Tag Archives: Thought Leadership

Learn why AWS is the best cloud to run Microsoft Windows Server and SQL Server workloads

Post Syndicated from Fred Wurden original https://aws.amazon.com/blogs/compute/learn-why-aws-is-the-best-cloud-to-run-microsoft-windows-server-and-sql-server-workloads/

Fred Wurden, General Manager, AWS Enterprise Engineering (Windows, VMware, RedHat, SAP, Benchmarking)

For companies that rely on Windows Server but find it daunting to move those workloads to the cloud, there is no easier way to run Windows in the cloud than AWS. Customers as diverse as Expedia, Pearson, Seven West Media, and RepricerExpress have chosen AWS over other cloud providers to unlock the Microsoft products they currently rely on, including Windows Server and SQL Server. The reasons are several: by embracing AWS, they’ve achieved cost savings through forthright pricing options and expanded breadth and depth of capabilities. In this blog, we break down these advantages to understand why AWS is the simplest, most popular and secure cloud to run your business-critical Windows Server and SQL Server workloads.

AWS lowers costs and increases choice with flexible pricing options

Customers expect accurate and transparent pricing so you can make the best decisions for your business. When assessing which cloud to run your Windows workloads, customers look at the total cost of ownership (TCO) of workloads.

Not only does AWS provide cost-effective ways to run Windows and SQL Server workloads, we also regularly lower prices to make it even more affordable. Since launching in 2006, AWS has reduced prices 85 times. In fact, we recently dropped pricing by and average of 25% for Amazon RDS for SQL Server Enterprise Edition database instances in the Multi-AZ configuration, for both On-Demand Instance and Reserved Instance types on the latest generation hardware.

The AWS pricing approach makes it simple to understand your costs, even as we actively help you pay AWS less now and in the future. For example, AWS Trusted Advisor provides real-time guidance to provision your resources more efficiently. This means that you spend less money with us. We do this because we know that if we aren’t creating more and more value for you each year, you’ll go elsewhere.

In addition, we have several other industry-leading initiatives to help lower customer costs, including AWS Compute Optimizer, Amazon CodeGuru, and AWS Windows Optimization and Licensing Assessments (AWS OLA). AWS Compute Optimizer recommends optimal AWS Compute resources for your workloads by using machine learning (ML) to analyze historical utilization metrics. Customers who use Compute Optimizer can save up to 25% on applications running on Amazon Elastic Compute Cloud (Amazon EC2). Machine learning also plays a key role in Amazon CodeGuru, which provides intelligent recommendations for improving code quality and identifying an application’s most expensive lines of code. Finally, AWS OLA helps customers to optimize licensing and infrastructure provisioning based on actual resource consumption (ARC) to offer cost-effective Windows deployment options.

Cloud pricing shouldn’t be complicated

Other cloud providers bury key pricing information when making comparisons to other vendors, thereby incorrectly touting pricing advantages. Often those online “pricing calculators” that purport to clarify pricing neglect to include hidden fees, complicating costs through licensing rules (e.g., you can run this workload “for free” if you pay us elsewhere for “Software Assurance”). At AWS, we believe such pricing and licensing tricks are contrary to the fundamental promise of transparent pricing for cloud computing.

By contrast, AWS makes it straightforward for you to run Windows Server applications where you want. With our End-of-Support Migration Program (EMP) for Windows Server, you can easily move your legacy Windows Server applications—without needing any code changes. The EMP technology decouples the applications from the underlying OS. This enables AWS Partners or AWS Professional Services to migrate critical applications from legacy Windows Server 2003, 2008, and 2008 R2 to newer, supported versions of Windows Server on AWS. This allows you to avoid extra charges for extended support that other cloud providers charge.

Other cloud providers also may limit your ability to Bring-Your-Own-License (BYOL) for SQL Server to your preferred cloud provider. Meanwhile, AWS improves the BYOL experience using EC2 Dedicated Hosts and AWS License Manager. With EC2 Dedicated Hosts, you can save costs by moving existing Windows Server and SQL Server licenses do not have Software Assurance to AWS. AWS License Manager simplifies how you manage your software licenses from software vendors such as Microsoft, SAP, Oracle, and IBM across AWS and on-premises environments. We also work hard to help our customers spend less.

How AWS helps customers save money on Windows Server and SQL Server workloads

The first way AWS helps customers save money is by delivering the most reliable global cloud infrastructure for your Windows workloads. Any downtime costs customers in terms of lost revenue, diminished customer goodwill, and reduced employee productivity.

With respect to pricing, AWS offers multiple pricing options to help our customers save. First, we offer AWS Savings Plans that provide you with a flexible pricing model to save up to 72 percent on your AWS compute usage. You can sign up for Savings Plans for a 1- or 3-year term. Our Savings Plans help you easily manage your plans by taking advantage of recommendations, performance reporting and budget alerts in AWS Cost Explorer, which is a unique benefit only AWS provides. Not only that, but we also offer Amazon EC2 Spot Instances that help you save up to 90 percent on your compute costs vs. On-Demand Instance pricing.

