Tag Archives: cluster

Analyzing AWS Cost and Usage Reports with Looker and Amazon Athena

Post Syndicated from Dillon Morrison original https://aws.amazon.com/blogs/big-data/analyzing-aws-cost-and-usage-reports-with-looker-and-amazon-athena/

This is a guest post by Dillon Morrison at Looker. Looker is, in their own words, “a new kind of analytics platform–letting everyone in your business make better decisions by getting reliable answers from a tool they can use.” 

As the breadth of AWS products and services continues to grow, customers are able to more easily move their technology stack and core infrastructure to AWS. One of the attractive benefits of AWS is the cost savings. Rather than paying upfront capital expenses for large on-premises systems, customers can instead pay variables expenses for on-demand services. To further reduce expenses AWS users can reserve resources for specific periods of time, and automatically scale resources as needed.

The AWS Cost Explorer is great for aggregated reporting. However, conducting analysis on the raw data using the flexibility and power of SQL allows for much richer detail and insight, and can be the better choice for the long term. Thankfully, with the introduction of Amazon Athena, monitoring and managing these costs is now easier than ever.

In the post, I walk through setting up the data pipeline for cost and usage reports, Amazon S3, and Athena, and discuss some of the most common levers for cost savings. I surface tables through Looker, which comes with a host of pre-built data models and dashboards to make analysis of your cost and usage data simple and intuitive.

Analysis with Athena

With Athena, there’s no need to create hundreds of Excel reports, move data around, or deploy clusters to house and process data. Athena uses Apache Hive’s DDL to create tables, and the Presto querying engine to process queries. Analysis can be performed directly on raw data in S3. Conveniently, AWS exports raw cost and usage data directly into a user-specified S3 bucket, making it simple to start querying with Athena quickly. This makes continuous monitoring of costs virtually seamless, since there is no infrastructure to manage. Instead, users can leverage the power of the Athena SQL engine to easily perform ad-hoc analysis and data discovery without needing to set up a data warehouse.

After the data pipeline is established, cost and usage data (the recommended billing data, per AWS documentation) provides a plethora of comprehensive information around usage of AWS services and the associated costs. Whether you need the report segmented by product type, user identity, or region, this report can be cut-and-sliced any number of ways to properly allocate costs for any of your business needs. You can then drill into any specific line item to see even further detail, such as the selected operating system, tenancy, purchase option (on-demand, spot, or reserved), and so on.

Walkthrough

By default, the Cost and Usage report exports CSV files, which you can compress using gzip (recommended for performance). There are some additional configuration options for tuning performance further, which are discussed below.

Prerequisites

If you want to follow along, you need the following resources:

Enable the cost and usage reports

First, enable the Cost and Usage report. For Time unit, select Hourly. For Include, select Resource IDs. All options are prompted in the report-creation window.

The Cost and Usage report dumps CSV files into the specified S3 bucket. Please note that it can take up to 24 hours for the first file to be delivered after enabling the report.

Configure the S3 bucket and files for Athena querying

In addition to the CSV file, AWS also creates a JSON manifest file for each cost and usage report. Athena requires that all of the files in the S3 bucket are in the same format, so we need to get rid of all these manifest files. If you’re looking to get started with Athena quickly, you can simply go into your S3 bucket and delete the manifest file manually, skip the automation described below, and move on to the next section.

To automate the process of removing the manifest file each time a new report is dumped into S3, which I recommend as you scale, there are a few additional steps. The folks at Concurrency labs wrote a great overview and set of scripts for this, which you can find in their GitHub repo.

These scripts take the data from an input bucket, remove anything unnecessary, and dump it into a new output bucket. We can utilize AWS Lambda to trigger this process whenever new data is dropped into S3, or on a nightly basis, or whatever makes most sense for your use-case, depending on how often you’re querying the data. Please note that enabling the “hourly” report means that data is reported at the hour-level of granularity, not that a new file is generated every hour.

Following these scripts, you’ll notice that we’re adding a date partition field, which isn’t necessary but improves query performance. In addition, converting data from CSV to a columnar format like ORC or Parquet also improves performance. We can automate this process using Lambda whenever new data is dropped in our S3 bucket. Amazon Web Services discusses columnar conversion at length, and provides walkthrough examples, in their documentation.

