Tag Archives: Identity and Access Management

IAM Access Analyzer simplifies inspection of unused access in your organization

Post Syndicated from Achraf Moussadek-Kabdani original https://aws.amazon.com/blogs/security/iam-access-analyzer-simplifies-inspection-of-unused-access-in-your-organization/

AWS Identity and Access Management (IAM) Access Analyzer offers tools that help you set, verify, and refine permissions. You can use IAM Access Analyzer external access findings to continuously monitor your AWS Organizations organization and Amazon Web Services (AWS) accounts for public and cross-account access to your resources, and verify that only intended external access is granted. Now, you can use IAM Access Analyzer unused access findings to identify unused access granted to IAM roles and users in your organization.

If you lead a security team, your goal is to manage security for your organization at scale and make sure that your team follows best practices, such as the principle of least privilege. When your developers build on AWS, they create IAM roles for applications and team members to interact with AWS services and resources. They might start with broad permissions while they explore AWS services for their use cases. To identify unused access, you can review the IAM last accessed information for a given IAM role or user and refine permissions gradually. If your company has a multi-account strategy, your roles and policies are created in multiple accounts. You then need visibility across your organization to make sure that teams are working with just the required access.

Now, IAM Access Analyzer simplifies inspection of unused access by reporting unused access findings across your IAM roles and users. IAM Access Analyzer continuously analyzes the accounts in your organization to identify unused access and creates a centralized dashboard with findings. From a delegated administrator account for IAM Access Analyzer, you can use the dashboard to review unused access findings across your organization and prioritize the accounts to inspect based on the volume and type of findings. The findings highlight unused roles, unused access keys for IAM users, and unused passwords for IAM users. For active IAM users and roles, the findings provide visibility into unused services and actions. With the IAM Access Analyzer integration with Amazon EventBridge and AWS Security Hub, you can automate and scale rightsizing of permissions by using event-driven workflows.

In this post, we’ll show you how to set up and use IAM Access Analyzer to identify and review unused access in your organization.

Generate unused access findings

To generate unused access findings, you need to create an analyzer. An analyzer is an IAM Access Analyzer resource that continuously monitors your accounts or organization for a given finding type. You can create an analyzer for the following findings:

An analyzer for unused access findings is a new analyzer that continuously monitors roles and users, looking for permissions that are granted but not actually used. This analyzer is different from an analyzer for external access findings; you need to create a new analyzer for unused access findings even if you already have an analyzer for external access findings.

You can centrally view unused access findings across your accounts by creating an analyzer at the organization level. If you operate a standalone account, you can get unused access findings by creating an analyzer at the account level. This post focuses on the organization-level analyzer setup and management by a central team.

Pricing

IAM Access Analyzer charges for unused access findings based on the number of IAM roles and users analyzed per analyzer per month. You can still use IAM Access Analyzer external access findings at no additional cost. For more details on pricing, see IAM Access Analyzer pricing.

Create an analyzer for unused access findings

To enable unused access findings for your organization, you need to create your analyzer by using the IAM Access Analyzer console or APIs in your management account or a delegated administrator account. A delegated administrator is a member account of the organization that you can delegate with administrator access for IAM Access Analyzer. A best practice is to use your management account only for tasks that require the management account and use a delegated administrator for other tasks. For steps on how to add a delegated administrator for IAM Access Analyzer, see Delegated administrator for IAM Access Analyzer.

To create an analyzer for unused access findings (console)

  1. From the delegated administrator account, open the IAM Access Analyzer console, and in the left navigation pane, select Analyzer settings.
  2. Choose Create analyzer.
  3. On the Create analyzer page, do the following, as shown in Figure 1:
    1. For Findings type, select Unused access analysis.
    2. Provide a Name for the analyzer.
    3. Select a Tracking period. The tracking period is the threshold beyond which IAM Access Analyzer considers access to be unused. For example, if you select a tracking period of 90 days, IAM Access Analyzer highlights the roles that haven’t been used in the last 90 days.
    4. Set your Selected accounts. For this example, we select Current organization to review unused access across the organization.
    5. Select Create.
       
    Figure 1: Create analyzer page

    Figure 1: Create analyzer page

Now that you’ve created the analyzer, IAM Access Analyzer starts reporting findings for unused access across the IAM users and roles in your organization. IAM Access Analyzer will periodically scan your IAM roles and users to update unused access findings. Additionally, if one of your roles, users or policies is updated or deleted, IAM Access Analyzer automatically updates existing findings or creates new ones. IAM Access Analyzer uses a service-linked role to review last accessed information for all roles, user access keys, and user passwords in your organization. For active IAM roles and users, IAM Access Analyzer uses IAM service and action last accessed information to identify unused permissions.

Note: Although IAM Access Analyzer is a regional service (that is, you enable it for a specific AWS Region), unused access findings are linked to IAM resources that are global (that is, not tied to a Region). To avoid duplicate findings and costs, enable your analyzer for unused access in the single Region where you want to review and operate findings.

IAM Access Analyzer findings dashboard

Your analyzer aggregates findings from across your organization and presents them on a dashboard. The dashboard aggregates, in the selected Region, findings for both external access and unused access—although this post focuses on unused access findings only. You can use the dashboard for unused access findings to centrally review the breakdown of findings by account or finding types to identify areas to prioritize for your inspection (for example, sensitive accounts, type of findings, type of environment, or confidence in refinement).

Unused access findings dashboard – Findings overview

Review the findings overview to identify the total findings for your organization and the breakdown by finding type. Figure 2 shows an example of an organization with 100 active findings. The finding type Unused access keys is present in each of the accounts, with the most findings for unused access. To move toward least privilege and to avoid long-term credentials, the security team should clean up the unused access keys.

Figure 2: Unused access finding dashboard

Figure 2: Unused access finding dashboard

Unused access findings dashboard – Accounts with most findings

Review the dashboard to identify the accounts with the highest number of findings and the distribution per finding type. In Figure 2, the Audit account has the highest number of findings and might need attention. The account has five unused access keys and six roles with unused permissions. The security team should prioritize this account based on volume of findings and review the findings associated with the account.

Review unused access findings

In this section, we’ll show you how to review findings. We’ll share two examples of unused access findings, including unused access key findings and unused permissions findings.

Finding example: unused access keys

As shown previously in Figure 2, the IAM Access Analyzer dashboard showed that accounts with the most findings were primarily associated with unused access keys. Let’s review a finding linked to unused access keys.

To review the finding for unused access keys

  1. Open the IAM Access Analyzer console, and in the left navigation pane, select Unused access.
  2. Select your analyzer to view the unused access findings.
  3. In the search dropdown list, select the property Findings type, the Equals operator, and the value Unused access key to get only Findings type = Unused access key, as shown in Figure 3.
     
    Figure 3: List of unused access findings

    Figure 3: List of unused access findings

  4. Select one of the findings to get a view of the available access keys for an IAM user, their status, creation date, and last used date. Figure 4 shows an example in which one of the access keys has never been used, and the other was used 137 days ago.
     
    Figure 4: Finding example - Unused IAM user access keys

    Figure 4: Finding example – Unused IAM user access keys

From here, you can investigate further with the development teams to identify whether the access keys are still needed. If they aren’t needed, you should delete the access keys.

Finding example: unused permissions

Another goal that your security team might have is to make sure that the IAM roles and users across your organization are following the principle of least privilege. Let’s walk through an example with findings associated with unused permissions.

To review findings for unused permissions

  1. On the list of unused access findings, apply the filter on Findings type = Unused permissions.
  2. Select a finding, as shown in Figure 5. In this example, the IAM role has 148 unused actions on Amazon Relational Database Service (Amazon RDS) and has not used a service action for 200 days. Similarly, the role has unused actions for other services, including Amazon Elastic Compute Cloud (Amazon EC2), Amazon Simple Storage Service (Amazon S3), and Amazon DynamoDB.
     
    Figure 5: Finding example - Unused permissions

    Figure 5: Finding example – Unused permissions

The security team now has a view of the unused actions for this role and can investigate with the development teams to check if those permissions are still required.

The development team can then refine the permissions granted to the role to remove the unused permissions.

Unused access findings notify you about unused permissions for all service-level permissions and for 200 services at the action-level. For the list of supported actions, see IAM action last accessed information services and actions.

Take actions on findings

IAM Access Analyzer categorizes findings as active, resolved, and archived. In this section, we’ll show you how you can act on your findings.

Resolve findings

You can resolve unused access findings by deleting unused IAM roles, IAM users, IAM user credentials, or permissions. After you’ve completed this, IAM Access Analyzer automatically resolves the findings on your behalf.

To speed up the process of removing unused permissions, you can use IAM Access Analyzer policy generation to generate a fine-grained IAM policy based on your access analysis. For more information, see the blog post Use IAM Access Analyzer to generate IAM policies based on access activity found in your organization trail.

Archive findings

You can suppress a finding by archiving it, which moves the finding from the Active tab to the Archived tab in the IAM Access Analyzer console. To archive a finding, open the IAM Access Analyzer console, select a Finding ID, and in the Next steps section, select Archive, as shown in Figure 6.

Figure 6: Archive finding in the AWS management console

Figure 6: Archive finding in the AWS management console

You can automate this process by creating archive rules that archive findings based on their attributes. An archive rule is linked to an analyzer, which means that you can have archive rules exclusively for unused access findings.

To illustrate this point, imagine that you have a subset of IAM roles that you don’t expect to use in your tracking period. For example, you might have an IAM role that is used exclusively for break glass access during your disaster recovery processes—you shouldn’t need to use this role frequently, so you can expect some unused access findings. For this example, let’s call the role DisasterRecoveryRole. You can create an archive rule to automatically archive unused access findings associated with roles named DisasterRecoveryRole, as shown in Figure 7.

Figure 7: Example of an archive rule

Figure 7: Example of an archive rule

Automation

IAM Access Analyzer exports findings to both Amazon EventBridge and AWS Security Hub. Security Hub also forwards events to EventBridge.

Using an EventBridge rule, you can match the incoming events associated with IAM Access Analyzer unused access findings and send them to targets for processing. For example, you can notify the account owners so that they can investigate and remediate unused IAM roles, user credentials, or permissions.

For more information, see Monitoring AWS Identity and Access Management Access Analyzer with Amazon EventBridge.

Conclusion

With IAM Access Analyzer, you can centrally identify, review, and refine unused access across your organization. As summarized in Figure 8, you can use the dashboard to review findings and prioritize which accounts to review based on the volume of findings. The findings highlight unused roles, unused access keys for IAM users, and unused passwords for IAM users. For active IAM roles and users, the findings provide visibility into unused services and actions. By reviewing and refining unused access, you can improve your security posture and get closer to the principle of least privilege at scale.

Figure 8: Process to address unused access findings

Figure 8: Process to address unused access findings

The new IAM Access Analyzer unused access findings and dashboard are available in AWS Regions, excluding the AWS GovCloud (US) Regions and AWS China Regions. To learn more about how to use IAM Access Analyzer to detect unused accesses, see the IAM Access Analyzer documentation.

If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, contact AWS Support.

Want more AWS Security news? Follow us on Twitter.

Achraf Moussadek-Kabdani

Achraf Moussadek-Kabdani

Achraf is a Senior Security Specialist at AWS. He works with global financial services customers to assess and improve their security posture. He is both a builder and advisor, supporting his customers to meet their security objectives while making security a business enabler.

Author

Yevgeniy Ilyin

Yevgeniy is a Solutions Architect at AWS. He has over 20 years of experience working at all levels of software development and solutions architecture and has used programming languages from COBOL and Assembler to .NET, Java, and Python. He develops and code clouds native solutions with a focus on big data, analytics, and data engineering.

Mathangi Ramesh

Mathangi Ramesh

Mathangi is the product manager for IAM. She enjoys talking to customers and working with data to solve problems. Outside of work, Mathangi is a fitness enthusiast and a Bharatanatyam dancer. She holds an MBA degree from Carnegie Mellon University.

Introducing IAM Access Analyzer custom policy checks

Post Syndicated from Mitch Beaumont original https://aws.amazon.com/blogs/security/introducing-iam-access-analyzer-custom-policy-checks/

AWS Identity and Access Management (IAM) Access Analyzer was launched in late 2019. Access Analyzer guides customers toward least-privilege permissions across Amazon Web Services (AWS) by using analysis techniques, such as automated reasoning, to make it simpler for customers to set, verify, and refine IAM permissions. Today, we are excited to announce the general availability of IAM Access Analyzer custom policy checks, a new IAM Access Analyzer feature that helps customers accurately and proactively check IAM policies for critical permissions and increases in policy permissiveness.

In this post, we’ll show how you can integrate custom policy checks into builder workflows to automate the identification of overly permissive IAM policies and IAM policies that contain permissions that you decide are sensitive or critical.

What is the problem?

Although security teams are responsible for the overall security posture of the organization, developers are the ones creating the applications that require permissions. To enable developers to move fast while maintaining high levels of security, organizations look for ways to safely delegate the ability of developers to author IAM policies. Many AWS customers implement manual IAM policy reviews before deploying developer-authored policies to production environments. Customers follow this practice to try to prevent excessive or unwanted permissions finding their way into production. Depending on the volume and complexity of the policies that need to be reviewed; these reviews can be intensive and take time. The result is a slowdown in development and potential delay in deployment of applications and services. Some customers write custom tooling to remove the manual burden of policy reviews, but this can be costly to build and maintain.

How do custom policy checks solve that problem?

Custom policy checks are a new IAM Access Analyzer capability that helps security teams accurately and proactively identify critical permissions in their policies. Custom policy checks can also tell you if a new version of a policy is more permissive than the previous version. Custom policy checks use automated reasoning, a form of static analysis, to provide a higher level of security assurance in the cloud. For more information, see Formal Reasoning About the Security of Amazon Web Services.

Custom policy checks can be embedded in a continuous integration and continuous delivery (CI/CD) pipeline so that checks can be run against policies without having to deploy the policies. In addition, developers can run custom policy checks from their local development environments and get fast feedback about whether or not the policies they are authoring are in line with your organization’s security standards.

How to analyze IAM policies with custom policy checks

In this section, we provide step-by-step instructions for using custom policy checks to analyze IAM policies.

Prerequisites

To complete the examples in our walkthrough, you will need the following:

  1. An AWS account, and an identity that has permissions to use the AWS services, and create the resources, used in the following examples. For more information, see the full sample code used in this blog post on GitHub.
  2. An installed and configured AWS CLI. For more information, see Configure the AWS CLI.
  3. The AWS Cloud Development Kit (AWS CDK). For installation instructions, refer to Install the AWS CDK.

Example 1: Use custom policy checks to compare two IAM policies and check that one does not grant more access than the other

In this example, you will create two IAM identity policy documents, NewPolicyDocument and ExistingPolicyDocument. You will use the new CheckNoNewAccess API to compare these two policies and check that NewPolicyDocument does not grant more access than ExistingPolicyDocument.

Step 1: Create two IAM identity policy documents

  1. Use the following command to create ExistingPolicyDocument.
    cat << EOF > existing-policy-document.json
    {
        "Version": "2012-10-17",
        "Statement": [
            {
                "Effect": "Allow",
                "Action": [
                    "ec2:StartInstances",
                    "ec2:StopInstances"
                ],
                "Resource": "arn:aws:ec2:*:*:instance/*",
                "Condition": {
                    "StringEquals": {
                        "aws:ResourceTag/Owner": "\${aws:username}"
                    }
                }
            }
        ]
    }
    EOF

  2. Use the following command to create NewPolicyDocument.
    cat << EOF > new-policy-document.json
    {
        "Version": "2012-10-17",
        "Statement": [
            {
                "Effect": "Allow",
                "Action": [
                    "ec2:StartInstances",
                    "ec2:StopInstances"
                ],
                "Resource": "arn:aws:ec2:*:*:instance/*"
            }
        ]
    }
    EOF

Notice that ExistingPolicyDocument grants access to the ec2:StartInstances and ec2:StopInstances actions if the condition key aws:ResourceTag/Owner resolves to true. In other words, the value of the tag matches the policy variable aws:username. NewPolicyDocument grants access to the same actions, but does not include a condition key.

Step 2: Check the policies by using the AWS CLI

  1. Use the following command to call the CheckNoNewAccess API to check whether NewPolicyDocument grants more access than ExistingPolicyDocument.
    aws accessanalyzer check-no-new-access \
    --new-policy-document file://new-policy-document.json \
    --existing-policy-document file://existing-policy-document.json \
    --policy-type IDENTITY_POLICY

After a moment, you will see a response from Access Analyzer. The response will look similar to the following.

{
    "result": "FAIL",
    "message": "The modified permissions grant new access compared to your existing policy.",
    "reasons": [
        {
            "description": "New access in the statement with index: 1.",
            "statementIndex": 1
        }
    ]
}

In this example, the validation returned a result of FAIL. This is because NewPolicyDocument is missing the condition key, potentially granting any principal with this identity policy attached more access than intended or needed.

Example 2: Use custom policy checks to check that an IAM policy does not contain sensitive permissions

In this example, you will create an IAM identity-based policy that contains a set of permissions. You will use the CheckAccessNotGranted API to check that the new policy does not give permissions to disable AWS CloudTrail or delete any associated trails.

