Tag Archives: IOT

Learn the Internet of Things with “IoT for Beginners” and Raspberry Pi

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/learn-the-internet-of-things-with-iot-for-beginners-and-raspberry-pi/

Want to dabble in the Internet of Things but don’t know where to start? Well, our friends at Microsoft have developed something fun and free just for you. Here’s Senior Cloud Advocate Jim Bennett to tell you all about their brand new online curriculum for IoT beginners.

IoT — the Internet of Things — is one of the biggest growth areas in technology, and one that, to me, is very exciting. You start with a device like a Raspberry Pi, sprinkle some sensors, dust with code, mix in some cloud services and poof! You have smart cities, self-driving cars, automated farming, robotic supermarkets, or devices that can clean your toilet after you shout at Alexa for the third time.

robot detecting a shelf restock is required
Why doesn’t my local supermarket have a restocking robot?

It feels like every week there is another survey out on what tech skills will be in demand in the next five years, and IoT always appears somewhere near the top. This is why loads of folks are interested in learning all about it.

In my day job at Microsoft, I work a lot with students and lecturers, and I’m often asked for help with content to get started with IoT. Not just how to use whatever cool-named IoT services come from your cloud provider of choice to enable digital whatnots to add customer value via thingamabobs, but real beginner content that goes back to the basics.

IoT for Beginners logo
‘IoT for Beginners’ is totally free for anyone wanting to learn about the Internet of Things

This is why a few of us have spent the last few months locked away building IoT for Beginners. It’s a free, open source, 24-lesson university-level IoT curriculum designed for teachers and students, and built by IoT experts, education experts and students.

What will you learn?

The lessons are grouped into projects that you can build with a Raspberry Pi so that you can deep-dive into use cases of IoT, following the journey of food from farm to table.

collection of cartoons of eye oh tee projects

You’ll build projects as you learn the concepts of IoT devices, sensors, actuators, and the cloud, including:

  • An automated watering system, controlling a relay via a soil moisture sensor. This starts off running just on your device, then moves to a free MQTT broker to add cloud control. It then moves on again to cloud-based IoT services to add features like security to stop Farmer Giles from hacking your watering system.
  • A GPS-based vehicle tracker plotting the route taken on a map. You get alerts when a vehicle full of food arrives at a location by using cloud-based mapping services and serverless code.
  • AI-based fruit quality checking using a camera on your device. You train AI models that can detect if fruit is ripe or not. These start off running in the cloud, then you move them to the edge running directly on your Raspberry Pi.
  • Smart stock checking so you can see when you need to restack the shelves, again powered by AI services.
  • A voice-controlled smart timer so you have more devices to shout at when cooking your food! This one uses AI services to understand what you say into your IoT device. It gives spoken feedback and even works in many different languages, translating on the fly.

Grab your Raspberry Pi and some sensors from our friends at Seeed Studio and get building. Without further ado, please meet IoT For Beginners: A Curriculum!

The post Learn the Internet of Things with “IoT for Beginners” and Raspberry Pi appeared first on Raspberry Pi.

How to import AWS IoT Device Defender audit findings into Security Hub

Post Syndicated from Joaquin Manuel Rinaudo original https://aws.amazon.com/blogs/security/how-to-import-aws-iot-device-defender-audit-findings-into-security-hub/

AWS Security Hub provides a comprehensive view of the security alerts and security posture in your accounts. In this blog post, we show how you can import AWS IoT Device Defender audit findings into Security Hub. You can then view and organize Internet of Things (IoT) security findings in Security Hub together with findings from other integrated AWS services, such as Amazon GuardDuty, Amazon Inspector, Amazon Macie, AWS Identity and Access Management (IAM) Access Analyzer, AWS Systems Manager, and more. You will gain a centralized security view across both enterprise and IoT types of workloads, and have an aggregated view of AWS IoT Device Defender audit findings. This solution can support AWS Accounts managed by AWS Organizations.

In this post, you’ll learn how the integration of IoT security findings into Security Hub works, and you can download AWS CloudFormation templates to implement the solution. After you deploy the solution, every failed audit check will be recorded as a Security Hub finding. The findings within Security Hub provides an AWS IoT Device Defender finding severity level and direct link to the AWS IoT Device Defender console so that you can take possible remediation actions. If you address the underlying findings or suppress the findings by using the AWS IoT Device Defender console, the solution function will automatically archive any related findings in Security Hub when a new audit occurs.

