Tag Archives: Amazon Route 53

The Satellite Ear Tag that is Changing Cattle Management

Post Syndicated from Karen Hildebrand original https://aws.amazon.com/blogs/architecture/the-satellite-ear-tag-that-is-changing-cattle-management/

Most cattle are not raised in cities—they live on cattle stations, large open plains, and tracts of land largely unpopulated by humans. It’s hard to keep connected with the herd. Cattle don’t often carry their own mobile phones, and they don’t pay a mobile phone bill. Naturally, the areas in which cattle live, often do not have cellular connectivity or reception. But they now have one way to stay connected: a world-first satellite ear tag.

Ceres Tag co-founders Melita Smith and David Smith recognized the problem given their own farming background. David explained that they needed to know simple things to begin with, such as:

  • Where are they?
  • How many are out there?
  • What are they doing?
  • What condition are they in?
  • Are they OK?

Later, the questions advanced to:

  • Which are the higher performing animals that I want to keep?
  • Where do I start when rounding them up?
  • As assets, can I get better financing and insurance if I can prove their location, existence, and condition?

To answer these questions, Ceres Tag first had to solve the biggest challenge, and it was not to get cattle to carry their mobile phones and pay mobile phone bills to generate the revenue needed to get greater coverage. David and Melita knew they needed help developing a new method of tracking, but in a way that aligned with current livestock practices. Their idea of a satellite connected ear tag came to life through close partnership and collaboration with CSIRO, Australia’s national science agency. They brought expertise to the problem, and rallied together teams of experts across public and private partnerships, never accepting “that’s not been done before” as a reason to curtail their innovation.

 

Figure 1: How Ceres Tag works in practice

Thinking Big: Ceres Tag Protocol

Melita and David constructed their idea and brought the physical hardware to reality. This meant finding strategic partners to build hardware, connectivity partners that provided global coverage at a cost that was tenable to cattle operators, integrations with existing herd management platforms and a global infrastructure backbone that allowed their solution to scale. They showed resilience, tenacity and persistence that are often traits attributed to startup founders and lifelong agricultural advocates. Explaining the purpose of the product often requires some unique approaches to defining the value proposition while fundamentally breaking down existing ways of thinking about things. As David explained, “We have an internal saying, ‘As per Ceres Tag protocol …..’ to help people to see the problem through a new lens.” This persistence led to the creation of an easy to use ear tagging applicator and a two-prong smart ear tag. The ear tag connects via satellite for data transmission, providing connectivity to more than 120 countries in the world and 80% of the earth’s surface.

The Ceres Tag applicator, smart tag, and global satellite connectivity

Figure 2: The Ceres Tag applicator, smart tag, and global satellite connectivity

Unlocking the blocker: data-driven insights

With the hardware and connectivity challenges solved, Ceres Tag turned to how the data driven insights would be delivered. The company needed to select a technology partner that understood their global customer base, and what it means to deliver a low latency solution for web, mobile and API-driven solutions. David, once again knew the power in leveraging the team around him to find the best solution. The evaluation of cloud providers was led by Lewis Frost, COO, and Heidi Perrett, Data Platform Manager. Ceres Tag ultimately chose to partner with AWS and use the AWS Cloud as the backbone for the Ceres Tag Management System.

Ceres Tag conceptual diagram

Figure 3: Ceres Tag conceptual diagram

The Ceres Tag Management System houses the data and metadata about each tag, enabling the traceability of that tag throughout each animal’s life cycle. This includes verification as to whom should have access to their health records and history. Based on the nature of the data being stored and transmitted, security of the application is critical. As a startup, it was important for Ceres Tag to keep costs low, but to also to be able to scale based on growth and usage as it expands globally.

Ceres Tag is able to quickly respond to customers regardless of geography, routing traffic to the appropriate end point. They accomplish this by leveraging Amazon CloudFront as the Content Delivery Network (CDN) for traffic distribution of front-end requests and Amazon Route 53 for DNS routing. A multi-Availability Zone deployment and AWS Application Load Balancer distribute incoming traffic across multiple targets, increasing the availability of your application.

Ceres Tag is using AWS Fargate to provide a serverless compute environment that matches the pay-as-you-go usage-based model. AWS also provides many advanced security features and architecture guidance that has helped to implement and evaluate best practice security posture across all of the environments. Authentication is handled by Amazon Cognito, which allows Ceres Tag to scale easily by supporting millions of users. It leverages easy-to-use features like sign-in with social identity providers, such as Facebook, Google, and Amazon, and enterprise identity providers via SAML 2.0.

The data captured from the ear tag on the cattle is will be ingested via AWS PrivateLink. By providing a private endpoint to access your services, AWS PrivateLink ensures your traffic is not exposed to the public internet. It also makes it easy to connect services across different accounts and VPCs to significantly simplify your network architecture. In leveraging a satellite connectivity provider running on AWS, Ceres Tag will benefit from the AWS Ground Station infrastructure leveraged by the provider in addition to the streaming IoT database.

 

Agile website delivery with Hugo and AWS Amplify

Post Syndicated from Nigel Harris original https://aws.amazon.com/blogs/devops/agile-website-delivery-with-hugo-and-aws-amplify/

In this post, we show how you can rapidly configure and deploy a website using Hugo (an AWS Cloud9 integrated development environment (IDE) for content editing), AWS CodeCommit for source code control, and AWS Amplify to implement a source code-controlled, automated deployment process.

When hosting a website on AWS, you can choose from several options. One popular option is to use Amazon Simple Storage Service (Amazon S3) to host a static website. If you prefer full access to the infrastructure hosting your website, you can use the NGINX Quick Start to quickly deploy web server infrastructure using AWS CloudFormation.

Static website generators such as Hugo and MkDocs accelerate the website content generation process, and can be a valuable tool when trying to rapidly deliver technical documentation or similar content. Typically, the content creation process requires programming in HTML and CSS.

Hugo is written in Go and available under the Apache 2.0 license. It provides several themes (collections of layouts) that accelerate website creation by drastically reducing the need to focus on format. You can author content in Markdown and output in multiple languages and formats (including ebook formats). Excellent examples of public websites built using Hugo include Digital.gov and Kubernetes.io.

 

Solution overview

This solution illustrates how to provision a hosted, source code-controlled Hugo generated website using CodeCommit and Amplify Console. The provisioned website is configured with a custom subdomain and an SSL certificate. We use an AWS Cloud9 IDE to enable content creation in the cloud.

 

Setting up an AWS Cloud9 IDE

Start by provisioning an AWS Cloud9 IDE. AWS Cloud9 environments run using Amazon Elastic Compute Cloud (Amazon EC2). You need to provision your AWS Cloud9 environment into an existing public subnet in an Amazon Virtual Private Cloud (Amazon VPC) within your AWS account. You can complete this in the following steps:

1. Access your AWS account using with an identity with administrative privileges. If you don’t have an AWS account, you can create one.

2. Create a new AWS Cloud9 environment using the wizard on the AWS Cloud9 console.

3. Enter a name for your desktop and an optional description.

4. Choose Next step.

Naming your Cloud 9 environment

5. In the Environment settings section, for Environment type, select Create a new EC2 instance for environment (direct access).

6. For Instance type, select your preferred instance type (the default, t2.micro, works for this use case)

7. Under Network settings, for Network (VPC), choose a VPC that you wish to deploy your AWS Cloud9 instance into. You may wish to use your default VPC, which is suitable for the purpose of this tutorial.

8. Choose a public subnet from this VPC for deployment.

Cloud9 Settings

9. Leave all other settings unchanged and choose Next step.
10. Review your choices and choose Create environment.

Environment creation takes a few minutes to complete. When the environment is ready, you receive access to the AWS Cloud9 IDE in your browser. We return to it shortly to develop content for your Hugo website.

Your Cloud9 Desktop

Configuring a source code repository to track content changes

Static website generators enable rapid changes to website content and layout. Source control management (SCM) systems provide a revision history for your code, and allow you to revert to previous versions of a project when unintended changes are introduced. SCM systems become increasingly important as the velocity of change and the number of team members introducing change increases.

You now create a source code repository to track changes to your content. You use CodeCommit, a fully-managed source control service that hosts secure Git-based repositories.

1. In a new browser, sign in to the CodeCommit Console and create a new repository.

2. For Repository name, enter amplify-website.

3. For Description, enter an appropriate description.

4. Choose Create.

Create repository

Repository creation takes just a few moments.

5. In the Connection steps section, choose the appropriate method to connect to your repository based on how you accessed your AWS account.

For this post, I signed in to my AWS account using federated access, so I choose the HTTPS Git Remote CodeCommit (HTTPS-GRC) tab. This is the recommended connection method for this sign-in type. You can also configure a connection to your repository using SSH or Git credentials over HTTPS. SSH and Git credentials over HTTPS are appropriate methods if you have signed in to your AWS account as an AWS Identity and Access Management (IAM) user. The Amazon CodeCommit console provides additional information regarding each of these connection types, including links to supporting documentation.

Connect to Repo

 

Configuring and deploying an example website

You’re now ready to configure and deploy your website.

1. Return to the browser with your AWS Cloud9 IDE and place your cursor in the lower terminal pane of the IDE.

The terminal pane provides Bash shell access on the EC2 instance running AWS Cloud9.

You now create a Hugo website. The website design is based on Hugo-theme-learn. Themes are collections of Hugo layouts that take all the hassle out of building your website. Learn is a multilingual-ready theme authored by Mathieu Cornic, designed for building technical documentation websites.

Hugo provides a variety of themes on their website. Many of the themes include bundled example website content that you can easily adapt by following the accompanying theme documentation.

2. Enter the following code to download an existing example website stored as a .zip file, extract it, and commit the contents into CodeCommit from your AWS Cloud9 IDE:

cd ~/environment
aws s3 cp s3://ee-assets-prod-us-east-1/modules/3c5ba9cb6ff44465b96993d210f67147/v1/example-website.zip ~/environment/example-website.zip
unzip example-website.zip
rm example-website.zip

The following screenshot shows your output.

example website copy commands

 

Next, we run commands to create a directory to host your website and copy files into place from the example website to get started. We then create a new default branch called main (formerly referred to as the master branch), local to our AWS Cloud9 instance. We then copy files into place from the example website. After adding and committing them locally, we push all our changes to the remote Amazon Codecommit repository.

3. Enter the following code:

mkdir ~/environment/amplify-website/
cd ~/environment/amplify-website/
git init
git remote add origin codecommit::us-east-1://amplify-website
git remote -v
git checkout -b main
cp -rp ~/environment/example-website/* ~/environment/amplify-website/
git add *
git commit -am "first commit"
git push -u origin main

Deployment and hosting is achieved by using Amplify Console, a static web hosting service that accelerates your application release cycle by providing a simple CI/CD workflow for building and deploying static web applications.

4. On the Amplify console, under Deploy, choose Get Started.

Amplify banner

5. On the Get started with the Amplify Console page, select AWS CodeCommit as your source code repository.

6. Choose Continue.

Amplify get started page

7. On the Add repository branch page, for Recently updated repositories, choose your repository.

8. For Branch, choose main.

9. Choose Next.

add branch

On the Configure build settings page, Amplify automatically uses the amplify.yml file for build settings for your deployment. You committed this into your source code repository in the previous step. The amplify.yml file is detected from the root of your website directory structure.

10. Choose Next.

Amplify configure build settings

11. On the review page, choose Save and deploy.

Amplify builds and deploys your Amplify website within minutes, and shows you its progress. When deployment is complete, you can access the website to see the sample content.

amplify website

The following screenshot shows your example website.

sample website

 

Promoting changes to the website

We can now update the line of text in the home page and commit and publish this change.

1. Return to the browser with your AWS Cloud9 IDE and place your cursor in the lower terminal pane of the IDE.

2. On the navigation pane, choose the file ~/environment/amplify-website/workshop/content/_index.en.md.

The contents of the file open under a new tab in the upper pane.

3. Change the string First Line of Text to First Update to Website.

content change

4. From the File menu, choose Save to save the changes you have made to the _index.en.md file.

save content changes

5. Commit the changes and push to CodeCommit by running the following command in the lower terminal pane in AWS Cloud9:

git add *; git commit -am "homepage update"; git push origin main

The output in your AWS Cloud9 terminal should appear similar to the following screenshot.

commit output

6. Return to the Amplify Console and observe how the committed change in CodeCommit is automatically detected. Amplify runs deployment steps to push your changes to the website.

amplify deploy changes

7. Access the URL of your website after this update is complete to verify that the first line of text on your home page has changed.

updated website

You can repeat this process to make source-code controlled, automated changes to your website.

Adding a custom domain

Adding a custom domain to your Amplify configuration makes it easier for clients to access your content. You can register new domains using Amazon Route 53 or, if you have an existing domain registered outside of AWS, you can integrate it with Route 53 and Amplify. For our use case, the domain www.hugoonamplify.com is a registered a domain name using a third-party registrar (NameCheap). You can manage DNS configurations for domains registered outside of AWS using Route 53.

Start by configuring a public hosted zone in Route 53.

1. On the Route 53 console, choose Hosted zones.

2. Choose Create hosted zone.

hosted zones

3. For Domain name, enter hugoonamplify.com.

4. For Description, enter an appropriate description.

5. For Type, select Public hosted zone.

hosted zones configuration

6. Choose Create hosted zone.

7. Save the addresses of the name servers that respond to client DNS lookup requests for the custom domain.

create hosted zone

8. In a separate browser, access the console of your DNS registrar.

9. Configure a custom DNS name servers setting on the console of the third-party domain name registrar.

This configuration specifies the Route 53 assigned name servers as authoritative DNS for our custom domain. For this use case, propagation of this change may take up to 48 hours.

namecheap console

10. Use https://who.is to verify that the AWS name servers are listed correctly for your custom domain to internet clients.

whois lookup

You can now set up your custom domain in Amplify. Amplify helps you configure DNS and set up SSL for your desired custom domain.

domain management

11. On the Amplify Console, under App settings, choose Domain management.

12. Choose Add domain.

13. For Domain, enter your custom domain name (hugoonamplify.com).

14. Choose Configure domain.

15. For Subdomain, I only want to set up www and choose to exclude the root of my custom domain.

16. Choose Save.

Amplify begins the process of creating the SSL certificates. Amplify sends a notification that it’s issuing an SSL certificate to secure traffic to the custom domain.

ssl domain management

After a few moments, it proceeds to SSL configuration and indicates that ownership of domain is in progress.

ssl domain management configuration

Amplify verifies domain ownership by creating a sample CNAME record in your hosted zone file. When ownership is verified, the domain is propagated onto an Amazon CloudFront distribution managed by the Amplify service, and domain activation is complete.

ssl domain management configured

Clients can now access the website using the custom domain name www.hugoonaplify.com.

access website via custom domain

 

Establishing a subdomain for development

You can create a development website in Amplify that is aligned to a development code branch in CodeCommit that enables testing changes prior to production release.

1. Access the AWS Cloud9 IDE and use the terminal to enter the following commands to create a development branch and push changes to CodeCommit using the current content from the main branch with a single content change:

git checkout -b development
git branch
git remote -v
git add *; git commit -am "first development commit";
git push -u origin development

2. Open and edit the file ~/environment/amplify-website/workshop/content/_index.en.md and change the string Update to Website to something else.

Alternatively, run the following Unix sed command from the terminal in AWS Cloud9 to make that content change:

sed -i 's/Update to Website/Update to Development/g' ~/environment/amplify-website/workshop/content/_index.en.md

3. Commit and push your change with the following code:

git add *; git commit -am "second development commit"; git push -u origin development

You now configure a subdomain in Amplify to allow developers to review changes.