Step 1: Create a new IAM identity policy document

  • Use the following command to create IamPolicyDocument.
    cat << EOF > iam-policy-document.json
    {
        "Version": "2012-10-17",
        "Statement": [
            {
                "Effect": "Allow",
                "Action": [
                    "cloudtrail:StopLogging",
                    "cloudtrail:Delete*"
                ],
                "Resource": ["*"] 
            }
        ]
    }
    EOF

Step 2: Check the policy by using the AWS CLI

  • Use the following command to call the CheckAccessNotGranted API to check if the new policy grants permission to the set of sensitive actions. In this example, you are asking Access Analyzer to check that IamPolicyDocument does not contain the actions cloudtrail:StopLogging or cloudtrail:DeleteTrail (passed as a list to the access parameter).
    aws accessanalyzer check-access-not-granted \
    --policy-document file://iam-policy-document.json \
    --access actions=cloudtrail:StopLogging,cloudtrail:DeleteTrail \
    --policy-type IDENTITY_POLICY

Because the policy that you created contains both cloudtrail:StopLogging and cloudtrail:DeleteTrail actions, Access Analyzer returns a FAIL.

{
    "result": "FAIL",
    "message": "The policy document grants access to perform one or more of the listed actions.",
    "reasons": [
        {
            "description": "One or more of the listed actions in the statement with index: 0.",
            "statementIndex": 0
        }
    ]
}

Example 3: Integrate custom policy checks into the developer workflow

Building on the previous two examples, in this example, you will automate the analysis of the IAM policies defined in an AWS CloudFormation template. Figure 1 shows the workflow that will be used. The workflow will initiate each time a pull request is created against the main branch of an AWS CodeCommit repository called my-iam-policy (the commit stage in Figure 1). The first check uses the CheckNoNewAccess API to determine if the updated policy is more permissive than a reference IAM policy. The second check uses the CheckAccessNotGranted API to automatically check for critical permissions within the policy (the validation stage in Figure 1). In both cases, if the updated policy is more permissive, or contains critical permissions, a comment with the results of the validation is posted to the pull request. This information can then be used to decide whether the pull request is merged into the main branch for deployment (the deploy stage is shown in Figure 1).

Figure 1: Diagram of the pipeline that will check policies

Figure 1: Diagram of the pipeline that will check policies

Step 1: Deploy the infrastructure and set up the pipeline

  1. Use the following command to download and unzip the Cloud Development Kit (CDK) project associated with this blog post.
    git clone https://github.com/aws-samples/access-analyzer-automated-policy-analysis-blog.git
    cd ./access-analyzer-automated-policy-analysis-blog

  2. Create a virtual Python environment to contain the project dependencies by using the following command.
    python3 -m venv .venv

  3. Activate the virtual environment with the following command.
    source .venv/bin/activate

  4. Install the project requirements by using the following command.
    pip install -r requirements.txt

  5. Use the following command to update the CDK CLI to the latest major version.
    npm install -g aws-cdk@2 --force

  6. Before you can deploy the CDK project, use the following command to bootstrap your AWS environment. Bootstrapping is the process of creating resources needed for deploying CDK projects. These resources include an Amazon Simple Storage Service (Amazon S3) bucket for storing files and IAM roles that grant permissions needed to perform deployments.
    cdk bootstrap

  7. Finally, use the following command to deploy the pipeline infrastructure.
    cdk deploy --require-approval never

    The deployment will take a few minutes to complete. Feel free to grab a coffee and check back shortly.

    When the deployment completes, there will be two stack outputs listed: one with a name that contains CodeCommitRepo and another with a name that contains ConfigBucket. Make a note of the values of these outputs, because you will need them later.

    The deployed pipeline is displayed in the AWS CodePipeline console and should look similar to the pipeline shown in Figure 2.

    Figure 2: AWS CodePipeline and CodeBuild Management Console view

    Figure 2: AWS CodePipeline and CodeBuild Management Console view

    In addition to initiating when a pull request is created, the newly deployed pipeline can also be initiated when changes to the main branch of the AWS CodeCommit repository are detected. The pipeline has three stages, CheckoutSources, IAMPolicyAnalysis, and deploy. The CheckoutSource stage checks out the contents of the my-iam-policy repository when the pipeline is triggered due to a change in the main branch.

    The IAMPolicyAnalysis stage, which runs after the CheckoutSource stage or when a pull request has been created against the main branch, has two actions. The first action, Check no new access, verifies that changes to the IAM policies in the CloudFormation template do not grant more access than a pre-defined reference policy. The second action, Check access not granted, verifies that those same updates do not grant access to API actions that are deemed sensitive or critical. Finally, the Deploy stage will deploy the resources defined in the CloudFormation template, if the actions in the IAMPolicyAnalysis stage are successful.

    To analyze the IAM policies, the Check no new access and Check access not granted actions depend on a reference policy and a predefined list of API actions, respectively.

  8. Use the following command to create the reference policy.
    cd ../ 
    cat << EOF > cnna-reference-policy.json
    {
        "Version": "2012-10-17",
        "Statement": [
            {
                "Effect": "Allow",
                "Action": "*",
                "Resource": "*"
            },
            {
                "Effect": "Deny",
                "Action": "iam:PassRole",
                "Resource": "arn:aws:iam::*:role/my-sensitive-roles/*"
            }
        ]
    }	
    EOF

    This reference policy sets out the maximum permissions for policies that you plan to validate with custom policy checks. The iam:PassRole permission is a permission that allows an IAM principal to pass an IAM role to an AWS service, like Amazon Elastic Compute Cloud (Amazon EC2) or AWS Lambda. The reference policy says that the only way that a policy is more permissive is if it allows iam:PassRole on this group of sensitive resources: arn:aws:iam::*:role/my-sensitive-roles/*”.

    Why might a reference policy be useful? A reference policy helps ensure that a particular combination of actions, resources, and conditions is not allowed in your environment. Reference policies typically allow actions and resources in one statement, then deny the problematic permissions in a second statement. This means that a policy that is more permissive than the reference policy allows access to a permission that the reference policy has denied.

    In this example, a developer who is authorized to create IAM roles could, intentionally or unintentionally, create an IAM role for an AWS service (like EC2 for AWS Lambda) that has permission to pass a privileged role to another service or principal, leading to an escalation of privilege.

  9. Use the following command to create a list of sensitive actions. This list will be parsed during the build pipeline and passed to the CheckAccessNotGranted API. If the policy grants access to one or more of the sensitive actions in this list, a result of FAIL will be returned. To keep this example simple, add a single API action, as follows.
    cat << EOF > sensitive-actions.file
    dynamodb:DeleteTable
    EOF

  10. So that the CodeBuild projects can access the dependencies, use the following command to copy the cnna-reference-policy.file and sensitive-actions.file to an S3 bucket. Refer to the stack outputs you noted earlier and replace <ConfigBucket> with the name of the S3 bucket created in your environment.
    aws s3 cp ./cnna-reference-policy.json s3://<ConfgBucket>/cnna-reference-policy.json
    aws s3 cp ./sensitive-actions.file s3://<ConfigBucket>/sensitive-actions.file

Step 2: Create a new CloudFormation template that defines an IAM policy

With the pipeline deployed, the next step is to clone the repository that was created and populate it with a CloudFormation template that defines an IAM policy.

  1. Install git-remote-codecommit by using the following command.
    pip install git-remote-codecommit

    For more information on installing and configuring git-remote-codecommit, see the AWS CodeCommit User Guide.

  2. With git-remote-codecommit installed, use the following command to clone the my-iam-policy repository from AWS CodeCommit.
    git clone codecommit://my-iam-policy && cd ./my-iam-policy

    If you’ve configured a named profile for use with the AWS CLI, use the following command, replacing <profile> with the name of your named profile.

    git clone codecommit://<profile>@my-iam-policy && cd ./my-iam-policy

  3. Use the following command to create the CloudFormation template in the local clone of the repository.
    cat << EOF > ec2-instance-role.yaml
    ---
    AWSTemplateFormatVersion: 2010-09-09
    Description: CloudFormation Template to deploy base resources for access_analyzer_blog
    Resources:
      EC2Role:
        Type: AWS::IAM::Role
        Properties:
          AssumeRolePolicyDocument:
            Version: 2012-10-17
            Statement:
            - Effect: Allow
              Principal:
                Service: ec2.amazonaws.com
              Action: sts:AssumeRole
          Path: /
          Policies:
          - PolicyName: my-application-permissions
            PolicyDocument:
              Version: 2012-10-17
              Statement:
              - Effect: Allow
                Action:
                  - 'ec2:RunInstances'
                  - 'lambda:CreateFunction'
                  - 'lambda:InvokeFunction'
                  - 'dynamodb:Scan'
                  - 'dynamodb:Query'
                  - 'dynamodb:UpdateItem'
                  - 'dynamodb:GetItem'
                Resource: '*'
              - Effect: Allow
                Action:
                  - iam:PassRole 
                Resource: "arn:aws:iam::*:role/my-custom-role"
            
      EC2InstanceProfile:
        Type: AWS::IAM::InstanceProfile
        Properties:
          Path: /
          Roles:
            - !Ref EC2Role
    EOF

The actions in the IAMPolicyValidation stage are run by a CodeBuild project. CodeBuild environments run arbitrary commands that are passed to the project using a buildspec file. Each project has already been configured to use an inline buildspec file.

You can inspect the buildspec file for each project by opening the project’s Build details page as shown in Figure 3.

Figure 3: AWS CodeBuild console and build details

Figure 3: AWS CodeBuild console and build details

Step 3: Run analysis on the IAM policy

The next step involves checking in the first version of the CloudFormation template to the repository and checking two things. First, that the policy does not grant more access than the reference policy. Second, that the policy does not contain any of the sensitive actions defined in the sensitive-actions.file.

  1. To begin tracking the CloudFormation template created earlier, use the following command.
    git add ec2-instance-role.yaml 

  2. Commit the changes you have made to the repository.
    git commit -m 'committing a new CFN template with IAM policy'

  3. Finally, push these changes to the remote repository.
    git push

  4. Pushing these changes will initiate the pipeline. After a few minutes the pipeline should complete successfully. To view the status of the pipeline, do the following:
    1. Navigate to https://<region>.console.aws.amazon.com/codesuite/codepipeline/pipelines (replacing <region> with your AWS Region).
    2. Choose the pipeline called accessanalyzer-pipeline.
    3. Scroll down to the IAMPolicyValidation stage of the pipeline.
    4. For both the check no new access and check access not granted actions, choose View Logs to inspect the log output.
  5. If you inspect the build logs for both the check no new access and check access not granted actions within the pipeline, you should see that there were no blocking or non-blocking findings, similar to what is shown in Figure 4. This indicates that the policy was validated successfully. In other words, the policy was not more permissive than the reference policy, and it did not include any of the critical permissions.
    Figure 4: CodeBuild log entry confirming that the IAM policy was successfully validated

    Figure 4: CodeBuild log entry confirming that the IAM policy was successfully validated

Step 4: Create a pull request to merge a new update to the CloudFormation template

In this step, you will make a change to the IAM policy in the CloudFormation template. The change deliberately makes the policy grant more access than the reference policy. The change also includes a critical permission.

  1. Use the following command to create a new branch called add-new-permissions in the local clone of the repository.
    git checkout -b add-new-permissions

  2. Next, edit the IAM policy in ec2-instance-role.yaml to include an additional API action, dynamodb:Delete* and update the resource property of the inline policy to use an IAM role in the /my-sensitive-roles/*” path. You can copy the following example, if you’re unsure of how to do this.
    ---
    AWSTemplateFormatVersion: 2010-09-09
    Description: CloudFormation Template to deploy base resources for access_analyzer_blog
    Resources:
      EC2Role:
        Type: AWS::IAM::Role
        Properties:
          AssumeRolePolicyDocument:
            Version: 2012-10-17
            Statement:
            - Effect: Allow
              Principal:
                Service: ec2.amazonaws.com
              Action: sts:AssumeRole
          Path: /
          Policies:
          - PolicyName: my-application-permissions
            PolicyDocument:
              Version: 2012-10-17
              Statement:
              - Effect: Allow
                Action:
                  - 'ec2:RunInstances'
                  - 'lambda:CreateFunction'
                  - 'lambda:InvokeFunction'
                  - 'dynamodb:Scan'
                  - 'dynamodb:Query'
                  - 'dynamodb:UpdateItem'
                  - 'dynamodb:GetItem'
                  - 'dynamodb:Delete*'
                Resource: '*'
              - Effect: Allow
                Action:
                  - iam:PassRole 
                Resource: "arn:aws:iam::*:role/my-sensitive-roles/my-custom-admin-role"
            
      EC2InstanceProfile:
        Type: AWS::IAM::InstanceProfile
        Properties:
          Path: /
          Roles:
            - !Ref EC2Role

  3. Commit the policy change and push the updated policy document to the repo by using the following commands.
    git add ec2-instance-role.yaml 
    git commit -m "adding new permission and allowing my ec2 instance to assume a pass sensitive IAM role"

  4. The add-new-permissions branch is currently a local branch. Use the following command to push the branch to the remote repository. This action will not initiate the pipeline, because the pipeline only runs when changes are made to the repository’s main branch.
    git push -u origin add-new-permissions

  5. With the new branch and changes pushed to the repository, follow these steps to create a pull request:
    1. Navigate to https://console.aws.amazon.com/codesuite/codecommit/repositories (don’t forget to the switch to the correct Region).
    2. Choose the repository called my-iam-policy.
    3. Choose the branch add-new-permissions from the drop-down list at the top of the repository screen.
      Figure 5: my-iam-policy repository with new branch available

      Figure 5: my-iam-policy repository with new branch available

    4. Choose Create pull request.
    5. Enter a title and description for the pull request.
    6. (Optional) Scroll down to see the differences between the current version and new version of the CloudFormation template highlighted.
    7. Choose Create pull request.
  6. The creation of the pull request will Initiate the pipeline to fetch the CloudFormation template from the repository and run the check no new access and check access not granted analysis actions.
  7. After a few minutes, choose the Activity tab for the pull request. You should see a comment from the pipeline that contains the results of the failed validation.
    Figure 6: Results from the failed validation posted as a comment to the pull request

    Figure 6: Results from the failed validation posted as a comment to the pull request

Why did the validations fail?

The updated IAM role and inline policy failed validation for two reasons. First, the reference policy said that no one should have more permissions than the reference policy does. The reference policy in this example included a deny statement for the iam:PassRole permission with a resource of /my-sensitive-role/*. The new created inline policy included an allow statement for the iam:PassRole permission with a resource of arn:aws:iam::*:role/my-sensitive-roles/my-custom-admin-role. In other words, the new policy had more permissions than the reference policy.

Second, the list of critical permissions included the dynamodb:DeleteTable permission. The inline policy included a statement that would allow the EC2 instance to perform the dynamodb:DeleteTable action.

Cleanup

Use the following command to delete the infrastructure that was provisioned as part of the examples in this blog post.

cdk destroy 

Conclusion

In this post, I introduced you to two new IAM Access Analyzer APIs: CheckNoNewAccess and CheckAccessNotGranted. The main example in the post demonstrated one way in which you can use these APIs to automate security testing throughout the development lifecycle. The example did this by integrating both APIs into the developer workflow and validating the developer-authored IAM policy when the developer created a pull request to merge changes into the repository’s main branch. The automation helped the developer to get feedback about the problems with the IAM policy quickly, allowing the developer to take action in a timely way. This is often referred to as shifting security left — identifying misconfigurations early and automatically supporting an iterative, fail-fast model of continuous development and testing. Ultimately, this enables teams to make security an inherent part of a system’s design and architecture and can speed up product development workflow.

You can find the full sample code used in this blog post on GitHub.

To learn more about IAM Access Analyzer and the new custom policy checks feature, see the IAM Access Analyzer documentation.

If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, contact AWS Support.

Want more AWS Security news? Follow us on Twitter.

Mitch Beaumont

Mitch Beaumont

Mitch is a Principal Solutions Architect for AWS, based in Sydney, Australia. Mitch works with some of Australia’s largest financial services customers, helping them to continually raise the security bar for the products and features that they build and ship. Outside of work, Mitch enjoys spending time with his family, photography, and surfing.

Author

Matt Luttrell

Matt is a Principal Solutions Architect on the AWS Identity Solutions team. When he’s not spending time chasing his kids around, he enjoys skiing, cycling, and the occasional video game.

Use scalable controls for AWS services accessing your resources

Post Syndicated from James Greenwood original https://aws.amazon.com/blogs/security/use-scalable-controls-for-aws-services-accessing-your-resources/

Sometimes you want to configure an AWS service to access your resource in another service. For example, you can configure AWS CloudTrail, a service that monitors account activity across your AWS infrastructure, to write log data to your bucket in Amazon Simple Storage Service (Amazon S3). When you do this, you want assurance that the service will only access your resource on your behalf—you don’t want an untrusted entity to be able to use the service to access your resource. Before today, you could achieve this by using the two AWS Identity and Access Management (IAM) condition keys, aws:SourceAccount and aws:SourceArn. You can use these condition keys to help make sure that a service accesses your resource only on behalf of specific accounts or resources that you trust. However, because these condition keys require you to specify individual accounts and resources, they can be difficult to manage at scale, especially in larger organizations.

Recently, IAM launched two new condition keys that can help you achieve this in a more scalable way that is simpler to manage within your organization:

  • aws:SourceOrgID — use this condition key to make sure that an AWS service can access your resources only when the request originates from a particular organization ID in AWS Organizations.
  • aws:SourceOrgPaths — use this condition key to make sure that an AWS service can access your resources only when the request originates from one or more organizational units (OUs) in your organization.

