Tag Archives: Amazon Verified Access

A walk through AWS Verified Access policies

Post Syndicated from Riggs Goodman III original https://aws.amazon.com/blogs/security/a-walk-through-aws-verified-access-policies/

AWS Verified Access helps improve your organization’s security posture by using security trust providers to grant access to applications. This service grants access to applications only when the user’s identity and the user’s device meet configured security requirements. In this blog post, we will provide an overview of trust providers and policies, then walk through a Verified Access policy for securing your corporate applications.

Understanding trust data and policies

Verified Access policies enable you to use trust data from trust providers and help protect access to corporate applications that are hosted on Amazon Web Services (AWS). When you create a Verified Access group or a Verified Access endpoint, you create a Verified Access policy, which is applied to the group or both the group and endpoint. Policies are written in Cedar, an AWS policy language. With Verified Access, you can express policies that use the trust data from the trust providers that you configure, such as corporate identity providers and device security state providers.

Verified Access receives trust data or claims from different trust providers. Currently, Verified Access supports two types of trust providers. The first type is an identity trust provider. Identity trust providers manage the identities of digital users, including the user’s email address, groups, and profile information. The second type of trust provider is a device trust provider. Device trust providers manage the device posture for users, including the OS version of the device, risk scores, and other metrics that reflect device posture. When a user makes a request to Verified Access, the request includes claims from the configured trust providers. Verified Access customers permit or forbid access to applications by evaluating the claims in Cedar policies. We will walk through the types of claims that are included from trust providers and the options for custom trust data.

End-to-end Cedar policy use cases

Let’s look at how to use policies with your applications. In general, you use Verified Access to control access to an application for purposes of authentication and initial authorization. This means that you use Verified Access to authenticate the user when they log in and to confirm that the device posture of the end device meets minimum criteria. For authorization logic to control access to actions and resources inside the application, you pass the identity claims to the application. The application uses the information to authorize users within the application after authentication. In other words, not every identity claim needs to be passed or checked in Verified Access to allow traffic to pass to the application. You can and should put additional logic in place to make decisions for users when they gain access to the backend application after initial authentication and authorization by Verified Access. From an identity perspective, this additional criteria might be an email address, a group, and possibly some additional claims. From a device perspective, Verified Access does not at this time pass device trust data to the end application. This means that you should use Verified Access to perform checks involving device posture.

We will explore the evolution of a policy by walking you through four use cases for Cedar policy. You can test the claim data and policies in the Verified Access Cedar Playground. For more information about Verified Access, see Verified Access policies and types of trust providers.

Use case 1: Basic policy

For many applications, you only need a simple policy to provide access to your users. This can include the identity information only. For example, let’s say that you want to write a policy that uses the user’s email address and matches a certain group that the user is part of. Within the Verified Access trust provider configuration, you can include “openid email groups” as the scope, and your OpenID Connect (OIDC) provider will include each claim associated with the scopes that you have configured with the OIDC provider. When the user John in this example uses case logs in to the OIDC provider, he receives the following claims from the OIDC provider. For this provider, the Verified Access Trust Provider is configured for “identity” to be the policy reference name.

{
  "identity": {
    "email": "[email protected]",
    "groups": [
      "finance",
      "employees"
    ]
  }
}

With these claims, you can write a policy that matches the email domain and the group, to allow access to the application, as follows.

permit(principal, action, resource)
when {
    // Returns true if the email ends in "@example.com"
    context.identity.email like "*@example.com" &&
    // Returns true if the user is part of the "finance" group
    context.identity.groups.contains("finance")
};

Use case 2: Custom claims within a policy

Many times, you are also interested in company-specific or custom claims from the identity provider. The claims that exist with the user endpoint are dependent on how you configure the identity provider. For OIDC providers, this is determined by the scopes that you define when you set up the identity provider. Verified Access uses OIDC scopes to authorize access to details of the user. This includes attributes such as the name, email address, email verification, and custom attributes. Each scope that you configure for the identity provider returns a set of user attributes, which we call claims. Depending on which claims you want to match on in your policy, you configure the scopes and claims in the OIDC provider, which the OIDC provider adds to the user endpoint. For a list of standard claims, including profile, email, name, and others, see the Standard Claims OIDC specification.

In this example use case, as your policy evolves from the basic policy, you decide to add additional company-specific claims to Verified Access. This includes both the business unit and the level of each employee. Within the Verified Access trust provider configuration, you can include “openid email groups profile” as the scope, and your OIDC provider will include each claim associated with the scopes that you have configured with the OIDC provider. Now, when the user John logs in to the OIDC provider, he receives the following claims from the OIDC provider, with both the business unit and role as claims from the “profile” scope in OIDC.

