissions):
    • (object_acl.Grants.Grantee.URI:”http\://acs.amazonaws.com/groups/global/AllUsers” OR  object_acl.Grants.Grantee.URI:”http\://acs.amazonaws.com/groups/global/AllUsers”) AND (pii_types.cc_number AND pii_types.email AND pii_types.name)

These are two ways to identify and be alerted about PII by using Macie. In a similar way, you can create custom alerts for various AWS CloudTrail events by choosing a different data set on which to run the queries again. In the examples in this post, I identified credit cards stored in plain text (all data in this post is example data only), determined how long they had been stored in S3 by viewing the result details, and set up alerts to notify or trigger actions on new sensitive data being stored. With queries like these, you can build a reliable data validation program.

If you have comments about this post, submit them in the “Comments” section below. If you have questions about how to use Macie, start a new thread on the Macie forum or contact AWS Support.

-Chad

New: Server-Side Encryption for Amazon Kinesis Streams

Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/new-server-side-encryption-for-amazon-kinesis-streams/

In this age of smart homes, big data, IoT devices, mobile phones, social networks, chatbots, and game consoles, streaming data scenarios are everywhere. Amazon Kinesis Streams enables you to build custom applications that can capture, process, analyze, and store terabytes of data per hour from thousands of streaming data sources. Since Amazon Kinesis Streams allows applications to process data concurrently from the same Kinesis stream, you can build parallel processing systems. For example, you can emit processed data to Amazon S3, perform complex analytics with Amazon Redshift, and even build robust, serverless streaming solutions using AWS Lambda.

Kinesis Streams enables several streaming use cases for consumers, and now we are making the service more effective for securing your data in motion by adding server-side encryption (SSE) support for Kinesis Streams. With this new Kinesis Streams feature, you can now enhance the security of your data and/or meet any regulatory and compliance requirements for any of your organization’s data streaming needs.
In fact, Kinesis Streams is now one of the AWS Services in Scope for the Payment Card Industry Data Security Standard (PCI DSS) compliance program. PCI DSS is a proprietary information security standard administered by the PCI Security Standards Council founded by key financial institutions. PCI DSS compliance applies to all entities that store, process, or transmit cardholder data and/or sensitive authentication data which includes service providers. You can request the PCI DSS Attestation of Compliance and Responsibility Summary using AWS Artifact. But the good news about compliance with Kinesis Streams doesn’t stop there. Kinesis Streams is now also FedRAMP compliant in AWS GovCloud. FedRAMP stands for Federal Risk and Authorization Management Program and is a U.S. government-wide program that delivers a standard approach to the security assessment, authorization, and continuous monitoring for cloud products and services. You can learn more about FedRAMP compliance with AWS Services here.

Now are you ready to get into the keys? Get it, instead of get into the weeds. Okay a little corny, but it was the best I could do. Coming back to discussing SSE for Kinesis Streams, let me explain the flow of server-side encryption with Kinesis.  Each data record and partition key put into a Kinesis Stream using the PutRecord or PutRecords API is encrypted using an AWS Key Management Service (KMS) master key. With the AWS Key Management Service (KMS) master key, Kinesis Streams uses the 256-bit Advanced Encryption Standard (AES-256 GCM algorithm) to add encryption to the incoming data.

In order to enable server-side encryption with Kinesis Streams for new or existing streams, you can use the Kinesis management console or leverage one of the available AWS SDKs.  Additionally, you can audit the history of your stream encryption, validate the encryption status of a certain stream in the Kinesis Streams console, or check that the PutRecord or GetRecord transactions are encrypted using the AWS CloudTrail service.

 

Walkthrough: Kinesis Streams Server-Side Encryption

Let’s do a quick walkthrough of server-side encryption with Kinesis Streams. First, I’ll go to the Amazon Kinesis console and select the Streams console option.

Once in the Kinesis Streams console, I can add server-side encryption to one of my existing Kinesis streams or opt to create a new Kinesis stream.  For this walkthrough, I’ll opt to quickly create a new Kinesis stream, therefore, I’ll select the Create Kinesis stream button.