As a long-term solution, best practice is to use compression, partitioning, and conversion. However, for purposes of this walkthrough, we’re not going to worry about them so we can get up-and-running quicker.

Set up the Athena query engine

In your AWS console, navigate to the Athena service, and click “Get Started”. Follow the tutorial and set up a new database (we’ve called ours “AWS Optimizer” in this example). Don’t worry about configuring your initial table, per the tutorial instructions. We’ll be creating a new table for cost and usage analysis. Once you walked through the tutorial steps, you’ll be able to access the Athena interface, and can begin running Hive DDL statements to create new tables.

One thing that’s important to note, is that the Cost and Usage CSVs also contain the column headers in their first row, meaning that the column headers would be included in the dataset and any queries. For testing and quick set-up, you can remove this line manually from your first few CSV files. Long-term, you’ll want to use a script to programmatically remove this row each time a new file is dropped in S3 (every few hours typically). We’ve drafted up a sample script for ease of reference, which we run on Lambda. We utilize Lambda’s native ability to invoke the script whenever a new object is dropped in S3.

For cost and usage, we recommend using the DDL statement below. Since our data is in CSV format, we don’t need to use a SerDe, we can simply specify the “separatorChar, quoteChar, and escapeChar”, and the structure of the files (“TEXTFILE”). Note that AWS does have an OpenCSV SerDe as well, if you prefer to use that.

 

CREATE EXTERNAL TABLE IF NOT EXISTS cost_and_usage	 (
identity_LineItemId String,
identity_TimeInterval String,
bill_InvoiceId String,
bill_BillingEntity String,
bill_BillType String,
bill_PayerAccountId String,
bill_BillingPeriodStartDate String,
bill_BillingPeriodEndDate String,
lineItem_UsageAccountId String,
lineItem_LineItemType String,
lineItem_UsageStartDate String,
lineItem_UsageEndDate String,
lineItem_ProductCode String,
lineItem_UsageType String,
lineItem_Operation String,
lineItem_AvailabilityZone String,
lineItem_ResourceId String,
lineItem_UsageAmount String,
lineItem_NormalizationFactor String,
lineItem_NormalizedUsageAmount String,
lineItem_CurrencyCode String,
lineItem_UnblendedRate String,
lineItem_UnblendedCost String,
lineItem_BlendedRate String,
lineItem_BlendedCost String,
lineItem_LineItemDescription String,
lineItem_TaxType String,
product_ProductName String,
product_accountAssistance String,
product_architecturalReview String,
product_architectureSupport String,
product_availability String,
product_bestPractices String,
product_cacheEngine String,
product_caseSeverityresponseTimes String,
product_clockSpeed String,
product_currentGeneration String,
product_customerServiceAndCommunities String,
product_databaseEdition String,
product_databaseEngine String,
product_dedicatedEbsThroughput String,
product_deploymentOption String,
product_description String,
product_durability String,
product_ebsOptimized String,
product_ecu String,
product_endpointType String,
product_engineCode String,
product_enhancedNetworkingSupported String,
product_executionFrequency String,
product_executionLocation String,
product_feeCode String,
product_feeDescription String,
product_freeQueryTypes String,
product_freeTrial String,
product_frequencyMode String,
product_fromLocation String,
product_fromLocationType String,
product_group String,
product_groupDescription String,
product_includedServices String,
product_instanceFamily String,
product_instanceType String,
product_io String,
product_launchSupport String,
product_licenseModel String,
product_location String,
product_locationType String,
product_maxIopsBurstPerformance String,
product_maxIopsvolume String,
product_maxThroughputvolume String,
product_maxVolumeSize String,
product_maximumStorageVolume String,
product_memory String,
product_messageDeliveryFrequency String,
product_messageDeliveryOrder String,
product_minVolumeSize String,
product_minimumStorageVolume String,
product_networkPerformance String,
product_operatingSystem String,
product_operation String,
product_operationsSupport String,
product_physicalProcessor String,
product_preInstalledSw String,
product_proactiveGuidance String,
product_processorArchitecture String,
product_processorFeatures String,
product_productFamily String,
product_programmaticCaseManagement String,
product_provisioned String,
product_queueType String,
product_requestDescription String,
product_requestType String,
product_routingTarget String,
product_routingType String,
product_servicecode String,
product_sku String,
product_softwareType String,
product_storage String,
product_storageClass String,
product_storageMedia String,
product_technicalSupport String,
product_tenancy String,
product_thirdpartySoftwareSupport String,
product_toLocation String,
product_toLocationType String,
product_training String,
product_transferType String,
product_usageFamily String,
product_usagetype String,
product_vcpu String,
product_version String,
product_volumeType String,
product_whoCanOpenCases String,
pricing_LeaseContractLength String,
pricing_OfferingClass String,
pricing_PurchaseOption String,
pricing_publicOnDemandCost String,
pricing_publicOnDemandRate String,
pricing_term String,
pricing_unit String,
reservation_AvailabilityZone String,
reservation_NormalizedUnitsPerReservation String,
reservation_NumberOfReservations String,
reservation_ReservationARN String,
reservation_TotalReservedNormalizedUnits String,
reservation_TotalReservedUnits String,
reservation_UnitsPerReservation String,
resourceTags_userName String,
resourceTags_usercostcategory String  