4. Return to the amplify-website app.

5. Choose Connect branch.

connect branch

6. For Branch, choose the development branch you created and committed code into.

7. Choose Next.

add development branch

Amplify builds a second website based on the contents of the development branch. You can see the instance of your website matched to the development code branch on Amplify Console.

amplify two branches

8. Access the domain management menu item in your Amplify application to add a friendly subdomain.

9. Edit the domain and add a subdomain item with a name of your choice (for example, dev).

10. Associate it to the development branch containing the committed code and content changes.

11. Choose Add.

add dev domain

You can access the subdomain to verify the changes.

verify domain

Controlling access to development

You may wish to restrict access to new content as it’s deployed into the development website.

1. On Amplify Console, choose your application.

2. Choose Access control.

3. Under Access control settings, choose your preferred settings.

You have the option to restrict access globally or on a branch-by-branch basis. For this use case, we create a simple password protection for a user named developer on the development branch and site.

access control settings

 

Cleaning up

Unless you plan to keep the website you have constructed, you can quickly clean up provisioned assets and avoid any unnecessary costs.

1. On Amplify Console, select the app you created.

2. From the Actions drop-down menu, choose Delete app.

3. In the pop-up window, confirm the deletion.

4. On the CodeCommit dashboard, select the repository you created.

5. Choose Delete.

6. In the pop-up window, confirm the deletion.

7. On the AWS Cloud9 dashboard, select the IDE you created.

8. Choose Delete.

9. In the pop-up window, confirm the deletion.

 

Conclusion

Hugo is a powerful tool that enables accelerated delivery of content in a variety of formats including image portfolios, online resume presentation, blogging, and technical documentation. Amplify Console provides a convenient, easy-to-use, static web hosting service that can greatly accelerate delivery of static content.

When combining Hugo with Amplify Console, you can rapidly deploy websites in minutes with features such as friendly URLS, environments matched to code branches, and encryption (SSL). Visit gohugo.io to find out more about Hugo. For more information about how Amplify Console can help you rapidly deploy Hugo and other modern web applications, see the AWS Amplify Console User Guide.

Nigel Harris

Nigel Harris

Nigel Harris is an Enterprise Solutions Architect at Amazon Web Services. He works with AWS customers to provide guidance and technical assistance on AWS architectures.

How to configure an LDAPS endpoint for Simple AD

Post Syndicated from Marco Sommella original https://aws.amazon.com/blogs/security/how-to-configure-ldaps-endpoint-for-simple-ad/

In this blog post, we show you how to configure an LDAPS (LDAP over SSL or TLS) encrypted endpoint for Simple AD so that you can extend Simple AD over untrusted networks. Our solution uses Network Load Balancer (NLB) as SSL/TLS termination. The data is then decrypted and sent to Simple AD. Network Load Balancer offers integrated certificate management, SSL/TLS termination, and the ability to use a scalable Amazon Elastic Compute Cloud (Amazon EC2) backend to process decrypted traffic. Network Load Balancer also tightly integrates with Amazon Route 53, enabling you to use a custom domain for the LDAPS endpoint. To simplify testing and deployment, we have provided an AWS CloudFormation template to provision the network load balancer (NLB).

Simple AD, which is powered by Samba 4, supports basic Active Directory (AD) authentication features such as users, groups, and the ability to join domains. Simple AD also includes an integrated Lightweight Directory Access Protocol (LDAP) server. LDAP is a standard application protocol for accessing and managing directory information. You can use the BIND operation from Simple AD to authenticate LDAP client sessions. This makes LDAP a common choice for centralized authentication and authorization for services such as Secure Shell (SSH), client-based virtual private networks (VPNs), and many other applications. Authentication, the process of confirming the identity of a principal, typically involves the transmission of highly sensitive information such as user names and passwords. To protect this information in transit over untrusted networks, companies often require encryption as part of their information security strategy.

This post assumes that you understand concepts such as Amazon Virtual Private Cloud (Amazon VPC) and its components, including subnets, routing, internet and network address translation (NAT) gateways, DNS, and security groups. If needed, you should familiarize yourself with these concepts and review the solution overview and prerequisites in the next section before proceeding with the deployment.

Note: This solution is intended for use by clients who require only an LDAPS endpoint. If your requirements extend beyond this, you should consider accessing the Simple AD servers directly or by using AWS Directory Service for Microsoft AD.

Solution overview

The following description explains the Simple AD LDAPS environment. The AWS CloudFormation template creates the network-load-balancer object.

  1. The LDAP client sends an LDAPS request to the NLB on TCP port 636.
  2. The NLB terminates the SSL/TLS session and decrypts the traffic using a certificate. The NLB sends the decrypted LDAP traffic to Simple AD on TCP port 389.
  3. The Simple AD servers send an LDAP response to the NLB. The NLB encrypts the response and sends it to the client.

The following diagram illustrates how the solution works and shows the prerequisites (listed in the following section).

Figure 1: LDAPS with Simple AD Architecture

Figure 1: LDAPS with Simple AD Architecture

Note: Amazon VPC prevents third parties from intercepting traffic within the VPC. Because of this, the VPC protects the decrypted traffic between the NLB and Simple AD. The NLB encryption provides an additional layer of security for client connections and protects traffic coming from hosts outside the VPC.

Prerequisites

  1. Our approach requires an Amazon VPC with one public and two private subnets. If you don’t have an Amazon VPC that meets that requirement, use the following instructions to set up a sample environment:
    1. Identify an AWS Region that supports Simple AD and network load balancing.
    2. Identify two Availability Zones in that Region to use with Simple AD. The Availability Zones are needed as parameters in the AWS CloudFormation template used later in this process.
    3. Create or choose an Amazon VPC in the region you chose.
    4. Enable DNS support within your VPC so you can use Route 53 to resolve the LDAPS endpoint.
    5. Create two private subnets, one per Availability Zone. The Simple AD servers use the subnets that you create.
    6. Create a public subnet in the same VPC.
    7. The LDAP service requires a DNS domain that resolves within your VPC and from your LDAP clients. If you don’t have an existing DNS domain, create a private hosted zone and associate it with your VPC. To avoid encryption protocol errors, you must ensure that the DNS domain name is consistent across your Route 53 zone and in the SSL/TLS certificate.
  2. Make sure you’ve completed the Simple AD prerequisites.
  3. You can use a certificate issued by your preferred certificate authority or a certificate issued by AWS Certificate Manager (ACM). If you don’t have a certificate authority, you can create a self-signed certificate by following the instructions in section 2 (Create a certificate).

Note: To prevent unauthorized direct connections to your Simple AD servers, you can modify the Simple AD security group on port 389 to block traffic from locations outside of the Simple AD VPC. You can find the security group in the Amazon EC2 console by creating a search filter for your Simple AD directory ID. It is also important to allow the Simple AD servers to communicate with each other as shown on Simple AD Prerequisites.

Solution deployment

This solution includes 5 main parts:

  1. Create a Simple AD directory.
  2. (Optional) Create a SSL/TLS certificate, if you don’t have already have one.
  3. Create the NLB by using the supplied AWS CloudFormation template.
  4. Create a Route 53 record.
  5. Test LDAPS access using an Amazon Linux 2 client.

1. Create a Simple AD directory

With the prerequisites completed, your first step is to create a Simple AD directory in your private VPC subnets.

To create a Simple AD directory:

  1. In the Directory Service console navigation pane, choose Directories and then choose Set up directory.
  2. Choose Simple AD.

    Figure 2: Select directory type

    Figure 2: Select directory type

  3. Provide the following information:
    1. Directory Size: The size of the directory. The options are Small or Large. Which you should choose depends on the anticipated size of your directory.
    2. Directory DNS: The fully qualified domain name (FQDN) of the directory, such as corp.example.com.

      Note: You will need the directory FQDN when you test your solution.

    3. NetBIOS name: The short name for the directory, such as corp.
    4. Administrator password: The password for the directory administrator. The directory creation process creates an administrator account with the user name Administrator and this password. Don’t lose this password, because it can’t be recovered. You also need this password for testing LDAPS access in a later step.
    5. Description: An optional description for the directory.
    Figure 3: Directory information

    Figure 3: Directory information

  4. Select the VPC and subnets, and then choose Next:
    • VPC: Use the dropdown list to select the VPC to install the directory in.
    • Subnets: Use the dropdown lists to select two private subnets for the directory servers. The two subnets must be in different Availability Zones. Make a note of the VPC and subnet IDs to use as input parameters for the AWS CloudFormation template. In the following example, the subnets are in the us-east-1a and us-east-1c Availability Zones.
    Figure 4: Choose VPC and subnets

    Figure 4: Choose VPC and subnets

  5. Review the directory information and make any necessary changes. When the information is correct, choose Create directory.

    Figure 5: Review and create the directory

    Figure 5: Review and create the directory

  6. It takes several minutes to create the directory. From the AWS Directory Service console, refresh the screen periodically and wait until the directory Status value changes to Active before continuing.
  7. When the status has changed to Active, choose your Simple AD directory and note the two IP addresses in the DNS address section. You will enter them in a later step when you run the AWS CloudFormation template.

Note: How to administer your Simple AD implementation is out of scope for this post. See the documentation to add users, groups, or instances to your directory. Also see the previous blog post, How to Manage Identities in Simple AD Directories.

2. Add a certificate

Now that you have a Simple AD directory, you need a SSL/TLS certificate. The certificate will be used with the NLB to secure the LDAPS endpoint. You then import the certificate into ACM, which is integrated with the NLB.

As mentioned earlier, you can use a certificate issued by your preferred certificate authority or a certificate issued by AWS Certificate Manager (ACM).

(Optional) Create a self-signed certificate

If you don’t already have a certificate authority, you can use the following instructions to generate a self-signed certificate using OpenSSL.

Note: OpenSSL is a standard, open source library that supports a wide range of cryptographic functions, including the creation and signing of x509 certificates.

Use the command line interface to create a certificate:

  1. You must have a system with OpenSSL installed to complete this step. If you don’t have OpenSSL, you can install it on Amazon Linux by running the command sudo yum install openssl. If you don’t have access to an Amazon Linux instance you can create one with SSH access enabled to proceed with this step. Use the command line to run the command openssl version to see if you already have OpenSSL installed.
    [[email protected] ~]$ openssl version
    OpenSSL 1.0.1k-fips 8 Jan 2015
    

  2. Create a private key using the openssl genrsa command.
    [[email protected] tmp]$ openssl genrsa 2048 > privatekey.pem
    Generating RSA private key, 2048 bit long modulus
    ......................................................................................................................................................................+++
    ..........................+++
    e is 65537 (0x10001)
    

  3. Generate a certificate signing request (CSR) using the openssl req command. Provide the requested information for each field. The Common Name is the FQDN for your LDAPS endpoint (for example, ldap.corp.example.com). The Common Name must use the domain name you will later register in Route 53. You will encounter certificate errors if the names do not match.
    [[email protected] tmp]$ openssl req -new -key privatekey.pem -out server.csr
    You are about to be asked to enter information that will be incorporated into your certificate request.
    

  4. Use the openssl x509 command to sign the certificate. The following example uses the private key from the previous step (privatekey.pem) and the signing request (server.csr) to create a public certificate named server.crt that is valid for 365 days. This certificate must be updated within 365 days to avoid disruption of LDAPS functionality.
    [[email protected] tmp]$ openssl x509 -req -sha256 -days 365 -in server.csr -signkey privatekey.pem -out server.crt
    Signature ok
    subject=/C=XX/L=Default City/O=Default Company Ltd/CN=ldap.corp.example.com
    Getting Private key
    

  5. You should see three files: privatekey.pem, server.crt, and server.csr.
    [[email protected] tmp]$ ls
    privatekey.pem server.crt server.csr
    

  6. Restrict access to the private key.
    [[email protected] tmp]$ chmod 600 privatekey.pem
    

Note: Keep the private key and public certificate to use later. You can discard the signing request, because you are using a self-signed certificate and not using a certificate authority. Always store the private key in a secure location, and avoid adding it to your source code.

Import a certificate

For this step, you can either use a certificate obtained from a certificate authority, or a self-signed certificate that you created using the optional procedure above.

  1. In the ACM console, choose Import a certificate.
  2. Using a Linux text editor, paste the contents of your certificate file (called server.crt if you followed the procedure above) file in the Certificate body box.
  3. Using a Linux text editor, paste the contents of your privatekey.pem file in the Certificate private key box. (For a self-signed certificate, you can leave the Certificate chain box blank.)
  4. Choose Review and import. Confirm the information and choose Import.
  5. Take note of the Amazon Resource Name (ARN) of the imported certificate.

3. Create the NLB by using the supplied AWS CloudFormation template

Now that you have a Simple AD directory and SSL/TLS certificate, you’re ready to use the AWS CloudFormation template to create the NLB.

Create the NLB:

  1. Load the AWS CloudFormation template to deploy an internal NLB. After you load the template, provide the input parameters from the following table:

    Input parameterInput parameter description
    VPCIdThe target VPC for this solution. Must be the VPC where you deployed Simple AD and available in your Simple AD directory details page.
    SubnetId1The Simple AD primary subnet. This information is available in your Simple AD directory details page.
    SubnetId2The Simple AD secondary subnet. This information is available in your Simple AD directory details page.
    SimpleADPriIPThe primary Simple AD Server IP. This information is available in your Simple AD directory details page.
    SimpleADSecIPThe secondary Simple AD Server IP. This information is available in your Simple AD directory details page.
    LDAPSCertificateARNThe Amazon Resource Name (ARN) for the SSL certificate. This information is available in the ACM console.
  2. Enter the input parameters and choose Next.
  3. On the Options page, accept the defaults and choose Next.
  4. On the Review page, confirm the details and choose Create. The stack will be created in approximately 5 minutes.
  5. Wait until the AWS Cloud formation stack status is CREATE_COMPLETE before starting the next procedure, Create a Route 53 record.
  6. Go to Outputs and note the FQDN of your new NLB. The FQDN is in the output variable named LDAPSURL.

    Note: You can find the parameters of your Simple AD on the directory details page by choosing your Simple AD in the Directory Service console.

4. Create a Route 53 record

The next step is to create a Route 53 record in your private hosted zone so that clients can resolve your LDAPS endpoint.

Note: Don’t start this procedure until the AWS CloudFormation stack status is CREATE_COMPLETE.

Create a Route 53 record:

  1. If you don’t have an existing DNS domain for use with LDAP, create a private hosted zone and associate it with your VPC. The hosted zone name should be consistent with your Simple AD (for example, corp.example.com).
  2. When the AWS CloudFormation stack is in CREATE_COMPLETE status, locate the value of the LDAPSURL on the Outputs tab of the stack. Copy this value for use in the next step.
  3. On the Route 53 console, choose Hosted Zones and then choose the zone you used for the Common Name value for your self-signed certificate. Choose Create Record Set and enter the following information:
    1. Name: A short name for the record set (remember that the FQDN has to match the Common Name of your certificate).
    2. Type: Leave as A – IPv4 address.
    3. Alias: Select Yes.
    4. Alias Target: Paste the value of the LDAPSURL from the Outputs tab of the stack.
  4. Leave the defaults for Routing Policy and Evaluate Target Health, and choose Create.
Figure 6: Create a Route 53 record

Figure 6: Create a Route 53 record

5. Test LDAPS access using an Amazon Linux 2 client

At this point, you’re ready to test your LDAPS endpoint from an Amazon Linux client.

Test LDAPS access:

  1. Create an Amazon Linux 2 instance with SSH access enabled to test the solution. Launch the instance on one of the public subnets in your VPC. Make sure the IP assigned to the instance is in the trusted IP range you specified in the security group associated with the Simple AD.
  2. Use SSH to sign in to the instance and complete the following steps to verify access.
    1. Install the openldap-clients package and any required dependencies:
      sudo yum install -y openldap-clients.
      

    2. Add the server.crt file to the /etc/openldap/certs/ directory so that the LDAPS client will trust your SSL/TLS certificate. You can download the file directly from the NLB the certificate and save it in the proper format, or copy the file using Secure Copy or create it using a text editor:
      openssl s_client -connect <LDAPSURL>:636 -showcerts </dev/null 2>/dev/null | openssl x509 -outform PEM > server.crt 
      

      Replace <LDAPSURL> with the FQDN of your NLB, the address can be found in the Outputs section of the stack created in CloudFormation.

