Tag Archives: AWS CodeCommit

Agile website delivery with Hugo and AWS Amplify

Post Syndicated from Nigel Harris original https://aws.amazon.com/blogs/devops/agile-website-delivery-with-hugo-and-aws-amplify/

In this post, we show how you can rapidly configure and deploy a website using Hugo (an AWS Cloud9 integrated development environment (IDE) for content editing), AWS CodeCommit for source code control, and AWS Amplify to implement a source code-controlled, automated deployment process.

When hosting a website on AWS, you can choose from several options. One popular option is to use Amazon Simple Storage Service (Amazon S3) to host a static website. If you prefer full access to the infrastructure hosting your website, you can use the NGINX Quick Start to quickly deploy web server infrastructure using AWS CloudFormation.

Static website generators such as Hugo and MkDocs accelerate the website content generation process, and can be a valuable tool when trying to rapidly deliver technical documentation or similar content. Typically, the content creation process requires programming in HTML and CSS.

Hugo is written in Go and available under the Apache 2.0 license. It provides several themes (collections of layouts) that accelerate website creation by drastically reducing the need to focus on format. You can author content in Markdown and output in multiple languages and formats (including ebook formats). Excellent examples of public websites built using Hugo include Digital.gov and Kubernetes.io.

 

Solution overview

This solution illustrates how to provision a hosted, source code-controlled Hugo generated website using CodeCommit and Amplify Console. The provisioned website is configured with a custom subdomain and an SSL certificate. We use an AWS Cloud9 IDE to enable content creation in the cloud.

 

Setting up an AWS Cloud9 IDE

Start by provisioning an AWS Cloud9 IDE. AWS Cloud9 environments run using Amazon Elastic Compute Cloud (Amazon EC2). You need to provision your AWS Cloud9 environment into an existing public subnet in an Amazon Virtual Private Cloud (Amazon VPC) within your AWS account. You can complete this in the following steps:

1. Access your AWS account using with an identity with administrative privileges. If you don’t have an AWS account, you can create one.

2. Create a new AWS Cloud9 environment using the wizard on the AWS Cloud9 console.

3. Enter a name for your desktop and an optional description.

4. Choose Next step.

Naming your Cloud 9 environment

5. In the Environment settings section, for Environment type, select Create a new EC2 instance for environment (direct access).

6. For Instance type, select your preferred instance type (the default, t2.micro, works for this use case)

7. Under Network settings, for Network (VPC), choose a VPC that you wish to deploy your AWS Cloud9 instance into. You may wish to use your default VPC, which is suitable for the purpose of this tutorial.

8. Choose a public subnet from this VPC for deployment.

Cloud9 Settings

9. Leave all other settings unchanged and choose Next step.
10. Review your choices and choose Create environment.

Environment creation takes a few minutes to complete. When the environment is ready, you receive access to the AWS Cloud9 IDE in your browser. We return to it shortly to develop content for your Hugo website.

Your Cloud9 Desktop

Configuring a source code repository to track content changes

Static website generators enable rapid changes to website content and layout. Source control management (SCM) systems provide a revision history for your code, and allow you to revert to previous versions of a project when unintended changes are introduced. SCM systems become increasingly important as the velocity of change and the number of team members introducing change increases.

You now create a source code repository to track changes to your content. You use CodeCommit, a fully-managed source control service that hosts secure Git-based repositories.

1. In a new browser, sign in to the CodeCommit Console and create a new repository.

2. For Repository name, enter amplify-website.

3. For Description, enter an appropriate description.

4. Choose Create.

Create repository

Repository creation takes just a few moments.

5. In the Connection steps section, choose the appropriate method to connect to your repository based on how you accessed your AWS account.

For this post, I signed in to my AWS account using federated access, so I choose the HTTPS Git Remote CodeCommit (HTTPS-GRC) tab. This is the recommended connection method for this sign-in type. You can also configure a connection to your repository using SSH or Git credentials over HTTPS. SSH and Git credentials over HTTPS are appropriate methods if you have signed in to your AWS account as an AWS Identity and Access Management (IAM) user. The Amazon CodeCommit console provides additional information regarding each of these connection types, including links to supporting documentation.

Connect to Repo

 

Configuring and deploying an example website

You’re now ready to configure and deploy your website.

1. Return to the browser with your AWS Cloud9 IDE and place your cursor in the lower terminal pane of the IDE.

The terminal pane provides Bash shell access on the EC2 instance running AWS Cloud9.

You now create a Hugo website. The website design is based on Hugo-theme-learn. Themes are collections of Hugo layouts that take all the hassle out of building your website. Learn is a multilingual-ready theme authored by Mathieu Cornic, designed for building technical documentation websites.

Hugo provides a variety of themes on their website. Many of the themes include bundled example website content that you can easily adapt by following the accompanying theme documentation.

2. Enter the following code to download an existing example website stored as a .zip file, extract it, and commit the contents into CodeCommit from your AWS Cloud9 IDE:

cd ~/environment
aws s3 cp s3://ee-assets-prod-us-east-1/modules/3c5ba9cb6ff44465b96993d210f67147/v1/example-website.zip ~/environment/example-website.zip
unzip example-website.zip
rm example-website.zip

The following screenshot shows your output.

example website copy commands

 

Next, we run commands to create a directory to host your website and copy files into place from the example website to get started. We then create a new default branch called main (formerly referred to as the master branch), local to our AWS Cloud9 instance. We then copy files into place from the example website. After adding and committing them locally, we push all our changes to the remote Amazon Codecommit repository.

3. Enter the following code:

mkdir ~/environment/amplify-website/
cd ~/environment/amplify-website/
git init
git remote add origin codecommit::us-east-1://amplify-website
git remote -v
git checkout -b main
cp -rp ~/environment/example-website/* ~/environment/amplify-website/
git add *
git commit -am "first commit"
git push -u origin main

Deployment and hosting is achieved by using Amplify Console, a static web hosting service that accelerates your application release cycle by providing a simple CI/CD workflow for building and deploying static web applications.

4. On the Amplify console, under Deploy, choose Get Started.

Amplify banner

5. On the Get started with the Amplify Console page, select AWS CodeCommit as your source code repository.

6. Choose Continue.

Amplify get started page

7. On the Add repository branch page, for Recently updated repositories, choose your repository.

8. For Branch, choose main.

9. Choose Next.

add branch

On the Configure build settings page, Amplify automatically uses the amplify.yml file for build settings for your deployment. You committed this into your source code repository in the previous step. The amplify.yml file is detected from the root of your website directory structure.

10. Choose Next.

Amplify configure build settings

11. On the review page, choose Save and deploy.

Amplify builds and deploys your Amplify website within minutes, and shows you its progress. When deployment is complete, you can access the website to see the sample content.

amplify website

The following screenshot shows your example website.

sample website

 

Promoting changes to the website

We can now update the line of text in the home page and commit and publish this change.

1. Return to the browser with your AWS Cloud9 IDE and place your cursor in the lower terminal pane of the IDE.

2. On the navigation pane, choose the file ~/environment/amplify-website/workshop/content/_index.en.md.

The contents of the file open under a new tab in the upper pane.

3. Change the string First Line of Text to First Update to Website.

content change

4. From the File menu, choose Save to save the changes you have made to the _index.en.md file.

save content changes

5. Commit the changes and push to CodeCommit by running the following command in the lower terminal pane in AWS Cloud9:

git add *; git commit -am "homepage update"; git push origin main

The output in your AWS Cloud9 terminal should appear similar to the following screenshot.

commit output

6. Return to the Amplify Console and observe how the committed change in CodeCommit is automatically detected. Amplify runs deployment steps to push your changes to the website.

amplify deploy changes

7. Access the URL of your website after this update is complete to verify that the first line of text on your home page has changed.

updated website

You can repeat this process to make source-code controlled, automated changes to your website.

Adding a custom domain

Adding a custom domain to your Amplify configuration makes it easier for clients to access your content. You can register new domains using Amazon Route 53 or, if you have an existing domain registered outside of AWS, you can integrate it with Route 53 and Amplify. For our use case, the domain www.hugoonamplify.com is a registered a domain name using a third-party registrar (NameCheap). You can manage DNS configurations for domains registered outside of AWS using Route 53.

Start by configuring a public hosted zone in Route 53.

1. On the Route 53 console, choose Hosted zones.

2. Choose Create hosted zone.

hosted zones

3. For Domain name, enter hugoonamplify.com.

4. For Description, enter an appropriate description.

5. For Type, select Public hosted zone.

hosted zones configuration

6. Choose Create hosted zone.

7. Save the addresses of the name servers that respond to client DNS lookup requests for the custom domain.

create hosted zone

8. In a separate browser, access the console of your DNS registrar.

9. Configure a custom DNS name servers setting on the console of the third-party domain name registrar.

This configuration specifies the Route 53 assigned name servers as authoritative DNS for our custom domain. For this use case, propagation of this change may take up to 48 hours.

namecheap console

10. Use https://who.is to verify that the AWS name servers are listed correctly for your custom domain to internet clients.

whois lookup

You can now set up your custom domain in Amplify. Amplify helps you configure DNS and set up SSL for your desired custom domain.

domain management

11. On the Amplify Console, under App settings, choose Domain management.

12. Choose Add domain.

13. For Domain, enter your custom domain name (hugoonamplify.com).

14. Choose Configure domain.

15. For Subdomain, I only want to set up www and choose to exclude the root of my custom domain.

16. Choose Save.

Amplify begins the process of creating the SSL certificates. Amplify sends a notification that it’s issuing an SSL certificate to secure traffic to the custom domain.

ssl domain management

After a few moments, it proceeds to SSL configuration and indicates that ownership of domain is in progress.

ssl domain management configuration

Amplify verifies domain ownership by creating a sample CNAME record in your hosted zone file. When ownership is verified, the domain is propagated onto an Amazon CloudFront distribution managed by the Amplify service, and domain activation is complete.

ssl domain management configured

Clients can now access the website using the custom domain name www.hugoonaplify.com.

access website via custom domain

 

Establishing a subdomain for development

You can create a development website in Amplify that is aligned to a development code branch in CodeCommit that enables testing changes prior to production release.

1. Access the AWS Cloud9 IDE and use the terminal to enter the following commands to create a development branch and push changes to CodeCommit using the current content from the main branch with a single content change:

git checkout -b development
git branch
git remote -v
git add *; git commit -am "first development commit";
git push -u origin development

2. Open and edit the file ~/environment/amplify-website/workshop/content/_index.en.md and change the string Update to Website to something else.

Alternatively, run the following Unix sed command from the terminal in AWS Cloud9 to make that content change:

sed -i 's/Update to Website/Update to Development/g' ~/environment/amplify-website/workshop/content/_index.en.md

3. Commit and push your change with the following code:

git add *; git commit -am "second development commit"; git push -u origin development

You now configure a subdomain in Amplify to allow developers to review changes.

4. Return to the amplify-website app.

5. Choose Connect branch.

connect branch

6. For Branch, choose the development branch you created and committed code into.

7. Choose Next.

add development branch

Amplify builds a second website based on the contents of the development branch. You can see the instance of your website matched to the development code branch on Amplify Console.

amplify two branches

8. Access the domain management menu item in your Amplify application to add a friendly subdomain.

9. Edit the domain and add a subdomain item with a name of your choice (for example, dev).

10. Associate it to the development branch containing the committed code and content changes.

11. Choose Add.

add dev domain

You can access the subdomain to verify the changes.

verify domain

Controlling access to development

You may wish to restrict access to new content as it’s deployed into the development website.

1. On Amplify Console, choose your application.

2. Choose Access control.

3. Under Access control settings, choose your preferred settings.

You have the option to restrict access globally or on a branch-by-branch basis. For this use case, we create a simple password protection for a user named developer on the development branch and site.

access control settings

 

Cleaning up

Unless you plan to keep the website you have constructed, you can quickly clean up provisioned assets and avoid any unnecessary costs.

1. On Amplify Console, select the app you created.

2. From the Actions drop-down menu, choose Delete app.

3. In the pop-up window, confirm the deletion.

4. On the CodeCommit dashboard, select the repository you created.

5. Choose Delete.

6. In the pop-up window, confirm the deletion.

7. On the AWS Cloud9 dashboard, select the IDE you created.

8. Choose Delete.

9. In the pop-up window, confirm the deletion.

 

Conclusion

Hugo is a powerful tool that enables accelerated delivery of content in a variety of formats including image portfolios, online resume presentation, blogging, and technical documentation. Amplify Console provides a convenient, easy-to-use, static web hosting service that can greatly accelerate delivery of static content.

When combining Hugo with Amplify Console, you can rapidly deploy websites in minutes with features such as friendly URLS, environments matched to code branches, and encryption (SSL). Visit gohugo.io to find out more about Hugo. For more information about how Amplify Console can help you rapidly deploy Hugo and other modern web applications, see the AWS Amplify Console User Guide.

Nigel Harris

Nigel Harris

Nigel Harris is an Enterprise Solutions Architect at Amazon Web Services. He works with AWS customers to provide guidance and technical assistance on AWS architectures.

Integrating AWS CloudFormation Guard into CI/CD pipelines

Post Syndicated from Sergey Voinich original https://aws.amazon.com/blogs/devops/integrating-aws-cloudformation-guard/

In this post, we discuss and build a managed continuous integration and continuous deployment (CI/CD) pipeline that uses AWS CloudFormation Guard to automate and simplify pre-deployment compliance checks of your AWS CloudFormation templates. This enables your teams to define a single source of truth for what constitutes valid infrastructure definitions, to be compliant with your company guidelines and streamline AWS resources’ deployment lifecycle.

We use the following AWS services and open-source tools to set up the pipeline:

Solution overview

The CI/CD workflow includes the following steps:

  1. A code change is committed and pushed to the CodeCommit repository.
  2. CodePipeline automatically triggers a CodeBuild job.
  3. CodeBuild spins up a compute environment and runs the phases specified in the buildspec.yml file:
  4. Clone the code from the CodeCommit repository (CloudFormation template, rule set for CloudFormation Guard, buildspec.yml file).
  5. Clone the code from the CloudFormation Guard repository on GitHub.
  6. Provision the build environment with necessary components (rust, cargo, git, build-essential).
  7. Download CloudFormation Guard release from GitHub.
  8. Run a validation check of the CloudFormation template.
  9. If the validation is successful, pass the control over to CloudFormation and deploy the stack. If the validation fails, stop the build job and print a summary to the build job log.

The following diagram illustrates this workflow.

Architecture Diagram

Architecture Diagram of CI/CD Pipeline with CloudFormation Guard

Prerequisites

For this walkthrough, complete the following prerequisites:

Creating your CodeCommit repository

Create your CodeCommit repository by running a create-repository command in the AWS CLI:

aws codecommit create-repository --repository-name cfn-guard-demo --repository-description "CloudFormation Guard Demo"

The following screenshot indicates that the repository has been created.

CodeCommit Repository

CodeCommit Repository has been created

Populating the CodeCommit repository

Populate your repository with the following artifacts:

  1. A buildspec.yml file. Modify the following code as per your requirements:
version: 0.2
env:
  variables:
    # Definining CloudFormation Teamplate and Ruleset as variables - part of the code repo
    CF_TEMPLATE: "cfn_template_file_example.yaml"
    CF_ORG_RULESET:  "cfn_guard_ruleset_example"
phases:
  install:
    commands:
      - apt-get update
      - apt-get install build-essential -y
      - apt-get install cargo -y
      - apt-get install git -y
  pre_build:
    commands:
      - echo "Setting up the environment for AWS CloudFormation Guard"
      - echo "More info https://github.com/aws-cloudformation/cloudformation-guard"
      - echo "Install Rust"
      - curl https://sh.rustup.rs -sSf | sh -s -- -y
  build:
    commands:
       - echo "Pull GA release from github"
       - echo "More info https://github.com/aws-cloudformation/cloudformation-guard/releases"
       - wget https://github.com/aws-cloudformation/cloudformation-guard/releases/download/1.0.0/cfn-guard-linux-1.0.0.tar.gz
       - echo "Extract cfn-guard"
       - tar xvf cfn-guard-linux-1.0.0.tar.gz .
  post_build:
    commands:
       - echo "Validate CloudFormation template with cfn-guard tool"
       - echo "More information https://github.com/aws-cloudformation/cloudformation-guard/blob/master/cfn-guard/README.md"
       - cfn-guard-linux/cfn-guard check --rule_set $CF_ORG_RULESET --template $CF_TEMPLATE --strict-checks
artifacts:
  files:
    - cfn_template_file_example.yaml
  name: guard_templates
  1. An example of a rule set file (cfn_guard_ruleset_example) for CloudFormation Guard. Modify the following code as per your requirements:
#CFN Guard rules set example

#List of multiple references
let allowed_azs = [us-east-1a,us-east-1b]
let allowed_ec2_instance_types = [t2.micro,t3.nano,t3.micro]
let allowed_security_groups = [sg-08bbcxxc21e9ba8e6,sg-07b8bx98795dcab2]

#EC2 Policies
AWS::EC2::Instance AvailabilityZone IN %allowed_azs
AWS::EC2::Instance ImageId == ami-0323c3dd2da7fb37d
AWS::EC2::Instance InstanceType IN %allowed_ec2_instance_types
AWS::EC2::Instance SecurityGroupIds == ["sg-07b8xxxsscab2"]
AWS::EC2::Instance SubnetId == subnet-0407a7casssse558

#EBS Policies
AWS::EC2::Volume AvailabilityZone == us-east-1a
AWS::EC2::Volume Encrypted == true
AWS::EC2::Volume Size == 50 |OR| AWS::EC2::Volume Size == 100
AWS::EC2::Volume VolumeType == gp2
  1. An example of a CloudFormation template file (.yaml). Modify the following code as per your requirements:
AWSTemplateFormatVersion: "2010-09-09"
Description: "EC2 instance with encrypted EBS volume for AWS CloudFormation Guard Testing"

Resources:

 EC2Instance:
    Type: AWS::EC2::Instance
    Properties:
      ImageId: 'ami-0323c3dd2da7fb37d'
      AvailabilityZone: 'us-east-1a'
      KeyName: "your-ssh-key"
      InstanceType: 't3.micro'
      SubnetId: 'subnet-0407a7xx68410e558'
      SecurityGroupIds:
        - 'sg-07b8b339xx95dcab2'
      Volumes:
         - 
          Device: '/dev/sdf'
          VolumeId: !Ref EBSVolume
      Tags:
       - Key: Name
         Value: cfn-guard-ec2

 EBSVolume:
   Type: AWS::EC2::Volume
   Properties:
     Size: 100
     AvailabilityZone: 'us-east-1a'
     Encrypted: true
     VolumeType: gp2
     Tags:
       - Key: Name
         Value: cfn-guard-ebs
   DeletionPolicy: Snapshot

Outputs:
  InstanceID:
    Description: The Instance ID
    Value: !Ref EC2Instance
  Volume:
    Description: The Volume ID
    Value: !Ref  EBSVolume
AWS CodeCommit

Optional CodeCommit Repository Structure

The following screenshot shows a potential CodeCommit repository structure.

Creating a CodeBuild project

Our CodeBuild project orchestrates around CloudFormation Guard and runs validation checks of our CloudFormation templates as a phase of the CI process.

  1. On the CodeBuild console, choose Build projects.
  2. Choose Create build projects.
  3. For Project name, enter your project name.
  4. For Description, enter a description.
AWS CodeBuild

Create CodeBuild Project

  1. For Source provider, choose AWS CodeCommit.
  2. For Repository, choose the CodeCommit repository you created in the previous step.
AWS CodeBuild

Define the source for your CodeBuild Project

To setup CodeBuild environment we will use managed image based on Ubuntu 18.04

  1. For Environment Image, select Managed image.
  2. For Operating system, choose Ubuntu.
  3. For Service role¸ select New service role.
  4. For Role name, enter your service role name.
CodeBuild Environment

Setup the environment, the OS image and other settings for the CodeBuild

  1. Leave the default settings for additional configuration, buildspec, batch configuration, artifacts, and logs.

You can also use CodeBuild with custom build environments to help you optimize billing and improve the build time.

Creating IAM roles and policies

Our CI/CD pipeline needs two AWS Identity and Access Management (IAM) roles to run properly: one role for CodePipeline to work with other resources and services, and one role for AWS CloudFormation to run the deployments that passed the validation check in the CodeBuild phase.

Creating permission policies

Create your permission policies first. The following code is the policy in JSON format for CodePipeline:

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "VisualEditor0",
            "Effect": "Allow",
            "Action": [
                "codecommit:UploadArchive",
                "codecommit:CancelUploadArchive",
                "codecommit:GetCommit",
                "codecommit:GetUploadArchiveStatus",
                "codecommit:GetBranch",
                "codestar-connections:UseConnection",
                "codebuild:BatchGetBuilds",
                "codedeploy:CreateDeployment",
                "codedeploy:GetApplicationRevision",
                "codedeploy:RegisterApplicationRevision",
                "codedeploy:GetDeploymentConfig",
                "codedeploy:GetDeployment",
                "codebuild:StartBuild",
                "codedeploy:GetApplication",
                "s3:*",
                "cloudformation:*",
                "ec2:*"
            ],
            "Resource": "*"
        },
        {
            "Sid": "VisualEditor1",
            "Effect": "Allow",
            "Action": "iam:PassRole",
            "Resource": "*",
            "Condition": {
                "StringEqualsIfExists": {
                    "iam:PassedToService": [
                        "cloudformation.amazonaws.com",
                        "ec2.amazonaws.com"
                    ]
                }
            }
        }
    ]
}

To create your policy for CodePipeline, run the following CLI command:

aws iam create-policy --policy-name CodePipeline-Cfn-Guard-Demo --policy-document file://CodePipelineServiceRolePolicy_example.json

Capture the policy ARN that you get in the output to use in the next steps.

The following code is the policy in JSON format for AWS CloudFormation:

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "VisualEditor0",
            "Effect": "Allow",
            "Action": "iam:CreateServiceLinkedRole",
            "Resource": "*",
            "Condition": {
                "StringEquals": {
                    "iam:AWSServiceName": [
                        "autoscaling.amazonaws.com",
                        "ec2scheduled.amazonaws.com",
                        "elasticloadbalancing.amazonaws.com"
                    ]
                }
            }
        },
        {
            "Sid": "VisualEditor1",
            "Effect": "Allow",
            "Action": [
                "s3:GetObjectAcl",
                "s3:GetObject",
                "cloudwatch:*",
                "ec2:*",
                "autoscaling:*",
                "s3:List*",
                "s3:HeadBucket"
            ],
            "Resource": "*"
        }
    ]
}

Create the policy for AWS CloudFormation by running the following CLI command:

aws iam create-policy --policy-name CloudFormation-Cfn-Guard-Demo --policy-document file://CloudFormationRolePolicy_example.json

Capture the policy ARN that you get in the output to use in the next steps.