In this blog post, we describe how you can use the four available condition keys, including the two new ones, to help you control how AWS services access your resources.

Background

Imagine a scenario where you configure an AWS service to access your resource in another service. Let’s say you’re using Amazon CloudWatch to observe resources in your AWS environment, and you create an alarm that activates when certain conditions occur. When the alarm activates, you want it to publish messages to a topic that you create in Amazon Simple Notification Service (Amazon SNS) to generate notifications.

Figure 1 depicts this process.

Figure 1: Amazon CloudWatch publishing messages to an SNS topic

Figure 1: Amazon CloudWatch publishing messages to an SNS topic

In this scenario, there’s a resource-based policy controlling access to your SNS topic. For CloudWatch to publish messages to it, you must configure the policy to allow access by CloudWatch. When you do this, you identify CloudWatch using an AWS service principal, in this case cloudwatch.amazonaws.com.

Cross-service access

This is an example of a common pattern known as cross-service access. With cross-service access, a calling service accesses your resource in a called service, and a resource-based policy attached to your resource grants access to the calling service. The calling service is identified using an AWS service principal in the form <SERVICE-NAME>.amazonaws.com, and it accesses your resource on behalf of an originating resource, such as a CloudWatch alarm.

Figure 2 shows cross-service access.

Figure 2: Cross-service access

Figure 2: Cross-service access

When you configure cross-service access, you want to make sure that the calling service will access your resource only on your behalf. That means you want the originating resource to be controlled by someone whom you trust. If an untrusted entity creates their own CloudWatch alarm in their AWS environment, for example, then their alarm should not be able to publish messages to your SNS topic.

If an untrusted entity could use a calling service to access your resource on their behalf, it would be an example of what’s known as the confused deputy problem. The confused deputy problem is a security issue in which an entity that doesn’t have permission to perform an action coerces a more privileged entity (in this case, a calling service) to perform the action instead.

Use condition keys to help prevent cross-service confused deputy issues

AWS provides global condition keys to help you prevent cross-service confused deputy issues. You can use these condition keys to control how AWS services access your resources.

Before today, you could use the aws:SourceAccount or aws:SourceArn condition keys to make sure that a calling service accesses your resource only when the request originates from a specific account (with aws:SourceAccount) or a specific originating resource (with aws:SourceArn). However, there are situations where you might want to allow multiple resources or accounts to use a calling service to access your resource. For example, you might want to create many VPC flow logs in an organization that publish to a central S3 bucket. To achieve this using the aws:SourceAccount or aws:SourceArn condition keys, you must enumerate all the originating accounts or resources individually in your resource-based policies. This can be difficult to manage, especially in large organizations, and can potentially cause your resource-based policy documents to reach size limits.

Now, you can use the new aws:SourceOrgID or aws:SourceOrgPaths condition keys to make sure that a calling service accesses your resource only when the request originates from a specific organization (with aws:SourceOrgID) or a specific organizational unit (with aws:SourceOrgPaths). This helps avoid the need to update policies when accounts are added or removed, reduces the size of policy documents, and makes it simpler to create and review policy statements.

The following table summarizes the four condition keys that you can use to help prevent cross-service confused deputy issues. These keys work in a similar way, but with different levels of granularity.

Use case Condition key Value Allowed operators Single/multi valued Example value
Allow a calling service to access your resource only on behalf of an organization that you trust. aws:SourceOrgID AWS organization ID of the resource making a cross-service access request String operators Single-valued key o-a1b2c3d4e5
Allow a calling service to access your resource only on behalf of an organizational unit (OU) that you trust. aws:SourceOrgPaths Organization entity paths of the resource making a cross-service access request Set operators and string operators Multivalued key o-a1b2c3d4e5/r-ab12/ou-ab12-11111111/ou-ab12-22222222/
Allow a calling service to access your resource only on behalf of an account that you trust. aws:SourceAccount AWS account ID of the resource making a cross-service access request String operators Single-valued key 111122223333
Allow a calling service to access your resource only on behalf of a resource that you trust. aws:SourceArn Amazon Resource Name (ARN) of the resource making a cross- service access request ARN operators (recommended) or string operators Single-valued key arn:aws:cloudwatch:eu-west-1:111122223333:alarm:myalarm

When to use the condition keys

AWS recommends that you use these condition keys in any resource-based policy statements that allow access by an AWS service, except where the relevant condition key is not yet supported by the service. To find out whether a condition key is supported by a particular service, see AWS global condition context keys in the AWS Identity and Access Management User Guide.

Note: Only use these condition keys in resource-based policies that allow access by an AWS service. Don’t use them in other use cases, including identity-based policies and service control policies (SCPs), where these condition keys won’t be populated.

Use condition keys for defense in depth

AWS services use a variety of mechanisms to help prevent cross-service confused deputy issues, and the details vary by service. For example, where a calling service accesses an S3 bucket, some services use S3 prefixes to help prevent confused deputy issues. For more information, see the relevant service documentation.

Where supported by the service, AWS recommends that you use the condition keys we describe in this post regardless of whether the service has another mechanism in place to help prevent cross-service confused deputy issues. This helps to make your intentions explicit, provide defense in depth, and guard against misconfigurations.

Example use cases

Let’s walk through some example use cases to learn how to use these condition keys in practice.

First, imagine you’re using Amazon Virtual Private Cloud (Amazon VPC) to manage logically isolated virtual networks. In Amazon VPC, you can configure flow logs, which capture information about your network traffic. Let’s say you want a flow log to write data into an S3 bucket for later analysis. This process is depicted in Figure 3.

Figure 3: Amazon VPC writing flow logs to an S3 bucket

Figure 3: Amazon VPC writing flow logs to an S3 bucket

This constitutes another cross-service access scenario. In this case, Amazon VPC is the calling service, Amazon S3 is the called service, the VPC flow log is the originating resource, and the S3 bucket is your resource in the called service.

To allow access, the resource-based policy for your S3 bucket (known as a bucket policy) must allow Amazon VPC to put objects there. The Principal element in this policy specifies the AWS service principal of the service that will access the resource, which for VPC flow logs is delivery.logs.amazonaws.com.

Initial policy without confused deputy prevention

The following is an initial version of the bucket policy that allows Amazon VPC to put objects in the bucket but doesn’t yet provide confused deputy prevention. We’re showing this policy for illustration purposes; don’t use it in its current form.

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "PARTIAL-EXAMPLE-DO-NOT-USE",
            "Effect": "Allow",
            "Principal": {
                "Service": "delivery.logs.amazonaws.com"
            },
            "Action": "s3:PutObject",
            "Resource": "arn:aws:s3:::<DOC-EXAMPLE-BUCKET>/*"
        }
    ]
}

Note: For simplicity, we only show one of the policy statements that you need to allow VPC flow logs to write to a bucket. In a real-life bucket policy for flow logs, you need two policy statements: one allowing actions on the bucket, and one allowing actions on the bucket contents. These are described in Publish flow logs to Amazon S3. Both policy statements work in the same way with respect to confused deputy prevention.

This policy statement allows Amazon VPC to put objects in the bucket. However, it allows Amazon VPC to do that on behalf of any flow log in any account. There’s nothing in the policy to tell Amazon VPC that it should access this bucket only if the flow log belongs to a specific organization, OU, account, or resource that you trust.

Let’s now update the policy to help prevent cross-service confused deputy issues. For the rest of this post, the remaining policy samples provide confused deputy protection, but at different levels of granularity.

Specify a trusted organization

Continuing with the previous example, imagine that you now have an organization in AWS Organizations, and you want to create VPC flow logs in various accounts within your organization that publish to a central S3 bucket. You want Amazon VPC to put objects in the bucket only if the request originates from a flow log that resides in your organization.

You can achieve this by using the new aws:SourceOrgID condition key. In a cross-service access scenario, this condition key evaluates to the ID of the organization that the request came from. You can use this condition key in the Condition element of a resource-based policy to allow actions only if aws:SourceOrgID matches the ID of a specific organization, as shown in the following example. In your own policy, make sure to replace <DOC-EXAMPLE-BUCKET> and <MY-ORGANIZATION-ID> with your own information.

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "VPCLogsDeliveryWrite",
            "Effect": "Allow",
            "Principal": {
                "Service": "delivery.logs.amazonaws.com"
            },
            "Action": "s3:PutObject",
            "Resource": "arn:aws:s3:::<DOC-EXAMPLE-BUCKET>/*",
            "Condition": {
                "StringEquals": {
                    "aws:SourceOrgID": "<MY-ORGANIZATION-ID>"
                }
            }
        }
    ]
}

The revised policy states that Amazon VPC can put objects in the bucket only if the request originates from a flow log in your organization. Now, if someone creates a flow log outside your organization and configures it to access your bucket, they will get an access denied error.

You can use aws:SourceOrgID in this way to allow a calling service to access your resource only if the request originates from a specific organization, as shown in Figure 4.

Figure 4: Specify a trusted organization using aws:SourceOrgID

Figure 4: Specify a trusted organization using aws:SourceOrgID

Specify a trusted OU

What if you don’t want to trust your entire organization, but only part of it? Let’s consider a different scenario. Imagine that you want to send messages from Amazon SNS into a queue in Amazon Simple Queue Service (Amazon SQS) so they can be processed by consumers. This is depicted in Figure 5.

Figure 5: Amazon SNS sending messages to an SQS queue

Figure 5: Amazon SNS sending messages to an SQS queue

Now imagine that you want your SQS queue to receive messages only if they originate from an SNS topic that resides in a specific organizational unit (OU) in your organization. For example, you might want to allow messages only if they originate from a production OU that is subject to change control.

You can achieve this by using the new aws:SourceOrgPaths condition key. As before, you use this condition key in a resource-based policy attached to your resource. In a cross-service access scenario, this condition key evaluates to the AWS Organizations entity path that the request came from. An entity path is a text representation of an entity within an organization.

You build an entity path for an OU by using the IDs of the organization, root, and all OUs in the path down to and including the OU. For example, consider the organizational structure shown in Figure 6.

Figure 6: Example organization structure

Figure 6: Example organization structure

In this example, you can specify the Prod OU by using the following entity path:

o-a1b2c3d4e5/r-ab12/ou-ab12-11111111/ou-ab12-22222222/

For more information about how to construct an entity path, see Understand the AWS Organizations entity path.

Let’s now match the aws:SourceOrgPaths condition key against a specific entity path in the Condition element of a resource-based policy for an SQS queue. In your own policy, make sure to replace <MY-QUEUE-ARN> and <MY-ENTITY-PATH> with your own information.

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "Allow-SNS-SendMessage",
            "Effect": "Allow",
            "Principal": {
                "Service": "sns.amazonaws.com"
            },
            "Action": "sqs:SendMessage",
            "Resource": "<MY-QUEUE-ARN>",
            "Condition": {
                "Null": {
                    "aws:SourceOrgPaths": "false"
                },
                "ForAllValues:StringEquals": {
                    "aws:SourceOrgPaths": "<MY-ENTITY-PATH>"
                }
            }
        }
    ]
}

Note: aws:SourceOrgPaths is a multivalued condition key, which means it’s capable of having multiple values in the request context. At the time of writing, it contains a single entity path if the request originates from an account in an organization, and a null value if the request originates from an account that’s not in an organization. Because this key is multivalued, you need to use both a set operator and a string operator to compare values.

In this policy, there are two conditions in the Condition block. The first uses the Null condition operator and compares with a false value to confirm that the condition key’s value is not null. The second uses set operator ForAllValues, which returns true if every condition key value in the request matches at least one value in your policy condition, and string operator StringEquals, which requires an exact match with a value specified in your policy condition.

Note: The reason for the null check is that set operator ForAllValues returns true when a condition key resolves to null. With an Allow effect and the null check in place, access is denied if the request originates from an account that’s not in an organization.

With this policy applied to your SQS queue, Amazon SNS can send messages to your queue only if the message came from an SNS topic in a specific OU.

You can use aws:SourceOrgPaths in this way to allow a calling service to access your resource only if the request originates from a specific organizational unit, as shown in Figure 7.

Figure 7: Specify a trusted OU using aws:SourceOrgPaths

Figure 7: Specify a trusted OU using aws:SourceOrgPaths

Specify a trusted OU and its children

In the previous example, we specified a trusted OU, but that didn’t include its child OUs. What if you want to include its children as well?

You can achieve this by replacing the string operator StringEquals with StringLike. This allows you to use wildcards in the entity path. Using the organization structure from the previous example, the following Condition evaluates to true only if the condition key value is not null and the request originates from the Prod OU or any of its child OUs.

"Condition": {
    "Null": {
        "aws:SourceOrgPaths": "false"
    },
    "ForAllValues:StringLike": {
        "aws:SourceOrgPaths": "o-a1b2c3d4e5/r-ab12/ou-ab12-11111111/ou-ab12-22222222/*"
    }
}

Specify a trusted account

If you want to be more granular, you can allow a service to access your resource only if the request originates from a specific account. You can achieve this by using the aws:SourceAccount condition key. In a cross-service access scenario, this condition key evaluates to the ID of the account that the request came from. 

The following Condition evaluates to true only if the request originates from the account that you specify in the policy. In your own policy, make sure to replace <MY-ACCOUNT-ID> with your own information.

"Condition": {
    "StringEquals": {
        "aws:SourceAccount": "<MY-ACCOUNT-ID>"
    }
}

You can use this condition element within a resource-based policy to allow a calling service to access your resource only if the request originates from a specific account, as shown in Figure 8.

Figure 8: Specify a trusted account using aws:SourceAccount

Figure 8: Specify a trusted account using aws:SourceAccount

Specify a trusted resource

If you want to be even more granular, you can allow a service to access your resource only if the request originates from a specific resource. For example, you can allow Amazon SNS to send messages to your SQS queue only if the request originates from a specific topic within Amazon SNS.

You can achieve this by using the aws:SourceArn condition key. In a cross-service access scenario, this condition key evaluates to the Amazon Resource Name (ARN) of the originating resource. This provides the most granular form of cross-service confused deputy prevention.

The following Condition evaluates to true only if the request originates from the resource that you specify in the policy. In your own policy, make sure to replace <MY-RESOURCE-ARN> with your own information.

"Condition": {
    "ArnEquals": {
        "aws:SourceArn": "<MY-RESOURCE-ARN>"
    }
}

Note: AWS recommends that you use an ARN operator rather than a string operator when comparing ARNs. This example uses ArnEquals to match the condition key value against the ARN specified in the policy.

You can use this condition element within a resource-based policy to allow a calling service to access your resource only if the request comes from a specific originating resource, as shown in Figure 9.

Figure 9: Specify a trusted resource using aws:SourceArn

Figure 9: Specify a trusted resource using aws:SourceArn

Specify multiple trusted resources, accounts, OUs, or organizations

The four condition keys allow you to specify multiple trusted entities by matching against an array of values. This allows you to specify multiple trusted resources, accounts, OUs, or organizations in your policies.

Conclusion

In this post, you learned about cross-service access, in which an AWS service communicates with another AWS service to access your resource. You saw that it’s important to make sure that such services access your resources only on your behalf in order to help avoid cross-service confused deputy issues.

We showed you how to help prevent cross-service confused deputy issues by using two new condition keys aws:SourceOrgID and aws:SourceOrgPaths, as well as the other available condition keys aws:SourceAccount and aws:SourceArn. You learned that you should use these condition keys in any resource-based policy statements that allow access by an AWS service, if the condition key is supported by the service. This helps make sure that a calling service can access your resource only when the request originates from a specific organization, OU, account, or resource that you trust.

If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, start a new thread on AWS IAM re:Post or contact AWS Support.

Want more AWS Security news? Follow us on Twitter.

Author

James Greenwood

James is a Principal Security Solutions Architect who helps AWS Financial Services customers meet their security and compliance objectives in the AWS Cloud. James has a background in identity and access management, authentication, credential management, and data protection with more than 20 years of experience in the financial services industry.

Sophia Yang

Sophia Yang

Sophia is a Senior Product Manager on the AWS Identity and Access Management (IAM) service. She is passionate about enabling customers to build and innovate in AWS in a secure manner.

Validate IAM policies by using IAM Policy Validator for AWS CloudFormation and GitHub Actions

Post Syndicated from Mitch Beaumont original https://aws.amazon.com/blogs/security/validate-iam-policies-by-using-iam-policy-validator-for-aws-cloudformation-and-github-actions/

In this blog post, I’ll show you how to automate the validation of AWS Identity and Access Management (IAM) policies by using a combination of the IAM Policy Validator for AWS CloudFormation (cfn-policy-validator) and GitHub Actions. Policy validation is an approach that is designed to minimize the deployment of unwanted IAM identity-based and resource-based policies to your Amazon Web Services (AWS) environments.

With GitHub Actions, you can automate, customize, and run software development workflows directly within a repository. Workflows are defined using YAML and are stored alongside your code. I’ll discuss the specifics of how you can set up and use GitHub actions within a repository in the sections that follow.

The cfn-policy-validator tool is a command-line tool that takes an AWS CloudFormation template, finds and parses the IAM policies that are attached to IAM roles, users, groups, and resources, and then runs the policies through IAM Access Analyzer policy checks. Implementing IAM policy validation checks at the time of code check-in helps shift security to the left (closer to the developer) and shortens the time between when developers commit code and when they get feedback on their work.