    3. Edit the /etc/openldap/ldap.conf file to define the environment variables:
      • BASE: The Simple AD directory name.
      • URI: Your DNS alias.
      • TLS_CACERT: The path to your public certificate.
      • TLSCACertificateFile: The path to your self-signed certificate authority. If you used the instructions in section 2 (Create a certificate) to create a certificate, the path will be /etc/ssl/certs/ca-bundle.crt.

      Here’s an example of the file:

      BASE dc=corp,dc=example,dc=com
      URI ldaps://ldap.corp.example.com
      TLS_CACERT /etc/openldap/certs/server.crt
      TLSCACertificateFile /etc/ssl/certs/ca-bundle.crt
      

  3. To test the solution, query the directory through the LDAPS endpoint, as shown in the following command. Replace corp.example.com with your domain name and use the Administrator password that you configured in step 3 of section 1 (Create a Simple AD directory).
    $ ldapsearch -D "[email protected]" -W sAMAccountName=Administrator
    

  4. The response will include the directory information in LDAP Data Interchange Format (LDIF) for the administrator distinguished name (DN) from your Simple AD LDAP server.
    # extended LDIF
    #
    # LDAPv3
    # base <dc=corp,dc=example,dc=com> (default) with scope subtree
    # filter: sAMAccountName=Administrator
    # requesting: ALL
    #
    
    # Administrator, Users, corp.example.com
    dn: CN=Administrator,CN=Users,DC=corp,DC=example,DC=com
    objectClass: top
    objectClass: person
    objectClass: organizationalPerson
    objectClass: user
    description: Built-in account for administering the computer/domain
    instanceType: 4
    whenCreated: 20170721123204.0Z
    uSNCreated: 3223
    name: Administrator
    objectGUID:: l3h0HIiKO0a/ShL4yVK/vw==
    userAccountControl: 512
    …
    

You can now use the LDAPS endpoint for directory operations and authentication within your environment. Here are a few resources to learn more about how to interact with an LDAPS endpoint:

Troubleshooting

If the ldapsearch command returns something like the following error, there are a few things you can do to help identify issues.

ldap_sasl_bind(SIMPLE): Can't contact LDAP server (-1)
  1. You might be able to obtain additional error details by adding the -d1 debug flag to the ldapsearch command.
    $ ldapsearch -D "[email protected]" -W sAMAccountName=Administrator –d1
    

  2. Verify that the parameters in ldap.conf match your configured LDAPS URI endpoint and that all parameters can be resolved by DNS. You can use the following dig command, substituting your configured endpoint DNS name.
    $ dig ldap.corp.example.com
    

  3. Confirm that the client instance you’re connecting from is in the trusted IP range you specified in the security associated with your Simple AD directory.
  4. Confirm that the path to your public SSL/TLS certificate in ldap.conf as TLS_CAERT is correct. You configured this as part of step 2 in section 5 (Test LDAPS access using an Amazon Linux 2 client). You can check your SSL/TLS connection with the following command, replacing ldap.corp.example.com with the DNS name of your endpoint.
    $ echo -n | openssl s_client -connect ldap.corp.example.com:636
    

  5. Verify that the status of your Simple AD IPs is Healthy in the Amazon EC2 console.
    1. Open the EC2 console and choose Load Balancing and then Target Groups in the navigation pane.
    2. Choose your LDAPS target and then choose Targets.

Conclusion

You can use NLB to provide an LDAPS endpoint for Simple AD and transport sensitive authentication information over untrusted networks. You can explore using LDAPS to authenticate SSH users or integrate with other software solutions that support LDAP authentication. The AWS CloudFormation template for this solution is available on GitHub.

If you have comments about this post, submit them in the Comments section below. If you have questions about or issues implementing this solution, start a new thread on the AWS Directory Service forum or contact AWS Support.

Want more AWS Security how-to content, news, and feature announcements? Follow us on Twitter.

Marco Somella

Marco Sommella

Marco is a Cloud Support Engineer II in the Windows Team based in Dublin. He is a Subject Matter Expert on Directory Service and EC2 Windows. Marco has over 10 years experience as a Windows and Linux system administrator and is passionate about automation coding. He is actively involved in AWS Systems Manager public Automations released by AWS Support and AWS EC2.

Cameron Worrell

Cameron Worrell

Cameron is a Solutions Architect with a passion for security and enterprise transformation. He joined AWS in 2015.

Log your VPC DNS queries with Route 53 Resolver Query Logs

Post Syndicated from Martin Beeby original https://aws.amazon.com/blogs/aws/log-your-vpc-dns-queries-with-route-53-resolver-query-logs/

The Amazon Route 53 team has just launched a new feature called Route 53 Resolver Query Logs, which will let you log all DNS queries made by resources within your Amazon Virtual Private Cloud. Whether it’s an Amazon Elastic Compute Cloud (EC2) instance, an AWS Lambda function, or a container, if it lives in your Virtual Private Cloud and makes a DNS query, then this feature will log it; you are then able to explore and better understand how your applications are operating.

Our customers explained to us that DNS query logs were important to them. Some wanted the logs so that they could be compliant with regulations, others wished to monitor DNS querying behavior, so they could spot security threats. Others simply wanted to troubleshoot application issues that were related to DNS. The team listened to our customers and have developed what I have found to be an elegant and easy to use solution.

From knowing very little about the Route 53 Resolver, I was able to configure query logging and have it working with barely a second glance at the documentation; which I assure you is a testament to the intuitiveness of the feature rather than me having any significant experience with Route 53 or DNS query logging.

You can choose to have the DNS query logs sent to one of three AWS services: Amazon CloudWatch Logs, Amazon Simple Storage Service (S3), and Amazon Kinesis Data Firehose. The target service you choose will depend mainly on what you want to do with the data. If you have compliance mandates (For example, Australia’s Information Security Registered Assessors Program), then maybe storing the logs in Amazon Simple Storage Service (S3) is a good option. If you have plans to monitor and analyze DNS queries in real-time or you integrate your logs with a 3rd party data analysis tool like Kibana or a SEIM tool like Splunk, than perhaps Amazon Kinesis Data Firehose is the option for you. For those of you who want an easy way to search, query, monitor metrics, or raise alarms, then Amazon CloudWatch Logs is a great choice, and this is what I will show in the following demo.

Over in the Route 53 Console, near the Resolver menu section, I see a new item called Query logging. Clicking on this takes me to a screen where I can configure the logging.

The dashboard shows the current configurations that are setup. I click Configure query logging to get started.

The console asks me to fill out some necessary information, such as a friendly name; I’ve named mine demoNewsBlog.

I am now prompted to select the destination where I would like my logs to be sent. I choose the CloudWatch Logs log group and select the option to Create log group. I give my new log group the name /aws/route/demothebeebsnet.

Next, I need to select what VPC I would like to log queries for. Any resource that sits inside the VPCs I choose here will have their DNS queries logged. You are also able to add tags to this configuration. I am in the habit of tagging anything that I use as part of a demo with the tag demo. This is so I can easily distinguish between demo resources and live resources in my account.

Finally, I press the Configure query logging button, and the configuration is saved. Within a few moments, the service has successfully enabled the query logging in my VPC.

After a few minutes, I log into the Amazon CloudWatch Logs console and can see that the logs have started to appear.

As you can see below, I was quickly able to start searching my logs and running queries using Amazon CloudWatch Logs Insights.

There is a lot you can do with the Amazon CloudWatch Logs service, for example, I could use CloudWatch Metric Filters to automatically generate metrics or even create dashboards. While putting this demo together, I also discovered a feature inside of Amazon CloudWatch Logs called Contributor Insights that enables you to analyze log data and create time series that display top talkers. Very quickly, I was able to produce this graph, which lists out the most common DNS queries over time.
Route 53 Resolver Query Logs is available in all AWS Commercial Regions that support Route 53 Resolver Endpoints, and you can get started using either the API or the AWS Console. You do not pay for the Route 53 Resolver Query Logs, but you will pay for handling the logs in the destination service that you choose. So, for example, if you decided to use Amazon Kinesis Data Firehose, then you will incur the regular charges for handling logs with the Amazon Kinesis Data Firehose service.

Happy Logging

— Martin

Automated Disaster Recovery using CloudEndure

Post Syndicated from Ryan Jaeger original https://aws.amazon.com/blogs/architecture/automated-disaster-recovery-using-cloudendure/

There are any number of events that cause IT outages and impact business continuity. These could include the unexpected infrastructure or application outages caused by flooding, earthquakes, fires, hardware failures, or even malicious attacks. Cloud computing opens a new door to support disaster recovery strategies, with benefits such as elasticity, agility, speed to innovate, and cost savings—all which aid new disaster recovery solutions.

With AWS, organizations can acquire IT resources on-demand, and pay only for the resources they use. Automating disaster recovery (DR) has always been challenging. This blog post shows how you can use automation to allow the orchestration of recovery to eliminate manual processes. CloudEndure Disaster Recovery, an AWS Company, Amazon Route 53, and AWS Lambda are the building blocks to deliver a cost-effective automated DR solution. The example in this post demonstrates how you can recover a production web application with sub-second Recovery Point Objects (RPOs) and Recovery Time Objectives (RTOs) in minutes.

As part of a DR strategy, knowing RPOs and RTOs will determine what kind of solution architecture you need. The RPO represents the point in time of the last recoverable data point (for example, the “last backup”). Any disaster after that point would result in data loss.

The time from the outage to restoration is the RTO. Minimizing RTO and RPO is a cost tradeoff. Restoring from backups and recreating infrastructure after the event is the lowest cost but highest RTO. Conversely, the highest cost and lowest RTO is a solution running a duplicate auto-failover environment.

Solution Overview

CloudEndure is an automated IT resilience solution that lets you recover your environment from unexpected infrastructure or application outages, data corruption, ransomware, or other malicious attacks. It utilizes block-level Continuous Data Replication (CDP), which ensures that target machines are spun up in their most current state during a disaster or drill, so that you can achieve sub-second RPOs. In the event of a disaster, CloudEndure triggers a highly automated machine conversion process and a scalable orchestration engine that can spin up machines in the target AWS Region within minutes. This process enables you to achieve RTOs in minutes. The CloudEndure solution uses a software agent that installs on physical or virtual servers. It connects to a self-service, web-based use console, which then issues an API call to the selected AWS target Region to create a Staging Area in the customer’s AWS account designated to receive the source machine’s replicated data.

Architecture

In the above example, a webserver and database server have the CloudEndure Agent installed, and the disk volumes on each server replicated to a staging environment in the customer’s AWS account. The CloudEndure Replication Server receives the encrypted data replication traffic and writes to the appropriate corresponding EBS volumes. It’s also possible to configure data replication traffic to use VPN or AWS Direct Connect.

With this current setup, if an infrastructure or application outage occurs, a failover to AWS is executed by manually starting the process from the CloudEndure Console. When this happens, CloudEndure creates EC2 instances from the synchronized target EBS volumes. After the failover completes, additional manual steps are needed to change the website’s DNS entry to point to the IP address of the failed over webserver.

Could the CloudEndure failover and DNS update be automated? Yes.

Amazon Route 53 is a highly available and scalable Domain Name System (DNS) web service with three main functions: domain registration, DNS routing, and health checking. A configured Route 53 health check monitors the endpoint of a webserver. If the health check fails over a specified period, an alarm is raised to execute an AWS Lambda function to start the CloudEndure failover process. In addition to health checks, Route 53 DNS Failover allows the DNS record for the webserver to be automatically update based on a healthy endpoint. Now the previously manual process of updating the DNS record to point to the restored web server is automated. You can also build Route 53 DNS Failover configurations to support decision trees to handle complex configurations.

To illustrate this, the following builds on the example by having a primary, secondary, and tertiary DNS Failover choice for the web application:

How Health Checks Work in Complex Amazon Route 53 Configurations

When the CloudEndure failover action executes, it takes several minutes until the target EC2 is launched and configured by CloudEndure. An S3 static web page can be returned to the end-user to improve communication while the failover is happening.

To support this example, Amazon Route 53 DNS failover decision tree can be configured to have a primary, secondary, and tertiary failover. The decision tree logic to support the scenario is the following:

  1. If the primary health check passes, return the primary webserver.
  2. Else, if the secondary health check passes, return the failover webserver.
  3. Else, return the S3 static site.

When the Route 53 health check fails when monitoring the primary endpoint for the webserver, a CloudWatch alarm is configured to ALARM after a set time. This CloudWatch alarm then executes a Lambda function that calls the CloudEndure API to begin the failover.

In the screenshot below, both health checks are reporting “Unhealthy” while the primary health check is in a state of ALARM. At the point, the DNS failover logic should be returning the path to the static S3 site, and the Lambda function executed to start the CloudEndure failover.

The following architecture illustrates the completed scenario:

Conclusion

Having a disaster recovery strategy is critical for business continuity. The benefits of AWS combined with CloudEndure Disaster Recovery creates a non-disruptive DR solution that provides minimal RTO and RPO while reducing total cost of ownership for customers. Leveraging CloudWatch Alarms combined with AWS Lambda for serverless computing are building blocks for a variety of automation scenarios.

 

 

Architecting multiple microservices behind a single domain with Amazon API Gateway

Post Syndicated from James Beswick original https://aws.amazon.com/blogs/compute/architecting-multiple-microservices-behind-a-single-domain-with-amazon-api-gateway/

This post is courtesy of Roberto Iturralde, Solutions Architect.

Today’s modern architectures are increasingly microservices-based, with separate engineering teams working independently on services with their own feature requirements and deployment pipelines. The benefits of this approach include increased agility and release velocity.

Microservice architectures also come with some challenges, particularly when they make up parts of a public service or API. These include enforcing engineering and security standards and collating application logs and metrics for a cross-service operational view.

It’s also important to have the microservices feel like a cohesive product to external customers, for authentication and metering in particular:

  • The engineering teams want autonomy.
  • The security team wants a cross-service view and to make it easy for the teams to adhere to the organization’s guidelines.
  • Customers want to feel like they’re using a unified product.

The AWS toolbox

AWS offers many services that you can weave together to meet these needs.

Amazon API Gateway is a fully managed service for deploying and managing a unified front door to your applications. It has features for routing your domain’s traffic to different backing microservices, enforcing consistent authentication and authorization with fine-grained permissions across them, and implementing consistent API throttling and usage metering. The microservice that backs a given API can live in another AWS account. You don’t have to expose it to the internet.

Amazon Cognito is a user management service with rich support for authentication and authorization of users. You can manage those users within Amazon Cognito or from other federated IdPs. Amazon Cognito can vend JSON Web Tokens and integrates natively with API Gateway to support OAuth scopes for fine-grained API access.

Amazon CloudWatch is a monitoring and management service that collects and visualizes data across AWS services. CloudWatch dashboards are customizable home pages that can contain graphs showing metrics and alarms. You can customize these to represent a specific microservice, a collection of microservices that comprise a product, or any other meaningful view with fine-grained access control to the dashboard.

AWS X-Ray is an analysis and debugging tool designed for distributed applications. It has tools to help gain insight into the performance of your microservices, and the APIs that front them, to measure and debug any potential customer impact.

AWS Service Catalog allows the central management and self-service creation of AWS resources that meet your organization’s guidelines and best practices. You can require separate permissions for managing catalog entries from deploying catalog entries, allowing a central team to define and publish templates for resources across the company.

Architectural options

There are many options for how you can combine these AWS services to meet your requirements. Your decisions may also depend on your expertise with AWS. The following features are common to all the designs below:

  • Amazon Route 53 has registered custom domains and hosts their DNS. You could also use an external registrar and DNS service.
  • AWS Certificate Manager (ACM) manages Transport Layer Security (TLS) certificates for the custom domains that route traffic to API Gateway APIs in a given account.
  • Amazon Cognito manages the users who access the APIs in API Gateway.
  • Service Catalog holds catalog products for API Gateway APIs that adhere to the organizational guidelines and best practices, such as security configuration and default API throttling. Microservice teams have permission to create an API pointed to their service and configure specific parameters, with approvals required for production environments. For more information, see Standardizing infrastructure delivery in distributed environments using AWS Service Catalog.