)
    ROW FORMAT DELIMITED
      FIELDS TERMINATED BY ','
      ESCAPED BY '\\'
      LINES TERMINATED BY '\n'

STORED AS TEXTFILE
    LOCATION 's3://<<your bucket name>>';

Once you’ve successfully executed the command, you should see a new table named “cost_and_usage” with the below properties. Now we’re ready to start executing queries and running analysis!

Start with Looker and connect to Athena

Setting up Looker is a quick process, and you can try it out for free here (or download from Amazon Marketplace). It takes just a few seconds to connect Looker to your Athena database, and Looker comes with a host of pre-built data models and dashboards to make analysis of your cost and usage data simple and intuitive. After you’re connected, you can use the Looker UI to run whatever analysis you’d like. Looker translates this UI to optimized SQL, so any user can execute and visualize queries for true self-service analytics.

Major cost saving levers

Now that the data pipeline is configured, you can dive into the most popular use cases for cost savings. In this post, I focus on:

  • Purchasing Reserved Instances vs. On-Demand Instances
  • Data transfer costs
  • Allocating costs over users or other Attributes (denoted with resource tags)

On-Demand, Spot, and Reserved Instances

Purchasing Reserved Instances vs On-Demand Instances is arguably going to be the biggest cost lever for heavy AWS users (Reserved Instances run up to 75% cheaper!). AWS offers three options for purchasing instances:

  • On-Demand—Pay as you use.
  • Spot (variable cost)—Bid on spare Amazon EC2 computing capacity.
  • Reserved Instances—Pay for an instance for a specific, allotted period of time.

When purchasing a Reserved Instance, you can also choose to pay all-upfront, partial-upfront, or monthly. The more you pay upfront, the greater the discount.

If your company has been using AWS for some time now, you should have a good sense of your overall instance usage on a per-month or per-day basis. Rather than paying for these instances On-Demand, you should try to forecast the number of instances you’ll need, and reserve them with upfront payments.

The total amount of usage with Reserved Instances versus overall usage with all instances is called your coverage ratio. It’s important not to confuse your coverage ratio with your Reserved Instance utilization. Utilization represents the amount of reserved hours that were actually used. Don’t worry about exceeding capacity, you can still set up Auto Scaling preferences so that more instances get added whenever your coverage or utilization crosses a certain threshold (we often see a target of 80% for both coverage and utilization among savvy customers).

Calculating the reserved costs and coverage can be a bit tricky with the level of granularity provided by the cost and usage report. The following query shows your total cost over the last 6 months, broken out by Reserved Instance vs other instance usage. You can substitute the cost field for usage if you’d prefer. Please note that you should only have data for the time period after the cost and usage report has been enabled (though you can opt for up to 3 months of historical data by contacting your AWS Account Executive). If you’re just getting started, this query will only show a few days.