Solution scope

For this solution, we assume that you are familiar with how to set up an IoT environment and set up AWS IoT Device Defender. To learn more how to set up your environment, see the AWS tutorials, such as Getting started with AWS IoT Greengrass and Setting up AWS IoT Device Defender

The solution is intended for AWS accounts with fewer than 10,000 findings per scan. If AWS IoT Device Defender has more than 10,000 findings, the limit of 15 minutes for the duration of the serverless AWS Lambda function might be exceeded, depending on the network delay, and the function will fail.

The solution is designed for AWS Regions where AWS IoT Device Defender, serverless Lambda functionality and Security Hub are available; for more information, see AWS Regional Services. The China (Beijing) and China (Ningxia) Regions and the AWS GovCloud (US) Regions are excluded from the solution scope.

Solution overview

The templates that we provide here will provision an Amazon Simple Notification Service (Amazon SNS) topic notifying you when the AWS IoT Device Defender report is ready, and a Lambda function that imports the findings from the report into Security Hub. Figure 1 shows the solution architecture.
 

Figure 1: Solution architecture

Figure 1: Solution architecture

The solution workflow is as follows:

  1. AWS IoT Device Defender performs an audit of your environment. You should set up a regular audit as described in Audit guide: Enable audit checks.
  2. AWS IoT Device Defender sends an SNS notification with a summary of the audit report.
  3. A Lambda function named import-iot-defender-findings-to-security-hub is triggered by the SNS topic.
  4. The Lambda function gets the details of the findings from AWS IoT Device Defender.
  5. The Lambda function imports the new findings to Security Hub and archives the previous report findings. An example of findings in Security Hub is shown in Figure 2.
     
    Figure 2: Security Hub findings example

    Figure 2: Security Hub findings example

Prerequisites

  • You must have Security Hub turned on in the Region where you’re deploying the solution.
  • You must also have your IoT environment set, see step by step tutorial at Getting started with AWS IoT Greengrass
  • You must also have AWS IoT Device Defender audit checks turned on. Learn how to configure recurring audit checks across all your IoT devices by using this tutorial.

Deploy the solution

You will need to deploy the solution once in each AWS Region where you want to integrate IoT security findings into Security Hub.

To deploy the solution

  1. Choose Launch Stack to launch the AWS CloudFormation console with the prepopulated CloudFormation demo template.

    Select the Launch Stack button to launch the template

    Additionally, you can download the latest solution code from GitHub.

  2. (Optional) In the CloudFormation console, you are presented with the template parameters before you deploy the stack. You can customize these parameters or keep the defaults:
    • S3 bucket with sources: This bucket contains all the solution sources, such as the Lambda function and templates. You can keep the default text if you’re not customizing the sources.
    • Prefix for S3 bucket with sources: The prefix for all the solution sources. You can keep the default if you’re not customizing the sources.
  3. Go to the AWS IoT Core console and set up an SNS alert notification parameter for the audit report. To do this, in the left navigation pane of the console, under Defend, choose Settings, and then choose Edit to edit the SNS alert. The SNS topic is created by the solution stack and named iot-defender-report-notification.
     
    Figure 3: SNS alert settings for AWS IoT Device Defender

    Figure 3: SNS alert settings for AWS IoT Device Defender

Test the solution

To test the solution, you can simulate an “AWS IoT policies are overly permissive” finding by creating an insecure policy.

To create an insecure policy

  1. Go to the AWS IoT Core console. In the left navigation pane, under Secure, choose Policies.
  2. Choose Create. For Name, enter InsecureIoTPolicy.
  3. For Action, select iot:*. For Resources, enter *. Choose Allow statement, and then choose Create.

Next, run a new IoT security audit by choosing IoT Core > Defend > Audit > Results > Create and selecting the option Run audit now (Once).

After the audit is finished, you’ll see audit reports in the AWS IoT Core console, similar to the ones shown in Figure 4. One of the reports shows that the IoT policies are overly permissive. The same findings are also imported into Security Hub as shown in Figure 2.
 

Figure 4: AWS IoT Device Defender report

Figure 4: AWS IoT Device Defender report

Troubleshooting

To troubleshoot the solution, use the Amazon CloudWatch Logs of the Lambda function import-iot-defender-findings-to-security-hub. The solution can fail if:

  • Security Hub isn’t turned on in your Region
  • Service control policies (SCPs) are preventing access to AWS IoT Device Defender audit reports
  • The wrong SNS topic is configured in the AWS IoT Device Defender settings
  • The Lambda function times out because there are more than 10,000 findings

To find these issues, go to the CloudWatch console, choose Log Group, and then choose /aws/lambda/import-iot-defender-findings-to-security-hub.