Let’s walk through an example that checks the policies that are attached to an IAM role in a CloudFormation template. In this example, the cfn-policy-validator tool will find that the trust policy attached to the IAM role allows the role to be assumed by external principals. This configuration could lead to unintended access to your resources and data, which is a security risk.

Prerequisites

To complete this example, you will need the following:

  1. A GitHub account
  2. An AWS account, and an identity within that account that has permissions to create the IAM roles and resources used in this example

Step 1: Create a repository that will host the CloudFormation template to be validated

To begin with, you need to create a GitHub repository to host the CloudFormation template that is going to be validated by the cfn-policy-validator tool.

To create a repository:

  1. Open a browser and go to https://github.com.
  2. In the upper-right corner of the page, in the drop-down menu, choose New repository. For Repository name, enter a short, memorable name for your repository.
  3. (Optional) Add a description of your repository.
  4. Choose either the option Public (the repository is accessible to everyone on the internet) or Private (the repository is accessible only to people access is explicitly shared with).
  5. Choose Initialize this repository with: Add a README file.
  6. Choose Create repository. Make a note of the repository’s name.

Step 2: Clone the repository locally

Now that the repository has been created, clone it locally and add a CloudFormation template.

To clone the repository locally and add a CloudFormation template:

  1. Open the command-line tool of your choice.
  2. Use the following command to clone the new repository locally. Make sure to replace <GitHubOrg> and <RepositoryName> with your own values.
    git clone [email protected]:<GitHubOrg>/<RepositoryName>.git

  3. Change in to the directory that contains the locally-cloned repository.
    cd <RepositoryName>

    Now that the repository is locally cloned, populate the locally-cloned repository with the following sample CloudFormation template. This template creates a single IAM role that allows a principal to assume the role to perform the S3:GetObject action.

  4. Use the following command to create the sample CloudFormation template file.

    WARNING: This sample role and policy should not be used in production. Using a wildcard in the principal element of a role’s trust policy would allow any IAM principal in any account to assume the role.

    cat << EOF > sample-role.yaml
    
    AWSTemplateFormatVersion: "2010-09-09"
    Description: Base stack to create a simple role
    Resources:
      SampleIamRole:
        Type: AWS::IAM::Role
        Properties:
          AssumeRolePolicyDocument:
            Statement:
              - Effect: Allow
                Principal:
                  AWS: "*"
                Action: ["sts:AssumeRole"]
          Path: /      
          Policies:
            - PolicyName: root
              PolicyDocument:
                Version: 2012-10-17
                Statement:
                  - Resource: "*"
                    Effect: Allow
                    Action:
                      - s3:GetObject
    EOF

Notice that AssumeRolePolicyDocument refers to a trust policy that includes a wildcard value in the principal element. This means that the role could potentially be assumed by an external identity, and that’s a risk you want to know about.

Step 3: Vend temporary AWS credentials for GitHub Actions workflows

In order for the cfn-policy-validator tool that’s running in the GitHub Actions workflow to use the IAM Access Analyzer API, the GitHub Actions workflow needs a set of temporary AWS credentials. The AWS Credentials for GitHub Actions action helps address this requirement. This action implements the AWS SDK credential resolution chain and exports environment variables for other actions to use in a workflow. Environment variable exports are detected by the cfn-policy-validator tool.

AWS Credentials for GitHub Actions supports four methods for fetching credentials from AWS, but the recommended approach is to use GitHub’s OpenID Connect (OIDC) provider in conjunction with a configured IAM identity provider endpoint.

To configure an IAM identity provider endpoint for use in conjunction with GitHub’s OIDC provider:

  1. Open the AWS Management Console and navigate to IAM.
  2. In the left-hand menu, choose Identity providers, and then choose Add provider.
  3. For Provider type, choose OpenID Connect.
  4. For Provider URL, enter
    https://token.actions.githubusercontent.com
  5. Choose Get thumbprint.
  6. For Audiences, enter sts.amazonaws.com
  7. Choose Add provider to complete the setup.

At this point, make a note of the OIDC provider name. You’ll need this information in the next step.

After it’s configured, the IAM identity provider endpoint should look similar to the following:

Figure 1: IAM Identity provider details

Figure 1: IAM Identity provider details

Step 4: Create an IAM role with permissions to call the IAM Access Analyzer API

In this step, you will create an IAM role that can be assumed by the GitHub Actions workflow and that provides the necessary permissions to run the cfn-policy-validator tool.

To create the IAM role:

  1. In the IAM console, in the left-hand menu, choose Roles, and then choose Create role.
  2. For Trust entity type, choose Web identity.
  3. In the Provider list, choose the new GitHub OIDC provider that you created in the earlier step. For Audience, select sts.amazonaws.com from the list.
  4. Choose Next.
  5. On the Add permission page, choose Create policy.
  6. Choose JSON, and enter the following policy:
    
        "Version": "2012-10-17",
        "Statement": [
            {
                "Effect": "Allow",
                "Action": [
                  "iam:GetPolicy",
                  "iam:GetPolicyVersion",
                  "access-analyzer:ListAnalyzers",
                  "access-analyzer:ValidatePolicy",
                  "access-analyzer:CreateAccessPreview",
                  "access-analyzer:GetAccessPreview",
                  "access-analyzer:ListAccessPreviewFindings",
                  "access-analyzer:CreateAnalyzer",
                  "s3:ListAllMyBuckets",
                  "cloudformation:ListExports",
                  "ssm:GetParameter"
                ],
                "Resource": "*"
            },
            {
              "Effect": "Allow",
              "Action": "iam:CreateServiceLinkedRole",
              "Resource": "*",
              "Condition": {
                "StringEquals": {
                  "iam:AWSServiceName": "access-analyzer.amazonaws.com"
                }
              }
            } 
        ]
    }

  7. After you’ve attached the new policy, choose Next.

    Note: For a full explanation of each of these actions and a CloudFormation template example that you can use to create this role, see the IAM Policy Validator for AWS CloudFormation GitHub project.

  8. Give the role a name, and scroll down to look at Step 1: Select trusted entities.

    The default policy you just created allows GitHub Actions from organizations or repositories outside of your control to assume the role. To align with the IAM best practice of granting least privilege, let’s scope it down further to only allow a specific GitHub organization and the repository that you created earlier to assume it.

  9. Replace the policy to look like the following, but don’t forget to replace {AWSAccountID}, {GitHubOrg} and {RepositoryName} with your own values.
    {
        "Version": "2012-10-17",
        "Statement": [
            {
                "Effect": "Allow",
                "Principal": {
                    "Federated": "arn:aws:iam::{AWSAccountID}:oidc-provider/token.actions.githubusercontent.com"
                },
                "Action": "sts:AssumeRoleWithWebIdentity",
                "Condition": {
                    "StringEquals": {
                        "token.actions.githubusercontent.com:aud": "sts.amazonaws.com"
                    },
                    "StringLike": {
                        "token.actions.githubusercontent.com:sub": "repo:${GitHubOrg}/${RepositoryName}:*"
                    }
                }
            }
        ]
    }

For information on best practices for configuring a role for the GitHub OIDC provider, see Creating a role for web identity or OpenID Connect Federation (console).

Checkpoint

At this point, you’ve created and configured the following resources:

  • A GitHub repository that has been locally cloned and filled with a sample CloudFormation template.
  • An IAM identity provider endpoint for use in conjunction with GitHub’s OIDC provider.
  • A role that can be assumed by GitHub actions, and a set of associated permissions that allow the role to make requests to IAM Access Analyzer to validate policies.

Step 5: Create a definition for the GitHub Actions workflow

The workflow runs steps on hosted runners. For this example, we are going to use Ubuntu as the operating system for the hosted runners. The workflow runs the following steps on the runner:

  1. The workflow checks out the CloudFormation template by using the community actions/checkout action.
  2. The workflow then uses the aws-actions/configure-aws-credentials GitHub action to request a set of credentials through the IAM identity provider endpoint and the IAM role that you created earlier.
  3. The workflow installs the cfn-policy-validator tool by using the python package manager, PIP.
  4. The workflow runs a validation against the CloudFormation template by using the cfn-policy-validator tool.

The workflow is defined in a YAML document. In order for GitHub Actions to pick up the workflow, you need to place the definition file in a specific location within the repository: .github/workflows/main.yml. Note the “.” prefix in the directory name, indicating that this is a hidden directory.

To create the workflow:

  1. Use the following command to create the folder structure within the locally cloned repository:
    mkdir -p .github/workflows

  2. Create the sample workflow definition file in the .github/workflows directory. Make sure to replace <AWSAccountID> and <AWSRegion> with your own information.
    cat << EOF > .github/workflows/main.yml
    name: cfn-policy-validator-workflow
    
    on: push
    
    permissions:
      id-token: write
      contents: read
    
    jobs: 
      cfn-iam-policy-validation: 
        name: iam-policy-validation
        runs-on: ubuntu-latest
        steps:
          - name: Checkout code
            uses: actions/checkout@v3
    
          - name: Configure AWS Credentials
            uses: aws-actions/configure-aws-credentials@v2
            with:
              role-to-assume: arn:aws:iam::<AWSAccountID>:role/github-actions-access-analyzer-role
              aws-region: <AWSRegion>
              role-session-name: GitHubSessionName
            
          - name: Install cfn-policy-validator
            run: pip install cfn-policy-validator
    
          - name: Validate templates
            run: cfn-policy-validator validate --template-path ./sample-role-test.yaml --region <AWSRegion>
    EOF
    

Step 6: Test the setup

Now that everything has been set up and configured, it’s time to test.

To test the workflow and validate the IAM policy:

  1. Add and commit the changes to the local repository.
    git add .
    git commit -m ‘added sample cloudformation template and workflow definition’

  2. Push the local changes to the remote GitHub repository.
    git push

    After the changes are pushed to the remote repository, go back to https://github.com and open the repository that you created earlier. In the top-right corner of the repository window, there is a small orange indicator, as shown in Figure 2. This shows that your GitHub Actions workflow is running.

    Figure 2: GitHub repository window with the orange workflow indicator

    Figure 2: GitHub repository window with the orange workflow indicator

    Because the sample CloudFormation template used a wildcard value “*” in the principal element of the policy as described in the section Step 2: Clone the repository locally, the orange indicator turns to a red x (shown in Figure 3), which signals that something failed in the workflow.

    Figure 3: GitHub repository window with the red cross workflow indicator

    Figure 3: GitHub repository window with the red cross workflow indicator

  3. Choose the red x to see more information about the workflow’s status, as shown in Figure 4.
    Figure 4: Pop-up displayed after choosing the workflow indicator

    Figure 4: Pop-up displayed after choosing the workflow indicator

  4. Choose Details to review the workflow logs.

    In this example, the Validate templates step in the workflow has failed. A closer inspection shows that there is a blocking finding with the CloudFormation template. As shown in Figure 5, the finding is labelled as EXTERNAL_PRINCIPAL and has a description of Trust policy allows access from external principals.

    Figure 5: Details logs from the workflow showing the blocking finding

    Figure 5: Details logs from the workflow showing the blocking finding

    To remediate this blocking finding, you need to update the principal element of the trust policy to include a principal from your AWS account (considered a zone of trust). The resources and principals within your account comprises of the zone of trust for the cfn-policy-validator tool. In the initial version of sample-role.yaml, the IAM roles trust policy used a wildcard in the Principal element. This allowed principals outside of your control to assume the associated role, which caused the cfn-policy-validator tool to generate a blocking finding.

    In this case, the intent is that principals within the current AWS account (zone of trust) should be able to assume this role. To achieve this result, replace the wildcard value with the account principal by following the remaining steps.

  5. Open sample-role.yaml by using your preferred text editor, such as nano.
    nano sample-role.yaml

    Replace the wildcard value in the principal element with the account principal arn:aws:iam::<AccountID>:root. Make sure to replace <AWSAccountID> with your own AWS account ID.

    AWSTemplateFormatVersion: "2010-09-09"
    Description: Base stack to create a simple role
    Resources:
      SampleIamRole:
        Type: AWS::IAM::Role
        Properties:
          AssumeRolePolicyDocument:
            Statement:
              - Effect: Allow
                Principal:
                  AWS: "arn:aws:iam::<AccountID>:root"
                Action: ["sts:AssumeRole"]
          Path: /      
          Policies:
            - PolicyName: root
              PolicyDocument:
                Version: 2012-10-17
                Statement:
                  - Resource: "*"
                    Effect: Allow
                    Action:
                      - s3:GetObject

  6. Add the updated file, commit the changes, and push the updates to the remote GitHub repository.
    git add sample-role.yaml
    git commit -m ‘replacing wildcard principal with account principal’
    git push

After the changes have been pushed to the remote repository, go back to https://github.com and open the repository. The orange indicator in the top right of the window should change to a green tick (check mark), as shown in Figure 6.

Figure 6: GitHub repository window with the green tick workflow indicator

Figure 6: GitHub repository window with the green tick workflow indicator

This indicates that no blocking findings were identified, as shown in Figure 7.

Figure 7: Detailed logs from the workflow showing no more blocking findings

Figure 7: Detailed logs from the workflow showing no more blocking findings

Conclusion

In this post, I showed you how to automate IAM policy validation by using GitHub Actions and the IAM Policy Validator for CloudFormation. Although the example was a simple one, it demonstrates the benefits of automating security testing at the start of the development lifecycle. This is often referred to as shifting security left. Identifying misconfigurations early and automatically supports an iterative, fail-fast model of continuous development and testing. Ultimately, this enables teams to make security an inherent part of a system’s design and architecture and can speed up product development workflows.

In addition to the example I covered today, IAM Policy Validator for CloudFormation can validate IAM policies by using a range of IAM Access Analyzer policy checks. For more information about these policy checks, see Access Analyzer reference policy checks.

 
If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, contact AWS Support.

Want more AWS Security news? Follow us on Twitter.

Mitch Beaumont

Mitch Beaumont

Mitch is a Principal Solutions Architect for Amazon Web Services, based in Sydney, Australia. Mitch works with some of Australia’s largest financial services customers, helping them to continually raise the security bar for the products and features that they build and ship. Outside of work, Mitch enjoys spending time with his family, photography, and surfing.

How to Receive Alerts When Your IAM Configuration Changes

Post Syndicated from Dylan Souvage original https://aws.amazon.com/blogs/security/how-to-receive-alerts-when-your-iam-configuration-changes/

July 27, 2023: This post was originally published February 5, 2015, and received a major update July 31, 2023.


As an Amazon Web Services (AWS) administrator, it’s crucial for you to implement robust protective controls to maintain your security configuration. Employing a detective control mechanism to monitor changes to the configuration serves as an additional safeguard in case the primary protective controls fail. Although some changes are expected, you might want to review unexpected changes or changes made by a privileged user. AWS Identity and Access Management (IAM) is a service that primarily helps manage access to AWS services and resources securely. It does provide detailed logs of its activity, but it doesn’t inherently provide real-time alerts or notifications. Fortunately, you can use a combination of AWS CloudTrail, Amazon EventBridge, and Amazon Simple Notification Service (Amazon SNS) to alert you when changes are made to your IAM configuration. In this blog post, we walk you through how to set up EventBridge to initiate SNS notifications for IAM configuration changes. You can also have SNS push messages directly to ticketing or tracking services, such as Jira, Service Now, or your preferred method of receiving notifications, but that is not discussed here.

In any AWS environment, many activities can take place at every moment. CloudTrail records IAM activities, EventBridge filters and routes event data, and Amazon SNS provides notification functionality. This post will guide you through identifying and setting alerts for IAM changes, modifications in authentication and authorization configurations, and more. The power is in your hands to make sure you’re notified of the events you deem most critical to your environment. Here’s a quick overview of how you can invoke a response, shown in Figure 1.

Figure 1: Simple architecture diagram of actors and resources in your account and the process for sending notifications through IAM, CloudTrail, EventBridge, and SNS.

Figure 1: Simple architecture diagram of actors and resources in your account and the process for sending notifications through IAM, CloudTrail, EventBridge, and SNS.

Log IAM changes with CloudTrail

Before we dive into implementation, let’s briefly understand the function of AWS CloudTrail. It records and logs activity within your AWS environment, tracking actions such as IAM role creation, deletion, or modification, thereby offering an audit trail of changes.

With this in mind, we’ll discuss the first step in tracking IAM changes: establishing a log for each modification. In this section, we’ll guide you through using CloudTrail to create these pivotal logs.

For an in-depth understanding of CloudTrail, refer to the AWS CloudTrail User Guide.

In this post, you’re going to start by creating a CloudTrail trail with the Management events type selected, and read and write API activity selected. If you already have a CloudTrail trail set up with those attributes, you can use that CloudTrail trail instead.

To create a CloudTrail log

  1. Open the AWS Management Console and select CloudTrail, and then choose Dashboard.
  2. In the CloudTrail dashboard, choose Create Trail.
    Figure 2: Use the CloudTrail dashboard to create a trail

    Figure 2: Use the CloudTrail dashboard to create a trail

  3. In the Trail name field, enter a display name for your trail and then select Create a new S3 bucket. Leave the default settings for the remaining trail attributes.
    Figure 3: Set the trail name and storage location

    Figure 3: Set the trail name and storage location

  4. Under Event type, select Management events. Under API activity, select Read and Write.
  5. Choose Next.
    Figure 4: Choose which events to log

    Figure 4: Choose which events to log

Set up notifications with Amazon SNS

Amazon SNS is a managed service that provides message delivery from publishers to subscribers. It works by allowing publishers to communicate asynchronously with subscribers by sending messages to a topic, a logical access point, and a communication channel. Subscribers can receive these messages using supported endpoint types, including email, which you will use in the blog example today.