Customers don’t need to walk this migration path alone. In fact, AWS customers often make the most efficient use of cloud resources by working with assessment partners like Cloudamize, CloudChomp, or Migration Evaluator (formerly TSO Logic), which is now part of AWS. By running detailed assessments of their environments with Migration Evaluator before migration, customers can achieve an average of 36 percent savings using AWS over three years. So how do you get from an on-premises Windows deployment to the cloud? AWS makes it simple.

AWS has support programs and tools to help you migrate to the cloud

Though AWS Migration Acceleration Program (MAP) for Windows is a great way to reduce the cost of migrating Windows Server and SQL Server workloads, MAP is more than a cost savings tool. As part of MAP, AWS offers a number of resources to support and sustain your migration efforts. This includes an experienced APN Partner ecosystem to execute migrations, our AWS Professional Services team to provide best practices and prescriptive advice, and a training program to help IT professionals understand and carry out migrations successfully. We help you figure out which workloads to move first, then leverage the combined experience of our Professional Services and partner teams to guide you through the process. For customers who want to save even more (up to 72% in some cases) we are the leaders in helping customers transform legacy systems to modernized managed services.

Again, we are always available to help guide you in your Windows journey to the cloud. We guide you through our technologies like AWS Launch Wizard, which provides a guided way of sizing, configuring, and deploying AWS resources for Microsoft applications like Microsoft SQL Server Always On, or through our comprehensive ecosystem of tens of thousands of partners and third-party solutions, including many with deep expertise with Windows technologies.

Why run Windows Server and SQL Server anywhere else but AWS?

Not only does AWS offer significantly more services than any other cloud, with over 48 services without comparable equivalents on other clouds, but AWS also provides better ways to use Microsoft products than any other cloud. This includes Active Directory as a managed service and FSx for Windows File Server, the only fully managed file storage service for Windows. If you’re interested in learning more about how AWS improves the Windows experience, please visit this article on our Modernizing with AWS blog.

Bring your Windows Server and SQL Server workloads to AWS for the most secure, reliable, and performant cloud, providing you with the depth and breadth of capabilities at the lowest cost. To learn more, visit Windows on AWS. Contact us today to learn more on how we can help you move your Windows to AWS or innovate on open source solutions.

About the Author
Fred Wurden is the GM of Enterprise Engineering (Windows, VMware, Red Hat, SAP, benchmarking) working to make AWS the most customer-centric cloud platform on Earth. Prior to AWS, Fred worked at Microsoft for 17 years and held positions, including: EU/DOJ engineering compliance for Windows and Azure, interoperability principles and partner engagements, and open source engineering. He lives with his wife and a few four-legged friends since his kids are all in college now.

AWS Architecture Monthly Magazine: Agriculture

Post Syndicated from Annik Stahl original https://aws.amazon.com/blogs/architecture/aws-architecture-monthly-magazine-agriculture/

Architecture Monthly Magazine cover - AgricultureIn this month’s issue of AWS Architecture Monthly, Worldwide Tech Lead for Agriculture, Karen Hildebrand (who’s also a fourth generation farmer) refers to agriculture as “the connective tissue our world needs to survive.” As our expert for August’s Agriculture issue, she also talks about what role cloud will play in future development efforts in this industry and why developing personal connections with our AWS agriculture customers is one of the most important aspects of our jobs.

You’ll also buzz through the world of high tech beehives, milk the information about data analytics-savvy cows, and see what the reference architecture of a Smart Farm looks like.

In August’s issue Agriculture issue

  • Ask an Expert: Karen Hildebrand, AWS WW Agriculture Tech Leader
  • Customer Success Story: Tine & Crayon: Revolutionizing the Norwegian Dairy Industry Using Machine Learning on AWS
  • Blog Post: Beewise Combines IoT and AI to Offer an Automated Beehive
  • Reference Architecture:Smart Farm: Enabling Sensor, Computer Vision, and Edge Inference in Agriculture
  • Customer Success Story: Farmobile: Empowering the Agriculture Industry Through Data
  • Blog Post: The Cow Collar Wearable: How Halter benefits from FreeRTOS
  • Related Videos: DuPont, mPrest & Netafirm, and Veolia

Survey opportunity

This month, we’re also asking you to take a 10-question survey about your experiences with this magazine. The survey is hosted by an external company (Qualtrics), so the below survey button doesn’t lead to our website. Please note that AWS will own the data gathered from this survey, and we will not share the results we collect with survey respondents. Your responses to this survey will be subject to Amazon’s Privacy Notice. Please take a few moments to give us your opinions.