 

SELECT 
	DATE_FORMAT(from_iso8601_timestamp(cost_and_usage.lineitem_usagestartdate),'%Y-%m') AS "cost_and_usage.usage_start_month",
	COALESCE(SUM(cost_and_usage.lineitem_unblendedcost ), 0) AS "cost_and_usage.total_unblended_cost",
	COALESCE(SUM(CASE WHEN (CASE
         WHEN cost_and_usage.lineitem_lineitemtype = 'DiscountedUsage' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'RIFee' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'Fee' THEN 'RI Line Item'
         ELSE 'Non RI Line Item'
        END = 'RI Line Item') THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0) AS "cost_and_usage.total_reserved_unblended_cost",
	1.0 * (COALESCE(SUM(CASE WHEN (CASE
         WHEN cost_and_usage.lineitem_lineitemtype = 'DiscountedUsage' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'RIFee' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'Fee' THEN 'RI Line Item'
         ELSE 'Non RI Line Item'
        END = 'RI Line Item') THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0)) / NULLIF((COALESCE(SUM(cost_and_usage.lineitem_unblendedcost ), 0)),0)  AS "cost_and_usage.percent_spend_on_ris",
	COALESCE(SUM(CASE WHEN (CASE
         WHEN cost_and_usage.lineitem_lineitemtype = 'DiscountedUsage' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'RIFee' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'Fee' THEN 'RI Line Item'
         ELSE 'Non RI Line Item'
        END = 'Non RI Line Item') THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0) AS "cost_and_usage.total_non_reserved_unblended_cost",
	1.0 * (COALESCE(SUM(CASE WHEN (CASE
         WHEN cost_and_usage.lineitem_lineitemtype = 'DiscountedUsage' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'RIFee' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'Fee' THEN 'RI Line Item'
         ELSE 'Non RI Line Item'
        END = 'Non RI Line Item') THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0)) / NULLIF((COALESCE(SUM(cost_and_usage.lineitem_unblendedcost ), 0)),0)  AS "cost_and_usage.percent_spend_on_non_ris"
FROM aws_optimizer.cost_and_usage  AS cost_and_usage

WHERE 
	(((from_iso8601_timestamp(cost_and_usage.lineitem_usagestartdate)) >= ((DATE_ADD('month', -5, DATE_TRUNC('MONTH', CAST(NOW() AS DATE))))) AND (from_iso8601_timestamp(cost_and_usage.lineitem_usagestartdate)) < ((DATE_ADD('month', 6, DATE_ADD('month', -5, DATE_TRUNC('MONTH', CAST(NOW() AS DATE))))))))
GROUP BY 1
ORDER BY 2 DESC
LIMIT 500

The resulting table should look something like the image below (I’m surfacing tables through Looker, though the same table would result from querying via command line or any other interface).

With a BI tool, you can create dashboards for easy reference and monitoring. New data is dumped into S3 every few hours, so your dashboards can update several times per day.

It’s an iterative process to understand the appropriate number of Reserved Instances needed to meet your business needs. After you’ve properly integrated Reserved Instances into your purchasing patterns, the savings can be significant. If your coverage is consistently below 70%, you should seriously consider adjusting your purchase types and opting for more Reserved instances.

Data transfer costs

One of the great things about AWS data storage is that it’s incredibly cheap. Most charges often come from moving and processing that data. There are several different prices for transferring data, broken out largely by transfers between regions and availability zones. Transfers between regions are the most costly, followed by transfers between Availability Zones. Transfers within the same region and same availability zone are free unless using elastic or public IP addresses, in which case there is a cost. You can find more detailed information in the AWS Pricing Docs. With this in mind, there are several simple strategies for helping reduce costs.

First, since costs increase when transferring data between regions, it’s wise to ensure that as many services as possible reside within the same region. The more you can localize services to one specific region, the lower your costs will be.

Second, you should maximize the data you’re routing directly within AWS services and IP addresses. Transfers out to the open internet are the most costly and least performant mechanisms of data transfers, so it’s best to keep transfers within AWS services.

Lastly, data transfers between private IP addresses are cheaper than between elastic or public IP addresses, so utilizing private IP addresses as much as possible is the most cost-effective strategy.

The following query provides a table depicting the total costs for each AWS product, broken out transfer cost type. Substitute the “lineitem_productcode” field in the query to segment the costs by any other attribute. If you notice any unusually high spikes in cost, you’ll need to dig deeper to understand what’s driving that spike: location, volume, and so on. Drill down into specific costs by including “product_usagetype” and “product_transfertype” in your query to identify the types of transfer costs that are driving up your bill.