Conclusion

In this post, you’ve learned how to integrate AWS IoT Device Defender audit findings with Security Hub to gain a centralized view of security findings across both your enterprise and IoT workloads. If you have more questions about IoT, you can reach out to the AWS IoT forum, and if you have questions about Security Hub, visit the AWS Security Hub forum. If you need AWS experts to help you plan, build, or optimize your infrastructure, contact AWS Professional Services.

If you have feedback about this post, submit comments in the Comments section below.

Want more AWS Security how-to content, news, and feature announcements? Follow us on Twitter.

Author

Joaquin Manuel Rinaudo

Joaquin is a Senior Security Architect with AWS Professional Services. He is passionate about building solutions that help developers improve their software quality. Prior to AWS, he worked across multiple domains in the security industry, from mobile security to cloud and compliance related topics. In his free time, Joaquin enjoys spending time with family and reading science-fiction novels.

Author

Vesselin Tzvetkov

Vesselin is a Senior Security Architect at AWS Professional Services and is passionate about security architecture and engineering innovative solutions. Outside of technology, he likes classical music, philosophy, and sports. He holds a Ph.D. in security from TU-Darmstadt and a M.S. in electrical engineering from Bochum University in Germany.

HaXmas Hardware Hacking

Post Syndicated from Tod Beardsley original https://blog.rapid7.com/2021/01/02/haxmas-hardware-hacking/

HaXmas Hardware Hacking

Usually, when you read an IoT hacking report or blog post, it ends with something along the lines of, “and that’s how I got root,” or “and there was a secret backdoor credential,” or “and every device in the field uses the same S3 bucket with no authentication.” You know, something bad, and the whole reason for publishing the research in the first place. While such research is of course interesting, important, and worth publishing, we pretty much never hear about the other outcome: the IoT hacking projects that didn’t uncover something awful, but instead ended up with, “and everything looked pretty much okay.”

So, this HaXmas, I decided to dig around a little in Rapid7’s library of IoT investigations that never really went anywhere, just to see which tools were used. The rest of this blog post is basically a book report of the tooling used in a recent engagement performed by our own Jonathan Stines, and can be used as a starting point if you’re interested in getting into some casual IoT hacking yourself. Even though this particular engagement didn’t go anywhere, I had a really good time reading along with Stines’ investigation on a smart doorbell camera.

Burp Suite

While Burp Suite might be a familiar mainstay for web app hackers, it has a pretty critical role in IoT investigations as well. The “I” in IoT is what makes these Things interesting, so checking out what and how those gadgets are chatting on the internet is pretty critical in figuring out the security posture of those devices. Burp Suite lets investigators capture, inspect, and replay conversations in a proxied context, and the community edition is a great way to get started with this kind of manual, dynamic analysis.

Frida

While Burp is great, if the IoT mobile app you’re looking at (rightly) uses certificate pinning in order to secure communications, you won’t get very far with its proxy capabilities. In order to deal with this, you’ll need some mechanism to bypass the application’s pinned cert, and that mechanism is Frida. While Frida might be daunting for the casual IoT hacker, there’s a great HOWTO by Vedant that provides some verbose instructions for setting up Frida, adb, and Burp Suite in order to inject a custom SSL certificate and bypass that pesky pinning. Personally, I had never heard of Frida or how to use it for this sort of thing, so it looks like I’m one of today’s lucky 10,000.

HaXmas Hardware Hacking

Binwalk

When mucking about with firmware (the packaged operating system and applications that makes IoT devices go), Binwalk from Refirm Labs is the standard for exploring those embedded filesystems. In nearly all cases, a “check for updates” button on a newly opened device will trigger some kind of firmware download—IoT devices nearly always update themselves by downloading and installing an entirely new firmware—so if you can capture that traffic with something like Wireshark (now that you’ve set up your proxied environment), you can extract those firmware updates and explore them with Binwalk.

Allsocket eMMC153 chip reader

Now, with the software above, you will go far in figuring out how an IoT device does its thing, but the actual hands-on-hardware experience in IoT hacking is kinda the fun part that differentiates it from regular old web app testing. So for this, you will want to get your hands on a chip reader for your desoldered components. Pictured below is an Allsocket device that can be used to read both 153-pin and 169-pin configurations of eMMC storage, both of which are very common formats for solid-state flash memory in IoT-land. Depending on where you get it, they can run about $130, so not cheap, but also not bank-breaking.