Creating roles and trust policies

The following code is the trust policy for CodePipeline in JSON format:

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "codepipeline.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    }
  ]
}

Create your role for CodePipeline with the following CLI command:

aws iam create-role --role-name CodePipeline-Cfn-Guard-Demo-Role --assume-role-policy-document file://RoleTrustPolicy_CodePipeline.json

Capture the role name for the next step.

The following code is the trust policy for AWS CloudFormation in JSON format:

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "",
      "Effect": "Allow",
      "Principal": {
        "Service": "cloudformation.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    }
  ]
}

Create your role for AWS CloudFormation with the following CLI command:

aws iam create-role --role-name CF-Cfn-Guard-Demo-Role --assume-role-policy-document file://RoleTrustPolicy_CloudFormation.json

Capture the role name for the next step.

 

Finally, attach the permissions policies created in the previous step to the IAM roles you created:

aws iam attach-role-policy --role-name CodePipeline-Cfn-Guard-Demo-Role  --policy-arn "arn:aws:iam::<AWS Account Id >:policy/CodePipeline-Cfn-Guard-Demo"

aws iam attach-role-policy --role-name CF-Cfn-Guard-Demo-Role  --policy-arn "arn:aws:iam::<AWS Account Id>:policy/CloudFormation-Cfn-Guard-Demo"

Creating a pipeline

We can now create our pipeline to assemble all the components into one managed, continuous mechanism.

  1. On the CodePipeline console, choose Pipelines.
  2. Choose Create new pipeline.
  3. For Pipeline name, enter a name.
  4. For Service role, select Existing service role.
  5. For Role ARN, choose the service role you created in the previous step.
  6. Choose Next.
CodePipeline Setup

Setting Up CodePipeline environment

  1. In the Source section, for Source provider, choose AWS CodeCommit.
  2. For Repository name¸ enter your repository name.
  3. For Branch name, choose master.
  4. For Change detection options, select Amazon CloudWatch Events.
  5. Choose Next.
AWS CodePipeline Source

Adding CodeCommit to CodePipeline

  1. In the Build section, for Build provider, choose AWS CodeBuild.
  2. For Project name, choose the CodeBuild project you created.
  3. For Build type, select Single build.
  4. Choose Next.
CodePipeline Build Stage

Adding Build Project to Pipeline Stage

Now we will create a deploy stage in our CodePipeline to deploy CloudFormation templates that passed the CloudFormation Guard inspection in the CI stage.

  1. In the Deploy section, for Deploy provider, choose AWS CloudFormation.
  2. For Action mode¸ choose Create or update stack.
  3. For Stack name, choose any stack name.
  4. For Artifact name, choose BuildArtifact.
  5. For File name, enter the CloudFormation template name in your CodeCommit repository (In case of our demo it is cfn_template_file_example.yaml).
  6. For Role name, choose the role you created earlier for CloudFormation.
CodePipeline - Deploy Stage

Adding deploy stage to CodePipeline

22. In the next step review your selections for the pipeline to be created. The stages and action providers in each stage are shown in the order that they will be created. Click Create pipeline. Our CodePipeline is ready.

Validating the CI/CD pipeline operation

Our CodePipeline has two basic flows and outcomes. If the CloudFormation template complies with our CloudFormation Guard rule set file, the resources in the template deploy successfully (in our use case, we deploy an EC2 instance with an encrypted EBS volume).

CloudFormation Deployed

CloudFormation Console

If our CloudFormation template doesn’t comply with the policies specified in our CloudFormation Guard rule set file, our CodePipeline stops at the CodeBuild step and you see an error in the build job log indicating the resources that are non-compliant:

[EBSVolume] failed because [Encrypted] is [false] and the permitted value is [true]
[EC2Instance] failed because [t3.2xlarge] is not in [t2.micro,t3.nano,t3.micro] for [InstanceType]
Number of failures: 2

Note: To demonstrate the above functionality I changed my CloudFormation template to use unencrypted EBS volume and switched the EC2 instance type to t3.2xlarge which do not adhere to the rules that we specified in the Guard rule set file

Cleaning up

To avoid incurring future charges, delete the resources that we have created during the walkthrough:

  • CloudFormation stack resources that were deployed by the CodePipeline
  • CodePipeline that we have created
  • CodeBuild project
  • CodeCommit repository

Conclusion

In this post, we covered how to integrate CloudFormation Guard into CodePipeline and fully automate pre-deployment compliance checks of your CloudFormation templates. This allows your teams to have an end-to-end automated CI/CD pipeline with minimal operational overhead and stay compliant with your organizational infrastructure policies.

Complete CI/CD with AWS CodeCommit, AWS CodeBuild, AWS CodeDeploy, and AWS CodePipeline

Post Syndicated from Nitin Verma original https://aws.amazon.com/blogs/devops/complete-ci-cd-with-aws-codecommit-aws-codebuild-aws-codedeploy-and-aws-codepipeline/

Many organizations have been shifting to DevOps practices, which is the combination of cultural philosophies, practices, and tools that increases your organization’s ability to deliver applications and services at high velocity; for example, evolving and improving products at a faster pace than organizations using traditional software development and infrastructure management processes.

DevOps-Feedback-Flow

An integral part of DevOps is adopting the culture of continuous integration and continuous delivery/deployment (CI/CD), where a commit or change to code passes through various automated stage gates, all the way from building and testing to deploying applications, from development to production environments.

This post uses the AWS suite of CI/CD services to compile, build, and install a version-controlled Java application onto a set of Amazon Elastic Compute Cloud (Amazon EC2) Linux instances via a fully automated and secure pipeline. The goal is to promote a code commit or change to pass through various automated stage gates all the way from development to production environments, across AWS accounts.

AWS services

This solution uses the following AWS services:

  • AWS CodeCommit – A fully-managed source control service that hosts secure Git-based repositories. CodeCommit makes it easy for teams to collaborate on code in a secure and highly scalable ecosystem. This solution uses CodeCommit to create a repository to store the application and deployment codes.
  • AWS CodeBuild – A fully managed continuous integration service that compiles source code, runs tests, and produces software packages that are ready to deploy, on a dynamically created build server. This solution uses CodeBuild to build and test the code, which we deploy later.
  • AWS CodeDeploy – A fully managed deployment service that automates software deployments to a variety of compute services such as Amazon EC2, AWS Fargate, AWS Lambda, and your on-premises servers. This solution uses CodeDeploy to deploy the code or application onto a set of EC2 instances running CodeDeploy agents.
  • AWS CodePipeline – A fully managed continuous delivery service that helps you automate your release pipelines for fast and reliable application and infrastructure updates. This solution uses CodePipeline to create an end-to-end pipeline that fetches the application code from CodeCommit, builds and tests using CodeBuild, and finally deploys using CodeDeploy.
  • AWS CloudWatch Events – An AWS CloudWatch Events rule is created to trigger the CodePipeline on a Git commit to the CodeCommit repository.
  • Amazon Simple Storage Service (Amazon S3) – An object storage service that offers industry-leading scalability, data availability, security, and performance. This solution uses an S3 bucket to store the build and deployment artifacts created during the pipeline run.
  • AWS Key Management Service (AWS KMS) – AWS KMS makes it easy for you to create and manage cryptographic keys and control their use across a wide range of AWS services and in your applications. This solution uses AWS KMS to make sure that the build and deployment artifacts stored on the S3 bucket are encrypted at rest.

Overview of solution

This solution uses two separate AWS accounts: a dev account (111111111111) and a prod account (222222222222) in Region us-east-1.

We use the dev account to deploy and set up the CI/CD pipeline, along with the source code repo. It also builds and tests the code locally and performs a test deploy.

The prod account is any other account where the application is required to be deployed from the pipeline in the dev account.

In summary, the solution has the following workflow:

  • A change or commit to the code in the CodeCommit application repository triggers CodePipeline with the help of a CloudWatch event.
  • The pipeline downloads the code from the CodeCommit repository, initiates the Build and Test action using CodeBuild, and securely saves the built artifact on the S3 bucket.
  • If the preceding step is successful, the pipeline triggers the Deploy in Dev action using CodeDeploy and deploys the app in dev account.
  • If successful, the pipeline triggers the Deploy in Prod action using CodeDeploy and deploys the app in the prod account.

The following diagram illustrates the workflow:

cicd-overall-flow

 

Failsafe deployments

This example of CodeDeploy uses the IN_PLACE type of deployment. However, to minimize the downtime, CodeDeploy inherently supports multiple deployment strategies. This example makes use of following features: rolling deployments and automatic rollback.

CodeDeploy provides the following three predefined deployment configurations, to minimize the impact during application upgrades:

  • CodeDeployDefault.OneAtATime – Deploys the application revision to only one instance at a time
  • CodeDeployDefault.HalfAtATime – Deploys to up to half of the instances at a time (with fractions rounded down)
  • CodeDeployDefault.AllAtOnce – Attempts to deploy an application revision to as many instances as possible at once

For OneAtATime and HalfAtATime, CodeDeploy monitors and evaluates instance health during the deployment and only proceeds to the next instance or next half if the previous deployment is healthy. For more information, see Working with deployment configurations in CodeDeploy.

You can also configure a deployment group or deployment to automatically roll back when a deployment fails or when a monitoring threshold you specify is met. In this case, the last known good version of an application revision is automatically redeployed after a failure with the new application version.

How CodePipeline in the dev account deploys apps in the prod account

In this post, the deployment pipeline using CodePipeline is set up in the dev account, but it has permissions to deploy the application in the prod account. We create a special cross-account role in the prod account, which has the following:

  • Permission to use fetch artifacts (app) rom Amazon S3 and deploy it locally in the account using CodeDeploy
  • Trust with the dev account where the pipeline runs

CodePipeline in the dev account assumes this cross-account role in the prod account to deploy the app.

Do I need multiple accounts?
If you answer “yes” to any of the following questions you should consider creating more AWS accounts:

  • Does your business require administrative isolation between workloads? Administrative isolation by account is the most straightforward way to grant independent administrative groups different levels of administrative control over AWS resources based on workload, development lifecycle, business unit (BU), or data sensitivity.
  • Does your business require limited visibility and discoverability of workloads? Accounts provide a natural boundary for visibility and discoverability. Workloads cannot be accessed or viewed unless an administrator of the account enables access to users managed in another account.
  • Does your business require isolation to minimize blast radius? Separate accounts help define boundaries and provide natural blast-radius isolation to limit the impact of a critical event such as a security breach, an unavailable AWS Region or Availability Zone, account suspensions, and so on.
  • Does your business require a particular workload to operate within AWS service limits without impacting the limits of another workload? You can use AWS account service limits to impose restrictions on a business unit, development team, or project. For example, if you create an AWS account for a project group, you can limit the number of Amazon Elastic Compute Cloud (Amazon EC2) or high performance computing (HPC) instances that can be launched by the account.
  • Does your business require strong isolation of recovery or auditing data? If regulatory requirements require you to control access and visibility to auditing data, you can isolate the data in an account separate from the one where you run your workloads (for example, by writing AWS CloudTrail logs to a different account).

Prerequisites

For this walkthrough, you should complete the following prerequisites:

  1. Have access to at least two AWS accounts. For this post, the dev and prod accounts are in us-east-1. You can search and replace the Region and account IDs in all the steps and sample AWS Identity and Access Management (IAM) policies in this post.
  2. Ensure you have EC2 Linux instances with the CodeDeploy agent installed in all the accounts or VPCs where the sample Java application is to be installed (dev and prod accounts).
    • To manually create EC2 instances with CodeDeploy agent, refer Create an Amazon EC2 instance for CodeDeploy (AWS CLI or Amazon EC2 console). Keep in mind the following:
      • CodeDeploy uses EC2 instance tags to identify instances to use to deploy the application, so it’s important to set tags appropriately. For this post, we use the tag name Application with the value MyWebApp to identify instances where the sample app is installed.
      • Make sure to use an EC2 instance profile (AWS Service Role for EC2 instance) with permissions to read the S3 bucket containing artifacts built by CodeBuild. Refer to the IAM role cicd_ec2_instance_profile in the table Roles-1 below for the set of permissions required. You must update this role later with the actual KMS key and S3 bucket name created as part of the deployment process.
    • To create EC2 Linux instances via AWS Cloudformation, download and launch the AWS CloudFormation template from the GitHub repo: cicd-ec2-instance-with-codedeploy.json
      • This deploys an EC2 instance with AWS CodeDeploy agent.
      • Inputs required:
        • AMI : Enter name of the Linux AMI in your region. (This template has been tested with latest Amazon Linux 2 AMI)
        • Ec2SshKeyPairName: Name of an existing SSH KeyPair
        • Ec2IamInstanceProfile: Name of an existing EC2 instance profile. Note: Use the permissions in the template cicd_ec2_instance_profile_policy.json to create the policy for this EC2 Instance Profile role. You must update this role later with the actual KMS key and S3 bucket name created as part of the deployment process.
        • Update the EC2 instance Tags per your need.
  3. Ensure required IAM permissions. Have an IAM user with an IAM Group or Role that has the following access levels or permissions:

    AWS Service / Components Access LevelAccountsComments
    AWS CodeCommitFull (admin)DevUse AWS managed policy AWSCodeCommitFullAccess.
    AWS CodePipelineFull (admin)DevUse AWS managed policy AWSCodePipelineFullAccess.
    AWS CodeBuildFull (admin)DevUse AWS managed policy AWSCodeBuildAdminAccess.
    AWS CodeDeployFull (admin)All

    Use AWS managed policy

    AWSCodeDeployFullAccess.

    Create S3 bucket and bucket policiesFull (admin)DevIAM policies can be restricted to specific bucket.
    Create KMS key and policiesFull (admin)DevIAM policies can be restricted to specific KMS key.
    AWS CloudFormationFull (admin)Dev

    Use AWS managed policy

    AWSCloudFormationFullAccess.

    Create and pass IAM rolesFull (admin)AllAbility to create IAM roles and policies can be restricted to specific IAM roles or actions. Also, an admin team with IAM privileges could create all the required roles. Refer to the IAM table Roles-1 below.
    AWS Management Console and AWS CLIAs per IAM User permissionsAllTo access suite of Code services.

     

  4. Create Git credentials for CodeCommit in the pipeline account (dev account). AWS allows you to either use Git credentials or associate SSH public keys with your IAM user. For this post, use Git credentials associated with your IAM user (created in the previous step). For instructions on creating a Git user, see Create Git credentials for HTTPS connections to CodeCommit. Download and save the Git credentials to use later for deploying the application.
  5. Create all AWS IAM roles as per the following tables (Roles-1). Make sure to update the following references in all the given IAM roles and policies:
    • Replace the sample dev account (111111111111) and prod account (222222222222) with actual account IDs
    • Replace the S3 bucket mywebapp-codepipeline-bucket-us-east-1-111111111111 with your preferred bucket name.
    • Replace the KMS key ID key/82215457-e360-47fc-87dc-a04681c91ce1 with your KMS key ID.

Table: Roles-1

ServiceIAM Role TypeAccountIAM Role Name (used for this post)IAM Role Policy (required for this post)IAM Role Permissions
AWS CodePipelineService roleDev (111111111111)

cicd_codepipeline_service_role

Select Another AWS Account and use this account as the account ID to create the role.

Later update the trust as follows:
“Principal”: {“Service”: “codepipeline.amazonaws.com”},

Use the permissions in the template cicd_codepipeline_service_policy.json to create the policy for this role.This CodePipeline service role has appropriate permissions to the following services in a local account:

  • Manage CodeCommit repos
  • Initiate build via CodeBuild
  • Create deployments via CodeDeploy
  • Assume cross-account CodeDeploy role in prod account to deploy the application
AWS CodePipelineIAM roleDev (111111111111)

cicd_codepipeline_trigger_cwe_role

Select Another AWS Account and use this account as the account ID to create the role.

Later update the trust as follows:
“Principal”: {“Service”: “events.amazonaws.com”},

Use the permissions in the template cicd_codepipeline_trigger_cwe_policy.json to create the policy for this role.CodePipeline uses this role to set a CloudWatch event to trigger the pipeline when there is a change or commit made to the code repository.
AWS CodePipelineIAM roleProd (222222222222)

cicd_codepipeline_cross_ac_role

Choose Another AWS Account and use the dev account as the trusted account ID to create the role.

Use the permissions in the template cicd_codepipeline_cross_ac_policy.json to create the policy for this role.This role is created in the prod account and has permissions to use CodeDeploy and fetch from Amazon S3. The role is assumed by CodePipeline from the dev account to deploy the app in the prod account. Make sure to set up trust with the dev account for this IAM role on the Trust relationships tab.
AWS CodeBuildService roleDev (111111111111)

cicd_codebuild_service_role

Choose CodeBuild as the use case to create the role.

Use the permissions in the template cicd_codebuild_service_policy.json to create the policy for this role.This CodeBuild service role has appropriate permissions to:

  • The S3 bucket to store artefacts
  • Stream logs to CloudWatch Logs
  • Pull code from CodeCommit
  • Get the SSM parameter for CodeBuild
  • Miscellaneous Amazon EC2 permissions
AWS CodeDeployService roleDev (111111111111) and Prod (222222222222)

cicd_codedeploy_service_role

Choose CodeDeploy as the use case to create the role.

Use the built-in AWS managed policy AWSCodeDeployRole for this role.This CodeDeploy service role has appropriate permissions to:

  • Miscellaneous Amazon EC2 Auto Scaling
  • Miscellaneous Amazon EC2
  • Publish Amazon SNS topic
  • AWS CloudWatch metrics
  • Elastic Load Balancing
EC2 InstanceService role for EC2 instance profileDev (111111111111) and Prod (222222222222)

cicd_ec2_instance_profile

Choose EC2 as the use case to create the role.

Use the permissions in the template cicd_ec2_instance_profile_policy.json to create the policy for this role.

This is set as the EC2 instance profile for the EC2 instances where the app is deployed. It has appropriate permissions to fetch artefacts from Amazon S3 and decrypt contents using the KMS key.

 

You must update this role later with the actual KMS key and S3 bucket name created as part of the deployment process.

 

 

Setting up the prod account

To set up the prod account, complete the following steps:

  1. Download and launch the AWS CloudFormation template from the GitHub repo: cicd-codedeploy-prod.json
    • This deploys the CodeDeploy app and deployment group.
    • Make sure that you already have a set of EC2 Linux instances with the CodeDeploy agent installed in all the accounts where the sample Java application is to be installed (dev and prod accounts). If not, refer back to the Prerequisites section.
  2. Update the existing EC2 IAM instance profile (cicd_ec2_instance_profile):
    • Replace the S3 bucket name mywebapp-codepipeline-bucket-us-east-1-111111111111 with your S3 bucket name (the one used for the CodePipelineArtifactS3Bucket variable when you launched the CloudFormation template in the dev account).
    • Replace the KMS key ARN arn:aws:kms:us-east-1:111111111111:key/82215457-e360-47fc-87dc-a04681c91ce1 with your KMS key ARN (the one created as part of the CloudFormation template launch in the dev account).

Setting up the dev account

To set up your dev account, complete the following steps:

  1. Download and launch the CloudFormation template from the GitHub repo: cicd-aws-code-suite-dev.json
    The stack deploys the following services in the dev account:

    • CodeCommit repository
    • CodePipeline
    • CodeBuild environment
    • CodeDeploy app and deployment group
    • CloudWatch event rule
    • KMS key (used to encrypt the S3 bucket)
    • S3 bucket and bucket policy
  2. Use following values as inputs to the CloudFormation template. You should have created all the existing resources and roles beforehand as part of the prerequisites.

    KeyExample ValueComments
    CodeCommitWebAppRepoMyWebAppRepoName of the new CodeCommit repository for your web app.
    CodeCommitMainBranchNamemasterMain branch name on your CodeCommit repository. Default is master (which is pushed to the prod environment).
    CodeBuildProjectNameMyCBWebAppProjectName of the new CodeBuild environment.
    CodeBuildServiceRolearn:aws:iam::111111111111:role/cicd_codebuild_service_roleARN of an existing IAM service role to be associated with CodeBuild to build web app code.
    CodeDeployAppMyCDWebAppName of the new CodeDeploy app to be created for your web app. We assume that the CodeDeploy app name is the same in all accounts where deployment needs to occur (in this case, the prod account).
    CodeDeployGroupDevMyCICD-Deployment-Group-DevName of the new CodeDeploy deployment group to be created in the dev account.
    CodeDeployGroupProdMyCICD-Deployment-Group-ProdName of the existing CodeDeploy deployment group in prod account. Created as part of the prod account setup.

    CodeDeployGroupTagKey

     

    ApplicationName of the tag key that CodeDeploy uses to identify the existing EC2 fleet for the deployment group to use.

    CodeDeployGroupTagValue

     

    MyWebAppValue of the tag that CodeDeploy uses to identify the existing EC2 fleet for the deployment group to use.
    CodeDeployConfigNameCodeDeployDefault.OneAtATime

    Desired Code Deploy config name. Valid options are:

    CodeDeployDefault.OneAtATime

    CodeDeployDefault.HalfAtATime

    CodeDeployDefault.AllAtOnce

    For more information, see Deployment configurations on an EC2/on-premises compute platform.

    CodeDeployServiceRolearn:aws:iam::111111111111:role/cicd_codedeploy_service_role

    ARN of an existing IAM service role to be associated with CodeDeploy to deploy web app.

     

    CodePipelineNameMyWebAppPipelineName of the new CodePipeline to be created for your web app.
    CodePipelineArtifactS3Bucketmywebapp-codepipeline-bucket-us-east-1-111111111111Name of the new S3 bucket to be created where artifacts for the pipeline are stored for this web app.
    CodePipelineServiceRolearn:aws:iam::111111111111:role/cicd_codepipeline_service_roleARN of an existing IAM service role to be associated with CodePipeline to deploy web app.
    CodePipelineCWEventTriggerRolearn:aws:iam::111111111111:role/cicd_codepipeline_trigger_cwe_roleARN of an existing IAM role used to trigger the pipeline you named earlier upon a code push to the CodeCommit repository.
    CodeDeployRoleXAProdarn:aws:iam::222222222222:role/cicd_codepipeline_cross_ac_roleARN of an existing IAM role in the cross-account for CodePipeline to assume to deploy the app.

    It should take 5–10 minutes for the CloudFormation stack to complete. When the stack is complete, you can see that CodePipeline has built the pipeline (MyWebAppPipeline) with the CodeCommit repository and CodeBuild environment, along with actions for CodeDeploy in local (dev) and cross-account (prod). CodePipeline should be in a failed state because your CodeCommit repository is empty initially.

  3. Update the existing Amazon EC2 IAM instance profile (cicd_ec2_instance_profile):
    • Replace the S3 bucket name mywebapp-codepipeline-bucket-us-east-1-111111111111 with your S3 bucket name (the one used for the CodePipelineArtifactS3Bucket parameter when launching the CloudFormation template in the dev account).
    • Replace the KMS key ARN arn:aws:kms:us-east-1:111111111111:key/82215457-e360-47fc-87dc-a04681c91ce1 with your KMS key ARN (the one created as part of the CloudFormation template launch in the dev account).

Deploying the application

You’re now ready to deploy the application via your desktop or PC.