For further reading on Amazon SNS, refer to the Amazon SNS Developer Guide.

Now that you’ve set up CloudTrail to log IAM changes, the next step is to establish a mechanism to notify you about these changes in real time.

To set up notifications

  1. Open the Amazon SNS console and choose Topics.
  2. Create a new topic. Under Type, select Standard and enter a name for your topic. Keep the defaults for the rest of the options, and then choose Create topic.
    Figure 5: Select Standard as the topic type

    Figure 5: Select Standard as the topic type

  3. Navigate to your topic in the topic dashboard, choose the Subscriptions tab, and then choose Create subscription.
    Figure 6: Choose Create subscription

    Figure 6: Choose Create subscription

  4. For Topic ARN, select the topic you created previously, then under Protocol, select Email and enter the email address you want the alerts to be sent to.
    Figure 7: Select the topic ARN and add an endpoint to send notifications to

    Figure 7: Select the topic ARN and add an endpoint to send notifications to

  5. After your subscription is created, go to the mailbox you designated to receive notifications and check for a verification email from the service. Open the email and select Confirm subscription to verify the email address and complete setup.

Initiate events with EventBridge

Amazon EventBridge is a serverless service that uses events to connect application components. EventBridge receives an event (an indicator of a change in environment) and applies a rule to route the event to a target. Rules match events to targets based on either the structure of the event, called an event pattern, or on a schedule.

Events that come to EventBridge are associated with an event bus. Rules are tied to a single event bus, so they can only be applied to events on that event bus. Your account has a default event bus that receives events from AWS services, and you can create custom event buses to send or receive events from a different account or AWS Region.

For a more comprehensive understanding of EventBridge, refer to the Amazon EventBridge User Guide.

In this part of our post, you’ll use EventBridge to devise a rule for initiating SNS notifications based on IAM configuration changes.

To create an EventBridge rule

  1. Go to the EventBridge console and select EventBridge Rule, and then choose Create rule.
    Figure 8: Use the EventBridge console to create a rule

    Figure 8: Use the EventBridge console to create a rule

  2. Enter a name for your rule, keep the defaults for the rest of rule details, and then choose Next.
    Figure 9: Rule detail screen

    Figure 9: Rule detail screen

  3. Under Target 1, select AWS service.
  4. In the dropdown list for Select a target, select SNS topic, select the topic you created previously, and then choose Next.
    Figure 10: Target with target type of AWS service and target topic of SNS topic selected

    Figure 10: Target with target type of AWS service and target topic of SNS topic selected

  5. Under Event source, select AWS events or EventBridge partner events.
    Figure 11: Event pattern with AWS events or EventBridge partner events selected

    Figure 11: Event pattern with AWS events or EventBridge partner events selected

  6. Under Event pattern, verify that you have the following selected.
    1. For Event source, select AWS services.
    2. For AWS service, select IAM.
    3. For Event type, select AWS API Call via CloudTrail.
    4. Select the radio button for Any operation.
    Figure 12: Event pattern details selected

    Figure 12: Event pattern details selected

Now that you’ve set up EventBridge to monitor IAM changes, test it by creating a new user or adding a new policy to an IAM role and see if you receive an email notification.

Centralize EventBridge alerts by using cross-account alerts

If you have multiple accounts, you should be evaluating using AWS Organizations. (For a deep dive into best practices for using AWS Organizations, we recommend reading this AWS blog post.)

By standardizing the implementation to channel alerts from across accounts to a primary AWS notification account, you can use a multi-account EventBridge architecture. This allows aggregation of notifications across your accounts through sender and receiver accounts. Figure 13 shows how this works. Separate member accounts within an AWS organizational unit (OU) have the same mechanism for monitoring changes and sending notifications as discussed earlier, but send notifications through an EventBridge instance in another account.

Figure 13: Multi-account EventBridge architecture aggregating notifications between two AWS member accounts to a primary management account

Figure 13: Multi-account EventBridge architecture aggregating notifications between two AWS member accounts to a primary management account

You can read more and see the implementation and deep dive of the multi-account EventBridge solution on the AWS samples GitHub, and you can also read more about sending and receiving Amazon EventBridge notifications between accounts.

Monitor calls to IAM

In this blog post example, you monitor calls to IAM.

The filter pattern you selected while setting up EventBridge matches CloudTrail events for calls to the IAM service. Calls to IAM have a CloudTrail eventSource of iam.amazonaws.com, so IAM API calls will match this pattern. You will find this simple default filter pattern useful if you have minimal IAM activity in your account or to test this example. However, as your account activity grows, you’ll likely receive more notifications than you need. This is when filtering only the relevant events becomes essential to prioritize your responses. Effectively managing your filter preferences allows you to focus on events of significance and maintain control as your AWS environment grows.

Monitor changes to IAM

If you’re interested only in changes to your IAM account, you can modify the event pattern inside EventBridge, the one you used to set up IAM notifications, with an eventName filter pattern, shown following.

"eventName": [
      "Add*",
      "Attach*",
      "Change*",
      "Create*",
      "Deactivate*",
      "Delete*",
      "Detach*",
      "Enable*",
      "Put*",
      "Remove*",
      "Set*",
      "Update*",
      "Upload*"
    ]

This filter pattern will only match events from the IAM service that begin with Add, Change, Create, Deactivate, Delete, Enable, Put, Remove, Update, or Upload. For more information about APIs matching these patterns, see the IAM API Reference.

To edit the filter pattern to monitor only changes to IAM

  1. Open the EventBridge console, navigate to the Event pattern, and choose Edit pattern.
    Figure 14: Modifying the event pattern

    Figure 14: Modifying the event pattern

  2. Add the eventName filter pattern from above to your event pattern.
    Figure 15: Use the JSON editor to add the eventName filter pattern

    Figure 15: Use the JSON editor to add the eventName filter pattern

Monitor changes to authentication and authorization configuration

Monitoring changes to authentication (security credentials) and authorization (policy) configurations is critical, because it can alert you to potential security vulnerabilities or breaches. For instance, unauthorized changes to security credentials or policies could indicate malicious activity, such as an attempt to gain unauthorized access to your AWS resources. If you’re only interested in these types of changes, use the preceding steps to implement the following filter pattern.

    "eventName": [
      "Put*Policy",
      "Attach*",
      "Detach*",
      "Create*",
      "Update*",
      "Upload*",
      "Delete*",
      "Remove*",
      "Set*"
    ]

This filter pattern matches calls to IAM that modify policy or create, update, upload, and delete IAM elements.

Conclusion

Monitoring IAM security configuration changes allows you another layer of defense against the unexpected. Balancing productivity and security, you might grant a user broad permissions in order to facilitate their work, such as exploring new AWS services. Although preventive measures are crucial, they can potentially restrict necessary actions. For example, a developer may need to modify an IAM role for their task, an alteration that could pose a security risk. This change, while essential for their work, may be undesirable from a security standpoint. Thus, it’s critical to have monitoring systems alongside preventive measures, allowing necessary actions while maintaining security.

Create an event rule for IAM events that are important to you and have a response plan ready. You can refer to Security best practices in IAM for further reading on this topic.

If you have questions or feedback about this or any other IAM topic, please visit the IAM re:Post forum. You can also read about the multi-account EventBridge solution on the AWS samples GitHub and learn more about sending and receiving Amazon EventBridge notifications between accounts.

If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, contact AWS Support.

Want more AWS Security news? Follow us on Twitter.

Dylan Souvage

Dylan Souvage

Dylan is a Solutions Architect based in Toronto, Canada. Dylan loves working with customers to understand their business and enable them in their cloud journey. In his spare time, he enjoys martial arts, sports, anime, and traveling to warm, sunny places to spend time with his friends and family.

Abhra Sinha

Abhra Sinha

Abhra is a Toronto-based Enterprise Solutions Architect at AWS. Abhra enjoys being a trusted advisor to customers, working closely with them to solve their technical challenges and help build a secure, scalable architecture on AWS. In his spare time, he enjoys Photography and exploring new restaurants.

Three key security themes from AWS re:Invent 2022

Post Syndicated from Anne Grahn original https://aws.amazon.com/blogs/security/three-key-security-themes-from-aws-reinvent-2022/

AWS re:Invent returned to Las Vegas, Nevada, November 28 to December 2, 2022. After a virtual event in 2020 and a hybrid 2021 edition, spirits were high as over 51,000 in-person attendees returned to network and learn about the latest AWS innovations.

Now in its 11th year, the conference featured 5 keynotes, 22 leadership sessions, and more than 2,200 breakout sessions and hands-on labs at 6 venues over 5 days.

With well over 100 service and feature announcements—and innumerable best practices shared by AWS executives, customers, and partners—distilling highlights is a challenge. From a security perspective, three key themes emerged.

Turn data into actionable insights

Security teams are always looking for ways to increase visibility into their security posture and uncover patterns to make more informed decisions. However, as AWS Vice President of Data and Machine Learning, Swami Sivasubramanian, pointed out during his keynote, data often exists in silos; it isn’t always easy to analyze or visualize, which can make it hard to identify correlations that spark new ideas.

“Data is the genesis for modern invention.” – Swami Sivasubramanian, AWS VP of Data and Machine Learning

At AWS re:Invent, we launched new features and services that make it simpler for security teams to store and act on data. One such service is Amazon Security Lake, which brings together security data from cloud, on-premises, and custom sources in a purpose-built data lake stored in your account. The service, which is now in preview, automates the sourcing, aggregation, normalization, enrichment, and management of security-related data across an entire organization for more efficient storage and query performance. It empowers you to use the security analytics solutions of your choice, while retaining control and ownership of your security data.

Amazon Security Lake has adopted the Open Cybersecurity Schema Framework (OCSF), which AWS cofounded with a number of organizations in the cybersecurity industry. The OCSF helps standardize and combine security data from a wide range of security products and services, so that it can be shared and ingested by analytics tools. More than 37 AWS security partners have announced integrations with Amazon Security Lake, enhancing its ability to transform security data into a powerful engine that helps drive business decisions and reduce risk. With Amazon Security Lake, analysts and engineers can gain actionable insights from a broad range of security data and improve threat detection, investigation, and incident response processes.

Strengthen security programs

According to Gartner, by 2026, at least 50% of C-Level executives will have performance requirements related to cybersecurity risk built into their employment contracts. Security is top of mind for organizations across the globe, and as AWS CISO CJ Moses emphasized during his leadership session, we are continuously building new capabilities to help our customers meet security, risk, and compliance goals.

In addition to Amazon Security Lake, several new AWS services announced during the conference are designed to make it simpler for builders and security teams to improve their security posture in multiple areas.

Identity and networking

Authorization is a key component of applications. Amazon Verified Permissions is a scalable, fine-grained permissions management and authorization service for custom applications that simplifies policy-based access for developers and centralizes access governance. The new service gives developers a simple-to-use policy and schema management system to define and manage authorization models. The policy-based authorization system that Amazon Verified Permissions offers can shorten development cycles by months, provide a consistent user experience across applications, and facilitate integrated auditing to support stringent compliance and regulatory requirements.

Additional services that make it simpler to define authorization and service communication include Amazon VPC Lattice, an application-layer service that consistently connects, monitors, and secures communications between your services, and AWS Verified Access, which provides secure access to corporate applications without a virtual private network (VPN).

Threat detection and monitoring

Monitoring for malicious activity and anomalous behavior just got simpler. Amazon GuardDuty RDS Protection expands the threat detection capabilities of GuardDuty by using tailored machine learning (ML) models to detect suspicious logins to Amazon Aurora databases. You can enable the feature with a single click in the GuardDuty console, with no agents to manually deploy, no data sources to enable, and no permissions to configure. When RDS Protection detects a potentially suspicious or anomalous login attempt that indicates a threat to your database instance, GuardDuty generates a new finding with details about the potentially compromised database instance. You can view GuardDuty findings in AWS Security Hub, Amazon Detective (if enabled), and Amazon EventBridge, allowing for integration with existing security event management or workflow systems.

To bolster vulnerability management processes, Amazon Inspector now supports AWS Lambda functions, adding automated vulnerability assessments for serverless compute workloads. With this expanded capability, Amazon Inspector automatically discovers eligible Lambda functions and identifies software vulnerabilities in application package dependencies used in the Lambda function code. Actionable security findings are aggregated in the Amazon Inspector console, and pushed to Security Hub and EventBridge to automate workflows.

Data protection and privacy

The first step to protecting data is to find it. Amazon Macie now automatically discovers sensitive data, providing continual, cost-effective, organization-wide visibility into where sensitive data resides across your Amazon Simple Storage Service (Amazon S3) estate. With this new capability, Macie automatically and intelligently samples and analyzes objects across your S3 buckets, inspecting them for sensitive data such as personally identifiable information (PII), financial data, and AWS credentials. Macie then builds and maintains an interactive data map of your sensitive data in S3 across your accounts and Regions, and provides a sensitivity score for each bucket. This helps you identify and remediate data security risks without manual configuration and reduce monitoring and remediation costs.

Encryption is a critical tool for protecting data and building customer trust. The launch of the end-to-end encrypted enterprise communication service AWS Wickr offers advanced security and administrative controls that can help you protect sensitive messages and files from unauthorized access, while working to meet data retention requirements.

Management and governance

Maintaining compliance with regulatory, security, and operational best practices as you provision cloud resources is key. AWS Config rules, which evaluate the configuration of your resources, have now been extended to support proactive mode, so that they can be incorporated into infrastructure-as-code continuous integration and continuous delivery (CI/CD) pipelines to help identify noncompliant resources prior to provisioning. This can significantly reduce time spent on remediation.

Managing the controls needed to meet your security objectives and comply with frameworks and standards can be challenging. To make it simpler, we launched comprehensive controls management with AWS Control Tower. You can use it to apply managed preventative, detective, and proactive controls to accounts and organizational units (OUs) by service, control objective, or compliance framework. You can also use AWS Control Tower to turn on Security Hub detective controls across accounts in an OU. This new set of features reduces the time that it takes to define and manage the controls required to meet specific objectives, such as supporting the principle of least privilege, restricting network access, and enforcing data encryption.

Do more with less

As we work through macroeconomic conditions, security leaders are facing increased budgetary pressures. In his opening keynote, AWS CEO Adam Selipsky emphasized the effects of the pandemic, inflation, supply chain disruption, energy prices, and geopolitical events that continue to impact organizations.

Now more than ever, it is important to maintain your security posture despite resource constraints. Citing specific customer examples, Selipsky underscored how the AWS Cloud can help organizations move faster and more securely. By moving to the cloud, agricultural machinery manufacturer Agco reduced costs by 78% while increasing data retrieval speed, and multinational HVAC provider Carrier Global experienced a 40% reduction in the cost of running mission-critical ERP systems.

“If you’re looking to tighten your belt, the cloud is the place to do it.” – Adam Selipsky, AWS CEO

Security teams can do more with less by maximizing the value of existing controls, and bolstering security monitoring and analytics capabilities. Services and features announced during AWS re:Invent—including Amazon Security Lake, sensitive data discovery with Amazon Macie, support for Lambda functions in Amazon Inspector, Amazon GuardDuty RDS Protection, and more—can help you get more out of the cloud and address evolving challenges, no matter the economic climate.

Security is our top priority

AWS re:Invent featured many more highlights on a variety of topics, such as Amazon EventBridge Pipes and the pre-announcement of GuardDuty EKS Runtime protection, as well as Amazon CTO Dr. Werner Vogels’ keynote, and the security partnerships showcased on the Expo floor. It was a whirlwind week, but one thing is clear: AWS is working harder than ever to make our services better and to collaborate on solutions that ease the path to proactive security, so that you can focus on what matters most—your business.

For more security-related announcements and on-demand sessions, see A recap for security, identity, and compliance sessions at AWS re:Invent 2022 and the AWS re:Invent Security, Identity, and Compliance playlist on YouTube.

If you have feedback about this post, submit comments in the Comments section below.

Anne Grahn

Anne Grahn

Anne is a Senior Worldwide Security GTM Specialist at AWS based in Chicago. She has more than a decade of experience in the security industry, and has a strong focus on privacy risk management. She maintains a Certified Information Systems Security Professional (CISSP) certification.

Author

Paul Hawkins

Paul helps customers of all sizes understand how to think about cloud security so they can build the technology and culture where security is a business enabler. He takes an optimistic approach to security and believes that getting the foundations right is the key to improving your security posture.

A sneak peek at the identity and access management sessions for AWS re:Inforce 2022

Post Syndicated from Ilya Epshteyn original https://aws.amazon.com/blogs/security/a-sneak-peek-at-the-identity-and-access-management-sessions-for-aws-reinforce-2022/

Register now with discount code SALFNj7FaRe to get $150 off your full conference pass to AWS re:Inforce. For a limited time only and while supplies last.