HaXmas Hardware Hacking

Thanks!

Thanks again to Jonathan Stines, who did all the work that led to this post. If you need some validation of your IoT product, consider hiring him for your next IoT engagement. Rapid7’s IoT assessment experts are all charming humans who are pretty great at not just IoT hacking, but explaining what they did and how they did it. And, if you like this kind of thing, drop a comment below and let me know—I’m always happy to learn and share something new (to me) when it comes to hardware hacking.

More HaXmas blogs

UPnP With a Holiday Cheer

Post Syndicated from Deral Heiland original https://blog.rapid7.com/2020/12/22/upnp-with-a-holiday-cheer/

UPnP With a Holiday Cheer

T’was the night before HaXmas,
when all through the house,
Not a creature was stirring, not even a mouse.
The stockings were hung by the chimney with care,
in hopes that St. Nicholas soon would be there.

This may be the way you start your holiday cheer,
but before you get started, let me make you aware.
I spend my holidays quite differently, I fear.
As a white-hat hacker with a UPnP cheer.

And since you may not be aware,
let me share what I learned with you,
so that you can also care,
how to port forward with UPnP holiday cheer.

Universal Plug and Play (UPnP) is a service that has been with us for many years and is used to automate discovery and setup of network and communication services between devices on your network. For today’s discussion, this blog post will only cover the port forwarding services and will also share a Python script you can use to start examining this service.

UPnP port forwarding services are typically enabled by default on most consumer internet-facing Network Address Translation (NAT) routers supplied by internet service providers (ISP) for supporting IPv4 networks. This is done so that devices on the internal network can automate their setup of needed TCP and UDP port forwarding functions on the internet-facing router, so devices on the internet can connect to services on your internal network.

So, the first thing I would like to say about this is that if you are not running applications or systems such as internet gaming systems that require this feature, I would recommend disabling this on your internet-facing router. Why? Because it has been used by malicious actors to further compromise a network by opening up port access into internal networks via malware. So, if you don’t need it, you can remove the risk by disabling it. This is the best option to help reduce any unnecessary exposure.

To make all this work, UPnP uses a discovery protocol known as Simple Service Discovery Protocol (SSDP). This SSDP discovery service for UPnP is a UDP service that responds on port 1900 and can be enumerated by broadcasting an M-SEARCH message via the multicast address 239.255.255.250. This M-SEARCH message will return device information, including the URL and port number for the device description file ‘rootDesc.xml’. Here is an example of a returned M-SEARCH response from a NETGEAR Wi-Fi router device on my network:

UPnP With a Holiday Cheer

To send a M-SEARCH multicast message, here is a simple Python script:

# simple script to enumerate UPNP devices
 
import socket
 
# M-Search message body
MS = \
    'M-SEARCH * HTTP/1.1\r\n' \
    'HOST:239.255.255.250:1900\r\n' \
    'ST:upnp:rootdevice\r\n' \
    'MX:2\r\n' \
    'MAN:"ssdp:discover"\r\n' \
    '\r\n'
 
# Set up a UDP socket for multicast
SOC = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.IPPROTO_UDP)
SOC.settimeout(2)
 
# Send M-Search message to multicast address for UPNP
SOC.sendto(MS.encode('utf-8'), ('239.255.255.250', 1900) )
 
#listen and capture returned responses
try:
    while True:
        data, addr = SOC.recvfrom(8192)
        print (addr, data)
except socket.timeout:
        pass

The next step is to access the rootDesc.xml file. In this case, this is accessible on my device via http://192.168.2.74:5555/rootDesc.xml. Looking at the M-SEARCH response above, we can see that the IP address for rootDesc.xml at 169.254.39.187.  169.254.*.* is known as an Automatic Private IP address. It is not uncommon to see an address in that range returned by an M-SEARCH request. Trying to access it will fail because it is incorrect. To actually access the rootDesc.xml file, you will need to use the device’s true IP address, which in my case was 192.168.2.74 and was shown in the header of the M-SEARCH message response.

Once the rootDesc.xml is returned, you will see some very interesting things listed, but in this case, we are only interested in port forwarding. If port forwarding service is available, it will be listed in the rootDesc.xml file as service type WANIPConnection, as shown below:

UPnP With a Holiday Cheer

You can open WANIPCn.xml on the same http service and TCP port location that you retrieved the rootDesc.xml file. The WANIPCn.xml file identifies various actions that are available, and this will often include the following example actions:

  • AddPortMapping
  • GetExternalIPAddress
  • DeletePortMapping
  • GetStatusInfo
  • GetGenericPortMappingEntry
  • GetSpecificPortMappingEntry

Under each of these actions will be an argument list. This argument list specifies the argument values that can be sent via Simple Object Access Protocol (SOAP) messages to the control URL at http://192.168.2.74:5555/ctl/IPConn, which is used to configure settings or retrieve status on the router device. SOAP is a messaging specification that uses a Extensible Markup Language (XML) format to exchange information.