SELECT 
	cost_and_usage.lineitem_productcode  AS "cost_and_usage.product_code",
	COALESCE(SUM(cost_and_usage.lineitem_unblendedcost), 0) AS "cost_and_usage.total_unblended_cost",
	COALESCE(SUM(CASE WHEN REGEXP_LIKE(cost_and_usage.product_usagetype, 'DataTransfer')    THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0) AS "cost_and_usage.total_data_transfer_cost",
	COALESCE(SUM(CASE WHEN REGEXP_LIKE(cost_and_usage.product_usagetype, 'DataTransfer-In')    THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0) AS "cost_and_usage.total_inbound_data_transfer_cost",
	COALESCE(SUM(CASE WHEN REGEXP_LIKE(cost_and_usage.product_usagetype, 'DataTransfer-Out')    THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0) AS "cost_and_usage.total_outbound_data_transfer_cost"
FROM aws_optimizer.cost_and_usage  AS cost_and_usage

WHERE 
	(((from_iso8601_timestamp(cost_and_usage.lineitem_usagestartdate)) >= ((DATE_ADD('month', -5, DATE_TRUNC('MONTH', CAST(NOW() AS DATE))))) AND (from_iso8601_timestamp(cost_and_usage.lineitem_usagestartdate)) < ((DATE_ADD('month', 6, DATE_ADD('month', -5, DATE_TRUNC('MONTH', CAST(NOW() AS DATE))))))))
GROUP BY 1
ORDER BY 2 DESC
LIMIT 500

When moving between regions or over the open web, many data transfer costs also include the origin and destination location of the data movement. Using a BI tool with mapping capabilities, you can get a nice visual of data flows. The point at the center of the map is used to represent external data flows over the open internet.

Analysis by tags

AWS provides the option to apply custom tags to individual resources, so you can allocate costs over whatever customized segment makes the most sense for your business. For a SaaS company that hosts software for customers on AWS, maybe you’d want to tag the size of each customer. The following query uses custom tags to display the reserved, data transfer, and total cost for each AWS service, broken out by tag categories, over the last 6 months. You’ll want to substitute the cost_and_usage.resourcetags_customersegment and cost_and_usage.customer_segment with the name of your customer field.

 

SELECT * FROM (
SELECT *, DENSE_RANK() OVER (ORDER BY z___min_rank) as z___pivot_row_rank, RANK() OVER (PARTITION BY z__pivot_col_rank ORDER BY z___min_rank) as z__pivot_col_ordering FROM (
SELECT *, MIN(z___rank) OVER (PARTITION BY "cost_and_usage.product_code") as z___min_rank FROM (
SELECT *, RANK() OVER (ORDER BY CASE WHEN z__pivot_col_rank=1 THEN (CASE WHEN "cost_and_usage.total_unblended_cost" IS NOT NULL THEN 0 ELSE 1 END) ELSE 2 END, CASE WHEN z__pivot_col_rank=1 THEN "cost_and_usage.total_unblended_cost" ELSE NULL END DESC, "cost_and_usage.total_unblended_cost" DESC, z__pivot_col_rank, "cost_and_usage.product_code") AS z___rank FROM (
SELECT *, DENSE_RANK() OVER (ORDER BY CASE WHEN "cost_and_usage.customer_segment" IS NULL THEN 1 ELSE 0 END, "cost_and_usage.customer_segment") AS z__pivot_col_rank FROM (
SELECT 
	cost_and_usage.lineitem_productcode  AS "cost_and_usage.product_code",
	cost_and_usage.resourcetags_customersegment  AS "cost_and_usage.customer_segment",
	COALESCE(SUM(cost_and_usage.lineitem_unblendedcost ), 0) AS "cost_and_usage.total_unblended_cost",
	1.0 * (COALESCE(SUM(CASE WHEN REGEXP_LIKE(cost_and_usage.product_usagetype, 'DataTransfer')    THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0)) / NULLIF((COALESCE(SUM(cost_and_usage.lineitem_unblendedcost ), 0)),0)  AS "cost_and_usage.percent_spend_data_transfers_unblended",
	1.0 * (COALESCE(SUM(CASE WHEN (CASE
         WHEN cost_and_usage.lineitem_lineitemtype = 'DiscountedUsage' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'RIFee' THEN 'RI Line Item'
         WHEN cost_and_usage.lineitem_lineitemtype = 'Fee' THEN 'RI Line Item'
         ELSE 'Non RI Line Item'
        END = 'Non RI Line Item') THEN cost_and_usage.lineitem_unblendedcost  ELSE NULL END), 0)) / NULLIF((COALESCE(SUM(cost_and_usage.lineitem_unblendedcost ), 0)),0)  AS "cost_and_usage.unblended_percent_spend_on_ris"
FROM aws_optimizer.cost_and_usage_raw  AS cost_and_usage