{
  "identity": {
    "email": "[email protected]",
    "groups": [
      "finance",
      "employees"
    ],
    "business_unit": "corp",
    "level": 8
  }
}

With these claims, the company can write a policy that matches the claims to allow access to the application, as follows.

permit(principal, action, resource)
when {
    // Returns true if the email ends in "@example.com"
    context.identity.email like "*@example.com" &&
    // Returns true if the user is part of the "finance" group
    context.identity.groups.contains("finance") &&
    // Returns true if the business unit is "corp"
    context.identity.business_unit == "corp" &&
    // Returns true if the level is greater than 6
    context.identity.level >= 6
};

Use case 3: Add a device trust provider to a policy

The other type of trust provider is a device trust provider. Verified Access supports two device trust providers today: CrowdStrike and Jamf. As detailed in the AWS Verified Access Request Verification Flow, for HTTP/HTTPS traffic, the extension in the web browser receives device posture information from the device agent on the user’s device. Each device trust provider determines what risk information and device information to include in the claims and how that information is formatted. Depending on the device trust provider, the claims are static or configurable.

In our example use case, with the evolution of the policy, you now add device trust provider checks to the policy. After you install the Verified Access browser extension on John’s computer, Verified Access receives the following claims from both the identity trust provider and the device trust provider, which uses the policy reference name “crwd”.

{
  "identity": {
    "email": "[email protected]",
    "groups": [
      "finance",
      "employees"
    ],
    "business_unit": "corp",
    "level": 8
  },
  "crwd": {
    "assessment": {
      "overall": 90,
      "os": 100,
      "sensor_config": 80,
      "version": "3.4.0"
    }
  }
}

With these claims, you can write a policy that matches the claims to allow access to the application, as follows.

permit(principal, action, resource)
when {
    // Returns true if the email ends in "@example.com"
    context.identity.email like "*@example.com" &&
    // Returns true if the user is part of the "finance" group
    context.identity.groups.contains("finance") &&
    // Returns true if the business unit is "corp"
    context.identity.business_unit == "corp" &&
    // Returns true if the level is greater than 6
    context.identity.level >= 6 &&
    // If the CrowdStrike agent is present
    ( context has "crwd" &&
      // The overall device score is greater or equal to 80 
      context.crwd.assessment.overall >= 80 )
};

For more information about these scores, see Third-party trust providers.

Use case 4: Multiple device trust providers

The final update to your policy comes in the form of multiple device trust providers. Verified Access provides the ability to match on multiple device trust providers in the same policy. This provides flexibility for your company, which in this example use case has different device trust providers installed on different types of users’ devices. For information about many of the claims that each device trust provider provides to AWS, see Third-party trust providers. However, for this updated policy, John’s claims do not change, but the new policy can match on either CrowdStrike’s or Jamf’s trust data. For Jamf, the policy reference name is “jamf”.

permit(principal, action, resource)
when {
    // Returns true if the email ends in "@example.com"
    context.identity.email like "*@example.com" &&
    // Returns true if the user is part of the "finance" group
    context.identity.groups.contains("finance") &&
    // Returns true if the business unit is "corp"
    context.identity.business_unit == "corp" &&
    // Returns true if the level is greater than 6
    context.identity.level >= 6 &&
    // If the CrowdStrike agent is present
    (( context has "crwd" &&
      // The overall device score is greater or equal to 80 
      context.crwd.assessment.overall >= 80 ) ||
    // If the Jamf agent is present
    ( context has "jamf" &&
      // The risk level is either LOW or SECURE
      ["LOW","SECURE"].contains(context.jamf.risk) ))
};

For more information about using Jamf with Verified Access, see Integrating AWS Verified Access with Jamf Device Identity.

Conclusion

In this blog post, we covered an overview of Cedar policy for AWS Verified Access, discussed the types of trust providers available for Verified Access, and walked through different use cases as you evolve your Cedar policy in Verified Access.

If you want to test your own policies and claims, see the Cedar Playground. If you want more information about Verified Access, see the AWS Verified Access documentation.

Want more AWS Security news? Follow us on Twitter.

Riggs Goodman III

Riggs Goodman III

Riggs Goodman III is the Senior Global Tech Lead for the Networking Partner Segment at Amazon Web Services (AWS). Based in Atlanta, Georgia, Riggs has over 17 years of experience designing and architecting networking solutions for both partners and customers.