  1. Assuming you have the required HTTPS Git credentials for CodeCommit as part of the prerequisites, clone the CodeCommit repo that was created earlier as part of the dev account setup. Obtain the name of the CodeCommit repo to clone, from the CodeCommit console. Enter the Git user name and password when prompted. For example:
    $ git clone https://git-codecommit.us-east-1.amazonaws.com/v1/repos/MyWebAppRepo my-web-app-repo
    Cloning into 'my-web-app-repo'...
    Username for 'https://git-codecommit.us-east-1.amazonaws.com/v1/repos/MyWebAppRepo': xxxx
    Password for 'https://[email protected]/v1/repos/MyWebAppRepo': xxxx

  2. Download the MyWebAppRepo.zip file containing a sample Java application, CodeBuild configuration to build the app, and CodeDeploy config file to deploy the app.
  3. Copy and unzip the file into the my-web-app-repo Git repository folder created earlier.
  4. Assuming this is the sample app to be deployed, commit these changes to the Git repo. For example:
    $ cd my-web-app-repo 
    $ git add -A 
    $ git commit -m "initial commit" 
    $ git push

For more information, see Tutorial: Create a simple pipeline (CodeCommit repository).

After you commit the code, the CodePipeline will be triggered and all the stages and your application should be built, tested, and deployed all the way to the production environment!

The following screenshot shows the entire pipeline and its latest run:

 

Troubleshooting

To troubleshoot any service-related issues, see the following:

Cleaning up

To avoid incurring future charges or to remove any unwanted resources, delete the following:

  • EC2 instance used to deploy the application
  • CloudFormation template to remove all AWS resources created through this post
  •  IAM users or roles

Conclusion

Using this solution, you can easily set up and manage an entire CI/CD pipeline in AWS accounts using the native AWS suite of CI/CD services, where a commit or change to code passes through various automated stage gates all the way from building and testing to deploying applications, from development to production environments.

FAQs

In this section, we answer some frequently asked questions:

  1. Can I expand this deployment to more than two accounts?
    • Yes. You can deploy a pipeline in a tooling account and use dev, non-prod, and prod accounts to deploy code on EC2 instances via CodeDeploy. Changes are required to the templates and policies accordingly.
  2. Can I ensure the application isn’t automatically deployed in the prod account via CodePipeline and needs manual approval?
  3. Can I use a CodeDeploy group with an Auto Scaling group?
    • Yes. Minor changes required to the CodeDeploy group creation process. Refer to the following Solution Variations section for more information.
  4. Can I use this pattern for EC2 Windows instances?

Solution variations

In this section, we provide a few variations to our solution:

Author bio

author-pic

 Nitin Verma

Nitin is currently a Sr. Cloud Architect in the AWS Managed Services(AMS). He has many years of experience with DevOps-related tools and technologies. Speak to your AWS Managed Services representative to deploy this solution in AMS!

 

Federated multi-account access for AWS CodeCommit

Post Syndicated from Steven David original https://aws.amazon.com/blogs/devops/federated-multi-account-access-for-aws-codecommit/

As a developer working in a large enterprise or for a group that supports multiple products, you may often find yourself accessing Git repositories from different organizations. Currently, to securely access multiple Git repositories in other popular tools, you need SSH keys, GPG keys, a Git credential helper, and a significant amount of setup by the developer hoping to commit to the repository. In addition, administrators must be aware of the various ways to remove all the permissions granted to the developer.

AWS CodeCommit is a managed source control service. Combined with AWS Single Sign-On (AWS SSO) and git-remote-codecommit, you can quickly and easily switch between repositories owned by different groups or even managed in separate AWS accounts. You can control those permissions with AWS Identity and Access Management (IAM) roles to allow for the automated removal of the user’s permission as part of their off-boarding procedure for the company.

This post demonstrates how to grant access to various CodeCommit repositories without access keys.

Solution overview

In this solution, the user’s access is controlled with federated login via AWS SSO. You can grant that access using AWS native authentication, which eliminates the need for a Git credential helper, SSH, and GPG keys. In addition, this allows the administrator to control access by adding or removing the user’s IAM role access.

The following diagram shows the code access pattern you can achieve by using AWS SSO and git-remote-codecommit to access CodeCommit across multiple accounts.

git-remote-codecommit overview diagram

Prerequisites

To complete this tutorial, you must have the following prerequisites:

  • CodeCommit repositories in two separate accounts. For instructions, see Create an AWS CodeCommit repository.
  • AWS SSO set up to handle access federation. For instructions, see Enable AWS SSO.
  • Python 3.6 or higher installed on the developer’s local machine. To download and install the latest version of Python, see the Python website.
    • On a Mac, it can be difficult to ensure that you’re using Python 3.6, because 2.7 is installed and required by the OS. For more information about checking your version of Python, see the following GitHub repo.
  • Git installed on your local machine. To download Git, see Git Downloads.
  • PIP version 9.0.3 or higher installed on your local machine. For instructions, see Installation on the PIP website.

Configuring AWS SSO role permissions

As your first step, you should make sure each AWS SSO role has the correct permissions to access the CodeCommit repositories.

  1. On the AWS SSO console, choose AWS Accounts.
  2. On the Permissions Sets tab, choose Create permission set.
  3. On the Create a new permission set page, select Create a custom permission set.
  4. For Name, enter CodeCommitDeveloperAccess.
  5. For Description, enter This permission set gives the user access to work with CodeCommit for common developer tasks.
  6. For Session duration, choose 12 hours.

Create new permissions

  1. For Relay state, leave blank.
  2. For What policies do you want to include in your permissions set?, select Create a custom permissions policy.
  3. Use the following policy:
{
    "Version": "2012-10-17",
    "Statement": [
        {
             "Sid": "CodeCommitDeveloperAccess",
             "Effect": "Allow",
             "Action": [
                 "codecommit:GitPull",
                 "codecommit:GitPush",
                 "codecommit:ListRepositories"
             ],
             "Resource": "*"
         }
      ]
}

The preceding code grants access to all the repositories in the account. You could limit to a specific list of repositories, if needed.

  1. Choose Create.

Creating your AWS SSO group

Next, we need to create the SSO Group we want to assign the permissions.

  1. On the AWS SSO console, choose Groups.
  2. Choose create group.
  3. For Group name, enter CodeCommitAccessGroup.
  4. For Description, enter Users assigned to this group will have access to work with CodeCommit.

Create Group

  1. Choose Create.

Assigning your group and permission sets to your accounts

Now that we have our group and permission sets created, we need to assign them to the accounts with the CodeCommit repositories.

  1. On the AWS SSO console, choose AWS Accounts.
  2. Choose the account you want to use in your new group.
  3. On the account Details page, choose Assign Users.
  4. On the Select users or groups page, choose Group.
  5. Select CodeCommitGroup.
  6. Choose NEXT: Permission Sets.
  7. Choose the CodeCommitDeveloperAccess permission set and choose Finish

Assign Users

  1. Choose Proceed to Accounts to return to the AWS SSO console.
  2. Repeat these steps for each account that has a CodeCommit repository.

Assigning a user to the group

To wrap up our AWS SSO configuration, we need to assign the user to the group.

  1. On the AWS SSO console, choose Groups.
  2. Choose CodeCommitAccessGroup.
  3. Choose Add user.
  4. Select all the users you want to add to this group.
  5. Choose Add user(s).
  6. From the navigation pane, choose Settings.
  7. Record the user portal URL to use later.

Enabling AWS SSO login

The second main feature we want to enable is AWS SSO login from the AWS Command Line Interface (AWS CLI) on our local machine.

  1. Run the following command from the AWS CLI. You need to enter the user portal URL from the previous step and tell the CLI what Region has your AWS SSO deployment. The following code example has AWS SSO deployed in us-east-1:
aws configure sso 
SSO start URL [None]: https://my-sso-portal.awsapps.com/start 
SSO region [None]:us-east-1

You’re redirected to your default browser.

  1. Sign in to AWS SSO.

When you return to the CLI, you must choose your account. See the following code:

There are 2 AWS accounts available to you.
> DeveloperResearch, [email protected] (123456789123)
DeveloperTrading, [email protected] (123456789444)
  1. Choose the account with your CodeCommit repository.

Next, you see the permissions sets available to you in the account you just picked. See the following code:

Using the account ID 123456789123
There are 2 roles available to you.
> ReadOnly
CodeCommitDeveloperAccess
  1. Choose the CodeCommitDeveloperAccess permissions.

You now see the options for the profile you’re creating for these AWS SSO permissions:

CLI default client Region [None]: us-west-2<ENTER>
CLI default output format [None]: json<ENTER>
CLI profile name [123456789011_ReadOnly]: DevResearch-profile<ENTER>
  1. Repeat these steps for each AWS account you want to access.

For example, I create DevResearch-profile for my DeveloperResearch account and DevTrading-profile for the DeveloperTrading account.

Installing git-remote-codecommit

Finally, we want to install the recently released git-remote-codecommit and start working with our Git repositories.

  1. Install git-remote-codecommit with the following code:
pip install git-remote-codecommit

With some operating systems, you might need to run the following code instead:

sudo pip install git-remote-codecommit
  1. Clone the code from one of your repositories. For this use case, my CodeCommit repository is named MyDemoRepo. See the following code:
git clone codecommit://[email protected] my-demo-repo
  1. After that solution is cloned locally, you can copy code from another federated profile by simply changing to that profile and referencing the repository in that account named MyDemoRepo2. See the following code:
git clone codecommit://[email protected] my-demo-repo2

Cleaning up

At the end of this tutorial, complete the following steps to undo the changes you made to your local system and AWS:

  1. On the AWS SSO console, remove the user from the group you created, so any future access requests fail.
  2. To remove the AWS SSO login profiles, open the local config file with your preferred tool and remove the profile.
    1. The config file is located at %UserProfile%/.aws/config for Windows and $HOME/.aws/config for Linux or Mac.
  3. To remove git-remote-codecommit, run the PIP uninstall command:
pip uninstall git-remote-codecommit

With some operating systems, you might need to run the following code instead:

sudo pip uninstall git-remote-codecommit

Conclusion

This post reviewed an approach to securely switch between repositories and work without concerns about one Git repository’s security credentials interfering with the other Git repository. User access is controlled by the permissions assigned to the profile via federated roles from AWS SSO. This allows for access control to CodeCommit without needing access keys.

About the Author

Steven David
Steven David

Steven David is an Enterprise Solutions Architect at Amazon Web Services. He helps customers build secure and scalable solutions. He has background in application development and containers.

Migrating Subversion repositories to AWS CodeCommit

Post Syndicated from Iftikhar khan original https://aws.amazon.com/blogs/devops/migrating-subversion-repositories-aws-codecommit/

In this post, we walk you through migrating Subversion (SVN) repositories to AWS CodeCommit. But before diving into the migration, we do a brief review of SVN and Git based systems such as CodeCommit.

About SVN

SVN is an open-source version control system. Founded in 2000 by CollabNet, Inc., it was originally designed to be a better Concurrent Versions System (CVS), and is being developed as a project of the Apache Software Foundation. SVN is the third implementation of a revision control system: Revision Control System (RCS), then CVS, and finally SVN.

SVN is the leader in centralized version control. Systems such as CVS and SVN have a single remote server of versioned data with individual users operating locally against copies of that data’s version history. Developers commit their changes directly to that central server repository.

All the files and commit history information are stored in a central server, but working on a single central server means more chances of having a single point of failure. SVN offers few offline access features; a developer has to connect to the SVN server to make a commit that makes commits slower. The single point of failure, security, maintenance, and scaling SVN infrastructure are the major concerns for any organization.

About DVCS

Distributed Version Control Systems (DVCSs) address the concerns and challenges of SVN. In a DVCS (such as Git or Mercurial), you don’t just check out the latest snapshot of the files; rather, you fully mirror the repository, including its full history. If any server dies, and these systems are collaborating via that server, you can copy any of the client repositories back up to the server to restore it. Every clone is a full backup of all the data.

DVCs such as Git are built with speed, non-linear development, simplicity, and efficiency in mind. It works very efficiently with large projects, which is one of the biggest factors why customers find it popular.

A significant reason to migrate to Git is branching and merging. Creating a branch is very lightweight, which allows you to work faster and merge easily.

About CodeCommit

CodeCommit is a version control system that is fully managed by AWS. CodeCommit can host secure and highly scalable private Git repositories, which eliminates the need to operate your source control system and scale its infrastructure. You can use it to securely store anything, from source code to binaries. CodeCommit features like collaboration, encryption, and easy access control make it a great choice. It works seamlessly with most existing Git tools and provides free private repositories.

Understanding the repository structure of SVN and Git

SVNs have a tree model with one branch where the revisions are stored, whereas Git uses a graph structure and each commit is a node that knows its parent. When comparing the two, consider the following features:

  • Trunk – An SVN trunk is like a primary branch in a Git repository, and contains tested and stable code.
  • Branches – For SVN, branches are treated as separate entities with its own history. You can merge revisions between branches, but they’re different entities. Because of its centralized nature, all branches are remote. In Git, branches are very cheap; it’s a pointer for a particular commit on the tree. It can be local or be pushed to a remote repository for collaboration.
  • Tags – A tag is just another folder in the main repository in SVN and remains static. In Git, a tag is a static pointer to a specific commit.
  • Commits – To commit in SVN, you need access to the main repository and it creates a new revision in the remote repository. On Git, the commit happens locally, so you don’t need to have access to the remote. You can commit the work locally and then push all the commits at one time.

So far, we have covered how SVN is different from Git-based version control systems and illustrated the layout of SVN repositories. Now it’s time to look at how to migrate SVN repositories to CodeCommit.

Planning for migration

Planning is always a good thing. Before starting your migration, consider the following:

  • Identify SVN branches to migrate.
  • Come up with a branching strategy for CodeCommit and document how you can map SVN branches.
  • Prepare build, test scripts, and test cases for system testing.

If the size of the SVN repository is big enough, consider running all migration commands on the SVN server. This saves time because it eliminates network bottlenecks.

Migrating the SVN repository to CodeCommit

When you’re done with the planning aspects, it’s time to start migrating your code.

Prerequisites

You must have the AWS Command Line Interface (AWS CLI) with an active account and Git installed on the machine that you’re planning to use for migration.

Listing all SVN users for an SVN repository
SVN uses a user name for each commit, whereas Git stores the real name and email address. In this step, we map SVN users to their corresponding Git names and email.

To list all the SVN users, run the following PowerShell command from the root of your local SVN checkout:

svn.exe log --quiet | ? { $_ -notlike '-*' } | % { "{0} = {0} &amp;amp;lt;{0}&amp;amp;gt;" -f ($_ -split ' \| ')[1] } | Select-Object -Unique | Out-File 'authors-transform.txt'

On a Linux based machine, run the following command from the root of your local SVN checkout:

svn log -q | awk -F '|' '/^r/ {sub("^ ", "", $2); sub(" $", "", $2); print $2" = "$2" &lt;"$2"&gt;"}' | sort -u &gt; authors-transform.txt

The authors-transform.txt file content looks like the following code:

ikhan = ikhan <ikhan>
foobar= foobar <foobar>
abob = abob <abob>

After you transform the SVN user to a Git user, it should look like the following code:

ikhan = ifti khan <[email protected]>
fbar = foo bar <[email protected]>
abob = aaron bob <[email protected]>

Importing SVN contents to a Git repository

The next step in the migration from SVN to Git is to import the contents of the SVN repository into a new Git repository. We do this with the git svn utility, which is included with most Git distributions. The conversion process can take a significant amount of time for larger repositories.

The git svn clone command transforms the trunk, branches, and tags in your SVN repository into a new Git repository. The command depends on the structure of the SVN.

git svn clone may not be available in all installations; you might consider using an AWS Cloud9 environment or using a temporary Amazon Elastic Compute Cloud (Amazon EC2) instance.

If your SVN layout is standard, use the following command:

git svn clone --stdlayout --authors-file=authors.txt  <svn-repo>/<project> <temp-dir/project>

If your SVN layout isn’t standard, you need to map the trunk, branches, and tags folder in the command as parameters:

git svn clone <svn-repo>/<project> --prefix=svn/ --no-metadata --trunk=<trunk-dir> --branches=<branches-dir>  --tags==<tags-dir>  --authors-file "authors-transform.txt" <temp-dir/project>

Creating a bare Git repository and pushing the local repository

In this step, we create a blank repository and match the default branch with the SVN’s trunk name.

To create the .gitignore file, enter the following code:

cd <temp-dir/project>
git svn show-ignore > .gitignore
git add .gitignore
git commit -m 'Adding .gitignore.'

To create the bare Git repository, enter the following code:

git init --bare <git-project-dir>\local-bare.git
cd <git-project-dir>\local-bare.git
git symbolic-ref HEAD refs/heads/trunk

To update the local bare Git repository, enter the following code:

cd <temp-dir/project>
git remote add bare <git-project-dir\local-bare.git>
git config remote.bare.push 'refs/remotes/*:refs/heads/*'
git push bare

You can also add tags:

cd <git-project-dir\local-bare.git>

For Windows, enter the following code:

git for-each-ref --format='%(refname)' refs/heads/tags | % { $_.Replace('refs/heads/tags/','') } | % { git tag $_ "refs/heads/tags/$_"; git branch -D "tags/$_" }

For Linux, enter the following code:

for t in $(git for-each-ref --format='%(refname:short)' refs/remotes/tags); do git tag ${t/tags\//} $t &amp;&amp; git branch -D -r $t; done

You can also add branches:

cd <git-project-dir\local-bare.git>

For Windows, enter the following code:

git for-each-ref --format='%(refname)' refs/remotes | % { $_.Replace('refs/remotes/','') } | % { git branch "$_" "refs/remotes/$_"; git branch -r -d "$_"; }

For Linux, enter the following code:

for b in $(git for-each-ref --format='%(refname:short)' refs/remotes); do git branch $b refs/remotes/$b && git branch -D -r $b; done

As a final touch-up, enter the following code:

cd <git-project-dir\local-bare.git>
git branch -m trunk master

Creating a CodeCommit repository

You can now create a CodeCommit repository with the following code (make sure that the AWS CLI is configured with your preferred Region and credentials):

aws configure
aws codecommit create-repository --repository-name MySVNRepo --repository-description "SVN Migration repository" --tags Team=Migration

You get the following output:

{
    "repositoryMetadata": {
        "repositoryName": "MySVNRepo",
        "cloneUrlSsh": "ssh://ssh://git-codecommit.us-east-2.amazonaws.com/v1/repos/MySVNRepo",
        "lastModifiedDate": 1446071622.494,
        "repositoryDescription": "SVN Migration repository",
        "cloneUrlHttp": "https://git-codecommit.us-east-2.amazonaws.com/v1/repos/MySVNRepo",
        "creationDate": 1446071622.494,
        "repositoryId": "f7579e13-b83e-4027-aaef-650c0EXAMPLE",
        "Arn": "arn:aws:codecommit:us-east-2:111111111111:MySVNRepo",
        "accountId": "111111111111"
    }
}

Pushing the code to CodeCommit

To push your code to the new CodeCommit repository, enter the following code:

cd <git-project-dir\local-bare.git>
git remote add origin https://git-codecommit.us-east-2.amazonaws.com/v1/repos/MySVNRepo
git add *

git push origin --all
git push origin --tags (Optional if tags are mapped)

Troubleshooting

When migrating SVN repositories, you might encounter a few SVN errors, which are displayed as code on the console. For more information, see Subversion client errors caused by inappropriate repository URL.

For more information about the git-svn utility, see the git-svn documentation.

Conclusion

In this post, we described the straightforward process of using the git-svn utility to migrate SVN repositories to Git or Git-based systems like CodeCommit. After you migrate an SVN repository to CodeCommit, you can use any Git-based client and start using CodeCommit as your primary version control system without worrying about securing and scaling its infrastructure.

Scalable agile development practices based on AWS CodeCommit

Post Syndicated from Mengxin Zhu original https://aws.amazon.com/blogs/devops/scalable-agile-development-practices-based-on-aws-codecommit/

Development teams use agile development processes based on Git services extensively. AWS provides AWS CodeCommit, a managed, Git protocol-based, secure, and highly available code service. The capabilities of CodeCommit combined with other developer tools, like AWS CodeBuild and AWS CodePipeline, make it easy to manage collaborative, scalable development process with fine-grained permissions and on-demand resources.

You can manage user roles with different AWS Identity and Access Management (IAM) policies in the code repository of CodeCommit. You can build your collaborative development process with pull requests and approval rules. The process described in this post only requires you to manage the developers’ role, without forking the source repository for individual developers. CodeCommit pull requests can integrate numerous code analysis services as approvers to improve code quality and mitigate security vulnerabilities, such as SonarQube static scanning and the ML-based code analysis service Amazon CodeGuru Reviewer.

The CodeCommit-based agile development process described in this post has the following characteristics:

  • Control permissions of the CodeCommit repository via IAM.
    • Any code repository has at least two user roles:
      • Development collaborator – Participates in the development of the project.
      • Repository owner – Has code review permission and partial management permissions of the repository. The repository owner is also the collaborator of the repository.
    • Both development collaborator and owner have read permissions of the repository and can pull code to local disk via the Git-supported protocols.
    • The development collaborator can push new code to branches with a specific prefix, for example, features/ or bugs/. Multiple collaborators can work on a particular branch for one pull request. Collaborators can create new pull requests to request merging code into the main branch, such as the mainline branch.
    • The repository owner has permission to review pull requests with approval voting and merge pull requests.
    • Directly pushing code to the main branch of repository is denied.
  • Development workflow. This includes the following:
    • Creating an approval template rule of CodeCommit that requires at least two approvals from the sanity checking build of the pull request and repository owner. The workflow also applies the approval rule to require mandatory approvals for pull requests of the repository.
    • The creation and update of source branch events of pull requests via Amazon EventBridge triggers a sanity checking build of CodeBuild to compile, test, and analyze the pull request code. If all checks pass, the pull request gets an approval voting from the sanity checking build.
    • Watching the main branch of the repository triggers a continuous integration for any commit. You can continuously publish artifacts of your project to the artifact repository or integrate the latest version of the service to your business system.

This agile development process can use AWS CloudFormation and AWS Cloud Development Kit (AWS CDK) to orchestrate AWS resources with the best practice of infrastructure as code. You can manage hundreds of repositories in your organization and automatically provision new repositories and related DevOps resources from AWS after the pull request of your IaC as a new application is approved. This makes sure that you’re managing the code repository and DevOps resources in a secure and compliant way. You can use it as a reference solution for your organization to manage large-scale R&D resources.

Solution overview

In the following use case, you’re working on a Java-based project AWS Toolkit for JetBrains. This application has developers that can submit code via pull requests. Each pull request is automatically checked and validated by CodeBuild builds. The owners of the project can review the pull request and merge it to the main branch. The code submitted to the main branch triggers the continuous integration to build the project artifacts.