How to access the magazine

We hope you’re enjoying Architecture Monthly, and we’d like to hear from you—leave us star rating and comment on the Amazon Kindle Newsstand page or contact us anytime at [email protected].

Architecture Monthly Magazine: Media & Entertainment

Post Syndicated from Annik Stahl original https://aws.amazon.com/blogs/architecture/architecture-monthly-magazine-media-entertainment/

AWS Architecture Monthly - June 2020 - Media &EntertainmentAWS makes it fast and easy for the Media and Entertainment (M&E) industry to produce, process, and deliver broadcast and over-the-top video. These pay-as-you-go services and appliance products offer the video infrastructure you need to deliver great viewing experiences to any screen.

For June’s issue of AWS Architecture Monthly, WW Tech Leader Konstantin Wilms talks about industry and architectural pattern trends in the cloud-based M&E space, and explains why this industry is unique in that almost any business problem can be solved using many AWS services. He also offers advice on what prospective customers should be thinking about and considering when moving to AWS.

In June’s Media & Entertainment issue

  • Ask an Expert: Konstantin Wilms, WW Tech Leader, AWS M&E
  • Blog: Deploying Your Favorite Post Production Applications on AWS Virtual Desktop Infrastructure
  • Case Study: L Benfica: Launching a Full-Featured VOD Platform in Just Four Weeks
  • Quick Start: Cloud Video Editing on AWS
  • Tutorial: Reimagine Your Studio
  • Whitepaper: Building Media & Entertainment Predictive Analytics Solutions on AWS

How to access the magazine

We hope you’re enjoying Architecture Monthly, and we’d like to hear from you—leave us star rating and comment on the Amazon Kindle Newsstand page or contact us anytime at [email protected].

Decoupling larger applications with Amazon EventBridge

Post Syndicated from James Beswick original https://aws.amazon.com/blogs/compute/decoupling-larger-applications-with-amazon-eventbridge/

Many applications start to grow in complexity as they mature, making it harder for developers to maintain code or add new features. This can lead to monolithic applications, where developers must know more about the entire architecture to make changes. Typically, this causes code to become more fragile, and the rate of development slows down.

This blog post shows how you can use an event-based architecture to decouple services and functional areas of applications. It uses the document repository solution as an example, to compare architecture after shifting to an event-based approach. The new architecture offers both greater extensibility and simplicity for developers adding new functionality in the future. It can help alleviate the problems associated with monolithic applications.

The original version of this application uses Amazon S3 event notifications to invoke AWS Lambda functions to index content in the Amazon Elasticsearch Service:

Original document repository application architecture

There are some limitations with this design. First, there is a single source bucket for documents, which may not reflect production usage. Also, while it could be modified to allow new file types for indexing, adding new functionality such as translating documents would require refactoring. And despite having multiple Lambda functions, it’s packaged as a single application, which makes it harder to deploy changes.

The new design uses events to decouple each service used to process incoming S3 objects. It can also use one or more buckets as event sources, which you can change dynamically as needed. Most importantly, it can be easier to introduce changes and new functionality, since the application is no longer deployed as a mono-repo. The new architecture uses this design:

Decoupled architecture

  1. Setup and configuration of AWS resources.
  2. Parser function to filter and reformat S3 events for the application.
  3. Converter functions to operate on distinct file types.
  4. Analyzer functions for interpreting the content of the files.
  5. The Loader function imports the metadata into the Amazon Elasticsearch Service.

The code uses the AWS Serverless Application Model (SAM), enabling you to deploy the application easily in your own AWS account. This walkthrough creates resources covered in the AWS Free Tier but you may incur cost for significant data usage. Additionally, it requires an Amazon Elasticsearch Service domain, which may incur cost on your AWS bill.

The resulting solution is five separate applications, which you deploy in stages. To set up the application, visit the GitHub repo and follow the instructions in the README.md file.

Setup and configuration

The SAM template in the setup directory creates the S3 buckets, and configures AWS CloudTrail to capture put events in these buckets. This is required as EventBridge consumes S3 events via CloudTrail. Now, when any object is stored in any of these S3 buckets, EventBridge receives an event.

This template also creates a customer managed IAM policy that creates read-only access to the source S3 buckets:

  MyManagedPolicy:
    Type: AWS::IAM::ManagedPolicy
    Properties:
      ManagedPolicyName: docrepo-s3-read-policy
      PolicyDocument: 
        Version: 2012-10-17
        Statement: 
          - Effect: Allow
            Action:
              - s3:GetObject
              - s3:ListBucket
              - s3:GetBucketLocation
              - s3:GetObjectVersion
              - s3:GetLifecycleConfiguration
            Resource:
              - !Sub 'arn:aws:s3:::${Dept1Bucket}/*'
              - !Sub 'arn:aws:s3:::${Dept2Bucket}/*'
              - !Sub 'arn:aws:s3:::${Dept3Bucket}/*'

This policy can be attached to any Lambda function that must read the contents from one of the S3 buckets. If the pool of source buckets changes in the future, you only need to modify this policy. Any downstream Lambda functions using the policy automatically gain access to the added buckets.