The following shows common design patterns and their high-level benefits and challenges.

Single AWS account

Microservices, their fronting API Gateway APIs, and supporting services are in the same AWS account. This account also includes core AWS services such as the following:

  • Route 53 for domain name registration and DNS
  • ACM for managing server certificates for your domain
  • Amazon Cognito for user management
  • Service Catalog for the catalog of best-practice product templates to use across the organization

Single AWS account example

Use this approach if you do not yet have a multi-account strategy or if you use AWS native tools for observability. With a single AWS account, the microservices can share the same networking topology, and so more easily communicate with each other when needed. With all the API Gateway APIs in the same AWS account, you can configure API throttling, metering, authentication, and authorization features for a unified experience for customers. You can also route traffic to a given API using subdomains or base path mapping in API Gateway.

A single AWS account can manage TLS certificates for AWS domains in one place. This feature is available to all API Gateway APIs. Having the microservices and their API Gateway APIs in the same AWS account gives more complete X-Ray service maps, given that X-Ray currently can’t analyze traces across AWS accounts. Similarly, you have a complete view of the metrics all AWS services publish to CloudWatch. This feature allows you to create CloudWatch dashboards that span the API Gateway APIs and their backing microservices.

There is an increased blast radius with this architecture, because the microservices share the same account. The microservices can impact each other through shared AWS service limits or mistakes by team members on other microservice teams. Most AWS services support tagging for cost allocation and granular access control, but there are some features of AWS services that do not. Because of this, it’s more difficult to separate the costs of each microservice completely.

Separate AWS accounts

When using separate AWS accounts, each API Gateway API lives in the same AWS account as its backing microservice. Separate AWS accounts hold the Service Catalog portfolio, domain registration (using Route 53), and aggregated logs from the microservices. The organization account, security account, and other core accounts are discussed further in the AWS Landing Zone Solution.

Separate AWS accounts

Use this architecture if you have a mature multi-account strategy and existing tooling for cross-account observability. In this approach, an AWS account encapsulates a microservice completely, for cost isolation and reduced blast radius. With the API Gateway API in the same account as the backing microservice, you have a complete view of the microservice in CloudWatch and X-Ray.

You can only meter API usage by microservice because API Gateway usage plans can’t track activity across accounts. Implement a process to ensure each customer’s API Gateway API key is the same across accounts for a smooth customer experience.

API Gateway base path mappings are local to an AWS account, so you must use subdomains to separate the microservices that comprise a product under a single domain. However, you can have a complete view of each microservice in the CloudWatch dashboards and X-Ray console for its AWS account. This creates a view across microservices that requires aggregation in a central AWS account or external tool.

Central API account

Using a central API account is similar to the separate account architecture, except the API Gateway APIs are in a central account.

Central API account

This architecture is the best approach for most users. It offers a balance of the benefits of microservice separation with the unification of particular services for a better end-user experience. Each microservice has an AWS account, which isolates it from the other services and reduces the risk of AWS service limit contention or accidents due to sharing the account with other engineering teams.

Because each microservice lives in a separate account, that account’s bill captures all the costs for that microservice. You can track the API costs, which are in the shared API account, using tags on API Gateway resources.

While the microservices are isolated in separate AWS accounts, the API Gateway throttling, metering, authentication, and authorization features are centralized for a consistent experience for customers. You can use subdomains or API Gateway base path mappings to route traffic to different API Gateway APIs. Also, the TLS certificates for your domains are centrally managed and available to all API Gateway APIs.

You can now split CloudWatch metrics, X-Ray traces, and application logs across accounts for a given microservice and its fronting API Gateway API. Unify these in a central AWS account or a third-party tool.

Conclusion

The breadth of the AWS Cloud presents many architectural options to customers. When designing your systems, it’s essential to understand the benefits and challenges of design decisions before implementing a solution.

This post walked you through three common architectural patterns for allowing independent microservice teams to operate behind a unified domain presented to your customers. The best approach for your organization depends on your priorities, experience, and familiarity with AWS.

Creating static custom domain endpoints with Amazon MQ to simplify broker modification and scaling

Post Syndicated from Rachel Richardson original https://aws.amazon.com/blogs/compute/creating-static-custom-domain-endpoints-with-amazon-mq/

This post is courtesy of Wallace Printz, Senior Solutions Architect, AWS, and Christian Mueller, Senior Solutions Architect, AWS.

Many cloud-native application architectures take advantage of the point-to-point and publish-subscribe (“pub-sub”) model of message-based communication between application components. This architecture is generally more resilient to failure because of the loose coupling and because message processing failures can be retried. It’s also more efficient because individual application components can independently scale up or down to maintain message-processing SLAs, compared to monolithic application architectures. Synchronous (REST-based) systems are tightly coupled. A problem in a synchronous downstream dependency has an immediate impact on the upstream callers.

Retries from upstream callers can all too easily fan out and amplify problems. Amazon SQS and Amazon SNS are fully managed message queuing services, but are not necessarily the right tool for the job in some cases. For applications requiring messaging protocols including JMS, NMS, AMQP, STOMP, MQTT, and WebSocket, Amazon provides Amazon MQ. Amazon MQ is a managed message broker service for Apache ActiveMQ that makes it easy to set up and operate message brokers in the cloud.

Amazon MQ provides two managed broker deployment connection options: public brokers and private brokers. Public brokers receive internet-accessible IP addresses, while private brokers receive only private IP addresses from the corresponding CIDR range in their VPC subnet.

In some cases, for security purposes, you may prefer to place brokers in a private subnet. You can also allow access to the brokers through a persistent public endpoint, such as a subdomain of their corporate domain like mq.example.com.

In this post, we explain how to provision private Amazon MQ brokers behind a secure public load balancer endpoint using an example subdomain.

Architecture overview

There are several reasons one might want to deploy this architecture beyond the security aspects.

First, human-readable URLs are easier for people to parse when reviewing operations and troubleshooting, such as deploying updates to mq-dev.example.com before mq-prod.example.com.

Second, maintaining static URLs for your brokers helps reduce the necessity of modifying client code when performing maintenance on the brokers.

Third, this pattern allows you to vertically scale your brokers without changing the client code or even notifying the clients that changes have been made.

Finally, the same architecture described here works for a network of brokers configuration as well, whereby you could horizontally scale your brokers without impacting the client code.

Prerequisites

This blog post assumes some familiarity with AWS networking fundamentals, such as VPCs, subnets, load balancers, and Amazon Route 53.

When you are finished, the architecture should be set up as shown in the following diagram. For ease of visualization, we demonstrate with a pair of brokers using the active-standby option.

Solution Overview

Amazon MQ solution overview

The client to broker traffic flow is as follows.

  • First, the client service tries to connect with a failover URL to the domain endpoint setup in Route 53. If a client loses the connection, using the failover URL allows the client to automatically try to reconnect to the broker.
  • The client looks up the domain name from Route 53, and Route 53 returns the IP address of the Network Load Balancer.
  • The client creates a secure socket layer (SSL) connection to the Network Load Balancer with an SSL certificate provided from AWS Certificate Manager (ACM). The Network Load Balancer selects from the healthy brokers in its target group and creates a separate SSL connection between the Network Load Balancer and the broker. This provides secure, end-to-end SSL encrypted messaging between client and brokers.

In this diagram, the healthy broker connection is shown in the solid line. The standby broker, which does not reply to connection requests and is therefore marked as unhealthy in the target group, is shown in the dashed line.

Solution walkthrough

To build this architecture, build the network segmentation first, then the Amazon MQ brokers, and finally the network routing.

Setup

First, you need the following resources:

  • A VPC
  • One private subnet per Availability Zone
  • One public subnet for your bastion host (if desired)

This demonstration VPC uses the 20.0.0.0/16 CIDR range.

Additionally, you must create a custom security group for your brokers. Set up this security group to allow traffic from your Network Load Balancer and, if using a network of brokers, among the brokers as well.

This VPC is not being used for any other workloads. This demonstration allows all incoming traffic originating within the VPC, including the Network Load Balancer, through to the brokers on the following ports:

  • OpenWire communication port of 61617
  • Apache ActiveMQ console port of 8162

If you are using a different protocol, adjust the port numbers accordingly.

Create an amazon mq security group

Building the Amazon MQ brokers

Now that you have the network segmentation set up, build the Amazon MQ brokers. As mentioned previously, this demonstration uses the active-standby pair of private brokers option.

Configure the broker settings by selecting a broker name, instance type, ActiveMQ console user, and password first.

Configure Amazon MQ broker settings

In the Additional Settings area, place the brokers in your previously selected VPC and the associated private subnets.

Configure Amazon MQ additional settings

Finally, select the existing Security Group previously discussed, and make sure that the Public Accessibility option is set to No.

Set Amazon MQ security group settings

That’s it for the brokers. When it is done provisioning, the Amazon MQ dashboard should look like the one shown in the following screenshot. Note the IP addresses of the brokers and the ActiveMQ web console URLs for later.

Amazon MQ dashboard

Configuring a Load Balancer Target Group

The next step in the build process is to configure the load balancer’s target group. This demonstration uses the private IP addresses of the brokers as targets for the Network Load Balancer.

Create and name a target group, select the IP option under Target type, and make sure to select TLS under Protocol and 61617 under Port, as well as the VPC in which your brokers reside. It is important to configure the health check settings so traffic is only routed to active brokers by selecting the TCP protocol and overriding the health check port to 8162, the Apache ActiveMQ console port.

Do not use the OpenWire port as the target group health check port. Because the Network Load Balancer may not be able to recognize the host as healthy on that port, it is better to use the ActiveMQ web console port.

Next, add the brokers’ IP addresses as targets. You can find the broker IP addresses in the Amazon MQ console page after they complete provisioning. Make sure to add both the active and the standby broker to the target group so that when reboots occur, the Network Load Balancer routes traffic to whichever broker is active.

You may be pursuing a more dynamic environment for scaling brokers up and down to handle the demands of a variable message load. In that case, as you scale to add more brokers, make sure that you also add them to the target group.

AWS Lambda would be a great way to programmatically handle adding or removing the broker’s IP addresses to this target group automatically.

Creating a Network Load Balancer

Next, create a Network Load Balancer. This demo uses an internet-facing load balancer with TLS listeners on port 61617, and routes traffic to brokers’ VPC and private subnets.

Configure a network load balancer

Clients must securely connect to the Network Load Balancer, so this demo uses an ACM certificate for the subdomain registered in Route 53, such as mq.example.com. For simplicity, ACM certificate provisioning is not shown. For more information, see Request a Public Certificate.

Make sure that the ACM certificate is provisioned in the same Region as your Network Load Balancer, or the certificate is not displayed in the selection menu.

Next, select the target group that you just created, and select TLS for the connection between the Network Load Balancer and the brokers. Similarly, select the health checks on TCP port 8162.

If all went well, you see the list of brokers’ IP addresses listed as targets. From here, review your settings and confirm you’d like to deploy the Network Load Balancer.

Configuring Route 53

The last step in this build is to configure Route 53 to serve traffic at the subdomain of your choice to your Network Load Balancer.

Go to your Route 53 Hosted Zone, and create a new subdomain record set, such as mq.example.com, that matches the ACM certificate that you previously created. In the Type field, select A – IPv4 address, then select Yes for Alias. This allows you to select the Network Load Balancer as the alias target. Select the Network Load Balancer that you just created from the Alias Target menu and save the record set.

Testing broker connectivity

And that’s it!

There’s an important advantage to this architecture. When you create Amazon MQ active-standby brokers, the Amazon MQ service provides two endpoints. Only one broker host is active at a time, and when configuration changes or other reboot events occur, the standby broker becomes active and the active broker goes to standby. The typical connection string when there is an option to connect to multiple brokers is something similar to the following string

"failover:(ssl://b-ce452fbe-2581-4003-8ce2-4185b1377b43-1.mq.us-west-2.amazonaws.com:61617,ssl://b-ce452fbe-2581-4003-8ce2-4185b1377b43-2.mq.us-west-2.amazonaws.com:61617)"

In this architecture, you use only a single connection URL, but you still want to use the failover protocol to force re-connection if the connection is dropped for any reason.

For ease of use, this solution relies on the Amazon MQ workshop client application code from re:Invent 2018. To test this solution setting the connection URL to the following:

"failover:(ssl://mq.example.com:61617

Run the producer and consumer clients in separate terminal windows.

The messages are sent and received successfully across the internet, while the brokers are hidden behind the Network Load Balancer.

Logging into the broker’s ActiveMQ console

But what if we want to log in to the broker’s ActiveMQ web console?

There are three options. Due to the security group rules, only traffic originating from inside the VPC is allowed to the brokers.

  • Use a VPN connection from the corporate network to the VPC. Most customers likely use this option, but for rapid testing, there is a simple and cost-effective method.
  • Connect to the brokers’ web console through a Route 53 subdomain, which requires creating a separate port 8162 Listener on the existing Network Load Balancer and creating a separate TLS target group on port 8162 for the brokers.
  • Use a bastion host to proxy traffic to the web console.

To use a bastion host, create a small Linux EC2 instance in your public subnet, and make sure that:

  • The EC2 instance has a public IP address.
  • You have access to the SSH key pair.
  • It is placed in a security group that allows SSH port 22 traffic from your location.

For simplicity, this step is not shown, but this demonstration uses a t3.micro Amazon Linux 2 host with all default options as the bastion.

Creating a forwarding tunnel

Next, create a forwarding tunnel through an SSH connection to the bastion host. Below is an example command in the terminal window. This keeps a persistent SSH connection forwarding port 8162 through the bastion host at the public IP address 54.244.188.53.

For example, the command could be:

ssh -D 8162 -C -q -N -I <my-key-pair-name>.pem [email protected]<ec2-ip-address>

You can also configure a browser to tunnel traffic through your proxy.

We have chosen to demonstrate in Firefox. Configure the network settings to use a manual proxy on localhost on the Apache ActiveMQ console port of 8162.  This can be done by opening the Firefox Connection Settings.  In the Configure Proxy Access to the Internet section, select Manual proxy configuration, then set the SOCKS Host to localhost and Port to 8162, leaving other fields empty.

Finally, use the Apache ActiveMQ console URL provided in the Amazon MQ web console details page to connect to the broker through the proxy.

ActiveMQ screenshot

Conclusion

Congratulations! You’ve successfully built a highly available Amazon MQ broker pair in a private subnet. You’ve layered your security defense by putting the brokers behind a highly scalable Network Load Balancer, and you’ve configured routing from a single custom subdomain URL to multiple brokers with health check built in.

To learn more about Amazon MQ and scalable broker communication patterns, we highly recommend the following resources:

Keep on building!

Simplify DNS management in a multi-account environment with Route 53 Resolver

Post Syndicated from Mahmoud Matouk original https://aws.amazon.com/blogs/security/simplify-dns-management-in-a-multiaccount-environment-with-route-53-resolver/

In a previous post, I showed you a solution to implement central DNS in a multi-account environment that simplified DNS management by reducing the number of servers and forwarders you needed when implementing cross-account and AWS-to-on-premises domain resolution. With the release of the Amazon Route 53 Resolver service, you now have access to a native conditional forwarder that will simplify hybrid DNS resolution even more.

In this post, I’ll show you a modernized solution to centralize DNS management in a multi-account environment by using Route 53 Resolver. This solution allows you to resolve domains across multiple accounts and between workloads running on AWS and on-premises without the need to run a domain controller in AWS.

Solution overview

My solution will show you how to solve three primary use-cases for domain resolution:

  • Resolving on-premises domains from workloads running in your VPCs.
  • Resolving private domains in your AWS environment from workloads running on-premises.
  • Resolving private domains between workloads running in different AWS accounts.