The following diagram illustrates the components built in this post and their role in the DevOps process.

architecture diagram

Prerequisites

For this walkthrough, you should meet the following prerequisites:

Preparing the code

Clone the sample code from the Github repo with your preferred Git client or IDE and view branch aws-toolkit-jetbrains, or download the sample code directly and unzip it into an empty folder.

Initializing the environment

Open the terminal or command prompt of your operating system, enter the directory where the sample code is located, enter the following code to initialize the environment, and install the dependency packages:

npm run init

Deploying application

After successfully initializing the AWS CDK environment and installing the dependencies of the sample application, enter the following code to deploy the application:

npm run deploy

Because the application creates the IAM roles and policies, AWS CDK requires you to confirm security-related changes before deploying it. You see the following outputs from the command line.

deploy stack

Enter y to confirm the security changes, and AWS CDK begins to deploy the application. After a few minutes, you see output similar to the following code, indicating that the application stack has been successfully deployed in your AWS account:

✅  CodecommitDevopsModelStack

Outputs:
CodecommitDevopsModelStack.Repo1AdminRoleOutput = arn:aws:iam::012345678912:role/codecommitmodel/CodecommitDevopsModelStack-Repo1AdminRole0648F018-OQGKZPM6T0HP
CodecommitDevopsModelStack.Repo1CollaboratorRoleOutput = arn:aws:iam::012345678912:role/codecommitmodel/CodecommitDevopsModelStac-Repo1CollaboratorRole1EB-15KURO7Z9VNOY

Stack ARN:
arn:aws:cloudformation:ap-southeast-1:012345678912:stack/CodecommitDevopsModelStack/5ecd1c50-b56b-11ea-8061-020de04cec9a

As shown in the preceding code, the output of successful deployment indicates that the ARN of two IAM roles were created on behalf of the owner and development collaborator of the source code repository.

Checking deployment results

After successfully deploying the app, you can sign in to the CodeCommit console and browse repositories. The following screenshot shows three repositories.

created repos

For this post, we use three repositories to demonstrate configuring the different access permissions for different teams in your organization. As shown in the following screenshot, the repository CodeCommitDevopsModelStack-MyApp1 is tagged to grant permissions to the specific team abc.

repository tags

The IAM roles for the owner and development collaborator only have access to the code repository with the following tags combination:

{
 'app': 'my-app-1',
 'team': 'abc',
}

Configuring CodeCommit repository access on behalf of owner and collaborator

Next, you configure the current user to simulate the owner and development collaborator via IAM’s AssumeRole.

Edit the AWS CLI profile file with your preferred text editor and add the following configuration lines:

[profile codecommit-repo1-owner]

role_arn = <the ARN of owner role after successfully deploying sample app>

source_profile = default

region = ap-southeast-1

cli_pager=

[profile codecommit-repo1-collaborator]

role_arn = <the ARN of collaborator role after successfully deploying sample app>

source_profile = default

region = ap-southeast-1

cli_pager=

Replace the role_arn in the owner and collaborator sections with the corresponding output after successfully deploying the sample app.

If the AWS CLI isn’t using the default profile, replace the value of source_profile with the profile name you’re currently using.

Make the region consistent with the value configured in source_profile. For example, this post uses ap-southeast-1.

After saving the modification of the profile, you can test this configuration from the command line. See the following code:

export AWS_DEFAULT_PROFILE=codecommit-repo1-owner # assume owner role of repository

aws sts get-caller-identity # get current user identity, you should see output like below,
{
    "UserId": "AROAQP3VLCVWYYTPJL2GW:botocore-session-1587717914",
    "Account": "0123456789xx",
    "Arn": "arn:aws:sts::0123456789xx:assumed-role/CodecommitDevopsModelStack-Repo1AdminRole0648F018-1SNXR23P4XVYZ/botocore-session-1587717914"
}

aws codecommit list-repositories # list of all repositories of AWS CodeCommit in configured region
{
    "repositories": [
        {
            "repositoryName": "CodecommitDevopsModelStack-MyApp1",
            "repositoryId": "208dd6d1-ade4-4633-a2a3-fe1a9a8f3d1c "
        },
        {
            "repositoryName": "CodecommitDevopsModelStack-MyApp2",
            "repositoryId": "44421652-d12e-413e-85e3-e0db894ab018"
        },
        {
            "repositoryName": "CodecommitDevopsModelStack-MyApp3",
            "repositoryId": "8d146b34-f659-4b17-98d8-85ebaa07283c"
        }
    ]
}

aws codecommit get-repository --repository-name CodecommitDevopsModelStack-MyApp1 # get detail information of repository name ends with MyApp1
{
    "repositoryMetadata": {
        "accountId": "0123456789xx",
        "repositoryId": "208dd6d1-ade4-4633-a2a3-fe1a9a8f3d1c",
        "repositoryName": "CodecommitDevopsModelStack-MyApp1",
        "repositoryDescription": "Repo for App1.",
        "lastModifiedDate": "2020-06-24T00:06:24.734000+08:00",
        "creationDate": "2020-06-24T00:06:24.734000+08:00",
        "cloneUrlHttp": "https://git-codecommit.ap-southeast-1.amazonaws.com/v1/repos/CodecommitDevopsModelStack-MyApp1",
        "cloneUrlSsh": "ssh://git-codecommit.ap-southeast-1.amazonaws.com/v1/repos/CodecommitDevopsModelStack-MyApp1",
        "Arn": "arn:aws:codecommit:ap-southeast-1:0123456789xx:CodecommitDevopsModelStack-MyApp1"
    }
}

aws codecommit get-repository --repository-name CodecommitDevopsModelStack-MyApp2 # try to get detail information of repository MyApp2 that does not have accessing permission by the role

An error occurred (AccessDeniedException) when calling the GetRepository operation: User: arn:aws:sts::0123456789xx:assumed-role/CodecommitDevopsModelStack-Repo1AdminRole0648F018-OQGKZPM6T0HP/botocore-session-1593325146 is not authorized to perform: codecommit:GetRepository on resource: arn:aws:codecommit:ap-southeast-1:0123456789xx:CodecommitDevopsModelStack-MyApp2

You can also grant IAM policies starting with CodecommitDevopsmodelStack-CodecommitCollaborationModel to existing IAM users for the corresponding owner or collaborator permissions.

Initializing the repository

The new code repository CodecommitdevopsmodelStack-MyApp1 is an empty Git repository without any commit. You can use the AWS Toolkit for JetBrains project as the existing local codebase and push the code to the repository hosted by CodeCommit.

Enter the following code from the command line:

export AWS_DEFAULT_PROFILE=codecommit-repo1-owner # assume owner role of repository

git clone https://github.com/aws/aws-toolkit-jetbrains.git # clone aws-toolkit-jetbrains to local as existing codebase

cd aws-toolkit-jetbrains

git remote add codecommit codecommit::ap-southeast-1://CodecommitDevopsModelStack-MyApp1 # add CodeCommit hosted repo as new remote named as codecommit. Follow the doc set up AWS CodeCommit with git-remote-codecommit, or use remote url of repository via https/ssh protocol

git push codecommit master:init  # push existing codebase to a temporary branch named 'init'

aws codecommit create-branch --repository-name CodecommitDevopsModelStack-MyApp1 --branch-name master --commit-id `git rev-parse master` # create new branch 'master'

aws codecommit update-default-branch --repository-name CodecommitDevopsModelStack-MyApp1 --default-branch-name master # set branch 'master' as main branch of repository

aws codecommit delete-branch --repository-name CodecommitDevopsModelStack-MyApp1 --branch-name init # clean up 'init' branch

Agile development practices

For this use case, you act as the collaborator of the repository implementing a new feature for aws-toolkit-jetbrains, then follow the development process to submit your code changes to the main branch.

Enter the following code from the command line:

export AWS_DEFAULT_PROFILE=codecommit-repo1-collaborator # assume collaborator role of repository

# add/modify/delete source files for your new feature

git commit -m 'This is my new feature.' -a

git push codecommit HEAD:refs/heads/features/my-feature # push code to new branch with prefix /features/

aws codecommit create-pull-request --title 'My feature "Short Description".' --description 'Detail description of feature request'  --targets repositoryName=CodecommitDevopsModelStack-MyApp1,sourceReference=features/my-feature,destinationReference=master # create pull request for new feature

The preceding code submits the changes of the new feature to a branch with the prefix features/ and creates a pull request to merge the change into the main branch.

On the CodeCommit console, you can see that a pull request called My feature "Short Description". created by the development collaborator has passed the sanity checking build of the pull request and gets an approval voting (it takes about 15 minutes to complete the checking build in this project).

PR build result

 

The owner of the repository also needs to review the pull request with one approval at least, then they can merge the repository to the main branch. The pull request on the CodeCommit console supports several code review features, such as change comparison, in-line comments, and code discussions. For more information, see Using AWS CodeCommit Pull Requests to request code reviews and discuss code. The following screenshot shows the review tool on the CodeCommit console, on the Changes tab.

CodeReview Tool

 

The following screenshot shows the approval details of the pull request, on the Approvals tab.

Approvals tab

When browsing the continuous integration deployment project after merging the pull request, you can see that a new continuous integration build has been triggered by the event of merging the pull request to the main branch.

Deployment build

Cleaning up

When you’re finished exploring this use case and discovering the deployed resources, the last step is to clean up your account. The following code deletes all the resources you created:

npm run cleanup

Summary

This post discussed agile development practices based on CodeCommit, including implementation mechanisms and practice processes, and demonstrated how to collaborate in development under those processes. AWS powers the code that manages the code repository itself and the DevOps processes built around it in the example application. You can use the IaC capability of AWS and apply those practices in your organization to build compliant and secure R&D processes.

Automated CI/CD pipeline for .NET Core Lambda functions using AWS extensions for dotnet CLI

Post Syndicated from Sundar Narasiman original https://aws.amazon.com/blogs/devops/automated-ci-cd-pipeline-for-net-core-lambda-functions-using-aws-extensions-for-dotnet-cli/

The trend of building AWS Serverless applications using AWS Lambda is increasing at an ever-rapid pace. Common use cases for AWS Lambda include data processing, real-time file processing, and extract, transform, and load (ETL) for data processing, web backends, internet of things (IoT) backends, and mobile backends. Lambda natively supports languages such as Java, Go, PowerShell, Node.js, C#, Python, and Ruby. It also provides a Runtime API that allows you to use any additional programming languages to author your functions.

.NET framework occupies a significant footprint in the technology landscape of enterprises. Nowadays, enterprise customers are modernizing .NET framework applications to .NET Core using AWS Serverless (Lambda). In this journey, you break down a large monolith service into multiple smaller independent and autonomous microservices using.NET Core Lambda functions

When you have several microservices running in production, a change management strategy is key for business agility and time-to-market changes. The change management of .NET Core Lambda functions translates to how well you implement an automated CI/CD pipeline using AWS CodePipeline. In this post, you see two approaches for implementing CI/CD for .NET Core Lambda functions: creating a pipeline with either two or three stages.

Creating a pipeline with two stages

In this approach, you define the pipeline in CodePipeline with two stages: AWS CodeCommit and AWS CodeBuild. CodeCommit is the fully-managed source control repository that stores the source code for .NET Core Lambda functions. It triggers CodeBuild when a new code change is published. CodeBuild defines a compute environment for the build process. It builds the .NET Core Lambda function and creates a deployment package (.zip). Finally, CodeBuild uses AWS extensions for Dotnet CLI to deploy the Lambda packages (.zip) to the Lambda environment. The following diagram illustrates this architecture.

 

CodePipeline with CodeBuild and CodeCommit stages.

CodePipeline with CodeBuild and CodeCommit stages.

Creating a pipeline with three stages

In this approach, you define the pipeline with three stages: CodeCommit, CodeBuild, and AWS CodeDeploy.

CodeCommit stores the source code for .NET Core Lambda functions and triggers CodeBuild when a new code change is published. CodeBuild defines a compute environment for the build process and builds the .NET Core Lambda function. Then CodeBuild invokes the CodeDeploy stage. CodeDeploy uses AWS CloudFormation templates to deploy the Lambda function to the Lambda environment. The following diagram illustrates this architecture.

CodePipeline with CodeCommit, CodeBuild and CodeDeploy stages.

CodePipeline with CodeCommit, CodeBuild and CodeDeploy stages.

Solution Overview

In this post, you learn how to implement an automated CI/CD pipeline using the first approach: CodePipeline with CodeCommit and CodeBuild stages. The CodeBuild stage in this approach implements the build and deploy functionalities. The high-level steps are as follows:

  1. Create the CodeCommit repository.
  2. Create a Lambda execution role.
  3. Create a Lambda project with .NET Core CLI.
  4. Change the Lambda project configuration.
  5. Create a buildspec file.
  6. Commit changes to the CodeCommit repository.
  7. Create your CI/CD pipeline.
  8. Complete and verify pipeline creation.

For the source code and buildspec file, see the GitHub repo.

Prerequisites

Before you get started, you need the following prerequisites:

Creating a CodeCommit repository

You first need a CodeCommit repository to store the Lambda project source code.

1. In the Repository settings section, for Repository name, enter a name for your repository.

2. Choose Create.

Name a repository

 

 

 

 

 

 

 

 

3. Initialize this repository with a markdown file (readme.md). You need this markdown file to create documentation about the repository.

4. Set up an AWS Identity and Access Management (IAM) credential to CodeCommit. Alternatively, you can set up SSH-based access. For instructions, see Setup for HTTPS users using Git credentials and Setup steps for SSH connections to AWS CodeCommit repositories on Linux, MacOS, or Unix. You need this to work with the CodeCommit repository from the development environment.

5. Clone the CodeCommit repository to a local folder.

Proceed to the next step to create an IAM role for Lambda execution.

Creating a Lambda execution role

Every Lambda function needs an IAM role for execution. Create an IAM role for Lambda execution with the appropriate IAM policy, if it doesn’t exist already. You’re now ready to create a Lambda function project using .NET Core Command Line Interface (CLI).

Creating a Lambda function project

You have multiple options for creating .NET Core Lambda function projects, such as using Visual Studio 2019, Visual Studio Code, and .NET Core CLI. In this post, you use .NET Core CLI.

By default, .NET Core CLI doesn’t support Lambda projects. You need the Amazon.Lambda.Templates nuget package to create your project.

  1. Install the nuget package Amazon.Lambda.Templates to have all the Amazon Lambda project templates in the development environment. See the following CLI Command.
    dotnet new -i Amazon.Lambda.Templates::*
  2. Verify the installation with the following CLI Command.
    dotnet new

    You should see the following output reflecting the presence of various Lambda templates in the development environment. You also need to install AWS extensions for Dotnet Lambda CLI to deploy and invoke Lambda functions from the terminal or command prompt.dotnet cli command listing lambda project templates

  3. To install the extensions, enter the following CLI Commands.
    dotnet tool install -g Amazon.Lambda.Tools
    dotnet tool update -g Amazon.Lambda.Tools
    

    You’re now ready to create a Lambda function project in the development environment.

  4. Navigate to the root of the cloned CodeCommit repository (which you created in the previous step).
  5. Create the Lambda function by entering the following CLI Command.
    dotnet new lambda.EmptyFunction --name Dotnetlambda4 --profile default --region us-east-1

    After you create your Lambda function project, you need to make some configuration changes.

Changing the Lambda function project configuration

When you create a .NET Core Lambda function project, it adds the configuration file aws-lambda-tools-defaults.json at the root of the project directory. This file holds the various configuration parameters for Lambda execution. You want to make sure that the function role is set to the IAM role you created earlier, and that the profile is set to default.

The updated aws-lambda-tools-defaults.json file should look like the following code:

{
  "Information": [
    "This file provides default values for the deployment wizard inside Visual Studio and the AWS Lambda commands added to the .NET Core CLI.",
    "To learn more about the Lambda commands with the .NET Core CLI execute the following command at the command line in the project root directory.",

    "dotnet lambda help",

    "All the command line options for the Lambda command can be specified in this file."
  ],

  "profile": "default",
  "region": "us-east-1",
  "configuration": "Release",
  "framework": "netcoreapp3.1",
  "function-runtime": "dotnetcore3.1",
  "function-memory-size": 256,
  "function-timeout": 30,
  "function-handler": "Dotnetlambda4::Dotnetlambda4.Function::FunctionHandler",
  "function-role": "arn:aws:iam::awsaccountnumber:role/testlambdarole"
}

After you update your project configuration, you’re ready to create the buildspec.yml file.

Creating a buildspec file

As a prerequisite to configuring the CodeCommit stage, you created a Lambda function project. For the CodeBuild stage, you need to create a buildspec file.

 

Create a buildspec.yml file with the following definition and save it at the root of the CodeCommit directory:

version: 0.2
env:
  variables:
    DOTNET_ROOT: /root/.dotnet
  secrets-manager:
    AWS_ACCESS_KEY_ID_PARAM: CodeBuild:AWS_ACCESS_KEY_ID
    AWS_SECRET_ACCESS_KEY_PARAM: CodeBuild:AWS_SECRET_ACCESS_KEY
phases:
  install:
    runtime-versions:
      dotnet: 3.1
  pre_build:
    commands:
      - echo Restore started on `date`
      - export PATH="$PATH:/root/.dotnet/tools"
      - pip install --upgrade awscli
      - aws configure set profile $Profile
      - aws configure set region $Region
      - aws configure set aws_access_key_id $AWS_ACCESS_KEY_ID_PARAM
      - aws configure set aws_secret_access_key $AWS_SECRET_ACCESS_KEY_PARAM
      - cd Dotnetlambda4
      - cd src
      - cd Dotnetlambda4
      - dotnet clean 
      - dotnet restore
  build:
    commands:
      - echo Build started on `date`
      - dotnet new -i Amazon.Lambda.Templates::*
      - dotnet tool install -g Amazon.Lambda.Tools
      - dotnet tool update -g Amazon.Lambda.Tools
      - dotnet lambda deploy-function "Dotnetlambda4" --function-role "arn:aws:iam::yourawsaccount:role/youriamroleforlambda" --region "us-east-1"

You’re now ready to commit your changes to the CodeCommit repository.

Committing changes to the CodeCommit repository

To push changes to your CodeCommit repository, enter the following git commands.

git add --all
git commit –a –m “Initial Comment”
git push

After you commit the changes, you can create your CI/CD pipeline using CodePipeline.

Creating a CI/CD pipeline

To create your pipeline with a CodeCommit and CodeBuild stage, complete the following steps:

  1. In the Pipeline settings section, for Pipeline name, enter a name.
  2. For Service role, select New service role.
  3. For Role name, use the auto-generated name.
  4. Select Allow AWS CodePipeline to create a service role so it can be used with this new pipeline.
  5. Choose Next.Choose Pipeline settings
  6. In the Source section, for Source provider, choose AWS CodeCommit.
  7. For Repository name, choose your repository.
  8. For Branch name, choose your branch.
  9. For Change detection options, select Amazon CloudWatch Events.
  10. Choose Next.Populating the Source stage
  11. In the Build section, for Build provider, choose AWS CodeBuild.Populating the CodeBuild stage
  12. For Environment image, choose Managed image.
  13. For Operating system, choose Ubuntu.
  14. For Image, choose aws/codebuild/standard:4.0.
  15. For Image version, choose Always use the latest image for this runtime versionSelecting Codebuild runtime
  16. CodeBuild needs to assume an IAM service role to get the required privileges for successful build operation.Create a new service role for the CodeBuild project.Selecting the Service role
  17. Attach the following IAM policy to the role:
    
    {
        "Version": "2012-10-17",
        "Statement": [
            {
                "Sid": "SecretManagerRead",
                "Effect": "Allow",
                "Action": [
                    "secretsmanager:GetRandomPassword",
                    "secretsmanager:GetResourcePolicy",
                    "secretsmanager:UntagResource",
                    "secretsmanager:GetSecretValue",
                    "secretsmanager:DescribeSecret",
                    "secretsmanager:ListSecretVersionIds",
                    "secretsmanager:ListSecrets",
                    "secretsmanager:TagResource"
                ],
                "Resource": "*"
            }
        ]
    }
    
  18. You now need to define the compute and environment variables for CodeBuild. For Compute, select your preferred compute.
  19. For Environment variables, enter two variables. For Region, enter your preferred Region. For Profile, Enter Value as default. Selecting CodeBuild env optionsThis allows the environment to use the default AWS profile in the build process.
  20. To set up an AWS profile, the CodeBuild environment needs AccessKeyId and SecretAccessKey. As a best practice, configure AccessKeyId and SecretAccessKey as secrets in AWS Secrets Manager and reference it in buildspec.yml. On the Secrets Manager console, choose Store a new secret.
  21. For Select secret type, select Other type of secrets.Selecting secret types
  22. Configure secrets AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY.Configuring secrets
  23. For the encryption key, choose DefaultEncryptionKey.
  24. Choose Next.
  25. For Secret name, enter CodeBuild.Secret name
  26. Leave the rest of selections as default and choose Store.Commented code
  27. In the Add deploy stage section, choose Skip deploy stage.Add Deploy stage

Completing and verifying your pipeline

After you save your pipeline, push the code changes of the Lambda function from the local repository to the remote CodeCommit repository.

After a few seconds, you should see the activation of the CodeCommit stage and transition to CodeBuild stage. Pipeline creation can take up to a few minutes.

CodePipeline

You can verity your pipeline on the CodePipeline console. This should deploy the Lambda function changes to the Lambda environment.

Cleaning up

If you no longer need the following resources, delete them to avoid incurring further charges:

  • CodeCommit repository
  • CodePipeline project
  • CodeBuild project
  • IAM role for Lambda execution
  • Lambda function

Conclusion

In this post, you implemented an automated CI/CD for .NET Core Lambda functions using two stages of CodePipeline: CodeCommit and CodeBuild. You can apply this solution to your own use cases.

About the author

Sundararajan Narasiman works as Senior Partner Solutions Architect with Amazon Web Services.

Serverless Architecture for a Web Scraping Solution

Post Syndicated from Dzidas Martinaitis original https://aws.amazon.com/blogs/architecture/serverless-architecture-for-a-web-scraping-solution/

If you are interested in serverless architecture, you may have read many contradictory articles and wonder if serverless architectures are cost effective or expensive. I would like to clear the air around the issue of effectiveness through an analysis of a web scraping solution. The use case is fairly simple: at certain times during the day, I want to run a Python script and scrape a website. The execution of the script takes less than 15 minutes. This is an important consideration, which we will come back to later. The project can be considered as a standard extract, transform, load process without a user interface and can be packed into a self-containing function or a library.

Subsequently, we need an environment to execute the script. We have at least two options to consider: on-premises (such as on your local machine, a Raspberry Pi server at home, a virtual machine in a data center, and so on) or you can deploy it to the cloud. At first glance, the former option may feel more appealing — you have the infrastructure available free of charge, why not to use it? The main concern of an on-premises hosted solution is the reliability — can you assure its availability in case of a power outage or a hardware or network failure? Additionally, does your local infrastructure support continuous integration and continuous deployment (CI/CD) tools to eliminate any manual intervention? With these two constraints in mind, I will continue the analysis of the solutions in the cloud rather than on-premises.