AWS re:Inforce 2022 will take place in-person in Boston, MA, on July 26 and 27 and will include some exciting identity and access management sessions. AWS re:Inforce 2022 features content in the following five areas:

  • Data protection and privacy
  • Governance, risk, and compliance
  • Identity and access management
  • Network and infrastructure security
  • Threat detection and incident response

The identity and access management track will showcase how quickly you can get started to securely manage access to your applications and resources as you scale on AWS. You will hear from customers about how they integrate their identity sources and establish a consistent identity and access strategy across their on-premises environments and AWS. Identity experts will discuss best practices for establishing an organization-wide data perimeter and simplifying access management with the right permissions, to the right resources, under the right conditions. You will also hear from AWS leaders about how we’re working to make identity, access control, and resource management simpler every day. This post highlights some of the identity and access management sessions that you can add to your agenda. To learn about sessions from across the content tracks, see the AWS re:Inforce catalog preview.

Breakout sessions

Lecture-style presentations that cover topics at all levels and are delivered by AWS experts, builders, customers, and partners. Breakout sessions typically conclude with 10–15 minutes of Q&A.

IAM201: Security best practices with AWS IAM
AWS IAM is an essential service that helps you securely control access to your AWS resources. In this session, learn about IAM best practices like working with temporary credentials, applying least-privilege permissions, moving away from users, analyzing access to your resources, validating policies, and more. Leave this session with ideas for how to secure your AWS resources in line with AWS best practices.

IAM301: AWS Identity and Access Management (IAM) the practical way
Building secure applications and workloads on AWS means knowing your way around AWS Identity and Access Management (AWS IAM). This session is geared toward the curious builder who wants to learn practical IAM skills for defending workloads and data, with a technical, first-principles approach. Gain knowledge about what IAM is and a deeper understanding of how it works and why.

IAM302: Strategies for successful identity management at scale with AWS SSO
Enterprise organizations often come to AWS with existing identity foundations. Whether new to AWS or maturing, organizations want to better understand how to centrally manage access across AWS accounts. In this session, learn the patterns many customers use to succeed in deploying and operating AWS Single Sign-On at scale. Get an overview of different deployment strategies, features to integrate with identity providers, application system tags, how permissions are deployed within AWS SSO, and how to scale these functionalities using features like attribute-based access control.

IAM304: Establishing a data perimeter on AWS, featuring Vanguard
Organizations are storing an unprecedented and increasing amount of data on AWS for a range of use cases including data lakes, analytics, machine learning, and enterprise applications. They want to make sure that sensitive non-public data is only accessible to authorized users from known locations. In this session, dive deep into the controls that you can use to create a data perimeter that allows access to your data only from expected networks and by trusted identities. Hear from Vanguard about how they use data perimeter controls in their AWS environment to meet their security control objectives.

IAM305: How Guardian Life validates IAM policies at scale with AWS
Attend this session to learn how Guardian Life shifts IAM security controls left to empower builders to experiment and innovate quickly, while minimizing the security risk exposed by granting over-permissive permissions. Explore how Guardian validates IAM policies in Terraform templates against AWS best practices and Guardian’s security policies using AWS IAM Access Analyzer and custom policy checks. Discover how Guardian integrates this control into CI/CD pipelines and codifies their exception approval process.

IAM306: Managing B2B identity at scale: Lessons from AWS and Trend Micro
Managing identity for B2B multi-tenant solutions requires tenant context to be clearly defined and propagated with each identity. It also requires proper onboarding and automation mechanisms to do this at scale. Join this session to learn about different approaches to managing identities for B2B solutions with Amazon Cognito and learn how Trend Micro is doing this effectively and at scale.

IAM307: Automating short-term credentials on AWS, with Discover Financial Services
As a financial services company, Discover Financial Services considers security paramount. In this session, learn how Discover uses AWS Identity and Access Management (IAM) to help achieve their security and regulatory obligations. Learn how Discover manages their identities and credentials within a multi-account environment and how Discover fully automates key rotation with zero human interaction using a solution built on AWS with IAM, AWS Lambda, Amazon DynamoDB, and Amazon S3.

Builders’ sessions

Small-group sessions led by an AWS expert who guides you as you build the service or product on your own laptop. Use your laptop to experiment and build along with the AWS expert.

IAM351: Using AWS SSO and identity services to achieve strong identity management
Organizations often manage human access using IAM users or through federation with external identity providers. In this builders’ session, explore how AWS SSO centralizes identity federation across multiple AWS accounts, replaces IAM users and cross-account roles to improve identity security, and helps administrators more effectively scope least privilege. Additionally, learn how to use AWS SSO to activate time-based access and attribute-based access control.

IAM352: Anomaly detection and security insights with AWS Managed Microsoft AD
This builders’ session demonstrates how to integrate AWS Managed Microsoft AD with native AWS services like Amazon CloudWatch Logs and Amazon CloudWatch metrics and alarms, combined with anomaly detection, to identify potential security issues and provide actionable insights for operational security teams.

Chalk talks

Highly interactive sessions with a small audience. Experts lead you through problems and solutions on a digital whiteboard as the discussion unfolds.

IAM231: Prevent unintended access: AWS IAM Access Analyzer policy validation
In this chalk talk, walk through ways to use AWS IAM Access Analyzer policy validation to review IAM policies that do not follow AWS best practices. Learn about the Access Analyzer APIs that help validate IAM policies and how to use these APIs to prevent IAM policies from reaching your AWS environment through mechanisms like AWS CloudFormation hooks and CI/CD pipeline controls.

IAM232: Navigating the consumer identity first mile using Amazon Cognito
Amazon Cognito allows you to configure sign-in and sign-up experiences for consumers while extending user management capabilities to your customer-facing application. Join this chalk talk to learn about the first steps for integrating your application and getting started with Amazon Cognito. Learn best practices to manage users and how to configure a customized branding UI experience, while creating a fully managed OpenID Connect provider with Amazon Cognito.

IAM331: Best practices for delegating access on AWS
This chalk talk demonstrates how to use built-in capabilities of AWS Identity and Access Management (IAM) to safely allow developers to grant entitlements to their AWS workloads (PassRole/AssumeRole). Additionally, learn how developers can be granted the ability to take self-service IAM actions (CRUD IAM roles and policies) with permissions boundaries.

IAM332: Developing preventive controls with AWS identity services
Learn about how you can develop and apply preventive controls at scale across your organization using service control policies (SCPs). This chalk talk is an extension of the preventive controls within the AWS identity services guide, and it covers how you can meet the security guidelines of your organization by applying and developing SCPs. In addition, it presents strategies for how to effectively apply these controls in your organization, from day-to-day operations to incident response.

IAM333: IAM policy evaluation deep dive
In this chalk talk, learn how policy evaluation works in detail and walk through some advanced IAM policy evaluation scenarios. Learn how a request context is evaluated, the pros and cons of different strategies for cross-account access, how to use condition keys for actions that touch multiple resources, when to use principal and aws:PrincipalArn, when it does and doesn’t make sense to use a wildcard principal, and more.

Workshops

Interactive learning sessions where you work in small teams to solve problems using AWS Cloud security services. Come prepared with your laptop and a willingness to learn!

IAM271: Applying attribute-based access control using AWS IAM
This workshop provides hands-on experience applying attribute-based access control (ABAC) to achieve a secure and scalable authorization model on AWS. Learn how and when to apply ABAC, which is native to AWS Identity and Access Management (IAM). Also learn how to find resources that could be impacted by different ABAC policies and session tagging techniques to scale your authorization model across Regions and accounts within AWS.

IAM371: Building a data perimeter to allow access to authorized users
In this workshop, learn how to create a data perimeter by building controls that allow access to data only from expected network locations and by trusted identities. The workshop consists of five modules, each designed to illustrate a different AWS Identity and Access Management (IAM) and network control. Learn where and how to implement the appropriate controls based on different risk scenarios. Discover how to implement these controls as service control policies, identity- and resource-based policies, and virtual private cloud endpoint policies.

IAM372: How and when to use different IAM policy types
In this workshop, learn how to identify when to use various policy types for your applications. Work through hands-on labs that take you through a typical customer journey to configure permissions for a sample application. Configure policies for your identities, resources, and CI/CD pipelines using permission delegation to balance security and agility. Also learn how to configure enterprise guardrails using service control policies.

If these sessions look interesting to you, join us in Boston by registering for re:Inforce 2022. We look forward to seeing you there!

Author

Ilya Epshteyn

Ilya is a Senior Manager of Identity Solutions in AWS Identity. He helps customers to innovate on AWS by building highly secure, available, and scalable architectures. He enjoys spending time outdoors and building Lego creations with his kids.

Marc von Mandel

Marc von Mandel

Marc leads the product marketing strategy and execution for AWS Identity Services. Prior to AWS, Marc led product marketing at IBM Security Services across several categories, including Identity and Access Management Services (IAM), Network and Infrastructure Security Services, and Cloud Security Services. Marc currently lives in Atlanta, Georgia and has worked in the cybersecurity and public cloud for more than twelve years.

Join me in Boston this July for AWS re:Inforce 2022

Post Syndicated from CJ Moses original https://aws.amazon.com/blogs/security/join-me-in-boston-this-july-for-aws-reinforce-2022/

I’d like to personally invite you to attend the Amazon Web Services (AWS) security conference, AWS re:Inforce 2022, in Boston, MA on July 26–27. This event offers interactive educational content to address your security, compliance, privacy, and identity management needs. Join security experts, customers, leaders, and partners from around the world who are committed to the highest security standards, and learn how to improve your security posture.

As the new Chief Information Security Officer of AWS, my primary job is to help our customers navigate their security journey while keeping the AWS environment safe. AWS re:Inforce offers an opportunity for you to understand how to keep pace with innovation in your business while you stay secure. With recent headlines around security and data privacy, this is your chance to learn the tactical and strategic lessons that will help keep your systems and tools secure, while you build a culture of security in your organization.

AWS re:Inforce 2022 will kick off with my keynote on Tuesday, July 26. I’ll be joined by Steve Schmidt, now the Chief Security Officer (CSO) of Amazon, and Kurt Kufeld, VP of AWS Platform. You’ll hear us talk about the latest innovations in cloud security from AWS and learn what you can do to foster a culture of security in your business. Take a look at the most recent re:Invent presentation, Continuous security improvement: Strategies and tactics, and the latest re:Inforce keynote for examples of the type of content to expect.

For those who are just getting started on AWS, as well as our more tenured customers, AWS re:Inforce offers an opportunity to learn how to prioritize your security investments. By using the Security pillar of the AWS Well-Architected Framework, sessions address how you can build practical and prescriptive measures to protect your data, systems, and assets.

Sessions are offered at all levels and for all backgrounds, from business to technical, and there are learning opportunities in over 300 sessions across five tracks: Data Protection & Privacy; Governance, Risk & Compliance; Identity & Access Management; Network & Infrastructure Security; and Threat Detection & Incident Response. In these sessions, connect with and learn from AWS experts, customers, and partners who will share actionable insights that you can apply in your everyday work. At AWS re:Inforce, the majority of our sessions are interactive, such as workshops, chalk talks, boot camps, and gamified learning, which provides opportunities to hear about and act upon best practices. Sessions will be available from the intermediate (200) through expert (400) levels, so you can grow your skills no matter where you are in your career. Finally, there will be a leadership session for each track, where AWS leaders will share best practices and trends in each of these areas.

At re:Inforce, hear directly from AWS developers and experts, who will cover the latest advancements in AWS security, compliance, privacy, and identity solutions—including actionable insights your business can use right now. Plus, you’ll learn from AWS customers and partners who are using AWS services in innovative ways to protect their data, achieve security at scale, and stay ahead of bad actors in this rapidly evolving security landscape.

A full conference pass is $1,099. However, if you register today with the code ALUMkpxagvkV you’ll receive a $300 discount (while supplies last).

We’re excited to get back to re:Inforce in person; it is emblematic of our commitment to giving customers direct access to the latest security research and trends. We’ll continue to release additional details about the event on our website, and you can get real-time updates by following @AWSSecurityInfo. I look forward to seeing you in Boston, sharing a bit more about my new role as CISO and providing insight into how we prioritize security at AWS.

 
If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, contact AWS Support.

Want more AWS Security news? Follow us on Twitter.

CJ Moses

CJ Moses

CJ Moses is the Chief Information Security Officer (CISO) at AWS. In his role, CJ leads product design and security engineering for AWS. His mission is to deliver the economic and security benefits of cloud computing to business and government customers. Prior to joining Amazon in 2007, CJ led the technical analysis of computer and network intrusion efforts at the U.S. Federal Bureau of Investigation Cyber Division. CJ also served as a Special Agent with the U.S. Air Force Office of Special Investigations (AFOSI). CJ led several computer intrusion investigations seen as foundational to the information security industry today.

How to control access to AWS resources based on AWS account, OU, or organization

Post Syndicated from Rishi Mehrotra original https://aws.amazon.com/blogs/security/how-to-control-access-to-aws-resources-based-on-aws-account-ou-or-organization/

AWS Identity and Access Management (IAM) recently launched new condition keys to make it simpler to control access to your resources along your Amazon Web Services (AWS) organizational boundaries. AWS recommends that you set up multiple accounts as your workloads grow, and you can use multiple AWS accounts to isolate workloads or applications that have specific security requirements. By using the new conditions, aws:ResourceOrgID, aws:ResourceOrgPaths, and aws:ResourceAccount, you can define access controls based on an AWS resource’s organization, organizational unit (OU), or account. These conditions make it simpler to require that your principals (users and roles) can only access resources inside a specific boundary within your organization. You can combine the new conditions with other IAM capabilities to restrict access to and from AWS accounts that are not part of your organization.

This post will help you get started using the new condition keys. We’ll show the details of the new condition keys and walk through a detailed example based on the following scenario. We’ll also provide references and links to help you learn more about how to establish access control perimeters around your AWS accounts.

Consider a common scenario where you would like to prevent principals in your AWS organization from adding objects to Amazon Simple Storage Service (Amazon S3) buckets that don’t belong to your organization. To accomplish this, you can configure an IAM policy to deny access to S3 actions unless aws:ResourceOrgID matches your unique AWS organization ID. Because the policy references your entire organization, rather than individual S3 resources, you have a convenient way to maintain this security posture across any number of resources you control. The new conditions give you the tools to create a security baseline for your IAM principals and help you prevent unintended access to resources in accounts that you don’t control. You can attach this policy to an IAM principal to apply this rule to a single user or role, or use service control policies (SCPs) in AWS Organizations to apply the rule broadly across your AWS accounts. IAM principals that are subject to this policy will only be able to perform S3 actions on buckets and objects within your organization, regardless of their other permissions granted through IAM policies or S3 bucket policies.

New condition key details

You can use the aws:ResourceOrgID, aws:ResourceOrgPaths, and aws:ResourceAccount condition keys in IAM policies to place controls on the resources that your principals can access. The following table explains the new condition keys and what values these keys can take.

Condition key Description Operator Single/multi value Value
aws:ResourceOrgID AWS organization ID of the resource being accessed All string operators Single value key Any AWS organization ID
aws:ResourceOrgPaths Organization path of the resource being accessed All string operators Multi-value key Organization paths of AWS organization IDs and organizational unit IDs
aws:ResourceAccount AWS account ID of the resource being accessed All string operators Single value key Any AWS account ID

Note: Of the three keys, only aws:ResourceOrgPaths is a multi-value condition key, while aws:ResourceAccount and aws:ResourceOrgID are single-value keys. For information on how to use multi-value keys, see Creating a condition with multiple keys or values in the IAM documentation.

Resource owner keys compared to principal owner keys

The new IAM condition keys complement the existing principal condition keys aws:PrincipalAccount, aws:PrincipalOrgPaths, and aws:PrincipalOrgID. The principal condition keys help you define which AWS accounts, organizational units (OUs), and organizations are allowed to access your resources. For more information on the principal conditions, see Use IAM to share your AWS resources with groups of AWS accounts in AWS Organizations on the AWS Security Blog.

Using the principal and resource keys together helps you establish permission guardrails around your AWS principals and resources, and makes it simpler to keep your data inside the organization boundaries you define as you continue to scale. For example, you can define identity-based policies that prevent your IAM principals from accessing resources outside your organization (by using the aws:ResourceOrgID condition). Next, you can define resource-based policies that prevent IAM principals outside your organization from accessing resources that are inside your organization boundary (by using the aws:PrincipalOrgID condition). The combination of both policies prevents any access to and from AWS accounts that are not part of your organization. In the next sections, we’ll walk through an example of how to configure the identity-based policy in your organization. For the resource-based policy, you can follow along with the example in An easier way to control access to AWS resources by using the AWS organization of IAM principals on the AWS Security blog.

Setup for the examples

In the following sections, we’ll show an example IAM policy for each of the new conditions. To follow along with Example 1, which uses aws:ResourceAccount, you’ll just need an AWS account.

To follow along with Examples 2 and 3 that use aws:ResourceOrgPaths and aws:ResourceOrgID respectively, you’ll need to have an organization in AWS Organizations and at least one OU created. This blog post assumes that you have some familiarity with the basic concepts in IAM and AWS Organizations. If you need help creating an organization or want to learn more about AWS Organizations, visit Getting Started with AWS Organizations in the AWS documentation.

Which IAM policy type should I use?

You can implement the following examples as identity-based policies, or in SCPs that are managed in AWS Organizations. If you want to establish a boundary for some of your IAM principals, we recommend that you use identity-based policies. If you want to establish a boundary for an entire AWS account or for your organization, we recommend that you use SCPs. Because SCPs apply to an entire AWS account, you should take care when you apply the following policies to your organization, and account for any exceptions to these rules that might be necessary for some AWS services to function properly.