Below are a couple captured SOAP messages, with the first one showing AddPortMapping. This will set up port mapping on the router at the IP address 192.168.1.1. The port being added in this case is TCP 1234 and it is set up to map the internet side of the router to the internal IP address of 192.168.1.241, so anyone connecting to TCP port 1234 on the external IP address of the router will be connected to port 1234 on internal host at 192.168.1.241.

UPnP With a Holiday Cheer

The following captured SOAP message shows the action DeletePortMapping being used to delete the port mapping that was created in the above SOAP message:

UPnP With a Holiday Cheer

To conclude this simple introduction to UPnP, SSDP, and port forwarding services, I highly recommend that you do not experiment on your personal internet-facing router or DSL modem where you could impact your home network’s security posture. But I do recommend that you set up a test environment. This can easily be done with any typical home router or Wi-Fi access point with router services. These can often be purchased used, or you may even have one laying around that you have upgraded from. It is amazing how simple it is to modify a router using these UPnP services by sending SOAP messages, and I hope you will take this introduction and play with these services to further expand your knowledge in this area. If you are looking for further tools for experimenting with port forwarding services, you can use the UPnP IGD SOAP Port Mapping Utility in  Metasploit to create and delete these port mappings.

But I heard him exclaim, ere he drove out of sight-
Happy HaXmas to all, and to all a good UPnP night

NEVER MISS A BLOG

Get the latest stories, expertise, and news about security today.

More HaXmas blogs

The Satellite Ear Tag that is Changing Cattle Management

Post Syndicated from Karen Hildebrand original https://aws.amazon.com/blogs/architecture/the-satellite-ear-tag-that-is-changing-cattle-management/

Most cattle are not raised in cities—they live on cattle stations, large open plains, and tracts of land largely unpopulated by humans. It’s hard to keep connected with the herd. Cattle don’t often carry their own mobile phones, and they don’t pay a mobile phone bill. Naturally, the areas in which cattle live, often do not have cellular connectivity or reception. But they now have one way to stay connected: a world-first satellite ear tag.

Ceres Tag co-founders Melita Smith and David Smith recognized the problem given their own farming background. David explained that they needed to know simple things to begin with, such as:

  • Where are they?
  • How many are out there?
  • What are they doing?
  • What condition are they in?
  • Are they OK?

Later, the questions advanced to:

  • Which are the higher performing animals that I want to keep?
  • Where do I start when rounding them up?
  • As assets, can I get better financing and insurance if I can prove their location, existence, and condition?

To answer these questions, Ceres Tag first had to solve the biggest challenge, and it was not to get cattle to carry their mobile phones and pay mobile phone bills to generate the revenue needed to get greater coverage. David and Melita knew they needed help developing a new method of tracking, but in a way that aligned with current livestock practices. Their idea of a satellite connected ear tag came to life through close partnership and collaboration with CSIRO, Australia’s national science agency. They brought expertise to the problem, and rallied together teams of experts across public and private partnerships, never accepting “that’s not been done before” as a reason to curtail their innovation.

 

Figure 1: How Ceres Tag works in practice

Thinking Big: Ceres Tag Protocol

Melita and David constructed their idea and brought the physical hardware to reality. This meant finding strategic partners to build hardware, connectivity partners that provided global coverage at a cost that was tenable to cattle operators, integrations with existing herd management platforms and a global infrastructure backbone that allowed their solution to scale. They showed resilience, tenacity and persistence that are often traits attributed to startup founders and lifelong agricultural advocates. Explaining the purpose of the product often requires some unique approaches to defining the value proposition while fundamentally breaking down existing ways of thinking about things. As David explained, “We have an internal saying, ‘As per Ceres Tag protocol …..’ to help people to see the problem through a new lens.” This persistence led to the creation of an easy to use ear tagging applicator and a two-prong smart ear tag. The ear tag connects via satellite for data transmission, providing connectivity to more than 120 countries in the world and 80% of the earth’s surface.