I’ll name my stream, KinesisSSE-stream, and allocate one shard for my stream. Remember that the data capacity of your stream is calculated based upon the number of shards specified for the stream.  You can use the Estimate the number of shards you’ll need dropdown within the console or read more calculations to estimate the number of shards in a stream here.  To complete the creation of my stream, now I click the Create Kinesis stream button.

 

With my KinesisSSE-stream created, I will select it in the dashboard and choose the Actions dropdown and select the Details option.


On the Details page of the KinesisSSE-stream, there is now a Server-side encryption section.  In this section, I will select the Edit button.

 

 

Now I can enable server-side encryption for my stream with an AWS KMS master key, by selecting the Enabled radio button. Once selected I can choose which AWS KMS master key to use for the encryption of  data in KinesisSSE-stream. I can either select the KMS master key generated by the Kinesis service, (Default) aws/kinesis, or select one of my own KMS master keys that I have previously generated.  I’ll select the default master key and all that is left is for me to click the Save button.


That’s it!  As you can see from my screenshots below, after only about 20 seconds, server-side encryption was added to my Kinesis stream and now any incoming data into my stream will be encrypted.  One thing to note is server-side encryption only encrypts incoming data after encryption has been enabled. Preexisting data that is in a Kinesis stream prior to server-side encryption being enabled will remain unencrypted.

 

Summary

Kinesis Streams with Server-side encryption using AWS KMS keys makes it easy for you to automatically encrypt the streaming data coming into your  stream. You can start, stop, or update server-side encryption for any Kinesis stream using the AWS management console or the AWS SDK. To learn more about Kinesis Server-Side encryption, AWS Key Management Service, or about Kinesis Streams review the Amazon Kinesis getting started guide, the AWS Key Management Service developer guide, or the Amazon Kinesis product page.

 

Enjoy streaming.

Tara

AWS Adds 12 More Services to Its PCI DSS Compliance Program

Post Syndicated from Sara Duffer original https://aws.amazon.com/blogs/security/aws-adds-12-more-services-to-its-pci-dss-compliance-program/

Twelve more AWS services have obtained Payment Card Industry Data Security Standard (PCI DSS) compliance, giving you more options, flexibility, and functionality to process and store sensitive payment card data in the AWS Cloud. The services were audited by Coalfire to ensure that they meet strict PCI DSS standards.

The newly compliant AWS services are:

AWS now offers 42 services that meet PCI DSS standards, putting administrators in better control of their frameworks and making workloads more efficient and cost effective.

For more information about the AWS PCI DSS compliance program, see Compliance Resources, AWS Services in Scope by Compliance Program, and PCI DSS Compliance.

– Sara

AWS and the General Data Protection Regulation (GDPR)

Post Syndicated from Stephen Schmidt original https://aws.amazon.com/blogs/security/aws-and-the-general-data-protection-regulation/

European Union image

Just over a year ago, the European Commission approved and adopted the new General Data Protection Regulation (GDPR). The GDPR is the biggest change in data protection laws in Europe since the 1995 introduction of the European Union (EU) Data Protection Directive, also known as Directive 95/46/EC. The GDPR aims to strengthen the security and protection of personal data in the EU and will replace the Directive and all local laws relating to it.

AWS welcomes the arrival of the GDPR. The new, robust requirements raise the bar for data protection, security, and compliance, and will push the industry to follow the most stringent controls, helping to make everyone more secure. I am happy to announce today that all AWS services will comply with the GDPR when it becomes enforceable on May 25, 2018.

In this blog post, I explain the work AWS is doing to help customers with the GDPR as part of our continued commitment to help ensure they can comply with EU Data Protection requirements.

What has AWS been doing?