Let’s start with the pricing of three cloud-based scenarios and go into details below.

Pricing table of three cloud-based scenarios

*The AWS Lambda free usage tier includes 1M free requests per month and 400,000 GB-seconds of compute time per month. Review AWS Lambda pricing.

Option #1

The first option, an instance of a virtual machine in AWS (called Amazon Elastic Cloud Compute or EC2), is the most primitive one. However, it definitely does not resemble any serverless architecture, so let’s consider it as a reference point or a baseline. This option is similar to an on-premises solution giving you full control of the instance, but you would need to manually spin an instance, install your environment, set up a scheduler to execute your script at a specific time, and keep it on for 24×7. And don’t forget the security (setting up a VPC, route tables, etc.). Additionally, you will need to monitor the health of the instance and maybe run manual updates.

Option #2

The second option is to containerize the solution and deploy it on Amazon Elastic Container Service (ECS). The biggest advantage to this is platform independence. Having a Docker file (a text document that contains all the commands you could call on the command line to assemble an image) with a copy of your environment and the script enables you to reuse the solution locally—on the AWS platform, or somewhere else. A huge advantage to running it on AWS is that you can integrate with other services, such as AWS CodeCommit, AWS CodeBuild, AWS Batch, etc. You can also benefit from discounted compute resources such as Amazon EC2 Spot instances.

Architecture of CloudWatch, Batch, ECR

The architecture, seen in the diagram above, consists of Amazon CloudWatch, AWS Batch, and Amazon Elastic Container Registry (ECR). CloudWatch allows you to create a trigger (such as starting a job when a code update is committed to a code repository) or a scheduled event (such as executing a script every hour). We want the latter: executing a job based on a schedule. When triggered, AWS Batch will fetch a pre-built Docker image from Amazon ECR and execute it in a predefined environment. AWS Batch is a free-of-charge service and allows you to configure the environment and resources needed for a task execution. It relies on ECS, which manages resources at the execution time. You pay only for the compute resources consumed during the execution of a task.

You may wonder where the pre-built Docker image came from. It was pulled from Amazon ECR, and now you have two options to store your Docker image there:

  • You can build a Docker image locally and upload it to Amazon ECR.
  • You just commit few configuration files (such as Dockerfile, buildspec.yml, etc.) to AWS CodeCommit (a code repository) and build the Docker image on the AWS platform.This option, shown in the image below, allows you to build a full CI/CD pipeline. After updating a script file locally and committing the changes to a code repository on AWS CodeCommit, a CloudWatch event is triggered and AWS CodeBuild builds a new Docker image and commits it to Amazon ECR. When a scheduler starts a new task, it fetches the new image with your updated script file. If you feel like exploring further or you want actually implement this approach please take a look at the example of the project on GitHub.

CodeCommit. CodeBuild, ECR

Option #3

The third option is based on AWS Lambda, which allows you to build a very lean infrastructure on demand, scales continuously, and has generous monthly free tier. The major constraint of Lambda is that the execution time is capped at 15 minutes. If you have a task running longer than 15 minutes, you need to split it into subtasks and run them in parallel, or you can fall back to Option #2.

By default, Lambda gives you access to standard libraries (such as the Python Standard Library). In addition, you can build your own package to support the execution of your function or use Lambda Layers to gain access to external libraries or even external Linux based programs.

Lambda Layer

You can access AWS Lambda via the web console to create a new function, update your Lambda code, or execute it. However, if you go beyond the “Hello World” functionality, you may realize that online development is not sustainable. For example, if you want to access external libraries from your function, you need to archive them locally, upload to Amazon Simple Storage Service (Amazon S3), and link it to your Lambda function.

One way to automate Lambda function development is to use AWS Cloud Development Kit (AWS CDK), which is an open source software development framework to model and provision your cloud application resources using familiar programming languages. Initially, the setup and learning might feel strenuous; however the benefits are worth of it. To give you an example, please take a look at this Python class on GitHub, which creates a Lambda function, a CloudWatch event, IAM policies, and Lambda layers.

In a summary, the AWS CDK allows you to have infrastructure as code, and all changes will be stored in a code repository. For a deployment, AWS CDK builds an AWS CloudFormation template, which is a standard way to model infrastructure on AWS. Additionally, AWS Serverless Application Model (SAM) allows you to test and debug your serverless code locally, meaning that you can indeed create a continuous integration.

See an example of a Lambda-based web scraper on GitHub.

Conclusion

In this blog post, we reviewed two serverless architectures for a web scraper on AWS cloud. Additionally, we have explored the ways to implement a CI/CD pipeline in order to avoid any future manual interventions.

Building well-architected serverless applications: Approaching application lifecycle management – part 3

Post Syndicated from Julian Wood original https://aws.amazon.com/blogs/compute/building-well-architected-serverless-applications-approaching-application-lifecycle-management-part-3/

This series of blog posts uses the AWS Well-Architected Tool with the Serverless Lens to help customers build and operate applications using best practices. In each post, I address the nine serverless-specific questions identified by the Serverless Lens along with the recommended best practices. See the Introduction post for a table of contents and explanation of the example application.

Question OPS2: How do you approach application lifecycle management?

This post continues part 2 of this Operational Excellence question where I look at deploying to multiple stages using temporary environments, and rollout deployments. In part 1, I cover using infrastructure as code with version control to deploy applications in a repeatable manner.

Good practice: Use configuration management

Use environment variables and configuration management systems to make and track configuration changes. These systems reduce errors caused by manual processes, reduce the level of effort to deploy changes, and help isolate configuration from business logic.

Environment variables are suited for infrequently changing configuration options such as logging levels, and database connection strings. Configuration management systems are for dynamic configuration that might change frequently or contain sensitive data such as secrets.

Environment variables

The serverless airline example used in this series uses AWS Amplify Console environment variables to store application-wide settings.

For example, the Stripe payment keys for all branches, and names for individual branches, are visible within the Amplify Console in the Environment variables section.

AWS Amplify environment variables

AWS Amplify environment variables

AWS Lambda environment variables are set up as part of the function configuration stored using the AWS Serverless Application Model (AWS SAM).

For example, the airline booking ReserveBooking AWS SAM template sets global environment variables including the LOG_LEVEL with the following code.

Globals:
    Function:
        Environment:
            Variables:
                LOG_LEVEL: INFO

This is visible in the AWS Lambda console within the function configuration.

AWS Lambda environment variables in console

AWS Lambda environment variables in console

See the AWS Documentation for more information on using AWS Lambda environment variables and also how to store sensitive data. Amazon API Gateway can also pass stage-specific metadata to Lambda functions.

Dynamic configuration

Dynamic configuration is also stored in configuration management systems to specify external values and is unique to each environment. This configuration may include values such as an Amazon Simple Notification Service (Amazon SNS) topic, Lambda function name, or external API credentials. AWS System Manager Parameter Store, AWS Secrets Manager, and AWS AppConfig have native integrations with AWS CloudFormation to store dynamic configuration. For more information, see the examples for referencing dynamic configuration from within AWS CloudFormation.

For the serverless airline application, dynamic configuration is stored in AWS Systems Manager Parameter Store. During CloudFormation stack deployment, a number of parameters are stored in Systems Manager. For example, in the booking service AWS SAM template, the booking SNS topic ARN is stored.

BookingTopicParameter:
    Type: "AWS::SSM::Parameter"
    Properties:
        Name: !Sub /${Stage}/service/booking/messaging/bookingTopic
        Description: Booking SNS Topic ARN
        Type: String
        Value: !Ref BookingTopic

View the stored SNS topic value by navigating to the Parameter Store console, and search for BookingTopic.

Finding Systems Manager Parameter Store values

Finding Systems Manager Parameter Store values

Select the Parameter name and see the Amazon SNS ARN.

Viewing SNS topic value

Viewing SNS topic value

The loyalty service then references this value within another stack.

When the Amplify Console Makefile deploys the loyalty service, it retrieves this value for the booking service from Parameter Store, and references it as a parameter-override. The deployment is also parametrized with the $${AWS_BRANCH} environment variable if there are multiple environments within the same AWS account and Region.

sam deploy \
	--parameter-overrides \
	BookingSNSTopic=/$${AWS_BRANCH}/service/booking/messaging/bookingTopic

Environment variables and configuration management systems help with managing application configuration.

Improvement plan summary

  1. Use environment variables for configuration options that change infrequently such as logging levels, and database connection strings.
  2. Use a configuration management system for dynamic configuration that might change frequently or contain sensitive data such as secrets.

Best practice: Use CI/CD including automated testing across separate accounts

Continuous integration/delivery/deployment is one of the cornerstones of cloud application development and a vital part of a DevOps initiative.

Explanation of CI/CD stages

Explanation of CI/CD stages

Building CI/CD pipelines increases software delivery quality and feedback time for detecting and resolving errors. I cover how to deploy multiple stages in isolated environments and accounts, which helps with creating separate testing CI/CD pipelines in part 2. As the serverless airline example is using AWS Amplify Console, this comes with a built-in CI/CD pipeline.

Automate the build, deployment, testing, and rollback of the workload using KPI and operational alerts. This eases troubleshooting, enables faster remediation and feedback time, and enables automatic and manual rollback/roll-forward should an alert trigger.

I cover metrics, KPIs, and operational alerts in this series in the Application Health part 1, and part 2 posts. I cover rollout deployments with traffic shifting based on metrics in this question’s part 2.

CI/CD pipelines should include integration, and end-to-end tests. I cover local unit testing for Lambda and API Gateway in part 2.

Add an optional testing stage to Amplify Console to catch regressions before pushing code to production. Use the test step to run any test commands at build time using any testing framework of your choice. Amplify Console has deeper integration with the Cypress test suite that allows you to generate a UI report for your tests. Here is an example to set up end-to-end tests with Cypress.

Cypress testing example

Cypress testing example

There are a number of AWS and third-party solutions to host code and create CI/CD pipelines for serverless applications.

AWS Code Suite

AWS Code Suite

For more information on how to use the AWS Code* services together, see the detailed Quick Start deployment guide Serverless CI/CD for the Enterprise on AWS.

All these AWS services have a number of integrations with third-party products so you can integrate your serverless applications with your existing tools. For example, CodeBuild can build from GitHub and Atlassian Bitbucket repositories. CodeDeploy integrates with a number of developer tools and configuration management systems. CodePipeline has a number of pre-built integrations to use existing tools for your serverless applications. For more information specifically on using CircleCI for serverless applications, see Simplifying Serverless CI/CD with CircleCI and the AWS Serverless Application Model.

Improvement plan summary

  1. Use a continuous integration/continuous deployment (CI/CD) pipeline solution that deploys multiple stages in isolated environments/accounts.
  2. Automate testing including but not limited to unit, integration, and end-to-end tests.
  3. Favor rollout deployments over all-at-once deployments for more resilience, and gradually learn what metrics best determine your workload’s health to appropriately alert on.
  4. Use a deployment system that supports traffic shifting as part of your pipeline, and rollback/roll-forward traffic to previous versions if an alert is triggered.

Good practice: Review function runtime deprecation policy

Lambda functions created using AWS provided runtimes follow official long-term support deprecation policies. Third-party provided runtime deprecation policy may differ from official long-term support. Review your runtime deprecation policy and have a mechanism to report on runtimes that, if deprecated, may affect your workload to operate as intended.

Review the AWS Lambda runtime policy support page to understand the deprecation schedule for your runtime.

AWS Health provides ongoing visibility into the state of your AWS resources, services, and accounts. Use the AWS Personal Health Dashboard for a personalized view and automate custom notifications to communication channels other than your AWS Account email.

Use AWS Config to report on AWS Lambda function runtimes that might be near their deprecation. Run compliance and operational checks with AWS Config for Lambda functions.

If you are unable to migrate to newer runtimes within the deprecation schedule, use AWS Lambda custom runtimes as an interim solution.

Improvement plan summary

  1. Identify and report runtimes that might deprecate and their support policy.

Conclusion

Introducing application lifecycle management improves the development, deployment, and management of serverless applications. In part 1, I cover using infrastructure as code with version control to deploy applications in a repeatable manner. This reduces errors caused by manual processes and gives you more confidence your application works as expected. In part 2, I cover prototyping new features using temporary environments, and rollout deployments to gradually shift traffic to new application code.

In this post I cover configuration management, CI/CD for serverless applications, and managing function runtime deprecation.

In an upcoming post, I will cover the first Security question from the Well-Architected Serverless Lens – Controlling access to serverless APIs.

Building a CI/CD pipeline for multi-region deployment with AWS CodePipeline

Post Syndicated from Akash Kumar original https://aws.amazon.com/blogs/devops/building-a-ci-cd-pipeline-for-multi-region-deployment-with-aws-codepipeline/

This post discusses the benefits of and how to build an AWS CI/CD pipeline in AWS CodePipeline for multi-region deployment. The CI/CD pipeline triggers on application code changes pushed to your AWS CodeCommit repository. This automatically feeds into AWS CodeBuild for static and security analysis of the CloudFormation template. Another CodeBuild instance builds the application to generate an AMI image as output. AWS Lambda then copies the AMI image to other Regions. Finally, AWS CloudFormation cross-region actions are triggered and provision the instance into target Regions based on AMI image.

The solution is based on using a single pipeline with cross-region actions, which helps in provisioning resources in the current Region and other Regions. This solution also helps manage the complete CI/CD pipeline at one place in one Region and helps as a single point for monitoring and deployment changes. This incurs less cost because a single pipeline can deploy the application into multiple Regions.

As a security best practice, the solution also incorporates static and security analysis using cfn-lint and cfn-nag. You use these tools to scan CloudFormation templates for security vulnerabilities.

The following diagram illustrates the solution architecture.

Multi region AWS CodePipeline architecture

Multi region AWS CodePipeline architecture

Prerequisites

Before getting started, you must complete the following prerequisites:

  • Create a repository in CodeCommit and provide access to your user
  • Copy the sample source code from GitHub under your repository
  • Create an Amazon S3 bucket in the current Region and each target Region for your artifact store

Creating a pipeline with AWS CloudFormation

You use a CloudFormation template for your CI/CD pipeline, which can perform the following actions:

  1. Use CodeCommit repository as source code repository
  2. Static code analysis on the CloudFormation template to check against the resource specification and block provisioning if this check fails
  3. Security code analysis on the CloudFormation template to check against secure infrastructure rules and block provisioning if this check fails
  4. Compilation and unit test of application code to generate an AMI image
  5. Copy the AMI image into target Regions for deployment
  6. Deploy into multiple Regions using the CloudFormation template; for example, us-east-1, us-east-2, and ap-south-1

You use a sample web application to run through your pipeline, which requires Java and Apache Maven for compilation and testing. Additionally, it uses Tomcat 8 for deployment.

The following table summarizes the resources that the CloudFormation template creates.

Resource NameTypeObjective
CloudFormationServiceRoleAWS::IAM::RoleService role for AWS CloudFormation
CodeBuildServiceRoleAWS::IAM::RoleService role for CodeBuild
CodePipelineServiceRoleAWS::IAM::RoleService role for CodePipeline
LambdaServiceRoleAWS::IAM::RoleService role for Lambda function
SecurityCodeAnalysisServiceRoleAWS::IAM::RoleService role for security analysis of provisioning CloudFormation template
StaticCodeAnalysisServiceRoleAWS::IAM::RoleService role for static analysis of provisioning CloudFormation template
StaticCodeAnalysisProjectAWS::CodeBuild::ProjectCodeBuild for static analysis of provisioning CloudFormation template
SecurityCodeAnalysisProjectAWS::CodeBuild::ProjectCodeBuild for security analysis of provisioning CloudFormation template
CodeBuildProjectAWS::CodeBuild::ProjectCodeBuild for compilation, testing, and AMI creation
CopyImageAWS::Lambda::FunctionPython Lambda function for copying AMI images into other Regions
AppPipelineAWS::CodePipeline::PipelineCodePipeline for CI/CD

To start creating your pipeline, complete the following steps:

  • Launch the CloudFormation stack with the following link:
Launch button for CloudFormation

Launch button for CloudFormation

  • Choose Next.
  • For Specify details, provide the following values:
ParameterDescription
Stack nameName of your stack
OtherRegion1Input the target Region 1 (other than current Region) for deployment
OtherRegion2Input the target Region 2 (other than current Region) for deployment
RepositoryBranchBranch name of repository
RepositoryNameRepository name of the project
S3BucketNameInput the S3 bucket name for artifact store
S3BucketNameForOtherRegion1Create a bucket in target Region 1 and specify the name for artifact store
S3BucketNameForOtherRegion2Create a bucket in target Region 2 and specify the name for artifact store

Choose Next.

  • On the Review page, select I acknowledge that this template might cause AWS CloudFormation to create IAM resources.
  • Choose Create.
  • Wait for the CloudFormation stack status to change to CREATE_COMPLETE (this takes approximately 5–7 minutes).

When the stack is complete, your pipeline should be ready and running in the current Region.

  • To validate the pipeline, check the images and EC2 instances running into the target Regions and also refer the AWS CodePipeline Execution summary as below.
AWS CodePipeline Execution Summary

AWS CodePipeline Execution Summary

We will walk you through the following steps for creating a multi-region deployment pipeline:

1. Using CodeCommit as your source code repository

The deployment workflow starts by placing the application code on the CodeCommit repository. When you add or update the source code in CodeCommit, the action generates a CloudWatch event, which triggers the pipeline to run.

2. Static code analysis of CloudFormation template to provision AWS resources

Historically, AWS CloudFormation linting was limited to the ValidateTemplate action in the service API. This action tells you if your template is well-formed JSON or YAML, but doesn’t help validate the actual resources you’ve defined.

You can use a linter such as the cfn-lint tool for static code analysis to improve your AWS CloudFormation development cycle. The tool validates the provisioning CloudFormation template properties and their values (mappings, joins, splits, conditions, and nesting those functions inside each other) against the resource specification. This can cover the most common of the underlying service constraints and help encode some best practices.

The following rules cover underlying service constraints:

  • E2530 – Checks that Lambda functions have correctly configured memory sizes
  • E3025 – Checks that your RDS instances use correct instance types for the database engine
  • W2001 – Checks that each parameter is used at least once

You can also add this step as a pre-commit hook for your GIT repository if you are using CodeCommit or GitHub.

You provision a CodeBuild project for static code analysis as the first step in CodePipeline after source. This helps in early detection of any linter issues.

3. Security code analysis of CloudFormation template to provision AWS resources

You can use Stelligent’s cfn_nag tool to perform additional validation of your template resources for security. The cfn-nag tool looks for patterns in CloudFormation templates that may indicate insecure infrastructure provisioning and validates against AWS best practices. For example:

  • IAM rules that are too permissive (wildcards)
  • Security group rules that are too permissive (wildcards)
  • Access logs that aren’t enabled
  • Encryption that isn’t enabled
  • Password literals

You provision a CodeBuild project for security code analysis as the second step in CodePipeline. This helps detect any insecure infrastructure provisioning issues.

4. Compiling and testing application code and generating an AMI image

Because you use a Java-based application for this walkthrough, you use Amazon Corretto as your JVM. Corretto is a no-cost, multi-platform, production-ready distribution of the Open Java Development Kit (OpenJDK). Corretto comes with long-term support that includes performance enhancements and security fixes.

You also use Apache Maven as a build automation tool to build the sample application, and the HashiCorp Packer tool to generate an AMI image for the application.

You provision a CodeBuild project for compilation, unit testing, AMI generation, and storing the AMI ImageId in the Parameter Store, which the CloudFormation template uses as the next step of the pipeline.

5. Copying the AMI image into target Regions

You use a Lambda function to copy the AMI image into target Regions so the CloudFormation template can use it to provision instances into that Region as the next step of the pipeline. It also writes the target Region AMI ImageId into the target Region’s Parameter Store.

6. Deploying into multiple Regions with the CloudFormation template

You use the CloudFormation template as a cross-region action to provision AWS resources into a target Region. CloudFormation uses Parameter Store’s ImageId as reference and provisions the instances into the target Region.

Cleaning up

To avoid additional charges, you should delete the following AWS resources after you validate the pipeline:

  • The cross-region CloudFormation stack in the target and current Regions
  • The main CloudFormation stack in the current Region
  • The AMI you created in the target and current Regions
  • The Parameter Store AMI_VERSION in the target and current Regions

Conclusion

You have now created a multi-region deployment pipeline in CodePipeline without having to worry about the mechanics of creating and copying AMI images across Regions. CodePipeline abstracts the creating and copying of the images in the background in each Region. You can now upload new source code changes to the CodeCommit repository in the primary Region, and changes deploy automatically to other Regions. Cross-region actions are very powerful and are not limited to deploy actions. You can also use them with build and test actions.

Building and testing iOS and iPadOS apps with AWS DevOps and mobile services

Post Syndicated from Abdullahi Olaoye original https://aws.amazon.com/blogs/devops/building-and-testing-ios-and-ipados-apps-with-aws-devops-and-mobile-services/

Continuous integration/continuous deployment (CI/CD) helps automate software delivery processes. With the software delivery process automated, developers can test and deliver features faster. In iOS app development, testing your apps on real devices allows you to understand how users will interact with your app and to detect potential issues in real time.

AWS has a collection of tools designed to help developers build, test, configure, and release cloud-based applications for mobile devices. This blog post shows you how to leverage some of those tools and integrate third-party build tools like Jenkins into a CI/CD Pipeline in AWS for iOS app development and testing.

A new commit to the source repository triggers the pipeline. The build is done on a Jenkins server, and the build artifact from Jenkins is passed to the test phase, which is configured with AWS Device Farm to test the application on real devices. AWS CodePipeline provides the orchestration and helps automate the build and test phases. The CodePipeline continuous delivery process is illustrated in the following screenshot.

CodePipeline Archietcture with all stages

Figure: CodePipeline Continuous Delivery Architecture

 

Prerequisites

Ensure you have the following prerequisites set up before beginning:

  1. Apple developer account
  2. Build server (macOS)
  3. Xcode Version 11.3 (installed on the build server and setup)
  4. Jenkins (installed on the build server)
  5. AWS CLI installed and configured on workstation
  6. Basic knowledge of Git

Source

This example uses a sample iOS Notes app which we have hosted in an AWS CodeCommit repository, which is in the source stage of the pipeline.

Jenkins installation

Jenkins can be installed on macOS using a homebrew package manager for macOS with the following command:

$ brew install Jenkins

Start Jenkins by typing the following command:

$ Jenkins

You can also configure Jenkins to start as a service on startup with the following command:

$ brew services start Jenkins

Jenkins configuration

On a browser on your local machine, visit http://localhost:8080. You should see the setup screen shown in the following screenshot:

Screenshot of how to retrive Jenkins secret during setup on mac

1. Grab the initial admin password from the terminal by typing:

$ cat /Users/administrator/.jenkins/secrets/initialAdminPassword

2. Follow the onscreen instructions to complete setup. This includes creating a first admin user, installing initial plugins, etc.