The Ceres Tag applicator, smart tag, and global satellite connectivity

Figure 2: The Ceres Tag applicator, smart tag, and global satellite connectivity

Unlocking the blocker: data-driven insights

With the hardware and connectivity challenges solved, Ceres Tag turned to how the data driven insights would be delivered. The company needed to select a technology partner that understood their global customer base, and what it means to deliver a low latency solution for web, mobile and API-driven solutions. David, once again knew the power in leveraging the team around him to find the best solution. The evaluation of cloud providers was led by Lewis Frost, COO, and Heidi Perrett, Data Platform Manager. Ceres Tag ultimately chose to partner with AWS and use the AWS Cloud as the backbone for the Ceres Tag Management System.

Ceres Tag conceptual diagram

Figure 3: Ceres Tag conceptual diagram

The Ceres Tag Management System houses the data and metadata about each tag, enabling the traceability of that tag throughout each animal’s life cycle. This includes verification as to whom should have access to their health records and history. Based on the nature of the data being stored and transmitted, security of the application is critical. As a startup, it was important for Ceres Tag to keep costs low, but to also to be able to scale based on growth and usage as it expands globally.

Ceres Tag is able to quickly respond to customers regardless of geography, routing traffic to the appropriate end point. They accomplish this by leveraging Amazon CloudFront as the Content Delivery Network (CDN) for traffic distribution of front-end requests and Amazon Route 53 for DNS routing. A multi-Availability Zone deployment and AWS Application Load Balancer distribute incoming traffic across multiple targets, increasing the availability of your application.

Ceres Tag is using AWS Fargate to provide a serverless compute environment that matches the pay-as-you-go usage-based model. AWS also provides many advanced security features and architecture guidance that has helped to implement and evaluate best practice security posture across all of the environments. Authentication is handled by Amazon Cognito, which allows Ceres Tag to scale easily by supporting millions of users. It leverages easy-to-use features like sign-in with social identity providers, such as Facebook, Google, and Amazon, and enterprise identity providers via SAML 2.0.

The data captured from the ear tag on the cattle is will be ingested via AWS PrivateLink. By providing a private endpoint to access your services, AWS PrivateLink ensures your traffic is not exposed to the public internet. It also makes it easy to connect services across different accounts and VPCs to significantly simplify your network architecture. In leveraging a satellite connectivity provider running on AWS, Ceres Tag will benefit from the AWS Ground Station infrastructure leveraged by the provider in addition to the streaming IoT database.

 

Raspberry Pi smart IoT glove

Post Syndicated from Ashley Whittaker original https://www.raspberrypi.org/blog/raspberry-pi-smart-iot-glove/

Animator/engineer Ashok Fair has put witch-level finger pointing powers in your hands by sticking a SmartEdge Agile, wirelessly controlled by Raspberry Pi Zero, to a golf glove. You could have really freaked the bejeezus out of Halloween party guests with this (if we were allowed to have Halloween parties that is).

The build uses a Smart Edge Agile IoT device with Brainium, a cloud-based tool for performing machine learning tasks.

The Rapid IoT kit is interfaced with Raspberry Pi Zero and creates a thread network connecting to light, car, and fan controller nodes.

The Brainium app is installed on Raspberry Pi and bridges between the cloud and Smart Edge device. MQTT is running on Python and processes the Rapid IoT Kit’s data.

The device is mounted onto a golf glove, giving the wearer seemingly magical powers with the wave of a hand.

Kit list

  • Raspberry Pi Zero
  • Avnet SmartEdge Agile (the white box attached to the glove)
  • NXP Rapid IoT Prototyping Kit (the square blue screen stuck on the adaptor board with the Raspberry Pi Zero)
  • Brainium AI Studio app
  • Golf glove
Waking up the Rapid IoT screen

To get started, the glove wearer draws a pattern above the screen attached to the Raspberry Pi to unlock it and wake up all the controller nodes.

The light controller node is turned on by drawing a clockwise circle, and turned off with an counter-clockwise circle.

The full kit and caboodle

The fan is turned on and off in the same way, and you can increase the fan’s speed by moving your hand upwards and reduce the speed by moving your hand down. You know it’s working by the look of the fan’s LEDs: they blinker faster as the fan speeds up.

Make a pushing motion in the air above the car to make it move forward, and you can also make it turn and reverse.

“Driving glove”

If you wear the glove while driving, it collects data in real time and logs it on the Brainium cloud so you can review your driving style.

Keep up with Ashok’s projects on Twitter or Facebook.

The post Raspberry Pi smart IoT glove appeared first on Raspberry Pi.