AWS continually maintains a high bar for security and compliance across all of our regions around the world. This has always been our highest priority—truly “job zero.” The AWS Cloud infrastructure has been architected to offer customers the most powerful, flexible, and secure cloud-computing environment available today. AWS also gives you a number of services and tools to enable you to build GDPR-compliant infrastructure on top of AWS.

One tool we give you is a Data Processing Agreement (DPA). I’m happy to announce today that we have a DPA that will meet the requirements of the GDPR. This GDPR DPA is available now to all AWS customers to help you prepare for May 25, 2018, when the GDPR becomes enforceable. For additional information about the new GDPR DPA or to obtain a copy, contact your AWS account manager.

In addition to account managers, we have teams of compliance experts, data protection specialists, and security experts working with customers across Europe to answer their questions and help them prepare for running workloads in the AWS Cloud after the GDPR comes into force. To further answer customers’ questions, we have updated our EU Data Protection website. This website includes information about what the GDPR is, the changes it brings to organizations operating in the EU, the services AWS offers to help you comply with the GDPR, and advice about how you can prepare.

Another topic we cover on the EU Data Protection website is AWS’s compliance with the CISPE Code of Conduct. The CISPE Code of Conduct helps cloud customers ensure that their cloud infrastructure provider is using appropriate data protection standards to protect their data in a manner consistent with the GDPR. AWS has declared that Amazon EC2, Amazon S3, Amazon RDS, AWS Identity and Access Management (IAM), AWS CloudTrail, and Amazon Elastic Block Storage (Amazon EBS) are fully compliant with the CISPE Code of Conduct. This declaration provides customers with assurances that they fully control their data in a safe, secure, and compliant environment when they use AWS. For more information about AWS’s compliance with the CISPE Code of Conduct, go to the CISPE website.

As well as giving customers a number of tools and services to build GDPR-compliant environments, AWS has achieved a number of internationally recognized certifications and accreditations. In the process, AWS has demonstrated compliance with third-party assurance frameworks such as ISO 27017 for cloud security, ISO 27018 for cloud privacy, PCI DSS Level 1, and SOC 1, SOC 2, and SOC 3. AWS also helps customers meet local security standards such as BSI’s Common Cloud Computing Controls Catalogue (C5) that is important in Germany. We will continue to pursue certifications and accreditations that are important to AWS customers.

What can you do?

Although the GDPR will not be enforceable until May 25, 2018, we are encouraging our customers and partners to start preparing now. If you have already implemented a high bar for compliance, security, and data privacy, the move to GDPR should be simple. However, if you have yet to start your journey to GDPR compliance, we urge you to start reviewing your security, compliance, and data protection processes now to ensure a smooth transition in May 2018.

You should consider the following key points in preparation for GDPR compliance:

  • Territorial reach – Determining whether the GDPR applies to your organization’s activities is essential to ensuring your organization’s ability to satisfy its compliance obligations.
  • Data subject rights – The GDPR enhances the rights of data subjects in a number of ways. You will need to make sure you can accommodate the rights of data subjects if you are processing their personal data.
  • Data breach notifications – If you are a data controller, you must report data breaches to the data protection authorities without undue delay and in any event within 72 hours of you becoming aware of a data breach.
  • Data protection officer (DPO) – You may need to appoint a DPO who will manage data security and other issues related to the processing of personal data.
  • Data protection impact assessment (DPIA) – You may need to conduct and, in some circumstances, you might be required to file with the supervisory authority a DPIA for your processing activities.
  • Data processing agreement (DPA) – You may need a DPA that will meet the requirements of the GDPR, particularly if personal data is transferred outside the European Economic Area.

AWS offers a wide range of services and features to help customers meet requirements of the GDPR, including services for access controls, monitoring, logging, and encryption. For more information about these services and features, see EU Data Protection.

At AWS, security, data protection, and compliance are our top priorities, and we will continue to work vigilantly to ensure that our customers are able to enjoy the benefits of AWS securely, compliantly, and without disruption in Europe and around the world. As we head toward May 2018, we will share more news and resources with you to help you comply with the GDPR.

– Steve