3. Make some changes to the config file to ensure Jenkins is accessible from anywhere, not just the local machine:

    • Open the config file:

$ sudo nano /Users/admin/Library/LaunchAgents/homebrew.mxcl.jenkins.plist

    • Find the following line:

<string>--httpListenAddress=127.0.0.1</string>

    • Change it to the following:

<string>--httpListenAddress=0.0.0.0</string>

    • Save your changes and exit.

To reach Jenkins from the internet, enter the following into a web browser:

<build-server-public-ip>:<Jenkins-port>

The default Jenkins port is 8080. For example, if a public IP address 1.2.3.4, the path is 1.2.3.4:8080.

4. Install the AWS CodePipeline Jenkins plugin:

      • Sign in to Jenkins using the user name and password you created. Choose Manage Jenkins, then Manage Plugins.
      • Switch to the Available tab and start typing CodePipeline into the filter until AWS CodePipeline Plugin appears. Select the plugin, then select Install without restart.
      • Select Restart Jenkins when installation is complete and no jobs are running.

5. Create a project. Choose New Item, then Freestyle Project. Enter a descriptive name. This example uses iosapp as the item name.

6. In the Source Code Management section, select AWS CodePipeline and configure the plugin as shown in the following screenshot.

Screenshot of Source Code Management configuration in a Jenkins freestyle project

      • AWS region: The region in which you want to create the CI/CD pipeline.
      • AWS access key and AWS secret key: Create a special IAM user and apply the AWSCodePipelineCustomActionAccess managed policy to that user. Use the access credentials for that user to configure this section.
      • Category: Choose Build. This is also used in the pipeline configuration.
      • Provider: This example uses the name Jenkins. It can be renamed, but take note of the name specified here.
      • Version: Enter 1 here. This value is used in the pipeline configuration.

7. Under Build Triggers, select Poll SCM. Enter the schedule * * * * * separated by spaces, as shown in the following screenshot.

Screenshot of Build Triggers confoguration in a Jenkins freestyle project

8. Under Build, select Add build step, then Execute shell. Enter the following commands, inserting your development team ID.

/usr/bin/xcodebuild -version
/usr/bin/xcodebuild build-for-testing -scheme MyNotes -destination generic/platform=iOS DEVELOPMENT_TEAM=<your development team ID> -allowProvisioningUpdates -derivedDataPath /Users/admin/.jenkins/workspace/iosapp
mkdir Payload && cp -r /Users/admin/.jenkins/workspace/iosapp/Build/Products/Debug-iphoneos/MyNotes.app Payload/
zip -r Payload.zip Payload && mv Payload.zip MyNotes.ipa

9. Under Post-build Actions, select Add post-build action, then AWS CodePipeline Publisher. Fill in the fields as shown in the following screenshot:

Screenshot of Post Build Action Configuration in a Jenkins freestyle project

10. Save the configuration.

11. Retrieve the public IP address for the macOS build server.

Configure Device Farm

In this section, you configure Device Farm to test the sample iOS app on real-world devices.

  1. Navigate to the AWS Device Farm Console
  2. Choose Create a new project and enter a name for the project. Choose Create project. Note the name of the project.
  3. Choose the newly created project and retrieve the project ID:
    • Copy the URL found in the browser into a text editor.
    • Note the project ID, which can be found in the URL path:

https://us-west-2.console.aws.amazon.com/devicefarm/home?region=us-east-1#/projects/<your project ID is here>/runs

    • Decide on which devices you want to test the sample app. This is known as the device pool in Device Farm. This example doesn’t use a PRIVATE device pool. It uses a CURATED device pool, which is a device pool created and managed by AWS Device Farm.
    • Retrieve the ARN of the CURATED device pool for your project using the AWS CLI:

$ aws devicefarm list-device-pools --arn arn::devicefarm:us-west-2:<account-id>:project:<project id noted above> --region us-west-2 --query 'devicePools[?name==`Top Devices`]'

Note the device pool ARN.

Configure the CodeCommit repository

In this section, the source code repository is created and source code is pushed to the repository.

  1. Create a CodeCommit repository. Take note of the repository name.
  2. Connect to the newly created repository.
  3. Push the iOS app code from the local repository to the remote CodeCommit repository:

$ git push

Create and configure CodePipeline

CodePipeline orchestrates all phases of the example. Each action is represented as a stage.

Since you have a Jenkins stage, which is considered a custom action and has to be configured via the AWS management console, use the AWS management console to create your pipeline.

  1. Go to the AWS CodePipeline console and choose Create pipeline.
  2. Enter iosapp under Pipeline settings and select New service role.
  3. Leave the default Role name, and select Allow AWS CodePipeline to create a service role so it can be used with this new pipeline.
  4. Choose Next.
  5. Select AWS CodeCommit as the Source provider. Select the repository you created and the branch name, then select Next.
  6. Select Add Jenkins as the build provider and fill in the fields:
    • Provider name: Specify the provider name you configured for this example.
    • Server URL: Specify the public IP address of the Jenkins server and the port on which Jenkins is. For example, if 1.2.3.4 is the IP address and 8080 is the port, the server URL is http://1.2.3.4:8080.
    • Project name: Specify the name you gave to the Jenkins Freestyle project you created.
  7. Choose Next.
  8. Choose Skip deploy stage. You are integrating with Device Farm and this is only valid as a test stage, not a deploy stage.
  9. Choose Create pipeline. This creates a two-stage pipeline which starts executing immediately after creation. However, you are not done yet, so stop the current execution
  10. Now create a test stage with Device Farm. Choose Edit to modify the pipeline. Under the Build stage, select Add Stage and enter a stage name (such as Test). Choose Add stage again.
  11. In the newly added stage, choose Add action group and fill in the fields:
    • Action name: Enter an Action name
    • Action Provider: Select AWS Device Farm
    • Region: Select US West – Oregon.

      “AWS Device Farm is only supported in US-West-2 (Oregon) so this action will be a cross region action since the pipeline is in us-east-1”

    • Input artifacts: Select BuildArtifact, which is the output of the Jenkins build stage
    • ProjectId: This is the Device Farm project ID you noted earlier
    • DevicePoolArn: This is the Device Farm ARN you noted earlier
    • AppType: Enter iOS
    • App: This is the file that contains the app to test; the filename of your generated IPA is MyNotes.ipa
    • TestType: This is the type of test to run on the application; enter BUILTIN_FUZZ
  12. Leave the other fields blank and choose Done to save the action configuration, then choose Save to save the pipeline changes.
  13. Optionally, you can enable notifications to notify you of changes in the pipeline, such as when the pipeline completes, when a stage or action completes, or when there is a failure. To enable notifications, create a notification rule.
  14. Choose Release change to execute the pipeline, as shown in the following screenshot.

Completed codepipeline sample with example test failure

Verify the test on Device Farm

From the pipeline execution, you can see there is a failure in your test. Check the test results:

  1. Navigate to the AWS Device Farm Console.
  2. Select the project you created.
  3. All the tests that have run are listed, as seen in the following screenshot.
  4. Failure on AWS Device FarmChoose the test to see more details.

You can see the source of the failure. To investigate why the test failed, choose each device. The device names on which the app was tested are also shown, such as the OS version and the total duration of the test for each device. You can see screenshots of the test by switching to the Screenshots tab. More information can also be seen by clicking on a device.

Troubleshoot the failure by examining the result in each of the devices on which the test was run to determine what changes are needed in the application. After making the needed changes in the application source code, push the changes to the remote repository (in this case, a CodeCommit repository) to trigger the pipeline again. The following screenshot shows a successful pipeline execution:

Succesfuly executed CodePipeline

The following screenshot shows a successful test:

Sucessfully executed tests on Device Farm

Cleanup

Cleanup the following AWS resources:

Conclusion

This post showed you how to integrate CodePipeline with an iOS Jenkins build server and leverage the integration of CodePipeline and Device Farm to automatically build and test iOS apps on real-world devices. By taking this approach to testing iOS apps, you can visualize how an app will behave on actual devices and with the automated CI/CD pipeline, and quickly test apps as they are developed.

Providing self-service repositories to end users to connect to AWS Lambda backed services

Post Syndicated from Richard Rustean original https://aws.amazon.com/blogs/devops/providing-self-service-repositories-to-end-users-to-connect-to-aws-lambda-backed-services/

Offering products to your consumers in AWS is a great way to accelerate adoption, and offering these products through AWS Service Catalog helps to simplify and streamline the process. This blog post describes how you can offer multiple consumers access to your backend products in AWS by using some simple AWS tools and services.

In this case, the backend product uploads newly created or modified objects from an AWS CodeCommit repository to a repository-specific path in an Amazon S3 bucket via some logic in an AWS Lambda function. This method works equally well with any other backend AWS service and is particularly useful for CI/CD or machine learning pipelines in which some logic is required before the pipeline processes the files. In a recent project, I used this method to push machine learning models to dynamically created Amazon EMR clusters.

Overview

The architecture behind the customer-facing portion of this solution is relatively simple, using only three AWS services. As discussed in the summary, the backend architecture uses a single Lambda function to push objects to Amazon S3. In reality, this could be a much larger and more complex solution.

Architecture diagram showing that we only need three AWS Services for this example

Getting started

This example deploys all components of this infrastructure as code using AWS CloudFormation. AWS CloudFormation templates are deployed using AWS CLI. You can deploy them using the AWS console if you prefer, but that is not covered in this blog post.

Prerequisites

This post assumes that you have an AWS account in place with permissions to allow the following:

  • Access to create AWS Lambda functions
  • Access to create AWS CodeCommit repositories and push to them
  • Access to create AWS Service Catalog products
  • Access to create and subscribe to Amazon SNS topics
  • AWS CLI Installed with the above access to your AWS account
  • Amazon S3 bucket created

You should download the AWS CloudFormation templates for this project, unzip them, and store them in a local folder.

Deploying the backend service

In the source code for this blog post, find an AWS CloudFormation template called backend-function.yml. This is the backend service with which you interact. When you create your repository through AWS Service Catalog, you specify this backend service as an input, which allows your single AWS Service Catalog product to serve many different backend products.

  1. Download the backend AWS CloudFormation templates as discussed in the Prerequisites section, unzip them, and place them in a folder on your local computer
  2. Navigate to that folder and run the following AWS CLI command. In this command, you assume that you act on commit to the master branch of your repository. If this is not the case, change the codeCommitBranch key to the branch on which you are acting. You should also replace the value <myS3Bucket> with the correct name for your Amazon S3 bucket.
    aws cloudformation create-stack --stack-name myBackendFunction --capabilities CAPABILITY_AUTO_EXPAND CAPABILITY_NAMED_IAM CAPABILITY_IAM --template-body file://backend-function.yml --parameters ParameterKey=codeCommitBranch,ParameterValue=master ParameterKey=s3BucketName,ParameterValue=<myS3Bucket>
    This returns a stack ID such as the following:
    {
    "StackId": "arn:aws:cloudformation:eu-west-1:737661087350:stack/myBackendFunction/c0d04af0-f98a-11e9-8f65-06c34fd08df4"
    }
  3. You can check on the progress of the AWS CloudFormation stack creation by running the following command and looking at the StackStatus.
    aws cloudformation describe-stacks --stack-name "<StackId from the above command>"
    Once your status is set to CREATE_COMPLETE, you can continue to the next step.
  4.  Looking at the output from the aws cloudformation describe-stacks command, you should also note down the ExportName in the Outputs section. This is the value that you use when provisioning the CodeCommit repositories so that they connect to this specific backend product. In this case, the name is myBackendFunction-BackendLambdaCode.

Deploying the Service Catalog product

In the folder that you downloaded and unzipped the project files into, find an AWS CloudFormation template called service-catalog-product.yml. This is the code that creates the service catalog product for your consumers and contains the CodeCommit repository that they use. It does this by calling another AWS CloudFormation template that you upload to your Amazon S3 bucket.

  1. In the folder into which you downloaded and unzipped the project files, find an AWS CloudFormation template called create-backend-linked-repository.yml. You need to upload this to the Amazon S3 bucket you created. In practice, this is on a secured bucket owned by your infrastructure team, but in this example, place it on the same bucket to which your backend function is writing. Upload it using the following AWS CLI command, where <myS3Bucket> is the name of your Amazon S3 bucket
    aws s3 cp create-backend-linked-repository.yml s3://<myS3Bucket>
  2.  In the folder into which you downloaded and unzipped the project files, find the file named service-catalog-product.yml.
  3. Navigate to the local folder with the files you downloaded and run the following AWS CLI command. You should replace the value <myS3Bucket> with the correct name for your Amazon S3 bucket, and replace the value <permissionArn> with the full ARN of a user, group, or role that needs to be able to deploy the repositories from the AWS Service Catalog.
    aws cloudformation create-stack --stack-name myServicCatalogProduct --capabilities CAPABILITY_AUTO_EXPAND CAPABILITY_NAMED_IAM CAPABILITY_IAM --template-body file://service-catalog-product.yml --parameters ParameterKey=s3BucketName,ParameterValue=<myS3Bucket> ParameterKey=permissionsArn,ParameterValue=< permissionsArn >
    This returns a stack ID such as the following:
    {
    "StackId": "arn:aws:cloudformation:eu-west-1:737661087350:stack/myServicCatalogProduct/dcb48f80-f988-11e9-8199-0637bdb794d0"
    }
  4.  You can check on the progress of the AWS CloudFormation stack creation by running the following command and looking at the StackStatus:
    aws cloudformation describe-stacks --stack-name "<StackId from the above command>"

Once your status is set to CREATE_COMPLETE, you can continue to the next step.

Deploying the AWS CodeCommit repository as a user

Now that you have deployed the infrastructure around this AWS Service Catalog product, you can deploy the actual repository just as a user would. You do this from the AWS Service Catalog page in the AWS console.

  1. Open the AWS Service Catalog page and navigate to the product lists. You should see the product you just created, called CodeCommit Repository for Demo. Choose the product name, and then choose Launch Product.
  2. Give the product a name and choose Next.
  3. Enter the details into the Parameters page. You can leave the default values in there for this example or change the values to something more meaningful. The parameter for backendFunction should be the name of the backend function. This is the ExportName that you noted down in Step 4 in the Deploying the backend service section of this blog (in this case it is myBackendFunction-BackendLambdaCode).
  4. Enter any tags that you want to use and then choose Next.
  5. Leave the checkbox unselected in the Notifications section and choose Next.
  6.  Choose Launch to create your new repository.

Uploading content to the AWS CodeCommit Repository

Note that, in the AWS CodeCommit console, you have created a new repository. You can now choose the Clone URL links (either HTTPS or SSH) and connect from your favorite Git client, as shown in the following screenshot.

View of the CodeCommit Repository that was created in the previous step

If you prefer, you can also use the AWS CodeCommit user interface to add and update your files, as shown in the following screenshot.

Adding files directly to the Repository using the AWS CodeCommit UI

Once you commit to the master branch, you can see your files in the Amazon S3 bucket you referenced for this project, which validates that your integration has worked.

Cleaning up your environment

There are three steps to cleaning up your environment after deploying this infrastructure. You must first remove any AWS CodeCommit repositories that you provisioned using AWS Service Catalog, then remove the infrastructure AWS CloudFormation Templates that you deployed and finally you should remove any data that you pushed into your AWS CodeCommit repository from Amazon S3.

Since the end user created the AWS CodeCommit Repository via AWS Service Catalog, we will get them to remove these repositories in the same way.

  1. Open the AWS Service Catalog page and navigate to the Provisioned product list. You should see the repository that you created earlier. Hit the three dots to the left of the product and select Terminate provisioned product.
  2. Click Terminate in the warning window that appears.
  3. After a few minutes hit the refresh button and you will see that this provisioned product disappears.

Snip showing how to terminate an AWS Service Catalog provisioned products

Now that we have cleaned up our repositories, we need to remove the AWS CloudFormation stacks that contain all of the logic. Since we deployed these using the AWS CLI, we will remove them in the same way.

  1. You should first remove the Service Catalog stack by running the command:
    aws cloudformation delete-stack --stack-name myServicCatalogProduct
  2. You can check on the progress of the AWS CloudFormation stack deletion by running the following command and looking at the StackStatus:
    aws cloudformation list-stacks
    When this stack shows a StackStatus of DELETE_COMPLETE then it has been successfully removed and you can move onto the next step.
  3. Next you need to remove the backend stack. You can do this by running the following command:
    aws cloudformation delete-stack --stack-name myBackendFunction
  4. You can check on the progress of the AWS CloudFormation stack deletion by running the following command and looking at the StackStatus:
    aws cloudformation list-stacks
    When this stack shows a StackStatus of DELETE_COMPLETE then it has been successfully removed and you can move onto the next step.

Finally you should remove any unwanted test data from the Amazon S3 bucket that you chose as a target for our repository. All objects will be in a folder with the same name as the repository and this whole folder can now be removed. Please ensure that any data being removed is no longer required before deleting.

Conclusion

In this blog post, you used AWS CloudFormation and AWS CLI to deploy an AWS Service Catalog product and associated a backend Lambda function to move files from a CodeCommit repository to an Amazon S3 bucket. As previously discussed, this is a simple use case for what you can do using this type of infrastructure. By changing the Lambda function to match your requirements, you can use the same infrastructure for practically anything.

 

Monitoring and management with Amazon QuickSight and Athena in your CI/CD pipeline

Post Syndicated from Umair Nawaz original https://aws.amazon.com/blogs/devops/monitoring-and-management-with-amazon-quicksight-and-athena-in-your-ci-cd-pipeline/

One of the many ways to monitor and manage required CI/CD metrics is to use Amazon QuickSight to build customized visualizations. Additionally, by applying Lean management to software delivery processes, organizations can improve delivery of features faster, pivot when needed, respond to compliance and security changes, and take advantage of instant feedback to improve the customer delivery experience. This blog post demonstrates how AWS resources and tools can provide monitoring and information pertaining to their CI/CD pipelines.

There are three principles in Lean management that this artifact enables and to which it contributes:

  • Limiting work in progress by establishing constraints that drive process improvement and increase throughput.
  • Creating and maintaining dashboards displaying key quality information, productivity metrics, and current status of work (including defects).
  • Using data from development performance and operations monitoring tools to enable business decisions more frequently.

Overview

The following architectural diagram shows how to use AWS services to collect metrics from a CI/CD pipeline and deliver insights through Amazon QuickSight dashboards.

Architecture diagram showing an overview of how CI/CD metrics are extracted and transformed to create a dynamic QuickSight dashboard

In this example, the orchestrator for the CI/CD pipeline is AWS CodePipeline with the entry point as an AWS CodeCommit Git repository for source control. When a developer pushes a code change into the CodeCommit repository, the change goes through a series of phases in CodePipeline. AWS CodeBuild is responsible for performing build actions and, upon successful completion of this phase, AWS CodeDeploy kicks off the actions to execute the deployment.

For each action in CodePipeline, the following series of events occurs:

  • An Amazon CloudWatch rule creates a CloudWatch event containing the action’s metadata.
  • The CloudWatch event triggers an AWS Lambda function.
  • The Lambda function extracts relevant reporting data and writes it to a CSV file in an Amazon S3 bucket.
  • Amazon Athena queries the Amazon S3 bucket and loads the query results into SPICE (an in-memory engine for Amazon QuickSight).
  • Amazon QuickSight obtains data from SPICE to build dashboard displays for the management team.

Note: This solution is for an AWS account with an existing CodePipeline(s). If you do not have a CodePipeline, no metrics will be collected.

Getting started

To get started, follow these steps:

  • Create a Lambda function and copy the following code snippet. Be sure to replace the bucket name with the one used to store your event data. This Lambda function takes the payload from a CloudWatch event and extracts the field’s pipeline, time, state, execution, stage, and action to transform into a CSV file.

Note: Athena’s performance can be improved by compressing, partitioning, or converting data into columnar formats such as Apache Parquet. In this use-case, the dataset size is negligible therefore, a transformation from CSV to Parquet is not required.


import boto3
import csv
import datetime
import os

 # Analyze payload from CloudWatch Event
 def pipeline_execution(data):
     print (data)
     # Specify data fields to deliver to S3
     row=['pipeline,time,state,execution,stage,action']
     
     if "stage" in data['detail'].keys():
         stage=data['detail']['execution']
     else:
         stage='NA'
         
     if "action" in data['detail'].keys():
         action=data['detail']['action']
     else:
         action='NA'
     row.append(data['detail']['pipeline']+','+data['time']+','+data['detail']['state']+','+data['detail']['execution']+','+stage+','+action)  
     values = '\n'.join(str(v) for v in row)
     return values

 # Upload CSV file to S3 bucket
 def upload_data_to_s3(data):
     s3=boto3.client('s3')
     runDate = datetime.datetime.now().strftime("%Y-%m-%d_%H:%M:%S:%f")
     csv_key=runDate+'.csv'
     response = s3.put_object(
         Body=data,
         Bucket='*<example-bucket>*',
         Key=csv_key
     )

 def lambda_handler(event, context):
     upload_data_to_s3(pipeline_execution(event))
  • Create an Athena table to query the data stored in the Amazon S3 bucket. Execute the following SQL in the Athena query console and provide the bucket name that will hold the data.
CREATE EXTERNAL TABLE `devops`(
   `pipeline` string, 
   `time` string, 
   `state` string, 
   `execution` string, 
   `stage` string, 
   `action` string)
 ROW FORMAT DELIMITED 
   FIELDS TERMINATED BY ',' 
 STORED AS INPUTFORMAT 
   'org.apache.hadoop.mapred.TextInputFormat' 
 OUTPUTFORMAT 
   'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
 LOCATION
   's3://**<example-bucket>**/'
 TBLPROPERTIES (
   'areColumnsQuoted'='false', 
   'classification'='csv', 
   'columnsOrdered'='true', 
   'compressionType'='none', 
   'delimiter'=',', 
   'skip.header.line.count'='1',  
   'typeOfData'='file')  
  • Create a CloudWatch event rule that passes events to the Lambda function created in Step 1. In the event rule configuration, set the Service Name as CodePipeline and, for Event Type, select All Events.

Sample Dataset view from Athena.

Sample Athena query and the results

Amazon QuickSight visuals

After the initial setup is done, you are ready to create your QuickSight dashboard. Be sure to check that the Athena permissions are properly set before creating an analysis to be published as an Amazon QuickSight dashboard.

Below are diagrams and figures from Amazon QuickSight that can be generated using the event data queried from Athena. In this example, you can see how many executions happened in the account and how many were successful.

The following screenshot shows that most pipeline executions are failing. A manager might be concerned that this points to a significant issue and prompt an investigation in which they can allocate resources to improve delivery and efficiency.

QuickSight Dashboard showing total execution successes and failures

The visual for this solution is dynamic in nature. In case the pipeline has more or fewer actions, the visual will adjust automatically to reflect all actions. After looking at the success and failure rates for each CodePipeline action in Amazon QuickSight, as shown in the following screenshot, users can take targeted actions quickly. For example, if the team sees a lot of failures due to vulnerability scanning, they can work on improving that problem area to drive value for future code releases.