In the second setup application, the Parser service receives those S3 events and reformats the event for downstream services. Specifically, it creates a new attribute for the file type of the S3 object. After you deploy these two templates, creating any objects in the source S3 buckets generates the following event in the default event bus:

Parsing events from Amazon S3

Building the converter processes

This application uses converters to process incoming objects in the S3 buckets. One converter handles one file type. There are two converters required to replicate the original application’s functionality, for pdf and docx files. An EventBridge rule matches incoming events and triggers the appropriate Lambda function to convert the object. This diagram shows abridged input and output events for these functions:

  1. A matching EventBridge rule invokes the relevant converter function. The function converts the source file into raw text.
  2. The text is split into batches of 5,000 characters.
  3. The functions publish the text batches back to EventBridge, using new detail-type and source attributes.

The SAM template specifies the EventBridge rules, the permissions for EventBridge to invoke the Lambda functions, and the processing Lambda functions. The Lambda functions use the customer managed IAM policy created during the setup for read-only access to the originating S3 bucket. Each converter has its own logic for processing file types differently, and can produce different types of events if needed.

The analyzer functions

In this workflow, any file type containing text is analyzed by Amazon Comprehend to detect entities. The AnalyzeText function is invoked by an EventBridge rule. The rule is filtering for the NewTextBatch attribute in an event from docRepo.converters.

Another EventBridge rule triggers the AnalyzeImage function. This is filtering for jpg and jpeg file types where the event source is docRepo.s3. This function uses Amazon Rekognition to identify labels in the images.

Both functions produce new events containing the entities and labels, using new detail-type and source attributes. These events are published back to the default bus on EventBridge:

Analyzers processing events

  1. A matching EventBridge rule invokes the relevant analyzer function. The function uses Amazon ML services to detect labels in images and entities in text.
  2. The functions publish the metadata back to EventBridge, using new detail-type and source attributes.

Loader function

The Loader function is invoked by an EventBridge rule that is filtering for events from the Analyzers functions. This final function receives those events and loads the labels and entities metadata into the Amazon Elasticsearch Service:

Loader function processing events

Choosing between AWS Step Functions and Amazon EventBridge

In this application, there is a sequence of steps to the workflow that could also be handled by AWS Step Functions. Both services can simplify workflows in distributed applications and make it easier to maintain and modify serverless applications. In many cases, it makes sense to use both services for larger enterprise applications with complex business logic.

However, EventBridge enables you to separate processes into independent applications. It also allows other consumers to build custom logic using your events without impacting your application design or performance. In enterprise applications, this makes it much easier to innovate and develop new application features.

Benefits for developers

With the original monolithic application divided into five separate applications, it’s now easier for different teams to work on this project. It’s also easier and safer to deploy changes to a single microservice without needing to deploy the entire application. Developers must only understand their own service rather than the complete architecture of the application.

For example, to add more S3 buckets to the source list, you only need to modify the SAM template in the setup part of the application. The Parser function consumes put events from any number of buckets, and downstream functions consume events via EventBridge. To add a new file type, you only need to add a new converter function. Or to change the indexing provider, you create a new loader function to route the metadata to another service. The services of this application are independent, decoupled by EventBridge, and you can add more producers and consumers as required.

Traditionally, one of the challenges with event-based applications is tracking the format of events. Event schemas are typically hard to manage because any service can produce an event. The schema may also change as developers release new versions of a service. To help solve these issues, EventBridge has a feature called schema discovery that can automate the tracking and management of events in your application.

All the microservices in this application publish with a source attribute of docRepo. If you enable schema discovery, EventBridge quickly identifies these custom event schemas:

Schema discovery in Amazon EventBridge

The schemas are defined in JSON using the OpenAPI Specification. As you develop new features, you can download code bindings directly from these schemas. For type-safe languages, this allows you to use events as objects directly in your applications, helping to accelerate development. To learn more about how to use code bindings and schema discovery, watch this video:

Conclusion

Larger applications can quickly become monoliths. You can use event-based architectures to decouple services within applications, and maintain flexibility as your application grows. Amazon EventBridge is a serverless event bus that can help simplify you architecture, allowing each service to operate independently with no dependence on event consumers.

In this post, I show how to rearchitect the Serverless Document Repository example into five smaller applications orchestrated using events. I explore the benefits of developing applications using this approach, including the ability to make changes more easily. I also show how EventBridge schema discovery can help automate event schema management.

To learn more about how to use Amazon EventBridge to decouple large applications, visit the Amazon EventBridge learning path.