Bashuman Deb

Bashuman Deb

Bashuman is a Principal Software Development Engineer with Amazon Web Services. He loves to create delightful experiences for customers when they interact with the AWS Network. He loves dabbling with software-defined-networks and virtualized multi-tenant implementations of network-protocols. He is baffled by the complexities of keeping global routing meshes in sync.

Three key security themes from AWS re:Invent 2022

Post Syndicated from Anne Grahn original https://aws.amazon.com/blogs/security/three-key-security-themes-from-aws-reinvent-2022/

AWS re:Invent returned to Las Vegas, Nevada, November 28 to December 2, 2022. After a virtual event in 2020 and a hybrid 2021 edition, spirits were high as over 51,000 in-person attendees returned to network and learn about the latest AWS innovations.

Now in its 11th year, the conference featured 5 keynotes, 22 leadership sessions, and more than 2,200 breakout sessions and hands-on labs at 6 venues over 5 days.

With well over 100 service and feature announcements—and innumerable best practices shared by AWS executives, customers, and partners—distilling highlights is a challenge. From a security perspective, three key themes emerged.

Turn data into actionable insights

Security teams are always looking for ways to increase visibility into their security posture and uncover patterns to make more informed decisions. However, as AWS Vice President of Data and Machine Learning, Swami Sivasubramanian, pointed out during his keynote, data often exists in silos; it isn’t always easy to analyze or visualize, which can make it hard to identify correlations that spark new ideas.

“Data is the genesis for modern invention.” – Swami Sivasubramanian, AWS VP of Data and Machine Learning

At AWS re:Invent, we launched new features and services that make it simpler for security teams to store and act on data. One such service is Amazon Security Lake, which brings together security data from cloud, on-premises, and custom sources in a purpose-built data lake stored in your account. The service, which is now in preview, automates the sourcing, aggregation, normalization, enrichment, and management of security-related data across an entire organization for more efficient storage and query performance. It empowers you to use the security analytics solutions of your choice, while retaining control and ownership of your security data.

Amazon Security Lake has adopted the Open Cybersecurity Schema Framework (OCSF), which AWS cofounded with a number of organizations in the cybersecurity industry. The OCSF helps standardize and combine security data from a wide range of security products and services, so that it can be shared and ingested by analytics tools. More than 37 AWS security partners have announced integrations with Amazon Security Lake, enhancing its ability to transform security data into a powerful engine that helps drive business decisions and reduce risk. With Amazon Security Lake, analysts and engineers can gain actionable insights from a broad range of security data and improve threat detection, investigation, and incident response processes.

Strengthen security programs

According to Gartner, by 2026, at least 50% of C-Level executives will have performance requirements related to cybersecurity risk built into their employment contracts. Security is top of mind for organizations across the globe, and as AWS CISO CJ Moses emphasized during his leadership session, we are continuously building new capabilities to help our customers meet security, risk, and compliance goals.

In addition to Amazon Security Lake, several new AWS services announced during the conference are designed to make it simpler for builders and security teams to improve their security posture in multiple areas.

Identity and networking

Authorization is a key component of applications. Amazon Verified Permissions is a scalable, fine-grained permissions management and authorization service for custom applications that simplifies policy-based access for developers and centralizes access governance. The new service gives developers a simple-to-use policy and schema management system to define and manage authorization models. The policy-based authorization system that Amazon Verified Permissions offers can shorten development cycles by months, provide a consistent user experience across applications, and facilitate integrated auditing to support stringent compliance and regulatory requirements.

Additional services that make it simpler to define authorization and service communication include Amazon VPC Lattice, an application-layer service that consistently connects, monitors, and secures communications between your services, and AWS Verified Access, which provides secure access to corporate applications without a virtual private network (VPN).

Threat detection and monitoring

Monitoring for malicious activity and anomalous behavior just got simpler. Amazon GuardDuty RDS Protection expands the threat detection capabilities of GuardDuty by using tailored machine learning (ML) models to detect suspicious logins to Amazon Aurora databases. You can enable the feature with a single click in the GuardDuty console, with no agents to manually deploy, no data sources to enable, and no permissions to configure. When RDS Protection detects a potentially suspicious or anomalous login attempt that indicates a threat to your database instance, GuardDuty generates a new finding with details about the potentially compromised database instance. You can view GuardDuty findings in AWS Security Hub, Amazon Detective (if enabled), and Amazon EventBridge, allowing for integration with existing security event management or workflow systems.