QuickSight Dashboard showing the successes and failures of pipeline actions

Day-over-day visuals reflect date-specific activity and enable teams to see their progress over a period of time.

QuickSight Dashboard showing day over day results of successful CI/CD executions and failures

Amazon QuickSight offers controls that can be configured to apply filters to visuals. For example, the following screenshot demonstrates how users can toggle between visuals for different applications.

QuickSight's control function to switch between different visualization options

Cleanup (optional)

In order to avoid unintended charges, delete the following resources:

  • Amazon CloudWatch event rule
  • Lambda function
  • Amazon S3 Bucket (the location in which CSV files generated by the Lambda function are stored)
  • Athena external table
  • Amazon QuickSight data sets
  • Analysis and dashboard

Conclusion

In this blog, we showed how metrics can be derived from a CI/CD pipeline. Utilizing Amazon QuickSight to create visuals from these metrics allows teams to continuously deliver updates on the deployment process to management. The aggregation of the captured data over time allows individual developers and teams to improve their processes. That is the goal of creating a Lean DevOps process: to oversee the meta-delivery pipeline and optimize all future releases by identifying weak spots and points of risk during the entire release process.

___________________________________________________________

About the Authors

Umair Nawaz is a DevOps Engineer at Amazon Web Services in New York City. He works on building secure architectures and advises enterprises on agile software delivery. He is motivated to solve problems strategically by utilizing modern technologies.
Christopher Flores is an Engagement Manager at Amazon Web Services in New York City. He leads AWS developers, partners, and client teams in using the customer engagement accelerator framework. Christopher expedites stakeholder alignment, enterprise cohesion and risk mitigation while ensuring feedback loops to close the engagement lifecycle.
Carol Liao is a Cloud Infrastructure Architect at Amazon Web Services in New York City. She enjoys designing and developing modern IT solutions in the cloud where there is always more to learn, more problems to solve, and more to build.

 

Testing and creating CI/CD pipelines for AWS Step Functions

Post Syndicated from Matt Noyce original https://aws.amazon.com/blogs/devops/testing-and-creating-ci-cd-pipelines-for-aws-step-functions-using-aws-codepipeline-and-aws-codebuild/

AWS Step Functions allow users to easily create workflows that are highly available, serverless, and intuitive. Step Functions natively integrate with a variety of AWS services including, but not limited to, AWS Lambda, AWS Batch, AWS Fargate, and Amazon SageMaker. It offers the ability to natively add error handling, retry logic, and complex branching, all through an easy-to-use JSON-based language known as the Amazon States Language.

AWS CodePipeline is a fully managed Continuous Delivery System that allows for easy and highly configurable methods for automating release pipelines. CodePipeline allows the end-user the ability to build, test, and deploy their most critical applications and infrastructure in a reliable and repeatable manner.

AWS CodeCommit is a fully managed and secure source control repository service. It eliminates the need to support and scale infrastructure to support highly available and critical code repository systems.

This blog post demonstrates how to create a CI/CD pipeline to comprehensively test an AWS Step Function state machine from start to finish using CodeCommit, AWS CodeBuild, CodePipeline, and Python.

CI/CD pipeline steps

The pipeline contains the following steps, as shown in the following diagram.

CI/CD pipeline steps

  1. Pull the source code from source control.
  2. Lint any configuration files.
  3. Run unit tests against the AWS Lambda functions in codebase.
  4. Deploy the test pipeline.
  5. Run end-to-end tests against the test pipeline.
  6. Clean up test state machine and test infrastructure.
  7. Send approval to approvers.
  8. Deploy to Production.

Prerequisites

In order to get started building this CI/CD pipeline there are a few prerequisites that must be met:

  1. Create or use an existing AWS account (instructions on creating an account can be found here).
  2. Define or use the example AWS Step Function states language definition (found below).
  3. Write the appropriate unit tests for your Lambda functions.
  4. Determine end-to-end tests to be run against AWS Step Function state machine.

The CodePipeline project

The following screenshot depicts what the CodePipeline project looks like, including the set of stages run in order to securely, reliably, and confidently deploy the AWS Step Function state machine to Production.

CodePipeline project

Creating a CodeCommit repository

To begin, navigate to the AWS console to create a new CodeCommit repository for your state machine.

CodeCommit repository

In this example, the repository is named CalculationStateMachine, as it contains the contents of the state machine definition, Python tests, and CodeBuild configurations.

CodeCommit structure

Breakdown of repository structure

In the CodeCommit repository above we have the following folder structure:

  1. config – this is where all of the Buildspec files will live for our AWS CodeBuild jobs.
  2. lambdas – this is where we will store all of our AWS Lambda functions.
  3. tests – this is the top-level folder for unit and end-to-end tests. It contains two sub-folders (unit and e2e).
  4. cloudformation – this is where we will add any extra CloudFormation templates.

Defining the state machine

Inside of the CodeCommit repository, create a State Machine Definition file called sm_def.json that defines the state machine in Amazon States Language.

This example creates a state machine that invokes a collection of Lambda functions to perform calculations on the given input values. Take note that it also performs a check against a specific value and, through the use of a Choice state, either continues the pipeline or exits it.

sm_def.json file:

{
  "Comment": "CalulationStateMachine",
  "StartAt": "CleanInput",
  "States": {
    "CleanInput": {
      "Type": "Task",
      "Resource": "arn:aws:states:::lambda:invoke",
      "Parameters": {
        "FunctionName": "CleanInput",
        "Payload": {
          "input.$": "$"
        }
      },
      "Next": "Multiply"
    },
    "Multiply": {
      "Type": "Task",
      "Resource": "arn:aws:states:::lambda:invoke",
      "Parameters": {
        "FunctionName": "Multiply",
        "Payload": {
          "input.$": "$.Payload"
        }
      },
      "Next": "Choice"
    },
    "Choice": {
      "Type": "Choice",
      "Choices": [
        {
          "Variable": "$.Payload.result",
          "NumericGreaterThanEquals": 20,
          "Next": "Subtract"
        }
      ],
      "Default": "Notify"
    },
    "Subtract": {
      "Type": "Task",
      "Resource": "arn:aws:states:::lambda:invoke",
      "Parameters": {
        "FunctionName": "Subtract",
        "Payload": {
          "input.$": "$.Payload"
        }
      },
      "Next": "Add"
    },
    "Notify": {
      "Type": "Task",
      "Resource": "arn:aws:states:::sns:publish",
      "Parameters": {
        "TopicArn": "arn:aws:sns:us-east-1:657860672583:CalculateNotify",
        "Message.$": "$$",
        "Subject": "Failed Test"
      },
      "End": true
    },
    "Add": {
      "Type": "Task",
      "Resource": "arn:aws:states:::lambda:invoke",
      "Parameters": {
        "FunctionName": "Add",
        "Payload": {
          "input.$": "$.Payload"
        }
      },
      "Next": "Divide"
    },
    "Divide": {
      "Type": "Task",
      "Resource": "arn:aws:states:::lambda:invoke",
      "Parameters": {
        "FunctionName": "Divide",
        "Payload": {
          "input.$": "$.Payload"
        }
      },
      "End": true
    }
  }
}

This will yield the following AWS Step Function state machine after the pipeline completes:

State machine

CodeBuild Spec files

The CI/CD pipeline uses a collection of CodeBuild BuildSpec files chained together through CodePipeline. The following sections demonstrate what these BuildSpec files look like and how they can be used to chain together and build a full CI/CD pipeline.

AWS States Language linter

In order to determine whether or not the State Machine Definition is valid, include a stage in your CodePipeline configuration to evaluate it. Through the use of a Ruby Gem called statelint, you can verify the validity of your state machine definition as follows:

lint_buildspec.yaml file:

version: 0.2
env:
  git-credential-helper: yes
phases:
  install:
    runtime-versions:
      ruby: 2.6
    commands:
      - yum -y install rubygems
      - gem install statelint

  build:
    commands:
      - statelint sm_def.json

If your configuration is valid, you do not see any output messages. If the configuration is invalid, you receive a message telling you that the definition is invalid and the pipeline terminates.

Lambda unit testing

In order to test your Lambda function code, you need to evaluate whether or not it passes a set of tests. You can test each individual Lambda function deployed and used inside of the state machine. You can feed various inputs into your Lambda functions and assert that the output is what you expect it to be. In this case, you use Python pytest to kick-off tests and validate results.

unit_test_buildspec.yaml file:

version: 0.2
env:
  git-credential-helper: yes
phases:
  install:
    runtime-versions:
      python: 3.8
    commands:
      - pip3 install -r tests/requirements.txt

  build:
    commands:
      - pytest -s -vvv tests/unit/ --junitxml=reports/unit.xml

reports:
  StateMachineUnitTestReports:
    files:
      - "**/*"
    base-directory: "reports"

Take note that in the CodeCommit repository includes a directory called tests/unit, which includes a collection of unit tests that are run and validated against your Lambda function code. Another very important part of this BuildSpec file is the reports section, which generates reports and metrics about the results, trends, and overall success of your tests.

CodeBuild test reports

After running the unit tests, you are able to see reports about the results of the run. Take note of the reports section of the BuildSpec file, along with the –junitxml=reports/unit.xml command run along with the pytest command. This generates a set of reports that can be visualized in CodeBuild.

Navigate to the specific CodeBuild project you want to examine and click on the specific execution of interest. There is a tab called Reports, as seen in the following screenshot:

Test reports

Select the specific report of interest to see a breakdown of the tests that have run, as shown in the following screenshot:

Test visualization

With Report Groups, you can also view an aggregated list of tests that have run over time. This report includes various features such as the number of average test cases that have run, average duration, and the overall pass rate, as shown in the following screenshot:

Report groups

The AWS CloudFormation template step

The following BuildSpec file is used to generate an AWS CloudFormation template that inject the State Machine Definition into AWS CloudFormation.

template_sm_buildspec.yaml file:

version: 0.2
env:
  git-credential-helper: yes
phases:
  install:
    runtime-versions:
      python: 3.8

  build:
    commands:
      - python template_statemachine_cf.py

The Python script that templates AWS CloudFormation to deploy the State Machine Definition given the sm_def.json file in your repository follows:

template_statemachine_cf.py file:

import sys
import json

def read_sm_def (
    sm_def_file: str
) -> dict:
    """
    Reads state machine definition from a file and returns it as a dictionary.

    Parameters:
        sm_def_file (str) = the name of the state machine definition file.

    Returns:
        sm_def_dict (dict) = the state machine definition as a dictionary.
    """

    try:
        with open(f"{sm_def_file}", "r") as f:
            return f.read()
    except IOError as e:
        print("Path does not exist!")
        print(e)
        sys.exit(1)

def template_state_machine(
    sm_def: dict
) -> dict:
    """
    Templates out the CloudFormation for creating a state machine.

    Parameters:
        sm_def (dict) = a dictionary definition of the aws states language state machine.

    Returns:
        templated_cf (dict) = a dictionary definition of the state machine.
    """
    
    templated_cf = {
        "AWSTemplateFormatVersion": "2010-09-09",
        "Description": "Creates the Step Function State Machine and associated IAM roles and policies",
        "Parameters": {
            "StateMachineName": {
                "Description": "The name of the State Machine",
                "Type": "String"
            }
        },
        "Resources": {
            "StateMachineLambdaRole": {
                "Type": "AWS::IAM::Role",
                "Properties": {
                    "AssumeRolePolicyDocument": {
                        "Version": "2012-10-17",
                        "Statement": [
                            {
                                "Effect": "Allow",
                                "Principal": {
                                    "Service": "states.amazonaws.com"
                                },
                                "Action": "sts:AssumeRole"
                            }
                        ]
                    },
                    "Policies": [
                        {
                            "PolicyName": {
                                "Fn::Sub": "States-Lambda-Execution-${AWS::StackName}-Policy"
                            },
                            "PolicyDocument": {
                                "Version": "2012-10-17",
                                "Statement": [
                                    {
                                        "Effect": "Allow",
                                        "Action": [
                                            "logs:CreateLogStream",
                                            "logs:CreateLogGroup",
                                            "logs:PutLogEvents",
                                            "sns:*"             
                                        ],
                                        "Resource": "*"
                                    },
                                    {
                                        "Effect": "Allow",
                                        "Action": [
                                            "lambda:InvokeFunction"
                                        ],
                                        "Resource": "*"
                                    }
                                ]
                            }
                        }
                    ]
                }
            },
            "StateMachine": {
                "Type": "AWS::StepFunctions::StateMachine",
                "Properties": {
                    "DefinitionString": sm_def,
                    "RoleArn": {
                        "Fn::GetAtt": [
                            "StateMachineLambdaRole",
                            "Arn"
                        ]
                    },
                    "StateMachineName": {
                        "Ref": "StateMachineName"
                    }
                }
            }
        }
    }

    return templated_cf


sm_def_dict = read_sm_def(
    sm_def_file='sm_def.json'
)

print(sm_def_dict)

cfm_sm_def = template_state_machine(
    sm_def=sm_def_dict
)

with open("sm_cfm.json", "w") as f:
    f.write(json.dumps(cfm_sm_def))

Deploying the test pipeline

In order to verify the full functionality of an entire state machine, you should stand it up so that it can be tested appropriately. This is an exact replica of what you will deploy to Production: a completely separate stack from the actual production stack that is deployed after passing appropriate end-to-end tests and approvals. You can take advantage of the AWS CloudFormation target supported by CodePipeline. Please take note of the configuration in the following screenshot, which shows how to configure this step in the AWS console:

Deploy test pipeline

End-to-end testing

In order to validate that the entire state machine works and executes without issues given any specific changes, feed it some sample inputs and make assertions on specific output values. If the specific assertions pass and you get the output that you expect to receive, you can proceed to the manual approval phase.

e2e_tests_buildspec.yaml file:

version: 0.2
env:
  git-credential-helper: yes
phases:
  install:
    runtime-versions:
      python: 3.8
    commands:
      - pip3 install -r tests/requirements.txt

  build:
    commands:
      - pytest -s -vvv tests/e2e/ --junitxml=reports/e2e.xml

reports:
  StateMachineReports:
    files:
      - "**/*"
    base-directory: "reports"

Manual approval (SNS topic notification)

In order to proceed forward in the CI/CD pipeline, there should be a formal approval phase before moving forward with a deployment to Production. Using the Manual Approval stage in AWS CodePipeline, you can configure the pipeline to halt and send a message to an Amazon SNS topic before moving on further. The SNS topic can have a variety of subscribers, but in this case, subscribe an approver email address to the topic so that they can be notified whenever an approval is requested. Once the approver approves the pipeline to move to Production, the pipeline will proceed with deploying the production version of the Step Function state machine.

This Manual Approval stage can be configured in the AWS console using a configuration similar to the following:

Manual approval

Deploying to Production

After the linting, unit testing, end-to-end testing, and the Manual Approval phases have passed, you can move on to deploying the Step Function state machine to Production. This phase is similar to the Deploy Test Stage phase, except the name of your AWS CloudFormation stack is different. In this case, you also take advantage of the AWS CloudFormation target for CodeDeploy:

Deploy to production

After this stage completes successfully, your pipeline execution is complete.

Cleanup

After validating that the test state machine and Lambda functions work, include a CloudFormation step that will tear-down the existing test infrastructure (as it is no longer needed). This can be configured as a new CodePipeline step similar to the below configuration:

CloudFormation Template for cleaning up resources

Conclusion

You have linted and validated your AWS States Language definition, unit tested your Lambda function code, deployed a test AWS state machine, run end-to-end tests, received Manual Approval to deploy to Production, and deployed to Production. This gives you and your team confidence that any changes made to your state machine and surrounding Lambda function code perform correctly in Production.

 

About the Author

matt noyce profile photo

 

Matt Noyce is a Cloud Application Architect in Professional Services at Amazon Web Services.
He works with customers to architect, design, automate, and build solutions on AWS
for their business needs.

Identifying and resolving security code vulnerabilities using Snyk in AWS CI/CD Pipeline

Post Syndicated from Jay Yeras original https://aws.amazon.com/blogs/devops/identifying-and-resolving-vulnerabilities-in-your-code/

The majority of companies have embraced open-source software (OSS) at an accelerated rate even when building proprietary applications. Some of the obvious benefits for this shift include transparency, cost, flexibility, and a faster time to market. Snyk’s unique combination of developer-first tooling and best in class security depth enables businesses to easily build security into their continuous development process.

Even for teams building proprietary code, use of open-source packages and libraries is a necessity. In reality, a developer’s own code is often a small core within the app, and the rest is open-source software. While relying on third-party elements has obvious benefits, it also presents numerous complexities. Inadvertently introducing vulnerabilities into your codebase through repositories that are maintained in a distributed fashion and with widely varying levels of security expertise can be common, and opens up applications to effective attacks downstream.

There are three common barriers to truly effective open-source security:

  1. The security task remains in the realm of security and compliance, often perpetuating the siloed structure that DevOps strives to eliminate and slowing down release pace.
  2. Current practice may offer automated scanning of repositories, but the remediation advice it provides is manual and often un-actionable.
  3. The data generated often focuses solely on public sources, without unique and timely insights.

Developer-led application security

This blog post demonstrates techniques to improve your application security posture using Snyk tools to seamlessly integrate within the developer workflow using AWS services such as Amazon ECR, AWS Lambda, AWS CodePipeline, and AWS CodeBuild. Snyk is a SaaS offering that organizations use to find, fix, prevent, and monitor open source dependencies. Snyk is a developer-first platform that can be easily integrated into the Software Development Lifecycle (SDLC). The examples presented in this post enable you to actively scan code checked into source code management, container images, and serverless, creating a highly efficient and effective method of managing the risk inherent to open source dependencies.

Prerequisites

The examples provided in this post assume that you already have an AWS account and that your account has the ability to create new IAM roles and scope other IAM permissions. You can use your integrated development environment (IDE) of choice. The examples reference AWS Cloud9 cloud-based IDE. An AWS Quick Start for Cloud9 is available to quickly deploy to either a new or existing Amazon VPC and offers expandable Amazon EBS volume size.

Sample code and AWS CloudFormation templates are available to simplify provisioning the various services you need to configure this integration. You can fork or clone those resources. You also need a working knowledge of git and how to fork or clone within your source provider to complete these tasks.

cd ~/environment && \ 
git clone https://github.com/aws-samples/aws-modernization-with-snyk.git modernization-workshop 
cd modernization-workshop 
git submodule init 
git submodule update

Configure your CI/CD pipeline

The workflow for this example consists of a continuous integration and continuous delivery pipeline leveraging AWS CodeCommit, AWS CodePipeline, AWS CodeBuild, Amazon ECR, and AWS Fargate, as shown in the following screenshot.

CI/CD Pipeline

For simplicity, AWS CloudFormation templates are available in the sample repo for services.yaml, pipeline.yaml, and ecs-fargate.yaml, which deploy all services necessary for this example.

Launch AWS CloudFormation templates

A detailed step-by-step guide can be found in the self-paced workshop, but if you are familiar with AWS CloudFormation, you can launch the templates in three steps. From your Cloud9 IDE terminal, change directory to the location of the sample templates and complete the following three steps.

1) Launch basic services

aws cloudformation create-stack --stack-name WorkshopServices --template-body file://services.yaml \
--capabilities CAPABILITY_NAMED_IAM until [[ `aws cloudformation describe-stacks \
--stack-name "WorkshopServices" --query "Stacks[0].[StackStatus]" \
--output text` == "CREATE_COMPLETE" ]]; do echo "The stack is NOT in a state of CREATE_COMPLETE at `date`"; sleep 30; done &&; echo "The Stack is built at `date` - Please proceed"

2) Launch Fargate:

aws cloudformation create-stack --stack-name WorkshopECS --template-body file://ecs-fargate.yaml \
--capabilities CAPABILITY_NAMED_IAM until [[ `aws cloudformation describe-stacks \ 
--stack-name "WorkshopECS" --query "Stacks[0].[StackStatus]" \ 
--output text` == "CREATE_COMPLETE" ]]; do echo "The stack is NOT in a state of CREATE_COMPLETE at `date`"; sleep 30; done &&; echo "The Stack is built at `date` - Please proceed"

3) From your Cloud9 IDE terminal, change directory to the location of the sample templates and run the following command:

aws cloudformation create-stack --stack-name WorkshopPipeline --template-body file://pipeline.yaml \
--capabilities CAPABILITY_NAMED_IAM until [[ `aws cloudformation describe-stacks \
--stack-name "WorkshopPipeline" --query "Stacks[0].[StackStatus]" \
--output text` == "CREATE_COMPLETE" ]]; do echo "The stack is NOT in a state of CREATE_COMPLETE at `date`"; sleep 30; done &&; echo "The Stack is built at `date` - Please proceed"

Improving your security posture

You need to sign up for a free account with Snyk. You may use your Google, Bitbucket, or Github credentials to sign up. Snyk utilizes these services for authentication and does not store your password. Once signed up, navigate to your name and select Account Settings. Under API Token, choose Show, which will reveal the token to copy, and copy this value. It will be unique for each user.

Save your password to the session manager

Run the following command, replacing abc123 with your unique token. This places the token in the session parameter manager.

aws ssm put-parameter --name "snykAuthToken" --value "abc123" --type SecureString

Set up application scanning

Next, you need to insert testing with Snyk after maven builds the application. The simplest method is to insert commands to download, authorize, and run the Snyk commands after maven has built the application/dependency tree.

The sample Dockerfile contains an environment variable from a value passed to the docker build command, which contains the token for Snyk. By using an environment variable, Snyk automatically detects the token when used.

#~~~~~~~SNYK Variable~~~~~~~~~~~~ 
# Declare Snyktoken as a build-arg ARG snyk_auth_token
# Set the SNYK_TOKEN environment variable ENV
SNYK_TOKEN=${snyk_auth_token}
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Download Snyk, and run a test, looking for medium to high severity issues. If the build succeeds, post the results to Snyk for monitoring and reporting. If a new vulnerability is found, you are notified.

# package the application
RUN mvn package -Dmaven.test.skip=true

#~~~~~~~SNYK test~~~~~~~~~~~~
# download, configure and run snyk. Break build if vulns present, post results to `https://snyk.io/`
RUN curl -Lo ./snyk "https://github.com/snyk/snyk/releases/download/v1.210.0/snyk-linux"
RUN chmod -R +x ./snyk
#Auth set through environment variable
RUN ./snyk test --severity-threshold=medium
RUN ./snyk monitor

Set up docker scanning

Later in the build process, a docker image is created. Analyze it for vulnerabilities in buildspec.yml. First, pull the Snyk token snykAuthToken from the parameter store.

env:
  parameter-store:
    SNYK_AUTH_TOKEN: "snykAuthToken"

Next, in the prebuild phase, install Snyk.

phases:
  pre_build:
    commands:
      - echo Logging in to Amazon ECR...
      - aws --version
      - $(aws ecr get-login --region $AWS_DEFAULT_REGION --no-include-email)
      - REPOSITORY_URI=$(aws ecr describe-repositories --repository-name petstore_frontend --query=repositories[0].repositoryUri --output=text)
      - COMMIT_HASH=$(echo $CODEBUILD_RESOLVED_SOURCE_VERSION | cut -c 1-7)
      - IMAGE_TAG=${COMMIT_HASH:=latest}
      - PWD=$(pwd)
      - PWDUTILS=$(pwd)
      - curl -Lo ./snyk "https://github.com/snyk/snyk/releases/download/v1.210.0/snyk-linux"
      - chmod -R +x ./snyk

Next, in the build phase, pass the token to the docker compose command, where it is retrieved in the Dockerfile code you set up to test the application.

build:
    commands:
      - echo Build started on `date`
      - echo Building the Docker image...
      - cd modules/containerize-application
      - docker build --build-arg snyk_auth_token=$SNYK_AUTH_TOKEN -t $REPOSITORY_URI:latest.