The following diagram explains the high-level full architecture.
 

Figure 1: Solution architecture diagram

Figure 1: Solution architecture diagram

In this architecture:

  1. This is the Amazon-provided default DNS server for the central DNS VPC, which we’ll refer to as the DNS-VPC. This is the second IP address in the VPC CIDR range (as illustrated, this is 172.27.0.2). This default DNS server will be the primary domain resolver for all workloads running in participating AWS accounts.
  2. This shows the Route 53 Resolver endpoints. The inbound endpoint will receive queries forwarded from on-premises DNS servers and from workloads running in participating AWS accounts. The outbound endpoint will be used to forward domain queries from AWS to on-premises DNS.
  3. This shows conditional forwarding rules. For this architecture, we need two rules, one to forward domain queries for onprem.private zone to the on-premises DNS server through the outbound gateway, and a second rule to forward domain queries for awscloud.private to the resolver inbound endpoint in DNS-VPC.
  4. This indicates that these two forwarding rules are shared with all other AWS accounts through AWS Resource Access Manager and are associated with all VPCs in these accounts.
  5. This shows the private hosted zone created in each account with a unique subdomain of awscloud.private.
  6. This shows the on-premises DNS server with conditional forwarders configured to forward queries to the awscloud.private zone to the IP addresses of the Resolver inbound endpoint.

Note: This solution doesn’t require VPC-peering or connectivity between the source/destination VPCs and the DNS-VPC.

How it works

Now, I’m going to show how the domain resolution flow of this architecture works according to the three use-cases I’m focusing on.

First use case

 

 Figure 2:  Use case for resolving on-premises domains from workloads running in AWS

Figure 2: Use case for resolving on-premises domains from workloads running in AWS

First, I’ll look at resolving on-premises domains from workloads running in AWS. If the server with private domain host1.acc1.awscloud.private attempts to resolve the address host1.onprem.private, here’s what happens:

  1. The DNS query will route to the default DNS server of the VPC that hosts host1.acc1.awscloud.private
  2. Because the VPC is associated with the forwarding rules shared from the central DNS account, these rules will be evaluated by the default Amazon-provided DNS in the VPC.
  3. In this example, one of the rules indicates that queries for onprem.private should be forwarded to an on-premises DNS server. Following this rule, the query will be forwarded to an on-premises DNS server.
  4. The forwarding rule is associated with the Resolver outbound endpoint, so the query will be forwarded through this endpoint to an on-premises DNS server.

In this flow, the DNS query that was initiated in one of the participating accounts has been forwarded to the centralized DNS server which, in turn, forwarded this to the on-premises DNS.

Second use case

Next, here’s how on-premises workloads will be able to resolve private domains in your AWS environment:
 

Figure 3: Use case for how on-premises workloads will be able to resolve private domains in your AWS environment

Figure 3: Use case for how on-premises workloads will be able to resolve private domains in your AWS environment

In this case, the query for host1.acc1.awscloud.private is initiated from an on-premises host. Here’s what happens next:

  1. The domain query is forwarded to on-premises DNS server.
  2. The query is then forwarded to the Resolver inbound endpoint via a conditional forwarder rule on the on-premises DNS server.
  3. The query reaches the default DNS server for DNS-VPC.
  4. Because DNS-VPC is associated with the private hosted zone acc1.awscloud.private, the default DNS server will be able to resolve this domain.

In this case, the DNS query has been initiated on-premises and forwarded to centralized DNS on the AWS side through the inbound endpoint.

Third use case

Finally, you might need to resolve domains across multiple AWS accounts. Here’s how you could achieve this:
 

Figure 4: Use case for how to resolve domains across multiple AWS accounts

Figure 4: Use case for how to resolve domains across multiple AWS accounts

Let’s say that host1 in host1.acc1.awscloud.private attempts to resolve the domain host2.acc2.awscloud.private. Here’s what happens:

  1. The domain query is sent to the default DNS server for the VPC hosting source machine (host1).
  2. Because the VPC is associated with the shared forwarding rules, these rules will be evaluated.
  3. A rule indicates that queries for awscloud.private zone should be forwarded to the resolver endpoint in DNS-VPC (for inbound endpoint IP addresses), which will then use the Amazon-provided default DNS to resolve the query.
  4. Because DNS-VPC is associated with the acc2.awscloud.private hosted zone, the default DNS will use auto-defined rules to resolve this domain.

This use case explains the AWS-to-AWS case where the DNS query has been initiated on one participating account and forwarded to central DNS for resolution of domains in another AWS account. Now, I’ll look at what it takes to build this solution in your environment.

How to deploy the solution

I’ll show you how to configure this solution in four steps:

  1. Set up a centralized DNS account.
  2. Set up each participating account.
  3. Create private hosted zones and Route 53 associations.
  4. Configure on-premises DNS forwarders.

Step 1: Set up a centralized DNS account

In this step, you’ll set up resources in the centralized DNS account. Primarily, this includes the DNS-VPC, Resolver endpoints, and forwarding rules.

  1. Create a VPC to act as DNS-VPC according to your business scenario, either using the web console or from an AWS Quick Start. You can review common scenarios in the Amazon VPC user guide; one very common scenarios is a VPC with public and private subnets.
  2. Create resolver endpoints. You need to create an outbound endpoint to forward DNS queries to on-premises DNS and an inbound endpoint to receive DNS queries forwarded from on-premises workloads and other AWS accounts.
  3. Create two forwarding rules. The first rule is to forward DNS queries for zone onprem.private to your on-premises DNS server IP addresses, and the second rule is to forward DNS queries for zone awscloud.private to the IP addresses of the resolver inbound endpoint.
  4. After creating the rules, associate them with DNS-VPC that was created in step #1. This will allow the Route 53 Resolver to start forwarding domain queries accordingly.
  5. Finally, you need to share the two forwarding rules with all participating accounts. To do that, you’ll use AWS Resource Access Manager and you can share the rules with your entire AWS Organization or with specific accounts.

Note: To be able to forward domain queries to your on-premises DNS server, you need connectivity between your data center and DNS-VPC, which could be established either using site-to-site VPN or AWS Direct Connect.

Step 2: Set up participating accounts

For each participating account, you need to configure your VPCs to use the shared forwarding rules, and you need to create a private hosted zone for each account.

  • Accept the shared rules from AWS Resource Access Manager. This step is not required if the rules were shared to your AWS Organization. Then, associate the forwarding rules with the VPCs that host your workloads in each account. Once associated, the resolver will start forwarding DNS queries according to the rules.

At this point, you should be able to resolve on-premises domains from workloads running in any VPC associated with the shared forwarding rules. To create private domains in AWS, you need to create Private Hosted Zones.

Step 3: Create private hosted zones

In this step, you need to create a private hosted zone in each account with a subdomain of awscloud.private. Use unique names for each private hosted zone to avoid domain conflicts in your environment (for example, acc1.awscloud.private or dev.awscloud.private).

  1. Create a private hosted zone in each participating account with a subdomain of awscloud.private and associate it with VPCs running in that account.
  2. Associate the private hosted zone with DNS-VPC. This allows the centralized DNS-VPC to resolve domains in the private hosted zone and act as a DNS resolver between AWS accounts.

Because the private hosted zone and DNS-VPC are in different accounts, you need to associate the private hosted zone with DNS-VPC. To do that, you need to create authorization from the account that owns the private hosted zone and accept this authorization from the account that owns DNS-VPC. You can do that using AWS CLI:

  1. In each participating account, create the authorization using the private hosted zone ID, the region, and the VPC ID that you want to associate (DNS-VPC).
    
        aws route53 create-vpc-association-authorization --hosted-zone-id <hosted-zone-id>  --vpc VPCRegion=<region> ,VPCId=<vpc-id>    
    

  2. In the centralized DNS account, associate the DNS-VPC with the hosted zone in each participating account.
    
        aws route53 associate-vpc-with-hosted-zone --hosted-zone-id <hosted-zone-id> --vpc VPCRegion=<region>,VPCId=<vpc-id>    
    

Step 4: Configure on-premises DNS forwarders

To be able to resolve subdomains within the awscloud.private domain from workloads running on-premises, you need to configure conditional forwarding rules to forward domain queries to the two IP addresses of resolver inbound endpoints that were created in the central DNS account. Note that this requires connectivity between your data center and DNS-VPC, which could be established either using site-to-site VPN or
AWS Direct Connect.

Additional considerations and limitations

Thanks to the flexibility of Route 53 Resolver and conditional forwarding rules, you can control which queries to send to central DNS and which ones to resolve locally in the same account. This is particularly important when you plan to use some AWS services, such as AWS PrivateLink or Amazon Elastic File System (EFS) because domain names associated with these services need to be resolved local to the account that owns them. In this section, I will name two use-cases that require additional considerations.

  1. Interface VPC Endpoints (AWS PrivateLink)

    When you create an AWS PrivateLink interface endpoint, AWS generates endpoint-specific DNS hostnames that you can use to communicate with the service. For AWS services and AWS Marketplace partner services, you can optionally enable private DNS for the endpoint. This option associates a private hosted zone with your VPC. The hosted zone contains a record set for the default DNS name for the service (for example, ec2.us-east-1.amazonaws.com) that resolves to the private IP addresses of the endpoint network interfaces in your VPC. This enables you to make requests to the service using its default DNS hostname instead of the endpoint-specific DNS hostnames.

    If you use private DNS for your endpoint, you have to resolve DNS queries to the endpoint local to the account and use the default DNS provided by AWS. So, in this case, I recommend that you resolve domain queries in amazonaws.com locally and not forward these queries to central DNS.

  2. Mounting EFS with a DNS name

    You can mount an Amazon EFS file system on an Amazon EC2 instance using DNS names. The file system DNS name automatically resolves to the mount target’s IP address in the Availability Zone of the connecting Amazon EC2 instance. To be able to do that, the VPC must use the default DNS provided by Amazon to resolve EFS DNS names.

    If you plan to use EFS in your environment, I recommend that you resolve EFS DNS names locally and avoid sending these queries to central DNS because clients in that case would not receive answers optimized for their availability zone, which might result in higher operation latencies and less durability.

Summary

In this post, I introduced a simplified solution to implement central DNS resolution in a multi-account and hybrid environment. This solution uses AWS Route 53 Resolver, AWS Resource Access Manager, and native Route 53 capabilities and it reduces complexity and operations effort by removing the need for custom DNS servers or forwarders in AWS environment.

If you have feedback about this blog post, submit comments in the Comments section below. If you have questions about this blog post, start a new thread on in the AWS forums.

Want more AWS Security how-to content, news, and feature announcements? Follow us on Twitter.

Author

Mahmoud Matouk

Mahmoud is part of our world-wide public sector Solutions Architects, helping higher education customers build innovative, secured, and highly available solutions using various AWS services.

New – AWS Global Accelerator for Availability and Performance

Post Syndicated from Shaun Ray original https://aws.amazon.com/blogs/aws/new-aws-global-accelerator-for-availability-and-performance/

Having previously worked in an area where regulation required us to segregate user data by geography and abide by data sovereignty laws, I can attest to the complexity of running global workloads that need infrastructure deployed in multiple countries. Availability, performance, and failover all become a yak shave as you expand past your original data center. Customers have told us that they need to run in multiple regions, whether it is for availability, performance or regulation. They love that they can template their workloads through AWS CloudFormation, replicate their databases with Amazon DynamoDB Global Tables and deploy serverless workloads with AWS SAM. All of these capabilities can be executed in minutes and provide a global experience for your audience. Customers have also told us that they love the regional isolation that AWS provides to reduce blast radius and increase availability, but they would like some help with stitching together other parts of their applications.

 

Introducing AWS Global Accelerator

That’s why I am pleased to announce AWS Global Accelerator, a network service that enables organizations to seamlessly route traffic to multiple regions and improve availability and performance for their end users. AWS Global Accelerator uses AWS’s vast, highly available and congestion-free global network to direct internet traffic from your users to your applications running in AWS regions. With AWS Global Accelerator, your users are directed to your workload based on their geographic location, application health, and weights that you can configure. AWS Global Accelerator also allocates static Anycast IP addresses that are globally unique for your application and do not change, thus removing the need to update clients as your application scales. You can get started by provisioning your Accelerator and associating it with your applications running on: Network Load Balancers, Application Load Balancers, or Elastic IP addresses. AWS Global Accelerator then allocates two static Anycast IP addresses from the AWS network which serve as an entry point for your workloads. AWS Global Accelerator supports both TCP and UDP protocols, health checking of your target endpoints and will route traffic away from unhealthy applications. You can use an Accelerator in one or more AWS regions, providing increased availability and performance for your end users. Low-latency applications typically used by media, financial, and gaming organizations will benefit from Accelerator’s use of the AWS global network and optimizations between users and the edge network.

Image 1 – How it Works

Here’s what you need to know:

Static Anycast IPs – Global Accelerator uses Static IP addresses that serve as a fixed entry point to your applications hosted in any number of AWS Regions. These IP addresses are Anycast from AWS edge locations, meaning that these IP addresses are announced from multiple AWS edge locations, enabling traffic to ingress onto the AWS global network as close to your users as possible. You can associate these addresses to regional AWS resources or endpoints, such as Network Load Balancers, Application Load Balancers, and Elastic IP addresses. You don’t need to make any client-facing changes or update DNS records as you modify or replace endpoints. An Accelerator’s IP addresses are static and will serve as the front door for your user-facing applications.

AWS’s Global Network – Traffic routed through Accelerator traverses the well monitored, congestion free, redundant AWS global network (instead of the public internet). Clients route to the optimal region based on client location, health-checks, and configured weights. Traffic will enter through an AWS edge location that is advertising an Accelerator’s Anycast IP addresses, from where the request will be routed through an optimized path towards the application.

Client State – AWS Global Accelerator enables you to build applications that keep state as an essential requirement. Stateful applications route users to the same endpoint, after their initial connection. Global Accelerator achieves this through setting the SourceIP of the client requester as the identifier for maintaining state, irrespective of the port and protocol.

 

AWS Global Accelerator in Action

To get familiar with AWS Global Accelerator’s features I am going to use two EC2 hosted WordPress deployments that are behind an Application Load Balancer. To test the global nature of AWS Global Accelerator, I have deployed our application to Singapore and Tokyo regions. Image 3 illustrates our happy path. Traffic is sent from our client to the nearest edge location via the two Anycast IP address that the edge location is advertising. Our request routes through the AWS global network to the Accelerator which selects the closest healthy endpoint group. An Application Load Balancer terminates our request and passes it to the WordPress instance where our content is served from.

Image 2 – User Flow

 

I’ve created two content servers using the instructions found here. I have changed the home banners for the regions we will be serving our content from so that I can identify which path I am routed through. With our content servers created we build an Application Load Balancer for each and wait for them to become healthy and in-service.

Image 3 – Shaun’s Global Website

Creating the Global Accelerator is as simple as choosing a name, specifying the listener type (port 80 and TCP for WordPress) and creating some endpoint groups for each region. Let’s configure a listener for our Accelerator that clients connect to once onboard the edge network. As we are serving HTTP traffic, port 80 is a natural choice. I have enabled client affinity using SourceIP which redirects our test clients to the same region and application once they have connected for the first time.

 

Endpoint groups are targets for our Accelerator, by default each group has a traffic dial of 100. Turning down the traffic dial allows redirection of clients to other endpoint groups or another AWS region, handy for performing maintenance or dealing with an unexpected traffic surge. For our experiment, I choose the Tokyo and Singapore region with the default dial of 100.

Image 4 – Configuring endpoint groups

Health checks are a powerful tool that can be used either in a simple configuration or provide deep application awareness. Today I am serving a simple website using the default HTTP health check, polling for a 200 OK HTTP on the default path. To complete our configuration we need to populate our endpoint groups with the Application Load Balancers we created earlier.