Example 1: Restrict access to AWS resources within a specific AWS account

Let’s look at an example IAM policy that restricts access along the boundary of a single AWS account. For this example, say that you have an IAM principal in account 222222222222, and you want to prevent the principal from accessing S3 objects outside of this account. To create this effect, you could attach the following IAM policy.

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": " DenyS3AccessOutsideMyBoundary",
      "Effect": "Deny",
      "Action": [
        "s3:*"
      ],
      "Resource": "*",
      "Condition": {
        "StringNotEquals": {
          "aws:ResourceAccount": [
            "222222222222"
          ]
        }
      }
    }
  ]
}

Note: This policy is not meant to replace your existing IAM access controls, because it does not grant any access. Instead, this policy can act as an additional guardrail for your other IAM permissions. You can use a policy like this to prevent your principals from access to any AWS accounts that you don’t know or control, regardless of the permissions granted through other IAM policies.

This policy uses a Deny effect to block access to S3 actions unless the S3 resource being accessed is in account 222222222222. This policy prevents S3 access to accounts outside of the boundary of a single AWS account. You can use a policy like this one to limit your IAM principals to access only the resources that are inside your trusted AWS accounts. To implement a policy like this example yourself, replace account ID 222222222222 in the policy with your own AWS account ID. For a policy you can apply to multiple accounts while still maintaining this restriction, you could alternatively replace the account ID with the aws:PrincipalAccount condition key, to require that the principal and resource must be in the same account (see example #3 in this post for more details how to accomplish this).

Organization setup: Welcome to AnyCompany

For the next two examples, we’ll use an example organization called AnyCompany that we created in AWS Organizations. You can create a similar organization to follow along directly with these examples, or adapt the sample policies to fit your own organization. Figure 1 shows the organization structure for AnyCompany.

Figure 1: Organization structure for AnyCompany

Figure 1: Organization structure for AnyCompany

Like all organizations, AnyCompany has an organization root. Under the root are three OUs: Media, Sports, and Governance. Under the Sports OU, there are three more OUs: Baseball, Basketball, and Football. AWS accounts in this organization are spread across all the OUs based on their business purpose. In total, there are six OUs in this organization.

Example 2: Restrict access to AWS resources within my organizational unit

Now that you’ve seen what the AnyCompany organization looks like, let’s walk through another example IAM policy that you can use to restrict access to a specific part of your organization. For this example, let’s say you want to restrict S3 object access within the following OUs in the AnyCompany organization:

  • Media
  • Sports
  • Baseball
  • Basketball
  • Football

To define a boundary around these OUs, you don’t need to list all of them in your IAM policy. Instead, you can use the organization structure to your advantage. The Baseball, Basketball, and Football OUs share a parent, the Sports OU. You can use the new aws:ResourceOrgPaths key to prevent access outside of the Media OU, the Sports OU, and any OUs under it. Here’s the IAM policy that achieves this effect.

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": " DenyS3AccessOutsideMyBoundary",
      "Effect": "Deny",
      "Action": [
        "s3:*"
      ],
      "Resource": "*",
      "Condition": {
        "ForAllValues:StringNotLike": {
          "aws:ResourceOrgPaths": [
            "o-acorg/r-acroot/ou-acroot-mediaou/",
            "o-acorg/r-acroot/ou-acroot-sportsou/*"
          ] 
        }
      }
    }
  ]
}

Note: Like the earlier example, this policy does not grant any access. Instead, this policy provides a backstop for your other IAM permissions, preventing your principals from accessing S3 objects outside an OU-defined boundary. If you want to require that your IAM principals consistently follow this rule, we recommend that you apply this policy as an SCP. In this example, we attached this policy to the root of our organization, applying it to all principals across all accounts in the AnyCompany organization.

The policy denies access to S3 actions unless the S3 resource being accessed is in a specific set of OUs in the AnyCompany organization. This policy is identical to Example 1, except for the condition block: The condition requires that aws:ResourceOrgPaths contains any of the listed OU paths. Because aws:ResourceOrgPaths is a multi-value condition, the policy uses the ForAllValues:StringNotLike operator to compare the values of aws:ResourceOrgPaths to the list of OUs in the policy.

The first OU path in the list is for the Media OU. The second OU path is the Sports OU, but it also adds the wildcard character * to the end of the path. The wildcard * matches any combination of characters, and so this condition matches both the Sports OU and any other OU further down its path. Using wildcards in the OU path allows you to implicitly reference other OUs inside the Sports OU, without having to list them explicitly in the policy. For more information about wildcards, refer to Using wildcards in resource ARNs in the IAM documentation.

Example 3: Restrict access to AWS resources within my organization

Finally, we’ll look at a very simple example of a boundary that is defined at the level of an entire organization. This is the same use case as the preceding two examples (restrict access to S3 object access), but scoped to an organization instead of an account or collection of OUs.

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "DenyS3AccessOutsideMyBoundary",
      "Effect": "Deny",
      "Action": [
        "s3:*"
      ],
      "Resource": "arn:aws:s3:::*/*",
      "Condition": {
        "StringNotEquals": {
          "aws:ResourceOrgID": "${aws:PrincipalOrgID}"
        }
      }
    }
  ]
}

Note: Like the earlier examples, this policy does not grant any access. Instead, this policy provides a backstop for your other IAM permissions, preventing your principals from accessing S3 objects outside your organization regardless of their other access permissions. If you want to require that your IAM principals consistently follow this rule, we recommend that you apply this policy as an SCP. As in the previous example, we attached this policy to the root of our organization, applying it to all accounts in the AnyCompany organization.

The policy denies access to S3 actions unless the S3 resource being accessed is in the same organization as the IAM principal that is accessing it. This policy is identical to Example 1, except for the condition block: The condition requires that aws:ResourceOrgID and aws:PrincipalOrgID must be equal to each other. With this requirement, the principal making the request and the resource being accessed must be in the same organization. This policy also applies to S3 resources that are created after the policy is put into effect, so it is simple to maintain the same security posture across all your resources.

For more information about aws:PrincipalOrgID, refer to AWS global condition context keys in the IAM documentation.

Learn more

In this post, we explored the new conditions, and walked through a few examples to show you how to restrict access to S3 objects across the boundary of an account, OU, or organization. These tools work for more than just S3, though: You can use the new conditions to help you protect a wide variety of AWS services and actions. Here are a few links that you may want to look at:

If you have any questions, comments, or concerns, contact AWS Support or start a new thread on the AWS Identity and Access Management forum. Thanks for reading about this new feature. If you have feedback about this post, submit comments in the Comments section below.

Want more AWS Security news? Follow us on Twitter.

Rishi Mehrotra

Rishi Mehrotra

Rishi is a Product Manager in AWS IAM. He enjoys working with customers and influencing products decisions. Prior to Amazon, Rishi worked for enterprise IT customers after receiving engineering degree in computer science. He recently pursued MBA from The University of Chicago Booth School of Business. Outside of work, Rishi enjoys biking, reading, and playing with his kids.

Author

Michael Switzer

Mike is the product manager for the Identity and Access Management service at AWS. He enjoys working directly with customers to identify solutions to their challenges, and using data-driven decision making to drive his work. Outside of work, Mike is an avid cyclist and outdoorsperson. He holds a master’s degree in computational mathematics from the University of Washington.

Implement tenant isolation for Amazon S3 and Aurora PostgreSQL by using ABAC

Post Syndicated from Ashutosh Upadhyay original https://aws.amazon.com/blogs/security/implement-tenant-isolation-for-amazon-s3-and-aurora-postgresql-by-using-abac/

In software as a service (SaaS) systems, which are designed to be used by multiple customers, isolating tenant data is a fundamental responsibility for SaaS providers. The practice of isolation of data in a multi-tenant application platform is called tenant isolation. In this post, we describe an approach you can use to achieve tenant isolation in Amazon Simple Storage Service (Amazon S3) and Amazon Aurora PostgreSQL-Compatible Edition databases by implementing attribute-based access control (ABAC). You can also adapt the same approach to achieve tenant isolation in other AWS services.

ABAC in Amazon Web Services (AWS), which uses tags to store attributes, offers advantages over the traditional role-based access control (RBAC) model. You can use fewer permissions policies, update your access control more efficiently as you grow, and last but not least, apply granular permissions for various AWS services. These granular permissions help you to implement an effective and coherent tenant isolation strategy for your customers and clients. Using the ABAC model helps you scale your permissions and simplify the management of granular policies. The ABAC model reduces the time and effort it takes to maintain policies that allow access to only the required resources.

The solution we present here uses the pool model of data partitioning. The pool model helps you avoid the higher costs of duplicated resources for each tenant and the specialized infrastructure code required to set up and maintain those copies.

Solution overview

In a typical customer environment where this solution is implemented, the tenant request for access might land at Amazon API Gateway, together with the tenant identifier, which in turn calls an AWS Lambda function. The Lambda function is envisaged to be operating with a basic Lambda execution role. This Lambda role should also have permissions to assume the tenant roles. As the request progresses, the Lambda function assumes the tenant role and makes the necessary calls to Amazon S3 or to an Aurora PostgreSQL-Compatible database. This solution helps you to achieve tenant isolation for objects stored in Amazon S3 and data elements stored in an Aurora PostgreSQL-Compatible database cluster.

Figure 1 shows the tenant isolation architecture for both Amazon S3 and Amazon Aurora PostgreSQL-Compatible databases.

Figure 1: Tenant isolation architecture diagram

Figure 1: Tenant isolation architecture diagram

As shown in the numbered diagram steps, the workflow for Amazon S3 tenant isolation is as follows:

  1. AWS Lambda sends an AWS Security Token Service (AWS STS) assume role request to AWS Identity and Access Management (IAM).
  2. IAM validates the request and returns the tenant role.
  3. Lambda sends a request to Amazon S3 with the assumed role.
  4. Amazon S3 sends the response back to Lambda.

The diagram also shows the workflow steps for tenant isolation for Aurora PostgreSQL-Compatible databases, as follows:

  1. Lambda sends an STS assume role request to IAM.
  2. IAM validates the request and returns the tenant role.
  3. Lambda sends a request to IAM for database authorization.
  4. IAM validates the request and returns the database password token.
  5. Lambda sends a request to the Aurora PostgreSQL-Compatible database with the database user and password token.
  6. Aurora PostgreSQL-Compatible database returns the response to Lambda.

Prerequisites

For this walkthrough, you should have the following prerequisites:

  1. An AWS account for your workload.
  2. An Amazon S3 bucket.
  3. An Aurora PostgreSQL-Compatible cluster with a database created.

    Note: Make sure to note down the default master database user and password, and make sure that you can connect to the database from your desktop or from another server (for example, from Amazon Elastic Compute Cloud (Amazon EC2) instances).

  4. A security group and inbound rules that are set up to allow an inbound PostgreSQL TCP connection (Port 5432) from Lambda functions. This solution uses regular non-VPC Lambda functions, and therefore the security group of the Aurora PostgreSQL-Compatible database cluster should allow an inbound PostgreSQL TCP connection (Port 5432) from anywhere (0.0.0.0/0).

Make sure that you’ve completed the prerequisites before proceeding with the next steps.

Deploy the solution

The following sections describe how to create the IAM roles, IAM policies, and Lambda functions that are required for the solution. These steps also include guidelines on the changes that you’ll need to make to the prerequisite components Amazon S3 and the Aurora PostgreSQL-Compatible database cluster.

Step 1: Create the IAM policies

In this step, you create two IAM policies with the required permissions for Amazon S3 and the Aurora PostgreSQL database.

To create the IAM policies

  1. Open the AWS Management Console.
  2. Choose IAM, choose Policies, and then choose Create policy.
  3. Use the following JSON policy document to create the policy. Replace the placeholder <111122223333> with the bucket name from your account.
    {
        "Version": "2012-10-17",
        "Statement": [
            {
                "Effect": "Allow",
                "Action": [
                    "s3:Get*",
                    "s3:List*"
                ],
                "Resource": "arn:aws:s3:::sts-ti-demo-<111122223333>/${aws:PrincipalTag/s3_home}/*"
            }
        ]
    }
    

  4. Save the policy with the name sts-ti-demo-s3-access-policy.

    Figure 2: Create the IAM policy for Amazon S3 (sts-ti-demo-s3-access-policy)

    Figure 2: Create the IAM policy for Amazon S3 (sts-ti-demo-s3-access-policy)

  5. Open the AWS Management Console.
  6. Choose IAM, choose Policies, and then choose Create policy.
  7. Use the following JSON policy document to create a second policy. This policy grants an IAM role permission to connect to an Aurora PostgreSQL-Compatible database through a database user that is IAM authenticated. Replace the placeholders with the appropriate Region, account number, and cluster resource ID of the Aurora PostgreSQL-Compatible database cluster, respectively.
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                "rds-db:connect"
            ],
            "Resource": [
                "arn:aws:rds-db:<us-west-2>:<111122223333>:dbuser:<cluster- ZTISAAAABBBBCCCCDDDDEEEEL4>/${aws:PrincipalTag/dbuser}"
            ]
        }
    ]
}
  • Save the policy with the name sts-ti-demo-dbuser-policy.

    Figure 3: Create the IAM policy for Aurora PostgreSQL database (sts-ti-demo-dbuser-policy)

    Figure 3: Create the IAM policy for Aurora PostgreSQL database (sts-ti-demo-dbuser-policy)

Note: Make sure that you use the cluster resource ID for the clustered database. However, if you intend to adapt this solution for your Aurora PostgreSQL-Compatible non-clustered database, you should use the instance resource ID instead.

Step 2: Create the IAM roles

In this step, you create two IAM roles for the two different tenants, and also apply the necessary permissions and tags.

To create the IAM roles

  1. In the IAM console, choose Roles, and then choose Create role.
  2. On the Trusted entities page, choose the EC2 service as the trusted entity.
  3. On the Permissions policies page, select sts-ti-demo-s3-access-policy and sts-ti-demo-dbuser-policy.
  4. On the Tags page, add two tags with the following keys and values.

    Tag key Tag value
    s3_home tenant1_home
    dbuser tenant1_dbuser
  5. On the Review screen, name the role assumeRole-tenant1, and then choose Save.
  6. In the IAM console, choose Roles, and then choose Create role.
  7. On the Trusted entities page, choose the EC2 service as the trusted entity.
  8. On the Permissions policies page, select sts-ti-demo-s3-access-policy and sts-ti-demo-dbuser-policy.
  9. On the Tags page, add two tags with the following keys and values.

    Tag key Tag value
    s3_home tenant2_home
    dbuser tenant2_dbuser
  10. On the Review screen, name the role assumeRole-tenant2, and then choose Save.

Step 3: Create and apply the IAM policies for the tenants

In this step, you create a policy and a role for the Lambda functions. You also create two separate tenant roles, and establish a trust relationship with the role that you created for the Lambda functions.

To create and apply the IAM policies for tenant1

  1. In the IAM console, choose Policies, and then choose Create policy.
  2. Use the following JSON policy document to create the policy. Replace the placeholder <111122223333> with your AWS account number.
    {
        "Version": "2012-10-17",
        "Statement": [
            {
                "Sid": "VisualEditor0",
                "Effect": "Allow",
                "Action": "sts:AssumeRole",
                "Resource": [
                    "arn:aws:iam::<111122223333>:role/assumeRole-tenant1",
                    "arn:aws:iam::<111122223333>:role/assumeRole-tenant2"
                ]
            }
        ]
    }
    

  3. Save the policy with the name sts-ti-demo-assumerole-policy.
  4. In the IAM console, choose Roles, and then choose Create role.
  5. On the Trusted entities page, select the Lambda service as the trusted entity.
  6. On the Permissions policies page, select sts-ti-demo-assumerole-policy and AWSLambdaBasicExecutionRole.
  7. On the review screen, name the role sts-ti-demo-lambda-role, and then choose Save.
  8. In the IAM console, go to Roles, and enter assumeRole-tenant1 in the search box.
  9. Select the assumeRole-tenant1 role and go to the Trust relationship tab.
  10. Choose Edit the trust relationship, and replace the existing value with the following JSON document. Replace the placeholder <111122223333> with your AWS account number, and choose Update trust policy to save the policy.
    {
      "Version": "2012-10-17",
      "Statement": [
        {
          "Effect": "Allow",
          "Principal": {
            "AWS": "arn:aws:iam::<111122223333>:role/sts-ti-demo-lambda-role"
          },
          "Action": "sts:AssumeRole"
        }
      ]
    }
    

To verify that the policies are applied correctly for tenant1

In the IAM console, go to Roles, and enter assumeRole-tenant1 in the search box. Select the assumeRole-tenant1 role and on the Permissions tab, verify that sts-ti-demo-dbuser-policy and sts-ti-demo-s3-access-policy appear in the list of policies, as shown in Figure 4.

Figure 4: The assumeRole-tenant1 Permissions tab

Figure 4: The assumeRole-tenant1 Permissions tab

On the Trust relationships tab, verify that sts-ti-demo-lambda-role appears under Trusted entities, as shown in Figure 5.

Figure 5: The assumeRole-tenant1 Trust relationships tab

Figure 5: The assumeRole-tenant1 Trust relationships tab

On the Tags tab, verify that the following tags appear, as shown in Figure 6.