You can further extend the build phase to authorize the Snyk instance for testing the Docker image that’s produced. If it passes, you can pass the results to Snyk for monitoring and reporting.

build:
    commands:
      - $PWDUTILS/snyk auth $SNYK_AUTH_TOKEN
      - $PWDUTILS/snyk test --docker $REPOSITORY_URI:latest
      - $PWDUTILS/snyk monitor --docker $REPOSITORY_URI:latest
      - docker tag $REPOSITORY_URI:latest $REPOSITORY_URI:$IMAGE_TAG

For reference, a sample buildspec.yaml configured with Snyk is available in the sample repo. You can either copy this file and overwrite your existing buildspec.yaml or open an editor and replace the contents.

Testing the application

Now that services have been provisioned and Snyk tools have been integrated into your CI/CD pipeline, any new git commit triggers a fresh build and application scanning with Snyk detects vulnerabilities in your code.

In the CodeBuild console, you can look at your build history to see why your build failed, identify security vulnerabilities, and pinpoint how to fix them.

Testing /usr/src/app...
✗ Medium severity vulnerability found in org.primefaces:primefaces
Description: Cross-site Scripting (XSS)
Info: https://snyk.io/vuln/SNYK-JAVA-ORGPRIMEFACES-31642
Introduced through: org.primefaces:[email protected]
From: org.primefaces:[email protected]
Remediation:
Upgrade direct dependency org.primefaces:[email protected] to org.primefaces:[email protected] (triggers upgrades to org.primefaces:[email protected])
✗ Medium severity vulnerability found in org.primefaces:primefaces
Description: Cross-site Scripting (XSS)
Info: https://snyk.io/vuln/SNYK-JAVA-ORGPRIMEFACES-31643
Introduced through: org.primefaces:[email protected]
From: org.primefaces:[email protected]
Remediation:
Upgrade direct dependency org.primefaces:[email protected] to org.primefaces:[email protected] (triggers upgrades to org.primefaces:[email protected])
Organisation: sample-integrations
Package manager: maven
Target file: pom.xml
Open source: no
Project path: /usr/src/app
Tested 37 dependencies for known vulnerabilities, found 2 vulnerabilities, 2 vulnerable paths.
The command '/bin/sh -c ./snyk test' returned a non-zero code: 1
[Container] 2020/02/14 03:46:22 Command did not exit successfully docker build --build-arg snyk_auth_token=$SNYK_AUTH_TOKEN -t $REPOSITORY_URI:latest . exit status 1
[Container] 2020/02/14 03:46:22 Phase complete: BUILD Success: false
[Container] 2020/02/14 03:46:22 Phase context status code: COMMAND_EXECUTION_ERROR Message: Error while executing command: docker build --build-arg snyk_auth_token=$SNYK_AUTH_TOKEN -t $REPOSITORY_URI:latest .. Reason: exit status 1

Remediation

Once you remediate your vulnerabilities and check in your code, another build is triggered and an additional scan is performed by Snyk. This time, you should see the build pass with a status of Succeeded.

You can also drill down into the CodeBuild logs and see that Snyk successfully scanned the Docker Image and found no package dependency issues with your Docker container!

[Container] 2020/02/14 03:54:14 Running command $PWDUTILS/snyk test --docker $REPOSITORY_URI:latest
Testing 300326902600.dkr.ecr.us-west-2.amazonaws.com/petstore_frontend:latest...
Organisation: sample-integrations
Package manager: rpm
Docker image: 300326902600.dkr.ecr.us-west-2.amazonaws.com/petstore_frontend:latest
✓ Tested 190 dependencies for known vulnerabilities, no vulnerable paths found.

Reporting

Snyk provides detailed reports for your imported projects. You can navigate to Projects and choose View Report to set the frequency with which the project is checked for vulnerabilities. You can also choose View Report and then the Dependencies tab to see which libraries were used. Snyk offers a comprehensive database and remediation guidance for known vulnerabilities in their Vulnerability DB. Specifics on potential vulnerabilities that may exist in your code would be contingent on the particular open source dependencies used with your application.

Cleaning up

Remember to delete any resources you may have created in order to avoid additional costs. If you used the AWS CloudFormation templates provided here, you can safely remove them by deleting those stacks from the AWS CloudFormation Console.

Conclusion

In this post, you learned how to leverage various AWS services to build a fully automated CI/CD pipeline and cloud IDE development environment. You also learned how to utilize Snyk to seamlessly integrate with AWS and secure your open-source dependencies and container images. If you are interested in learning more about DevSecOps with Snyk and AWS, then I invite you to check out this workshop and watch this video.

 

About the Author

Author Photo

 

Jay is a Senior Partner Solutions Architect at AWS bringing over 20 years of experience in various technical roles. He holds a Master of Science degree in Computer Information Systems and is a subject matter expert and thought leader for strategic initiatives that help customers embrace a DevOps culture.

 

 

NextGen Healthcare: Build and Deployment Pipelines with AWS

Post Syndicated from Annik Stahl original https://aws.amazon.com/blogs/architecture/nextgen-healthcare-build-and-deployment-pipelines-with-aws/

Owen Zacharias, Vice President of Application Delivery at NextGen Healthcare, explains to AWS Solutions Architect Andrea Sabet how his company developed a series of build and deployment pipelines using native AWS services in the highly regulated healthcare sector.

Learn how the following services can be used to build and deploy infrastructure and application code:

Discover how AWS resources can be rapidly created and updated as part of a CI/CD pipeline while ensuring HIPAA compliance through approved/vetted AWS Identity and Access Management (IAM) roles that AWS CloudFormation is permitted to assume.

February’s AWS Architecture Monthly magazine is all about healthcare. Check it out on Kindle Newsstand, download the PDF, or see it on Flipboard.

*Check out more This Is My Architecture video series.

Receive AWS Developer Tools Notifications over Slack using AWS Chatbot

Post Syndicated from Anushri Anwekar original https://aws.amazon.com/blogs/devops/receive-aws-developer-tools-notifications-over-slack-using-aws-chatbot/

Developers often use Slack to communicate with each other about their code. With AWS Chatbot, you can configure notifications for developer tools resources such as repositories, build projects, deployment applications, and pipelines so that users in Slack channels are automatically notified about important events. When a deployment fails, a build succeeds, or a pull request is created, developers get notifications where they’re most likely to see and react to them.

The AWS services which currently support notifications are:

In this post, I walk you through the high-level steps for creating a notification that alerts users in a Slack channel every time a pull request is created in a CodeCommit repository.

Solution overview

You can create both the notification rule to listen for required events and the Amazon SNS topic used for notifications on the same web page. You can then configure AWS Chatbot so that notifications sent to that Amazon SNS topic appears in a Slack channel.

To set up notifications, follow the following process, as shown in the following diagram:

  1. Create a notification rule for a repository. This includes creating an Amazon SNS topic to use for notifications.
  2. Configure AWS Chatbot to send notifications from that Amazon SNS topic to a Slack channel.
  3. Test it out and enjoy receiving notifications in your team’s Slack channel.

This diagram describes the notification workflow and how impacted services are connected.

Prerequisites

To follow along with this example, you need an AWS account, an IAM user or role with administrative access, a CodeCommit repository, and a Slack channel.

Configuration steps

Step 1: Create notification rule in CodeCommit

Follow these steps to create a notification rule in CodeCommit:

1 . Select the repository in CodeCommit about which you want to be notified. In the following screenshot, I have selected a repository called Hello-Dublin. Screen-shot of the repository view

2. Select a repository for which you want to receive notifications. Choose Notify, then Create notification rule.Screen-shot of how to select option to create a notification rule

3. Provide a name for your notification rule. I suggest leaving the default Detail Type as Full. By selecting Full, you get extra information beyond what is present in the resource events. Also, you get updated information about your selected event types whenever new information is added about them.

  • For example, if you want to receive notifications whenever a comment is made on a pull request, select Basic, and your notification informs you that a comment has been made.
  • If you select Full, the notification also specifies the exact comment that was made. If the notification feature is enhanced and extra information is added to be a part of the notification, you start receiving the new information without modifying your existing notification rule.

4. In Event types, in Pull request, select Created.

5. In Targets, choose Create SNS topic. This automatically sets up a new Amazon SNS topic to use for notifications, applying a policy that allows notification events to be sent to it.

6. Finish creating the rule. Keep a note of the Amazon SNS ARN, as you need this information to configure Slack integration in the next step.

For complete step-by-step instructions for creating a notification rule, see Create a Notification Rule.

Step 2: Integrate your Amazon SNS topic with AWS Chatbot

Follow these steps to integrate your Amazon SNS topic with AWS Chatbot.

1. Open up your Slack channel. You need information about it as well as your notification rule to complete integration.

2. Open the AWS Chatbot console and choose Try the AWS Chatbot beta.

3. Choose Configure new client, then Slack, then Configure.

4. AWS Chatbot asks for permission to access your Slack workplace, as seen in the following screenshot. Once you give permission, you are asked to configure your Slack channel.

Screen-shot of a prompt about AWS Chatbot requesting permission to access the notifications Slack workspace

Step 3: Test the notification

In your repository, create a pull request. In this example, I named the pull request This is a new pull request. Watch as a notification about that event appears in your Slack channel, as seen in the following screenshot.

Example of a notification received on a Slack channel when a new pull request is created

Step 4: Clean-up

If you created notification rule just for testing purposes, you should delete the SNS topic to avoid any further charges.

Conclusion

And that’s it! You can use notifications to help developers to stay informed about the key events happening in their software development life cycle. You can set up notification rules for build projects, deployment applications, pipelines, and repositories, and stay informed about key events such as pull request creation, comments made on your code or commits, build state/phase change, deployment project status change, manual pipelines approval, or pipeline execution status change. For more information, see the notifications documentation.

ICYMI: Serverless Q4 2019

Post Syndicated from Rob Sutter original https://aws.amazon.com/blogs/compute/icymi-serverless-q4-2019/

Welcome to the eighth edition of the AWS Serverless ICYMI (in case you missed it) quarterly recap. Every quarter, we share the most recent product launches, feature enhancements, blog posts, webinars, Twitch live streams, and other interesting things that you might have missed!

In case you missed our last ICYMI, checkout what happened last quarter here.

The three months comprising the fourth quarter of 2019

AWS re:Invent

AWS re:Invent 2019

re:Invent 2019 dominated the fourth quarter at AWS. The serverless team presented a number of talks, workshops, and builder sessions to help customers increase their skills and deliver value more rapidly to their own customers.

Serverless talks from re:Invent 2019

Chris Munns presenting 'Building microservices with AWS Lambda' at re:Invent 2019

We presented dozens of sessions showing how customers can improve their architecture and agility with serverless. Here are some of the most popular.

Videos

Decks

You can also find decks for many of the serverless presentations and other re:Invent presentations on our AWS Events Content.

AWS Lambda

For developers needing greater control over performance of their serverless applications at any scale, AWS Lambda announced Provisioned Concurrency at re:Invent. This feature enables Lambda functions to execute with consistent start-up latency making them ideal for building latency sensitive applications.

As shown in the below graph, provisioned concurrency reduces tail latency, directly impacting response times and providing a more responsive end user experience.

Graph showing performance enhancements with AWS Lambda Provisioned Concurrency

Lambda rolled out enhanced VPC networking to 14 additional Regions around the world. This change brings dramatic improvements to startup performance for Lambda functions running in VPCs due to more efficient usage of elastic network interfaces.

Illustration of AWS Lambda VPC to VPC NAT

New VPC to VPC NAT for Lambda functions

Lambda now supports three additional runtimes: Node.js 12, Java 11, and Python 3.8. Each of these new runtimes has new version-specific features and benefits, which are covered in the linked release posts. Like the Node.js 10 runtime, these new runtimes are all based on an Amazon Linux 2 execution environment.

Lambda released a number of controls for both stream and async-based invocations:

  • You can now configure error handling for Lambda functions consuming events from Amazon Kinesis Data Streams or Amazon DynamoDB Streams. It’s now possible to limit the retry count, limit the age of records being retried, configure a failure destination, or split a batch to isolate a problem record. These capabilities help you deal with potential “poison pill” records that would previously cause streams to pause in processing.
  • For asynchronous Lambda invocations, you can now set the maximum event age and retry attempts on the event. If either configured condition is met, the event can be routed to a dead letter queue (DLQ), Lambda destination, or it can be discarded.

AWS Lambda Destinations is a new feature that allows developers to designate an asynchronous target for Lambda function invocation results. You can set separate destinations for success and failure. This unlocks new patterns for distributed event-based applications and can replace custom code previously used to manage routing results.

Illustration depicting AWS Lambda Destinations with success and failure configurations

Lambda Destinations

Lambda also now supports setting a Parallelization Factor, which allows you to set multiple Lambda invocations per shard for Kinesis Data Streams and DynamoDB Streams. This enables faster processing without the need to increase your shard count, while still guaranteeing the order of records processed.

Illustration of multiple AWS Lambda invocations per Kinesis Data Streams shard

Lambda Parallelization Factor diagram

Lambda introduced Amazon SQS FIFO queues as an event source. “First in, first out” (FIFO) queues guarantee the order of record processing, unlike standard queues. FIFO queues support messaging batching via a MessageGroupID attribute that supports parallel Lambda consumers of a single FIFO queue, enabling high throughput of record processing by Lambda.

Lambda now supports Environment Variables in the AWS China (Beijing) Region and the AWS China (Ningxia) Region.

You can now view percentile statistics for the duration metric of your Lambda functions. Percentile statistics show the relative standing of a value in a dataset, and are useful when applied to metrics that exhibit large variances. They can help you understand the distribution of a metric, discover outliers, and find hard-to-spot situations that affect customer experience for a subset of your users.

Amazon API Gateway

Screen capture of creating an Amazon API Gateway HTTP API in the AWS Management Console

Amazon API Gateway announced the preview of HTTP APIs. In addition to significant performance improvements, most customers see an average cost savings of 70% when compared with API Gateway REST APIs. With HTTP APIs, you can create an API in four simple steps. Once the API is created, additional configuration for CORS and JWT authorizers can be added.

AWS SAM CLI

Screen capture of the new 'sam deploy' process in a terminal window

The AWS SAM CLI team simplified the bucket management and deployment process in the SAM CLI. You no longer need to manage a bucket for deployment artifacts – SAM CLI handles this for you. The deployment process has also been streamlined from multiple flagged commands to a single command, sam deploy.

AWS Step Functions

One powerful feature of AWS Step Functions is its ability to integrate directly with AWS services without you needing to write complicated application code. In Q4, Step Functions expanded its integration with Amazon SageMaker to simplify machine learning workflows. Step Functions also added a new integration with Amazon EMR, making EMR big data processing workflows faster to build and easier to monitor.

Screen capture of an AWS Step Functions step with Amazon EMR

Step Functions step with EMR

Step Functions now provides the ability to track state transition usage by integrating with AWS Budgets, allowing you to monitor trends and react to usage on your AWS account.

You can now view CloudWatch Metrics for Step Functions at a one-minute frequency. This makes it easier to set up detailed monitoring for your workflows. You can use one-minute metrics to set up CloudWatch Alarms based on your Step Functions API usage, Lambda functions, service integrations, and execution details.

Step Functions now supports higher throughput workflows, making it easier to coordinate applications with high event rates. This increases the limits to 1,500 state transitions per second and a default start rate of 300 state machine executions per second in US East (N. Virginia), US West (Oregon), and Europe (Ireland). Click the above link to learn more about the limit increases in other Regions.

Screen capture of choosing Express Workflows in the AWS Management Console

Step Functions released AWS Step Functions Express Workflows. With the ability to support event rates greater than 100,000 per second, this feature is designed for high-performance workloads at a reduced cost.

Amazon EventBridge

Illustration of the Amazon EventBridge schema registry and discovery service

Amazon EventBridge announced the preview of the Amazon EventBridge schema registry and discovery service. This service allows developers to automate discovery and cataloging event schemas for use in their applications. Additionally, once a schema is stored in the registry, you can generate and download a code binding that represents the schema as an object in your code.

Amazon SNS

Amazon SNS now supports the use of dead letter queues (DLQ) to help capture unhandled events. By enabling a DLQ, you can catch events that are not processed and re-submit them or analyze to locate processing issues.

Amazon CloudWatch

Amazon CloudWatch announced Amazon CloudWatch ServiceLens to provide a “single pane of glass” to observe health, performance, and availability of your application.

Screenshot of Amazon CloudWatch ServiceLens in the AWS Management Console

CloudWatch ServiceLens

CloudWatch also announced a preview of a capability called Synthetics. CloudWatch Synthetics allows you to test your application endpoints and URLs using configurable scripts that mimic what a real customer would do. This enables the outside-in view of your customers’ experiences, and your service’s availability from their point of view.

CloudWatch introduced Embedded Metric Format, which helps you ingest complex high-cardinality application data as logs and easily generate actionable metrics. You can publish these metrics from your Lambda function by using the PutLogEvents API or using an open source library for Node.js or Python applications.

Finally, CloudWatch announced a preview of Contributor Insights, a capability to identify who or what is impacting your system or application performance by identifying outliers or patterns in log data.

AWS X-Ray

AWS X-Ray announced trace maps, which enable you to map the end-to-end path of a single request. Identifiers show issues and how they affect other services in the request’s path. These can help you to identify and isolate service points that are causing degradation or failures.

X-Ray also announced support for Amazon CloudWatch Synthetics, currently in preview. CloudWatch Synthetics on X-Ray support tracing canary scripts throughout the application, providing metrics on performance or application issues.

Screen capture of AWS X-Ray Service map in the AWS Management Console

X-Ray Service map with CloudWatch Synthetics

Amazon DynamoDB

Amazon DynamoDB announced support for customer-managed customer master keys (CMKs) to encrypt data in DynamoDB. This allows customers to bring your own key (BYOK) giving you full control over how you encrypt and manage the security of your DynamoDB data.

It is now possible to add global replicas to existing DynamoDB tables to provide enhanced availability across the globe.

Another new DynamoDB capability to identify frequently accessed keys and database traffic trends is currently in preview. With this, you can now more easily identify “hot keys” and understand usage of your DynamoDB tables.

Screen capture of Amazon CloudWatch Contributor Insights for DynamoDB in the AWS Management Console

CloudWatch Contributor Insights for DynamoDB

DynamoDB also released adaptive capacity. Adaptive capacity helps you handle imbalanced workloads by automatically isolating frequently accessed items and shifting data across partitions to rebalance them. This helps reduce cost by enabling you to provision throughput for a more balanced workload instead of over provisioning for uneven data access patterns.

Amazon RDS

Amazon Relational Database Services (RDS) announced a preview of Amazon RDS Proxy to help developers manage RDS connection strings for serverless applications.

Illustration of Amazon RDS Proxy

The RDS Proxy maintains a pool of established connections to your RDS database instances. This pool enables you to support a large number of application connections so your application can scale without compromising performance. It also increases security by enabling IAM authentication for database access and enabling you to centrally manage database credentials using AWS Secrets Manager.

AWS Serverless Application Repository

The AWS Serverless Application Repository (SAR) now offers Verified Author badges. These badges enable consumers to quickly and reliably know who you are. The badge appears next to your name in the SAR and links to your GitHub profile.

Screen capture of SAR Verifiedl developer badge in the AWS Management Console

SAR Verified developer badges

AWS Developer Tools

AWS CodeCommit launched the ability for you to enforce rule workflows for pull requests, making it easier to ensure that code has pass through specific rule requirements. You can now create an approval rule specifically for a pull request, or create approval rule templates to be applied to all future pull requests in a repository.

AWS CodeBuild added beta support for test reporting. With test reporting, you can now view the detailed results, trends, and history for tests executed on CodeBuild for any framework that supports the JUnit XML or Cucumber JSON test format.

Screen capture of AWS CodeBuild

CodeBuild test trends in the AWS Management Console

Amazon CodeGuru

AWS announced a preview of Amazon CodeGuru at re:Invent 2019. CodeGuru is a machine learning based service that makes code reviews more effective and aids developers in writing code that is more secure, performant, and consistent.

AWS Amplify and AWS AppSync

AWS Amplify added iOS and Android as supported platforms. Now developers can build iOS and Android applications using the Amplify Framework with the same category-based programming model that they use for JavaScript apps.

Screen capture of 'amplify init' for an iOS application in a terminal window

The Amplify team has also improved offline data access and synchronization by announcing Amplify DataStore. Developers can now create applications that allow users to continue to access and modify data, without an internet connection. Upon connection, the data synchronizes transparently with the cloud.

For a summary of Amplify and AppSync announcements before re:Invent, read: “A round up of the recent pre-re:Invent 2019 AWS Amplify Launches”.

Illustration of AWS AppSync integrations with other AWS services

Q4 serverless content

Blog posts

October

November

December

Tech talks

We hold several AWS Online Tech Talks covering serverless tech talks throughout the year. These are listed in the Serverless section of the AWS Online Tech Talks page.

Here are the ones from Q4:

Twitch

October

There are also a number of other helpful video series covering Serverless available on the AWS Twitch Channel.

AWS Serverless Heroes

We are excited to welcome some new AWS Serverless Heroes to help grow the serverless community. We look forward to some amazing content to help you with your serverless journey.

AWS Serverless Application Repository (SAR) Apps

In this edition of ICYMI, we are introducing a section devoted to SAR apps written by the AWS Serverless Developer Advocacy team. You can run these applications and review their source code to learn more about serverless and to see examples of suggested practices.

Still looking for more?

The Serverless landing page has much more information. The Lambda resources page contains case studies, webinars, whitepapers, customer stories, reference architectures, and even more Getting Started tutorials. We’re also kicking off a fresh series of Tech Talks in 2020 with new content providing greater detail on everything new coming out of AWS for serverless application developers.

Throughout 2020, the AWS Serverless Developer Advocates are crossing the globe to tell you more about serverless, and to hear more about what you need. Follow this blog to keep up on new launches and announcements, best practices, and examples of serverless applications in action.

You can also follow all of us on Twitter to see latest news, follow conversations, and interact with the team.

Chris Munns: @chrismunns
Eric Johnson: @edjgeek
James Beswick: @jbesw
Moheeb Zara: @virgilvox
Ben Smith: @benjamin_l_s
Rob Sutter: @rts_rob
Julian Wood: @julian_wood

Happy coding!