Image 5 – Adding our ALB’s to an Endpoint Group

With everything configured we can start routing traffic through our two Anycast IP addresses assigned by the Accelerator. This can be done with your browser, an HTTP client or curl. As I want to test a global audience, I will use a proxy to set my location through various locations across Asia, America, and Europe to see how our traffic is routed.

Image 6 – Requests being distributed to our global website.

One of the most powerful features of AWS Global Accelerator is the ability to fail between regions in less than a minute. I’ve set up a load test to hit the site with 100 requests per second and will turn off the Singapore server to test how fast our traffic is routed through to our Tokyo endpoint.

Traffic starts routing through our Accelerator at 03:15, at 3:30 I shut down the Singapore instance. At 3:31 Tokyo has already processed close to 4,000 requests and is serving all the traffic. At 3:35 I enable the Singapore server. Because of the health check warm up (90 seconds), we don’t start seeing recovery until 3:38. If I had configured a more aggressive health check we would fail and recover within five minutes!

Availability and Pricing

In AWS Global Accelerator, you are charged for each accelerator that is deployed and the amount of traffic in the dominant direction that flows through the accelerator. An accelerator is the resource you create to direct traffic to optimal endpoints over the AWS global network. Customers will typically set up one accelerator for each application, but more complex applications may require more than one accelerator. For every accelerator that is running, you are charged a fixed hourly fee and an incremental charge over your standard Data Transfer rates, also called a Data Transfer-Premium fee (DT-Premium). DT-Premium is calculated every hour on the dominant direction of your traffic, i.e. inbound traffic to your application or outbound traffic from your application to your users on the internet.

Fixed fee: For every full or partial hour when an accelerator runs in your account, you are charged $0.025.
Data Transfer-Premium fee (DT-Premium): This is a rate per gigabyte of data transferred over the AWS network. The DT-Premium rate depends on the AWS Region (source) that serves the request and the AWS edge location (destination) where the responses are directed. You will only be charged DT-Premium in the dominant data transfer direction.

Destination (AWS edge locations)

Source

(AWS Regions)

 NAEUAPAC
NA$ 0.015 /GB$ 0.015 /GB$ 0.035 /GB
EU$ 0.015 /GB$ 0.015 /GB$ 0.043 /GB
APAC$ 0.012 /GB$ 0.043 /GB$ 0.010 /GB

AWS Global Accelerator is available in US East (N. Virginia), US East (Ohio), US West (Oregon), US West (N. California), Europe (Ireland), Europe (Frankfurt), Asia Pacific (Tokyo) and Asia Pacific (Singapore).

New – Amazon Route 53 Resolver for Hybrid Clouds

Post Syndicated from Shaun Ray original https://aws.amazon.com/blogs/aws/new-amazon-route-53-resolver-for-hybrid-clouds/

I distinctly remember the excitement I felt when I created my first Virtual Private Cloud (VPC) as a customer. I had just spent months building a similar environment on-premises and had been frustrated at the complicated setup. One of the immediate benefits that the VPC provided was a magical address at 10.0.0.2 where our EC2 instances sent Domain Name Service (DNS) queries. It was reliable, scaled with our workloads, and resolved both public and private domains without any input from us.

 

Like a lot of customers, we connected our on-premises environment with our AWS one via Direct Connect (DX), leading to cases where DNS names required resolution across the connection. Back then we needed to build DNS servers and provide forwarders to achieve this. That’s why today I am very excited to announce Amazon Route 53 Resolver for Hybrid Clouds. It’s a set of features that enable bi-directional querying between on-premises and AWS over private connections.

 

Before I dive into the new functionality, I would like to provide a shout out to our old faithful .2 resolver. As part of our announcement today I would like to let you know that we have officially named the .2 DNS resolver – Route 53 Resolver, in honor of the trillions of queries the service has resolved on behalf of our customers. Route 53 Resolver continues to provide DNS query capability for your VPC, free of charge. To support DNS queries across hybrid environments, we are providing two new capabilities: Route 53 Resolver Endpoints for inbound queries and Conditional Forwarding Rules for outbound queries.

 

Route 53 Resolver Endpoints

Inbound query capability is provided by Route 53 Resolver Endpoints, allowing DNS queries that originate on-premises to resolve AWS hosted domains. Connectivity needs to be established between your on-premises DNS infrastructure and AWS through a Direct Connect (DX) or a Virtual Private Network (VPN). Endpoints are configured through IP address assignment in each subnet for which you would like to provide a resolver.

 

Conditional Forwarding Rules

Outbound DNS queries are enabled through the use of Conditional Forwarding Rules. Domains hosted within your on-premises DNS infrastructure can be configured as forwarding rules in Route 53 Resolver. Rules will trigger when a query is made to one of those domains and will attempt to forward DNS requests to your DNS servers that were configured along with the rules. Like the inbound queries, this requires a private connection over DX or VPN.

 

When combined, these two capabilities allow for recursive DNS lookup for your hybrid workloads. This saves you from the overhead of managing, operating and maintaining additional DNS infrastructre while operating both environments.

 

Route 53 Resolver in Action

1. Route 53 Resolver for Hybrid Clouds is region specific, so our first step is to choose the region we would like to configure our hybrid workloads. Once we have selected a region, we choose the query direction – outbound, inbound or both.

 

2. We have selected both inbound and outbound traffic for this workload. First up is our inbound query configuration. We enter a name and choose a VPC. We assign one or more subnets from within the VPC (in this case we choose two for availability). From these subnets we can assign specific IP addresses to use as our endpoints, or let Route 53 Resolver assign them automatically.

3. We create a rule for our on-premises domain so that workloads inside the VPC can route DNS queries to your DNS infrastructure. We enter one or more IP addresses for our on-premises DNS servers and create our rule.

4. Everything is created and our VPC is associated with our inbound and outbound rules and can start routing traffic. Conditional Forwarding Rules can be shared across multiple accounts using AWS Resource Access Manager.

Availability and Pricing

Route 53 Resolver remains free for DNS queries served within your VPC. Resolver Endpoints use Elastic Network Interfaces (ENIs) costing $0.125 per hour. DNS queries that are resolved by a Conditional Forwarding Rule or a Resolver Endpoint cost $0.40 per million queries up to the first billion and $0.20 per million after that. Route 53 Resolver for Hybrid Cloud is available today in US East (N. Virginia), US East (Ohio), US West (Oregon), Europe (Ireland), Asia Pacific (Sydney), Asia Pacific (Tokyo) and Asia Pacific (Singapore), with other commercial regions to follow.

 

-Shaun

Enhanced Domain Protections for Amazon CloudFront Requests

Post Syndicated from Colm MacCarthaigh original https://aws.amazon.com/blogs/security/enhanced-domain-protections-for-amazon-cloudfront-requests/

Over the coming weeks, we’ll be adding enhanced domain protections to Amazon CloudFront. The short version is this: the new measures are designed to ensure that requests handled by CloudFront are handled on behalf of legitimate domain owners.

Using CloudFront to receive traffic for a domain you aren’t authorized to use is already a violation of our AWS Terms of Service. When we become aware of this type of activity, we deal with it behind the scenes by disabling abusive accounts. Now we’re integrating checks directly into the CloudFront API and Content Distribution service, as well.

Enhanced Protection against Dangling DNS entries
To use CloudFront with your domain, you must configure your domain to point at CloudFront. You may use a traditional CNAME, or an Amazon Route 53 “ALIAS” record.

A problem can arise if you delete your CloudFront distribution, but leave your DNS still pointing at CloudFront, popularly known as a “dangling” DNS entry. Thankfully, this is very rare, as the domain will no longer work, but we occasionally see customers who leave their old domains dormant. This can also happen if you leave this kind of “dangling” DNS entry pointing at other infrastructure you no longer control. For example, if you leave a domain pointing at an IP address that you don’t control, then there is a risk that someone may come along and “claim” traffic destined for your domain.

In an even more rare set of circumstances, an abuser can exploit a subdomain of a domain that you are actively using. For example, if a customer left “images.example.com” dangling and pointing to a deleted CloudFront distribution which is no longer in use, but they still actively use the parent domain “example.com”, then an abuser could come along and register “images.example.com” as an alternative name on their own distribution and claim traffic that they aren’t entitled to. This also means that cookies may be set and intercepted for HTTP traffic potentially including the parent domain. HTTPS traffic remains protected if you’ve removed the certificate associated with the original CloudFront distribution.

Of course, the best fix for this kind of risk is not to leave dangling DNS entries in the first place. Earlier in February, 2018, we added a new warning to our systems. With this warning, if you remove an alternate domain name from a distribution, you are reminded to delete any DNS entries that may still be pointing at CloudFront.

We also have long-standing checks in the CloudFront API that ensure this kind of domain claiming can’t occur when you are using wildcard domains. If you attempt to add *.example.com to your CloudFront distribution, but another account has already registered www.example.com, then the attempt will fail.

With the new enhanced domain protection, CloudFront will now also check your DNS whenever you remove an alternate domain. If we determine that the domain is still pointing at your CloudFront distribution, the API call will fail and no other accounts will be able to claim this traffic in the future.

Enhanced Protection against Domain Fronting
CloudFront will also be soon be implementing enhanced protections against so-called “Domain Fronting”. Domain Fronting is when a non-standard client makes a TLS/SSL connection to a certain name, but then makes a HTTPS request for an unrelated name. For example, the TLS connection may connect to “www.example.com” but then issue a request for “www.example.org”.

In certain circumstances this is normal and expected. For example, browsers can re-use persistent connections for any domain that is listed in the same SSL Certificate, and these are considered related domains. But in other cases, tools including malware can use this technique between completely unrelated domains to evade restrictions and blocks that can be imposed at the TLS/SSL layer.

To be clear, this technique can’t be used to impersonate domains. The clients are non-standard and are working around the usual TLS/SSL checks that ordinary clients impose. But clearly, no customer ever wants to find that someone else is masquerading as their innocent, ordinary domain. Although these cases are also already handled as a breach of our AWS Terms of Service, in the coming weeks we will be checking that the account that owns the certificate we serve for a particular connection always matches the account that owns the request we handle on that connection. As ever, the security of our customers is our top priority, and we will continue to provide enhanced protection against misconfigurations and abuse from unrelated parties.

Interested in additional AWS Security news? Follow the AWS Security Blog on Twitter.

How to centralize DNS management in a multi-account environment

Post Syndicated from Mahmoud Matouk original https://aws.amazon.com/blogs/security/how-to-centralize-dns-management-in-a-multi-account-environment/

In a multi-account environment where you require connectivity between accounts, and perhaps connectivity between cloud and on-premises workloads, the demand for a robust Domain Name Service (DNS) that’s capable of name resolution across all connected environments will be high.

The most common solution is to implement local DNS in each account and use conditional forwarders for DNS resolutions outside of this account. While this solution might be efficient for a single-account environment, it becomes complex in a multi-account environment.

In this post, I will provide a solution to implement central DNS for multiple accounts. This solution reduces the number of DNS servers and forwarders needed to implement cross-account domain resolution. I will show you how to configure this solution in four steps:

  1. Set up your Central DNS account.
  2. Set up each participating account.
  3. Create Route53 associations.
  4. Configure on-premises DNS (if applicable).

Solution overview

In this solution, you use AWS Directory Service for Microsoft Active Directory (AWS Managed Microsoft AD) as a DNS service in a dedicated account in a Virtual Private Cloud (DNS-VPC).

The DNS service included in AWS Managed Microsoft AD uses conditional forwarders to forward domain resolution to either Amazon Route 53 (for domains in the awscloud.com zone) or to on-premises DNS servers (for domains in the example.com zone). You’ll use AWS Managed Microsoft AD as the primary DNS server for other application accounts in the multi-account environment (participating accounts).

A participating account is any application account that hosts a VPC and uses the centralized AWS Managed Microsoft AD as the primary DNS server for that VPC. Each participating account has a private, hosted zone with a unique zone name to represent this account (for example, business_unit.awscloud.com).

You associate the DNS-VPC with the unique hosted zone in each of the participating accounts, this allows AWS Managed Microsoft AD to use Route 53 to resolve all registered domains in private, hosted zones in participating accounts.

The following diagram shows how the various services work together:
 

Diagram showing the relationship between all the various services

Figure 1: Diagram showing the relationship between all the various services

 

In this diagram, all VPCs in participating accounts use Dynamic Host Configuration Protocol (DHCP) option sets. The option sets configure EC2 instances to use the centralized AWS Managed Microsoft AD in DNS-VPC as their default DNS Server. You also configure AWS Managed Microsoft AD to use conditional forwarders to send domain queries to Route53 or on-premises DNS servers based on query zone. For domain resolution across accounts to work, we associate DNS-VPC with each hosted zone in participating accounts.

If, for example, server.pa1.awscloud.com needs to resolve addresses in the pa3.awscloud.com domain, the sequence shown in the following diagram happens:
 

How domain resolution across accounts works

Figure 2: How domain resolution across accounts works

 

  • 1.1: server.pa1.awscloud.com sends domain name lookup to default DNS server for the name server.pa3.awscloud.com. The request is forwarded to the DNS server defined in the DHCP option set (AWS Managed Microsoft AD in DNS-VPC).
  • 1.2: AWS Managed Microsoft AD forwards name resolution to Route53 because it’s in the awscloud.com zone.
  • 1.3: Route53 resolves the name to the IP address of server.pa3.awscloud.com because DNS-VPC is associated with the private hosted zone pa3.awscloud.com.

Similarly, if server.example.com needs to resolve server.pa3.awscloud.com, the following happens:

  • 2.1: server.example.com sends domain name lookup to on-premise DNS server for the name server.pa3.awscloud.com.
  • 2.2: on-premise DNS server using conditional forwarder forwards domain lookup to AWS Managed Microsoft AD in DNS-VPC.
  • 1.2: AWS Managed Microsoft AD forwards name resolution to Route53 because it’s in the awscloud.com zone.
  • 1.3: Route53 resolves the name to the IP address of server.pa3.awscloud.com because DNS-VPC is associated with the private hosted zone pa3.awscloud.com.

Step 1: Set up a centralized DNS account

In previous AWS Security Blog posts, Drew Dennis covered a couple of options for establishing DNS resolution between on-premises networks and Amazon VPC. In this post, he showed how you can use AWS Managed Microsoft AD (provisioned with AWS Directory Service) to provide DNS resolution with forwarding capabilities.

To set up a centralized DNS account, you can follow the same steps in Drew’s post to create AWS Managed Microsoft AD and configure the forwarders to send DNS queries for awscloud.com to default, VPC-provided DNS and to forward example.com queries to the on-premise DNS server.

Here are a few considerations while setting up central DNS:

  • The VPC that hosts AWS Managed Microsoft AD (DNS-VPC) will be associated with all private hosted zones in participating accounts.
  • To be able to resolve domain names across AWS and on-premises, connectivity through Direct Connect or VPN must be in place.

Step 2: Set up participating accounts

The steps I suggest in this section should be applied individually in each application account that’s participating in central DNS resolution.

  1. Create the VPC(s) that will host your resources in participating account.
  2. Create VPC Peering between local VPC(s) in each participating account and DNS-VPC.
  3. Create a private hosted zone in Route 53. Hosted zone domain names must be unique across all accounts. In the diagram above, we used pa1.awscloud.com / pa2.awscloud.com / pa3.awscloud.com. You could also use a combination of environment and business unit: for example, you could use pa1.dev.awscloud.com to achieve uniqueness.
  4. Associate VPC(s) in each participating account with the local private hosted zone.

The next step is to change the default DNS servers on each VPC using DHCP option set:

  1. Follow these steps to create a new DHCP option set. Make sure in the DNS Servers to put the private IP addresses of the two AWS Managed Microsoft AD servers that were created in DNS-VPC:
     
    The "Create DHCP options set" dialog box

    Figure 3: The “Create DHCP options set” dialog box

     

  2. Follow these steps to assign the DHCP option set to your VPC(s) in participating account.

Step 3: Associate DNS-VPC with private hosted zones in each participating account

The next steps will associate DNS-VPC with the private, hosted zone in each participating account. This allows instances in DNS-VPC to resolve domain records created in these hosted zones. If you need them, here are more details on associating a private, hosted zone with VPC on a different account.