Tag key Tag value
dbuser tenant1_dbuser
s3_home tenant1_home

 

Figure 6: The assumeRole-tenant1 Tags tab

Figure 6: The assumeRole-tenant1 Tags tab

To create and apply the IAM policies for tenant2

  1. In the IAM console, go to Roles, and enter assumeRole-tenant2 in the search box.
  2. Select the assumeRole-tenant2 role and go to the Trust relationship tab.
  3. Edit the trust relationship, replacing the existing value with the following JSON document. Replace the placeholder <111122223333> with your AWS account number.
    {
      "Version": "2012-10-17",
      "Statement": [
        {
          "Effect": "Allow",
          "Principal": {
            "AWS": "arn:aws:iam::<111122223333>:role/sts-ti-demo-lambda-role"
          },
          "Action": "sts:AssumeRole"
        }
      ]
    }
    

  4. Choose Update trust policy to save the policy.

To verify that the policies are applied correctly for tenant2

In the IAM console, go to Roles, and enter assumeRole-tenant2 in the search box. Select the assumeRole-tenant2 role and on the Permissions tab, verify that sts-ti-demo-dbuser-policy and sts-ti-demo-s3-access-policy appear in the list of policies, you did for tenant1. On the Trust relationships tab, verify that sts-ti-demo-lambda-role appears under Trusted entities.

On the Tags tab, verify that the following tags appear, as shown in Figure 7.

Tag key Tag value
dbuser tenant2_dbuser
s3_home tenant2_home
Figure 7: The assumeRole-tenant2 Tags tab

Figure 7: The assumeRole-tenant2 Tags tab

Step 4: Set up an Amazon S3 bucket

Next, you’ll set up an S3 bucket that you’ll use as part of this solution. You can either create a new S3 bucket or re-purpose an existing one. The following steps show you how to create two user homes (that is, S3 prefixes, which are also known as folders) in the S3 bucket.

  1. In the AWS Management Console, go to Amazon S3 and select the S3 bucket you want to use.
  2. Create two prefixes (folders) with the names tenant1_home and tenant2_home.
  3. Place two test objects with the names tenant.info-tenant1_home and tenant.info-tenant2_home in the prefixes that you just created, respectively.

Step 5: Set up test objects in Aurora PostgreSQL-Compatible database

In this step, you create a table in Aurora PostgreSQL-Compatible Edition, insert tenant metadata, create a row level security (RLS) policy, create tenant users, and grant permission for testing purposes.

To set up Aurora PostgreSQL-Compatible

  1. Connect to Aurora PostgreSQL-Compatible through a client of your choice, using the master database user and password that you obtained at the time of cluster creation.
  2. Run the following commands to create a table for testing purposes and to insert a couple of testing records.
    CREATE TABLE tenant_metadata (
        tenant_id VARCHAR(30) PRIMARY KEY,
        email     VARCHAR(50) UNIQUE,
        status    VARCHAR(10) CHECK (status IN ('active', 'suspended', 'disabled')),
        tier      VARCHAR(10) CHECK (tier IN ('gold', 'silver', 'bronze')));
    
    INSERT INTO tenant_metadata (tenant_id, email, status, tier) 
    VALUES ('tenant1_dbuser','[email protected]','active','gold');
    INSERT INTO tenant_metadata (tenant_id, email, status, tier) 
    VALUES ('tenant2_dbuser','[email protected]','suspended','silver');
    ALTER TABLE tenant_metadata ENABLE ROW LEVEL SECURITY;
    

  3. Run the following command to query the newly created database table.
    SELECT * FROM tenant_metadata;
    

    Figure 8: The tenant_metadata table content

    Figure 8: The tenant_metadata table content

  4. Run the following command to create the row level security policy.
    CREATE POLICY tenant_isolation_policy ON tenant_metadata
    USING (tenant_id = current_user);
    

  5. Run the following commands to establish two tenant users and grant them the necessary permissions.
    CREATE USER tenant1_dbuser WITH LOGIN;
    CREATE USER tenant2_dbuser WITH LOGIN;
    GRANT rds_iam TO tenant1_dbuser;
    GRANT rds_iam TO tenant2_dbuser;
    
    GRANT select, insert, update, delete ON tenant_metadata to tenant1_dbuser, tenant2_dbuser;
    

  6. Run the following commands to verify the newly created tenant users.
    SELECT usename AS role_name,
      CASE
         WHEN usesuper AND usecreatedb THEN
           CAST('superuser, create database' AS pg_catalog.text)
         WHEN usesuper THEN
            CAST('superuser' AS pg_catalog.text)
         WHEN usecreatedb THEN
            CAST('create database' AS pg_catalog.text)
         ELSE
            CAST('' AS pg_catalog.text)
      END role_attributes
    FROM pg_catalog.pg_user
    WHERE usename LIKE (‘tenant%’)
    ORDER BY role_name desc;
    

    Figure 9: Verify the newly created tenant users output

    Figure 9: Verify the newly created tenant users output

Step 6: Set up the AWS Lambda functions

Next, you’ll create two Lambda functions for Amazon S3 and Aurora PostgreSQL-Compatible. You also need to create a Lambda layer for the Python package PG8000.

To set up the Lambda function for Amazon S3

  1. Navigate to the Lambda console, and choose Create function.
  2. Choose Author from scratch. For Function name, enter sts-ti-demo-s3-lambda.
  3. For Runtime, choose Python 3.7.
  4. Change the default execution role to Use an existing role, and then select sts-ti-demo-lambda-role from the drop-down list.
  5. Keep Advanced settings as the default value, and then choose Create function.
  6. Copy the following Python code into the lambda_function.py file that is created in your Lambda function.
    import json
    import os
    import time 
    
    def lambda_handler(event, context):
        import boto3
        bucket_name     =   os.environ['s3_bucket_name']
    
        try:
            login_tenant_id =   event['login_tenant_id']
            data_tenant_id  =   event['s3_tenant_home']
        except:
            return {
                'statusCode': 400,
                'body': 'Error in reading parameters'
            }
    
        prefix_of_role  =   'assumeRole'
        file_name       =   'tenant.info' + '-' + data_tenant_id
    
        # create an STS client object that represents a live connection to the STS service
        sts_client = boto3.client('sts')
        account_of_role = sts_client.get_caller_identity()['Account']
        role_to_assume  =   'arn:aws:iam::' + account_of_role + ':role/' + prefix_of_role + '-' + login_tenant_id
    
        # Call the assume_role method of the STSConnection object and pass the role
        # ARN and a role session name.
        RoleSessionName = 'AssumeRoleSession' + str(time.time()).split(".")[0] + str(time.time()).split(".")[1]
        try:
            assumed_role_object = sts_client.assume_role(
                RoleArn         = role_to_assume, 
                RoleSessionName = RoleSessionName, 
                DurationSeconds = 900) #15 minutes
    
        except:
            return {
                'statusCode': 400,
                'body': 'Error in assuming the role ' + role_to_assume + ' in account ' + account_of_role
            }
    
        # From the response that contains the assumed role, get the temporary 
        # credentials that can be used to make subsequent API calls
        credentials=assumed_role_object['Credentials']
        
        # Use the temporary credentials that AssumeRole returns to make a connection to Amazon S3  
        s3_resource=boto3.resource(
            's3',
            aws_access_key_id=credentials['AccessKeyId'],
            aws_secret_access_key=credentials['SecretAccessKey'],
            aws_session_token=credentials['SessionToken']
        )
    
        try:
            obj = s3_resource.Object(bucket_name, data_tenant_id + "/" + file_name)
            return {
                'statusCode': 200,
                'body': obj.get()['Body'].read()
            }
        except:
            return {
                'statusCode': 400,
                'body': 'error in reading s3://' + bucket_name + '/' + data_tenant_id + '/' + file_name
            }
    

  7. Under Basic settings, edit Timeout to increase the timeout to 29 seconds.
  8. Edit Environment variables to add a key called s3_bucket_name, with the value set to the name of your S3 bucket.
  9. Configure a new test event with the following JSON document, and save it as testEvent.
    {
      "login_tenant_id": "tenant1",
      "s3_tenant_home": "tenant1_home"
    }
    

  10. Choose Test to test the Lambda function with the newly created test event testEvent. You should see status code 200, and the body of the results should contain the data for tenant1.

    Figure 10: The result of running the sts-ti-demo-s3-lambda function

    Figure 10: The result of running the sts-ti-demo-s3-lambda function

Next, create another Lambda function for Aurora PostgreSQL-Compatible. To do this, you first need to create a new Lambda layer.

To set up the Lambda layer

  1. Use the following commands to create a .zip file for Python package pg8000.

    Note: This example is created by using an Amazon EC2 instance running the Amazon Linux 2 Amazon Machine Image (AMI). If you’re using another version of Linux or don’t have the Python 3 or pip3 packages installed, install them by using the following commands.

    sudo yum update -y 
    sudo yum install python3 
    sudo pip3 install pg8000 -t build/python/lib/python3.8/site-packages/ 
    cd build 
    sudo zip -r pg8000.zip python/
    

  2. Download the pg8000.zip file you just created to your local desktop machine or into an S3 bucket location.
  3. Navigate to the Lambda console, choose Layers, and then choose Create layer.
  4. For Name, enter pgdb, and then upload pg8000.zip from your local desktop machine or from the S3 bucket location.

    Note: For more details, see the AWS documentation for creating and sharing Lambda layers.

  5. For Compatible runtimes, choose python3.6, python3.7, and python3.8, and then choose Create.

To set up the Lambda function with the newly created Lambda layer

  1. In the Lambda console, choose Function, and then choose Create function.
  2. Choose Author from scratch. For Function name, enter sts-ti-demo-pgdb-lambda.
  3. For Runtime, choose Python 3.7.
  4. Change the default execution role to Use an existing role, and then select sts-ti-demo-lambda-role from the drop-down list.
  5. Keep Advanced settings as the default value, and then choose Create function.
  6. Choose Layers, and then choose Add a layer.
  7. Choose Custom layer, select pgdb with Version 1 from the drop-down list, and then choose Add.
  8. Copy the following Python code into the lambda_function.py file that was created in your Lambda function.
    import boto3
    import pg8000
    import os
    import time
    import ssl
    
    connection = None
    assumed_role_object = None
    rds_client = None
    
    def assume_role(event):
        global assumed_role_object
        try:
            RolePrefix  = os.environ.get("RolePrefix")
            LoginTenant = event['login_tenant_id']
        
            # create an STS client object that represents a live connection to the STS service
            sts_client      = boto3.client('sts')
            # Prepare input parameters
            role_to_assume  = 'arn:aws:iam::' + sts_client.get_caller_identity()['Account'] + ':role/' + RolePrefix + '-' + LoginTenant
            RoleSessionName = 'AssumeRoleSession' + str(time.time()).split(".")[0] + str(time.time()).split(".")[1]
        
            # Call the assume_role method of the STSConnection object and pass the role ARN and a role session name.
            assumed_role_object = sts_client.assume_role(
                RoleArn         =   role_to_assume, 
                RoleSessionName =   RoleSessionName,
                DurationSeconds =   900) #15 minutes 
            
            return assumed_role_object['Credentials']
        except Exception as e:
            print({'Role assumption failed!': {'role': role_to_assume, 'Exception': 'Failed due to :{0}'.format(str(e))}})
            return None
    
    def get_connection(event):
        global rds_client
        creds = assume_role(event)
    
        try:
            # create an RDS client using assumed credentials
            rds_client = boto3.client('rds',
                aws_access_key_id       = creds['AccessKeyId'],
                aws_secret_access_key   = creds['SecretAccessKey'],
                aws_session_token       = creds['SessionToken'])
    
            # Read the environment variables and event parameters
            DBEndPoint   = os.environ.get('DBEndPoint')
            DatabaseName = os.environ.get('DatabaseName')
            DBUserName   = event['dbuser']
    
            # Generates an auth token used to connect to a database with IAM credentials.
            pwd = rds_client.generate_db_auth_token(
                DBHostname=DBEndPoint, Port=5432, DBUsername=DBUserName, Region='us-west-2'
            )
    
            ssl_context             = ssl.SSLContext()
            ssl_context.verify_mode = ssl.CERT_REQUIRED
            ssl_context.load_verify_locations('rds-ca-2019-root.pem')
    
            # create a database connection
            conn = pg8000.connect(
                host        =   DBEndPoint,
                user        =   DBUserName,
                database    =   DatabaseName,
                password    =   pwd,
                ssl_context =   ssl_context)
            
            return conn
        except Exception as e:
            print ({'Database connection failed!': {'Exception': "Failed due to :{0}".format(str(e))}})
            return None
    
    def execute_sql(connection, query):
        try:
            cursor = connection.cursor()
            cursor.execute(query)
            columns = [str(desc[0]) for desc in cursor.description]
            results = []
            for res in cursor:
                results.append(dict(zip(columns, res)))
            cursor.close()
            retry = False
            return results    
        except Exception as e:
            print ({'Execute SQL failed!': {'Exception': "Failed due to :{0}".format(str(e))}})
            return None
    
    
    def lambda_handler(event, context):
        global connection
        try:
            connection = get_connection(event)
            if connection is None:
                return {'statusCode': 400, "body": "Error in database connection!"}
    
            response = {'statusCode':200, 'body': {
                'db & user': execute_sql(connection, 'SELECT CURRENT_DATABASE(), CURRENT_USER'), \
                'data from tenant_metadata': execute_sql(connection, 'SELECT * FROM tenant_metadata')}}
            return response
        except Exception as e:
            try:
                connection.close()
            except Exception as e:
                connection = None
            return {'statusCode': 400, 'statusDesc': 'Error!', 'body': 'Unhandled error in Lambda Handler.'}
    

  9. Add a certificate file called rds-ca-2019-root.pem into the Lambda project root by downloading it from https://s3.amazonaws.com/rds-downloads/rds-ca-2019-root.pem.
  10. Under Basic settings, edit Timeout to increase the timeout to 29 seconds.
  11. Edit Environment variables to add the following keys and values.

    Key Value
    DBEndPoint Enter the database cluster endpoint URL
    DatabaseName Enter the database name
    RolePrefix assumeRole
    Figure 11: Example of environment variables display

    Figure 11: Example of environment variables display

  12. Configure a new test event with the following JSON document, and save it as testEvent.
    {
      "login_tenant_id": "tenant1",
      "dbuser": "tenant1_dbuser"
    }
    

  13. Choose Test to test the Lambda function with the newly created test event testEvent. You should see status code 200, and the body of the results should contain the data for tenant1.

    Figure 12: The result of running the sts-ti-demo-pgdb-lambda function

    Figure 12: The result of running the sts-ti-demo-pgdb-lambda function

Step 7: Perform negative testing of tenant isolation

You already performed positive tests of tenant isolation during the Lambda function creation steps. However, it’s also important to perform some negative tests to verify the robustness of the tenant isolation controls.

To perform negative tests of tenant isolation

  1. In the Lambda console, navigate to the sts-ti-demo-s3-lambda function. Update the test event to the following, to mimic a scenario where tenant1 attempts to access other tenants’ objects.
    {
      "login_tenant_id": "tenant1",
      "s3_tenant_home": "tenant2_home"
    }
    

  2. Choose Test to test the Lambda function with the updated test event. You should see status code 400, and the body of the results should contain an error message.

    Figure 13: The results of running the sts-ti-demo-s3-lambda function (negative test)

    Figure 13: The results of running the sts-ti-demo-s3-lambda function (negative test)

  3. Navigate to the sts-ti-demo-pgdb-lambda function and update the test event to the following, to mimic a scenario where tenant1 attempts to access other tenants’ data elements.
    {
      "login_tenant_id": "tenant1",
      "dbuser": "tenant2_dbuser"
    }
    

  4. Choose Test to test the Lambda function with the updated test event. You should see status code 400, and the body of the results should contain an error message.

    Figure 14: The results of running the sts-ti-demo-pgdb-lambda function (negative test)

    Figure 14: The results of running the sts-ti-demo-pgdb-lambda function (negative test)

Cleaning up

To de-clutter your environment, remove the roles, policies, Lambda functions, Lambda layers, Amazon S3 prefixes, database users, and the database table that you created as part of this exercise. You can choose to delete the S3 bucket, as well as the Aurora PostgreSQL-Compatible database cluster that we mentioned in the Prerequisites section, to avoid incurring future charges.

Update the security group of the Aurora PostgreSQL-Compatible database cluster to remove the inbound rule that you added to allow a PostgreSQL TCP connection (Port 5432) from anywhere (0.0.0.0/0).

Conclusion

By taking advantage of attribute-based access control (ABAC) in IAM, you can more efficiently implement tenant isolation in SaaS applications. The solution we presented here helps to achieve tenant isolation in Amazon S3 and Aurora PostgreSQL-Compatible databases by using ABAC with the pool model of data partitioning.

If you run into any issues, you can use Amazon CloudWatch and AWS CloudTrail to troubleshoot. If you have feedback about this post, submit comments in the Comments section below.

To learn more, see these AWS Blog and AWS Support articles:

Want more AWS Security how-to content, news, and feature announcements? Follow us on Twitter.

Author

Ashutosh Upadhyay

Ashutosh works as a Senior Security, Risk, and Compliance Consultant in AWS Professional Services (GFS) and is based in Singapore. Ashutosh started off his career as a developer, and for the past many years has been working in the Security, Risk, and Compliance field. Ashutosh loves to spend his free time learning and playing with new technologies.

Author

Chirantan Saha

Chirantan works as a DevOps Engineer in AWS Professional Services (GFS) and is based in Singapore. Chirantan has 20 years of development and DevOps experience working for large banking, financial services, and insurance organizations. Outside of work, Chirantan enjoys traveling, spending time with family, and helping his children with their science projects.