To bolster vulnerability management processes, Amazon Inspector now supports AWS Lambda functions, adding automated vulnerability assessments for serverless compute workloads. With this expanded capability, Amazon Inspector automatically discovers eligible Lambda functions and identifies software vulnerabilities in application package dependencies used in the Lambda function code. Actionable security findings are aggregated in the Amazon Inspector console, and pushed to Security Hub and EventBridge to automate workflows.

Data protection and privacy

The first step to protecting data is to find it. Amazon Macie now automatically discovers sensitive data, providing continual, cost-effective, organization-wide visibility into where sensitive data resides across your Amazon Simple Storage Service (Amazon S3) estate. With this new capability, Macie automatically and intelligently samples and analyzes objects across your S3 buckets, inspecting them for sensitive data such as personally identifiable information (PII), financial data, and AWS credentials. Macie then builds and maintains an interactive data map of your sensitive data in S3 across your accounts and Regions, and provides a sensitivity score for each bucket. This helps you identify and remediate data security risks without manual configuration and reduce monitoring and remediation costs.

Encryption is a critical tool for protecting data and building customer trust. The launch of the end-to-end encrypted enterprise communication service AWS Wickr offers advanced security and administrative controls that can help you protect sensitive messages and files from unauthorized access, while working to meet data retention requirements.

Management and governance

Maintaining compliance with regulatory, security, and operational best practices as you provision cloud resources is key. AWS Config rules, which evaluate the configuration of your resources, have now been extended to support proactive mode, so that they can be incorporated into infrastructure-as-code continuous integration and continuous delivery (CI/CD) pipelines to help identify noncompliant resources prior to provisioning. This can significantly reduce time spent on remediation.

Managing the controls needed to meet your security objectives and comply with frameworks and standards can be challenging. To make it simpler, we launched comprehensive controls management with AWS Control Tower. You can use it to apply managed preventative, detective, and proactive controls to accounts and organizational units (OUs) by service, control objective, or compliance framework. You can also use AWS Control Tower to turn on Security Hub detective controls across accounts in an OU. This new set of features reduces the time that it takes to define and manage the controls required to meet specific objectives, such as supporting the principle of least privilege, restricting network access, and enforcing data encryption.

Do more with less

As we work through macroeconomic conditions, security leaders are facing increased budgetary pressures. In his opening keynote, AWS CEO Adam Selipsky emphasized the effects of the pandemic, inflation, supply chain disruption, energy prices, and geopolitical events that continue to impact organizations.

Now more than ever, it is important to maintain your security posture despite resource constraints. Citing specific customer examples, Selipsky underscored how the AWS Cloud can help organizations move faster and more securely. By moving to the cloud, agricultural machinery manufacturer Agco reduced costs by 78% while increasing data retrieval speed, and multinational HVAC provider Carrier Global experienced a 40% reduction in the cost of running mission-critical ERP systems.

“If you’re looking to tighten your belt, the cloud is the place to do it.” – Adam Selipsky, AWS CEO

Security teams can do more with less by maximizing the value of existing controls, and bolstering security monitoring and analytics capabilities. Services and features announced during AWS re:Invent—including Amazon Security Lake, sensitive data discovery with Amazon Macie, support for Lambda functions in Amazon Inspector, Amazon GuardDuty RDS Protection, and more—can help you get more out of the cloud and address evolving challenges, no matter the economic climate.

Security is our top priority

AWS re:Invent featured many more highlights on a variety of topics, such as Amazon EventBridge Pipes and the pre-announcement of GuardDuty EKS Runtime protection, as well as Amazon CTO Dr. Werner Vogels’ keynote, and the security partnerships showcased on the Expo floor. It was a whirlwind week, but one thing is clear: AWS is working harder than ever to make our services better and to collaborate on solutions that ease the path to proactive security, so that you can focus on what matters most—your business.

For more security-related announcements and on-demand sessions, see A recap for security, identity, and compliance sessions at AWS re:Invent 2022 and the AWS re:Invent Security, Identity, and Compliance playlist on YouTube.

If you have feedback about this post, submit comments in the Comments section below.

Anne Grahn

Anne Grahn

Anne is a Senior Worldwide Security GTM Specialist at AWS based in Chicago. She has more than a decade of experience in the security industry, and has a strong focus on privacy risk management. She maintains a Certified Information Systems Security Professional (CISSP) certification.

Author

Paul Hawkins

Paul helps customers of all sizes understand how to think about cloud security so they can build the technology and culture where security is a business enabler. He takes an optimistic approach to security and believes that getting the foundations right is the key to improving your security posture.