  1. In each participating account, create the authorization using the private hosted zone ID from the previous step, the region, and the VPC ID that you want to associate (DNS-VPC).
     
    aws route53 create-vpc-association-authorization –hosted-zone-id <hosted-zone-id> –vpc VPCRegion=<region>,VPCId=<vpc-id>
     
  2. In the centralized DNS account, associate DNS-VPC with the hosted zone in each participating account.
     
    aws route53 associate-vpc-with-hosted-zone –hosted-zone-id <hosted-zone-id> –vpc VPCRegion=<region>,VPCId=<vpc-id>
     

After completing these steps, AWS Managed Microsoft AD in the centralized DNS account should be able to resolve domain records in the private, hosted zone in each participating account.

Step 4: Setting up on-premises DNS servers

This step is necessary if you would like to resolve AWS private domains from on-premises servers and this task comes down to configuring forwarders on-premise to forward DNS queries to AWS Managed Microsoft AD in DNS-VPC for all domains in the awscloud.com zone.

The steps to implement conditional forwarders vary by DNS product. Follow your product’s documentation to complete this configuration.

Summary

I introduced a simplified solution to implement central DNS resolution in a multi-account environment that could be also extended to support DNS resolution between on-premise resources and AWS. This can help reduce operations effort and the number of resources needed to implement cross-account domain resolution.

If you have feedback about this post, submit comments in the Comments section below. If you have questions about this post, start a new thread on the AWS Directory Service forum or contact AWS Support.

Want more AWS Security news? Follow us on Twitter.

New .BOT gTLD from Amazon

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/new-bot-gtld-from-amazon/

Today, I’m excited to announce the launch of .BOT, a new generic top-level domain (gTLD) from Amazon. Customers can use .BOT domains to provide an identity and portal for their bots. Fitness bots, slack bots, e-commerce bots, and more can all benefit from an easy-to-access .BOT domain. The phrase “bot” was the 4th most registered domain keyword within the .COM TLD in 2016 with more than 6000 domains per month. A .BOT domain allows customers to provide a definitive internet identity for their bots as well as enhancing SEO performance.

At the time of this writing .BOT domains start at $75 each and must be verified and published with a supported tool like: Amazon Lex, Botkit Studio, Dialogflow, Gupshup, Microsoft Bot Framework, or Pandorabots. You can expect support for more tools over time and if your favorite bot framework isn’t supported feel free to contact us here: [email protected].

Below, I’ll walk through the experience of registering and provisioning a domain for my bot, whereml.bot. Then we’ll look at setting up the domain as a hosted zone in Amazon Route 53. Let’s get started.

Registering a .BOT domain

First, I’ll head over to https://amazonregistry.com/bot, type in a new domain, and click magnifying class to make sure my domain is available and get taken to the registration wizard.

Next, I have the opportunity to choose how I want to verify my bot. I build all of my bots with Amazon Lex so I’ll select that in the drop down and get prompted for instructions specific to AWS. If I had my bot hosted somewhere else I would need to follow the unique verification instructions for that particular framework.

To verify my Lex bot I need to give the Amazon Registry permissions to invoke the bot and verify it’s existence. I’ll do this by creating an AWS Identity and Access Management (IAM) cross account role and providing the AmazonLexReadOnly permissions to that role. This is easily accomplished in the AWS Console. Be sure to provide the account number and external ID shown on the registration page.

Now I’ll add read only permissions to our Amazon Lex bots.

I’ll give my role a fancy name like DotBotCrossAccountVerifyRole and a description so it’s easy to remember why I made this then I’ll click create to create the role and be transported to the role summary page.

Finally, I’ll copy the ARN from the created role and save it for my next step.

Here I’ll add all the details of my Amazon Lex bot. If you haven’t made a bot yet you can follow the tutorial to build a basic bot. I can refer to any alias I’ve deployed but if I just want to grab the latest published bot I can pass in $LATEST as the alias. Finally I’ll click Validate and proceed to registering my domain.

Amazon Registry works with a partner EnCirca to register our domains so we’ll select them and optionally grab Site Builder. I know how to sling some HTML and Javascript together so I’ll pass on the Site Builder side of things.

 

After I click continue we’re taken to EnCirca’s website to finalize the registration and with any luck within a few minutes of purchasing and completing the registration we should receive an email with some good news:

Alright, now that we have a domain name let’s find out how to host things on it.

Using Amazon Route53 with a .BOT domain

Amazon Route 53 is a highly available and scalable DNS with robust APIs, healthchecks, service discovery, and many other features. I definitely want to use this to host my new domain. The first thing I’ll do is navigate to the Route53 console and create a hosted zone with the same name as my domain.


Great! Now, I need to take the Name Server (NS) records that Route53 created for me and use EnCirca’s portal to add these as the authoritative nameservers on the domain.

Now I just add my records to my hosted zone and I should be able to serve traffic! Way cool, I’ve got my very own .bot domain for @WhereML.

Next Steps

  • I could and should add to the security of my site by creating TLS certificates for people who intend to access my domain over TLS. Luckily with AWS Certificate Manager (ACM) this is extremely straightforward and I’ve got my subdomains and root domain verified in just a few clicks.
  • I could create a cloudfront distrobution to front an S3 static single page application to host my entire chatbot and invoke Amazon Lex with a cognito identity right from the browser.

Randall

Amazon ECS Service Discovery

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/amazon-ecs-service-discovery/

Amazon ECS now includes integrated service discovery. This makes it possible for an ECS service to automatically register itself with a predictable and friendly DNS name in Amazon Route 53. As your services scale up or down in response to load or container health, the Route 53 hosted zone is kept up to date, allowing other services to lookup where they need to make connections based on the state of each service. You can see a demo of service discovery in an imaginary social networking app over at: https://servicediscovery.ranman.com/.

Service Discovery


Part of the transition to microservices and modern architectures involves having dynamic, autoscaling, and robust services that can respond quickly to failures and changing loads. Your services probably have complex dependency graphs of services they rely on and services they provide. A modern architectural best practice is to loosely couple these services by allowing them to specify their own dependencies, but this can be complicated in dynamic environments as your individual services are forced to find their own connection points.

Traditional approaches to service discovery like consul, etcd, or zookeeper all solve this problem well, but they require provisioning and maintaining additional infrastructure or installation of agents in your containers or on your instances. Previously, to ensure that services were able to discover and connect with each other, you had to configure and run your own service discovery system or connect every service to a load balancer. Now, you can enable service discovery for your containerized services in the ECS console, AWS CLI, or using the ECS API.

Introducing Amazon Route 53 Service Registry and Auto Naming APIs

Amazon ECS Service Discovery works by communicating with the Amazon Route 53 Service Registry and Auto Naming APIs. Since we haven’t talked about it before on this blog, I want to briefly outline how these Route 53 APIs work. First, some vocabulary:

  • Namespaces – A namespace specifies a domain name you want to route traffic to (e.g. internal, local, corp). You can think of it as a logical boundary between which services should be able to discover each other. You can create a namespace with a call to the aws servicediscovery create-private-dns-namespace command or in the ECS console. Namespaces are roughly equivalent to hosted zones in Route 53. A namespace contains services, our next vocabulary word.
  • Service – A service is a specific application or set of applications in your namespace like “auth”, “timeline”, or “worker”. A service contains service instances.
  • Service Instance – A service instance contains information about how Route 53 should respond to DNS queries for a resource.

Route 53 provides APIs to create: namespaces, A records per task IP, and SRV records per task IP + port.

When we ask Route 53 for something like: worker.corp we should get back a set of possible IPs that could fulfill that request. If the application we’re connecting to exposes dynamic ports then the calling application can easily query the SRV record to get more information.

ECS service discovery is built on top of the Route 53 APIs and manages all of the underlying API calls for you. Now that we understand how the service registry, works lets take a look at the ECS side to see service discovery in action.

Amazon ECS Service Discovery

Let’s launch an application with service discovery! First, I’ll create two task definitions: “flask-backend” and “flask-worker”. Both are simple AWS Fargate tasks with a single container serving HTTP requests. I’ll have flask-backend ask worker.corp to do some work and I’ll return the response as well as the address Route 53 returned for worker. Something like the code below:

@app.route("/")
namespace = os.getenv("namespace")
worker_host = "worker" + namespace
def backend():
    r = requests.get("http://"+worker_host)
    worker = socket.gethostbyname(worker_host)
    return "Worker Message: {]\nFrom: {}".format(r.content, worker)

 

Now, with my containers and task definitions in place, I’ll create a service in the console.

As I move to step two in the service wizard I’ll fill out the service discovery section and have ECS create a new namespace for me.

I’ll also tell ECS to monitor the health of the tasks in my service and add or remove them from Route 53 as needed. Then I’ll set a TTL of 10 seconds on the A records we’ll use.

I’ll repeat those same steps for my “worker” service and after a minute or so most of my tasks should be up and running.

Over in the Route 53 console I can see all the records for my tasks!

We can use the Route 53 service discovery APIs to list all of our available services and tasks and programmatically reach out to each one. We could easily extend to any number of services past just backend and worker. I’ve created a simple demo of an imaginary social network with services like “auth”, “feed”, “timeline”, “worker”, “user” and more here: https://servicediscovery.ranman.com/. You can see the code used to run that page on github.

Available Now
Amazon ECS service discovery is available now in US East (N. Virginia), US East (Ohio), US West (Oregon), and EU (Ireland). AWS Fargate is currently only available in US East (N. Virginia). When you use ECS service discovery, you pay for the Route 53 resources that you consume, including each namespace that you create, and for the lookup queries your services make. Container level health checks are provided at no cost. For more information on pricing check out the documentation.

Please let us know what you’ll be building or refactoring with service discovery either in the comments or on Twitter!

Randall

 

P.S. Every blog post I write is made with a tremendous amount of help from numerous AWS colleagues. To everyone that helped build service discovery across all of our teams – thank you :)!

Best Practices for Running Apache Kafka on AWS

Post Syndicated from Prasad Alle original https://aws.amazon.com/blogs/big-data/best-practices-for-running-apache-kafka-on-aws/

This post was written in partnership with Intuit to share learnings, best practices, and recommendations for running an Apache Kafka cluster on AWS. Thanks to Vaishak Suresh and his colleagues at Intuit for their contribution and support.

Intuit, in their own words: Intuit, a leading enterprise customer for AWS, is a creator of business and financial management solutions. For more information on how Intuit partners with AWS, see our previous blog post, Real-time Stream Processing Using Apache Spark Streaming and Apache Kafka on AWS. Apache Kafka is an open-source, distributed streaming platform that enables you to build real-time streaming applications.

The best practices described in this post are based on our experience in running and operating large-scale Kafka clusters on AWS for more than two years. Our intent for this post is to help AWS customers who are currently running Kafka on AWS, and also customers who are considering migrating on-premises Kafka deployments to AWS.

AWS offers Amazon Kinesis Data Streams, a Kafka alternative that is fully managed.

Running your Kafka deployment on Amazon EC2 provides a high performance, scalable solution for ingesting streaming data. AWS offers many different instance types and storage option combinations for Kafka deployments. However, given the number of possible deployment topologies, it’s not always trivial to select the most appropriate strategy suitable for your use case.

In this blog post, we cover the following aspects of running Kafka clusters on AWS:

  • Deployment considerations and patterns
  • Storage options
  • Instance types
  • Networking
  • Upgrades
  • Performance tuning
  • Monitoring
  • Security
  • Backup and restore

Note: While implementing Kafka clusters in a production environment, make sure also to consider factors like your number of messages, message size, monitoring, failure handling, and any operational issues.

Deployment considerations and patterns

In this section, we discuss various deployment options available for Kafka on AWS, along with pros and cons of each option. A successful deployment starts with thoughtful consideration of these options. Considering availability, consistency, and operational overhead of the deployment helps when choosing the right option.

Single AWS Region, Three Availability Zones, All Active

One typical deployment pattern (all active) is in a single AWS Region with three Availability Zones (AZs). One Kafka cluster is deployed in each AZ along with Apache ZooKeeper and Kafka producer and consumer instances as shown in the illustration following.

In this pattern, this is the Kafka cluster deployment:

  • Kafka producers and Kafka cluster are deployed on each AZ.
  • Data is distributed evenly across three Kafka clusters by using Elastic Load Balancer.
  • Kafka consumers aggregate data from all three Kafka clusters.

Kafka cluster failover occurs this way:

  • Mark down all Kafka producers
  • Stop consumers
  • Debug and restack Kafka
  • Restart consumers
  • Restart Kafka producers

Following are the pros and cons of this pattern.

ProsCons
  • Highly available
  • Can sustain the failure of two AZs
  • No message loss during failover
  • Simple deployment

 

  • Very high operational overhead:
    • All changes need to be deployed three times, one for each Kafka cluster
    • Maintaining and monitoring three Kafka clusters
    • Maintaining and monitoring three consumer clusters

A restart is required for patching and upgrading brokers in a Kafka cluster. In this approach, a rolling upgrade is done separately for each cluster.

Single Region, Three Availability Zones, Active-Standby

Another typical deployment pattern (active-standby) is in a single AWS Region with a single Kafka cluster and Kafka brokers and Zookeepers distributed across three AZs. Another similar Kafka cluster acts as a standby as shown in the illustration following. You can use Kafka mirroring with MirrorMaker to replicate messages between any two clusters.

In this pattern, this is the Kafka cluster deployment:

  • Kafka producers are deployed on all three AZs.
  • Only one Kafka cluster is deployed across three AZs (active).
  • ZooKeeper instances are deployed on each AZ.
  • Brokers are spread evenly across all three AZs.
  • Kafka consumers can be deployed across all three AZs.
  • Standby Kafka producers and a Multi-AZ Kafka cluster are part of the deployment.

Kafka cluster failover occurs this way:

  • Switch traffic to standby Kafka producers cluster and Kafka cluster.
  • Restart consumers to consume from standby Kafka cluster.

Following are the pros and cons of this pattern.

ProsCons
  • Less operational overhead when compared to the first option
  • Only one Kafka cluster to manage and consume data from
  • Can handle single AZ failures without activating a standby Kafka cluster
  • Added latency due to cross-AZ data transfer among Kafka brokers
  • For Kafka versions before 0.10, replicas for topic partitions have to be assigned so they’re distributed to the brokers on different AZs (rack-awareness)
  • The cluster can become unavailable in case of a network glitch, where ZooKeeper does not see Kafka brokers
  • Possibility of in-transit message loss during failover

Intuit recommends using a single Kafka cluster in one AWS Region, with brokers distributing across three AZs (single region, three AZs). This approach offers stronger fault tolerance than otherwise, because a failed AZ won’t cause Kafka downtime.

Storage options

There are two storage options for file storage in Amazon EC2:

Ephemeral storage is local to the Amazon EC2 instance. It can provide high IOPS based on the instance type. On the other hand, Amazon EBS volumes offer higher resiliency and you can configure IOPS based on your storage needs. EBS volumes also offer some distinct advantages in terms of recovery time. Your choice of storage is closely related to the type of workload supported by your Kafka cluster.

Kafka provides built-in fault tolerance by replicating data partitions across a configurable number of instances. If a broker fails, you can recover it by fetching all the data from other brokers in the cluster that host the other replicas. Depending on the size of the data transfer, it can affect recovery process and network traffic. These in turn eventually affect the cluster’s performance.

The following table contrasts the benefits of using an instance store versus using EBS for storage.

Instance storeEBS
  • Instance storage is recommended for large- and medium-sized Kafka clusters. For a large cluster, read/write traffic is distributed across a high number of brokers, so the loss of a broker has less of an impact. However, for smaller clusters, a quick recovery for the failed node is important, but a failed broker takes longer and requires more network traffic for a smaller Kafka cluster.
  • Storage-optimized instances like h1, i3, and d2 are an ideal choice for distributed applications like Kafka.

 

  • The primary advantage of using EBS in a Kafka deployment is that it significantly reduces data-transfer traffic when a broker fails or must be replaced. The replacement broker joins the cluster much faster.
  • Data stored on EBS is persisted in case of an instance failure or termination. The broker’s data stored on an EBS volume remains intact, and you can mount the EBS volume to a new EC2 instance. Most of the replicated data for the replacement broker is already available in the EBS volume and need not be copied over the network from another broker. Only the changes made after the original broker failure need to be transferred across the network. That makes this process much faster.

 

 

Intuit chose EBS because of their frequent instance restacking requirements and also other benefits provided by EBS.

Generally, Kafka deployments use a replication factor of three. EBS offers replication within their service, so Intuit chose a replication factor of two instead of three.

Instance types

The choice of instance types is generally driven by the type of storage required for your streaming applications on a Kafka cluster. If your application requires ephemeral storage, h1, i3, and d2 instances are your best option.

Intuit used r3.xlarge instances for their brokers and r3.large for ZooKeeper, with ST1 (throughput optimized HDD) EBS for their Kafka cluster.

Here are sample benchmark numbers from Intuit tests.

ConfigurationBroker bytes (MB/s)
  • r3.xlarge
  • ST1 EBS
  • 12 brokers
  • 12 partitions

 

Aggregate 346.9

If you need EBS storage, then AWS has a newer-generation r4 instance. The r4 instance is superior to R3 in many ways:

  • It has a faster processor (Broadwell).
  • EBS is optimized by default.
  • It features networking based on Elastic Network Adapter (ENA), with up to 10 Gbps on smaller sizes.
  • It costs 20 percent less than R3.

Note: It’s always best practice to check for the latest changes in instance types.

Networking

The network plays a very important role in a distributed system like Kafka. A fast and reliable network ensures that nodes can communicate with each other easily. The available network throughput controls the maximum amount of traffic that Kafka can handle. Network throughput, combined with disk storage, is often the governing factor for cluster sizing.

If you expect your cluster to receive high read/write traffic, select an instance type that offers 10-Gb/s performance.

In addition, choose an option that keeps interbroker network traffic on the private subnet, because this approach allows clients to connect to the brokers. Communication between brokers and clients uses the same network interface and port. For more details, see the documentation about IP addressing for EC2 instances.

If you are deploying in more than one AWS Region, you can connect the two VPCs in the two AWS Regions using cross-region VPC peering. However, be aware of the networking costs associated with cross-AZ deployments.

Upgrades

Kafka has a history of not being backward compatible, but its support of backward compatibility is getting better. During a Kafka upgrade, you should keep your producer and consumer clients on a version equal to or lower than the version you are upgrading from. After the upgrade is finished, you can start using a new protocol version and any new features it supports. There are three upgrade approaches available, discussed following.

Rolling or in-place upgrade

In a rolling or in-place upgrade scenario, upgrade one Kafka broker at a time. Take into consideration the recommendations for doing rolling restarts to avoid downtime for end users.

Downtime upgrade

If you can afford the downtime, you can take your entire cluster down, upgrade each Kafka broker, and then restart the cluster.

Blue/green upgrade

Intuit followed the blue/green deployment model for their workloads, as described following.

If you can afford to create a separate Kafka cluster and upgrade it, we highly recommend the blue/green upgrade scenario. In this scenario, we recommend that you keep your clusters up-to-date with the latest Kafka version. For additional details on Kafka version upgrades or more details, see the Kafka upgrade documentation.

The following illustration shows a blue/green upgrade.

In this scenario, the upgrade plan works like this:

  • Create a new Kafka cluster on AWS.
  • Create a new Kafka producers stack to point to the new Kafka cluster.
  • Create topics on the new Kafka cluster.
  • Test the green deployment end to end (sanity check).
  • Using Amazon Route 53, change the new Kafka producers stack on AWS to point to the new green Kafka environment that you have created.

The roll-back plan works like this:

  • Switch Amazon Route 53 to the old Kafka producers stack on AWS to point to the old Kafka environment.

For additional details on blue/green deployment architecture using Kafka, see the re:Invent presentation Leveraging the Cloud with a Blue-Green Deployment Architecture.

Performance tuning

You can tune Kafka performance in multiple dimensions. Following are some best practices for performance tuning.

 These are some general performance tuning techniques:

  • If throughput is less than network capacity, try the following:
    • Add more threads
    • Increase batch size
    • Add more producer instances
    • Add more partitions
  • To improve latency when acks =-1, increase your num.replica.fetches value.
  • For cross-AZ data transfer, tune your buffer settings for sockets and for OS TCP.
  • Make sure that num.io.threads is greater than the number of disks dedicated for Kafka.
  • Adjust num.network.threads based on the number of producers plus the number of consumers plus the replication factor.
  • Your message size affects your network bandwidth. To get higher performance from a Kafka cluster, select an instance type that offers 10 Gb/s performance.

For Java and JVM tuning, try the following:

  • Minimize GC pauses by using the Oracle JDK, which uses the new G1 garbage-first collector.
  • Try to keep the Kafka heap size below 4 GB.

Monitoring

Knowing whether a Kafka cluster is working correctly in a production environment is critical. Sometimes, just knowing that the cluster is up is enough, but Kafka applications have many moving parts to monitor. In fact, it can easily become confusing to understand what’s important to watch and what you can set aside. Items to monitor range from simple metrics about the overall rate of traffic, to producers, consumers, brokers, controller, ZooKeeper, topics, partitions, messages, and so on.

For monitoring, Intuit used several tools, including Newrelec, Wavefront, Amazon CloudWatch, and AWS CloudTrail. Our recommended monitoring approach follows.

For system metrics, we recommend that you monitor:

  • CPU load
  • Network metrics
  • File handle usage
  • Disk space
  • Disk I/O performance
  • Garbage collection
  • ZooKeeper

For producers, we recommend that you monitor:

  • Batch-size-avg
  • Compression-rate-avg
  • Waiting-threads
  • Buffer-available-bytes
  • Record-queue-time-max
  • Record-send-rate
  • Records-per-request-avg

For consumers, we recommend that you monitor:

  • Batch-size-avg
  • Compression-rate-avg
  • Waiting-threads
  • Buffer-available-bytes
  • Record-queue-time-max
  • Record-send-rate
  • Records-per-request-avg

Security

Like most distributed systems, Kafka provides the mechanisms to transfer data with relatively high security across the components involved. Depending on your setup, security might involve different services such as encryption, Kerberos, Transport Layer Security (TLS) certificates, and advanced access control list (ACL) setup in brokers and ZooKeeper. The following tells you more about the Intuit approach. For details on Kafka security not covered in this section, see the Kafka documentation.

Encryption at rest

For EBS-backed EC2 instances, you can enable encryption at rest by using Amazon EBS volumes with encryption enabled. Amazon EBS uses AWS Key Management Service (AWS KMS) for encryption. For more details, see Amazon EBS Encryption in the EBS documentation. For instance store–backed EC2 instances, you can enable encryption at rest by using Amazon EC2 instance store encryption.

Encryption in transit

Kafka uses TLS for client and internode communications.

Authentication

Authentication of connections to brokers from clients (producers and consumers) to other brokers and tools uses either Secure Sockets Layer (SSL) or Simple Authentication and Security Layer (SASL).

Kafka supports Kerberos authentication. If you already have a Kerberos server, you can add Kafka to your current configuration.

Authorization

In Kafka, authorization is pluggable and integration with external authorization services is supported.

Backup and restore

The type of storage used in your deployment dictates your backup and restore strategy.

The best way to back up a Kafka cluster based on instance storage is to set up a second cluster and replicate messages using MirrorMaker. Kafka’s mirroring feature makes it possible to maintain a replica of an existing Kafka cluster. Depending on your setup and requirements, your backup cluster might be in the same AWS Region as your main cluster or in a different one.

For EBS-based deployments, you can enable automatic snapshots of EBS volumes to back up volumes. You can easily create new EBS volumes from these snapshots to restore. We recommend storing backup files in Amazon S3.

For more information on how to back up in Kafka, see the Kafka documentation.

Conclusion

In this post, we discussed several patterns for running Kafka in the AWS Cloud. AWS also provides an alternative managed solution with Amazon Kinesis Data Streams, there are no servers to manage or scaling cliffs to worry about, you can scale the size of your streaming pipeline in seconds without downtime, data replication across availability zones is automatic, you benefit from security out of the box, Kinesis Data Streams is tightly integrated with a wide variety of AWS services like Lambda, Redshift, Elasticsearch and it supports open source frameworks like Storm, Spark, Flink, and more. You may refer to kafka-kinesis connector.

If you have questions or suggestions, please comment below.


Additional Reading

If you found this post useful, be sure to check out Implement Serverless Log Analytics Using Amazon Kinesis Analytics and Real-time Clickstream Anomaly Detection with Amazon Kinesis Analytics.


About the Author

Prasad Alle is a Senior Big Data Consultant with AWS Professional Services. He spends his time leading and building scalable, reliable Big data, Machine learning, Artificial Intelligence and IoT solutions for AWS Enterprise and Strategic customers. His interests extend to various technologies such as Advanced Edge Computing, Machine learning at Edge. In his spare time, he enjoys spending time with his family.

 

 

Scale Your Web Application — One Step at a Time

Post Syndicated from Saurabh Shrivastava original https://aws.amazon.com/blogs/architecture/scale-your-web-application-one-step-at-a-time/

I often encounter people experiencing frustration as they attempt to scale their e-commerce or WordPress site—particularly around the cost and complexity related to scaling. When I talk to customers about their scaling plans, they often mention phrases such as horizontal scaling and microservices, but usually people aren’t sure about how to dive in and effectively scale their sites.

Now let’s talk about different scaling options. For instance if your current workload is in a traditional data center, you can leverage the cloud for your on-premises solution. This way you can scale to achieve greater efficiency with less cost. It’s not necessary to set up a whole powerhouse to light a few bulbs. If your workload is already in the cloud, you can use one of the available out-of-the-box options.

Designing your API in microservices and adding horizontal scaling might seem like the best choice, unless your web application is already running in an on-premises environment and you’ll need to quickly scale it because of unexpected large spikes in web traffic.

So how to handle this situation? Take things one step at a time when scaling and you may find horizontal scaling isn’t the right choice, after all.

For example, assume you have a tech news website where you did an early-look review of an upcoming—and highly-anticipated—smartphone launch, which went viral. The review, a blog post on your website, includes both video and pictures. Comments are enabled for the post and readers can also rate it. For example, if your website is hosted on a traditional Linux with a LAMP stack, you may find yourself with immediate scaling problems.

Let’s get more details on the current scenario and dig out more:

  • Where are images and videos stored?
  • How many read/write requests are received per second? Per minute?
  • What is the level of security required?
  • Are these synchronous or asynchronous requests?

We’ll also want to consider the following if your website has a transactional load like e-commerce or banking:

How is the website handling sessions?

  • Do you have any compliance requests—like the Payment Card Industry Data Security Standard (PCI DSS compliance) —if your website is using its own payment gateway?
  • How are you recording customer behavior data and fulfilling your analytics needs?
  • What are your loading balancing considerations (scaling, caching, session maintenance, etc.)?

So, if we take this one step at a time:

Step 1: Ease server load. We need to quickly handle spikes in traffic, generated by activity on the blog post, so let’s reduce server load by moving image and video to some third -party content delivery network (CDN). AWS provides Amazon CloudFront as a CDN solution, which is highly scalable with built-in security to verify origin access identity and handle any DDoS attacks. CloudFront can direct traffic to your on-premises or cloud-hosted server with its 113 Points of Presence (102 Edge Locations and 11 Regional Edge Caches) in 56 cities across 24 countries, which provides efficient caching.
Step 2: Reduce read load by adding more read replicas. MySQL provides a nice mirror replication for databases. Oracle has its own Oracle plug for replication and AWS RDS provide up to five read replicas, which can span across the region and even the Amazon database Amazon Aurora can have 15 read replicas with Amazon Aurora autoscaling support. If a workload is highly variable, you should consider Amazon Aurora Serverless database  to achieve high efficiency and reduced cost. While most mirror technologies do asynchronous replication, AWS RDS can provide synchronous multi-AZ replication, which is good for disaster recovery but not for scalability. Asynchronous replication to mirror instance means replication data can sometimes be stale if network bandwidth is low, so you need to plan and design your application accordingly.

I recommend that you always use a read replica for any reporting needs and try to move non-critical GET services to read replica and reduce the load on the master database. In this case, loading comments associated with a blog can be fetched from a read replica—as it can handle some delay—in case there is any issue with asynchronous reflection.

Step 3: Reduce write requests. This can be achieved by introducing queue to process the asynchronous message. Amazon Simple Queue Service (Amazon SQS) is a highly-scalable queue, which can handle any kind of work-message load. You can process data, like rating and review; or calculate Deal Quality Score (DQS) using batch processing via an SQS queue. If your workload is in AWS, I recommend using a job-observer pattern by setting up Auto Scaling to automatically increase or decrease the number of batch servers, using the number of SQS messages, with Amazon CloudWatch, as the trigger.  For on-premises workloads, you can use SQS SDK to create an Amazon SQS queue that holds messages until they’re processed by your stack. Or you can use Amazon SNS  to fan out your message processing in parallel for different purposes like adding a watermark in an image, generating a thumbnail, etc.

Step 4: Introduce a more robust caching engine. You can use Amazon Elastic Cache for Memcached or Redis to reduce write requests. Memcached and Redis have different use cases so if you can afford to lose and recover your cache from your database, use Memcached. If you are looking for more robust data persistence and complex data structure, use Redis. In AWS, these are managed services, which means AWS takes care of the workload for you and you can also deploy them in your on-premises instances or use a hybrid approach.

Step 5: Scale your server. If there are still issues, it’s time to scale your server.  For the greatest cost-effectiveness and unlimited scalability, I suggest always using horizontal scaling. However, use cases like database vertical scaling may be a better choice until you are good with sharding; or use Amazon Aurora Serverless for variable workloads. It will be wise to use Auto Scaling to manage your workload effectively for horizontal scaling. Also, to achieve that, you need to persist the session. Amazon DynamoDB can handle session persistence across instances.

If your server is on premises, consider creating a multisite architecture, which will help you achieve quick scalability as required and provide a good disaster recovery solution.  You can pick and choose individual services like Amazon Route 53, AWS CloudFormation, Amazon SQS, Amazon SNS, Amazon RDS, etc. depending on your needs.

Your multisite architecture will look like the following diagram:

In this architecture, you can run your regular workload on premises, and use your AWS workload as required for scalability and disaster recovery. Using Route 53, you can direct a precise percentage of users to an AWS workload.

If you decide to move all of your workloads to AWS, the recommended multi-AZ architecture would look like the following:

In this architecture, you are using a multi-AZ distributed workload for high availability. You can have a multi-region setup and use Route53 to distribute your workload between AWS Regions. CloudFront helps you to scale and distribute static content via an S3 bucket and DynamoDB, maintaining your application state so that Auto Scaling can apply horizontal scaling without loss of session data. At the database layer, RDS with multi-AZ standby provides high availability and read replica helps achieve scalability.

This is a high-level strategy to help you think through the scalability of your workload by using AWS even if your workload in on premises and not in the cloud…yet.

I highly recommend creating a hybrid, multisite model by placing your on-premises environment replica in the public cloud like AWS Cloud, and using Amazon Route53 DNS Service and Elastic Load Balancing to route traffic between on-premises and cloud environments. AWS now supports load balancing between AWS and on-premises environments to help you scale your cloud environment quickly, whenever required, and reduce it further by applying Amazon auto-scaling and placing a threshold on your on-premises traffic using Route 53.