WHERE 
	(((from_iso8601_timestamp(cost_and_usage.lineitem_usagestartdate)) >= ((DATE_ADD('month', -5, DATE_TRUNC('MONTH', CAST(NOW() AS DATE))))) AND (from_iso8601_timestamp(cost_and_usage.lineitem_usagestartdate)) < ((DATE_ADD('month', 6, DATE_ADD('month', -5, DATE_TRUNC('MONTH', CAST(NOW() AS DATE))))))))
GROUP BY 1,2) ww
) bb WHERE z__pivot_col_rank <= 16384
) aa
) xx
) zz
 WHERE z___pivot_row_rank <= 500 OR z__pivot_col_ordering = 1 ORDER BY z___pivot_row_rank

The resulting table in this example looks like the results below. In this example, you can tell that we’re making poor use of Reserved Instances because they represent such a small portion of our overall costs.

Again, using a BI tool to visualize these costs and trends over time makes the analysis much easier to consume and take action on.

Summary

Saving costs on your AWS spend is always an iterative, ongoing process. Hopefully with these queries alone, you can start to understand your spending patterns and identify opportunities for savings. However, this is just a peek into the many opportunities available through analysis of the Cost and Usage report. Each company is different, with unique needs and usage patterns. To achieve maximum cost savings, we encourage you to set up an analytics environment that enables your team to explore all potential cuts and slices of your usage data, whenever it’s necessary. Exploring different trends and spikes across regions, services, user types, etc. helps you gain comprehensive understanding of your major cost levers and consistently implement new cost reduction strategies.

Note that all of the queries and analysis provided in this post were generated using the Looker data platform. If you’re already a Looker customer, you can get all of this analysis, additional pre-configured dashboards, and much more using Looker Blocks for AWS.


About the Author

Dillon Morrison leads the Platform Ecosystem at Looker. He enjoys exploring new technologies and architecting the most efficient data solutions for the business needs of his company and their customers. In his spare time, you’ll find Dillon rock climbing in the Bay Area or nose deep in the docs of the latest AWS product release at his favorite cafe (“Arlequin in SF is unbeatable!”).

 

 

 

AWS Summit New York – Summary of Announcements

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-summit-new-york-summary-of-announcements/

Whew – what a week! Tara, Randall, Ana, and I have been working around the clock to create blog posts for the announcements that we made at the AWS Summit in New York. Here’s a summary to help you to get started:

Amazon Macie – This new service helps you to discover, classify, and secure content at scale. Powered by machine learning and making use of Natural Language Processing (NLP), Macie looks for patterns and alerts you to suspicious behavior, and can help you with governance, compliance, and auditing. You can read Tara’s post to see how to put Macie to work; you select the buckets of interest, customize the classification settings, and review the results in the Macie Dashboard.

AWS GlueRandall’s post (with deluxe animated GIFs) introduces you to this new extract, transform, and load (ETL) service. Glue is serverless and fully managed, As you can see from the post, Glue crawls your data, infers schemas, and generates ETL scripts in Python. You define jobs that move data from place to place, with a wide selection of transforms, each expressed as code and stored in human-readable form. Glue uses Development Endpoints and notebooks to provide you with a testing environment for the scripts you build. We also announced that Amazon Athena now integrates with Amazon Glue, as does Apache Spark and Hive on Amazon EMR.

AWS Migration Hub – This new service will help you to migrate your application portfolio to AWS. My post outlines the major steps and shows you how the Migration Hub accelerates, tracks,and simplifies your migration effort. You can begin with a discovery step, or you can jump right in and migrate directly. Migration Hub integrates with tools from our migration partners and builds upon the Server Migration Service and the Database Migration Service.

CloudHSM Update – We made a major upgrade to AWS CloudHSM, making the benefits of hardware-based key management available to a wider audience. The service is offered on a pay-as-you-go basis, and is fully managed. It is open and standards compliant, with support for multiple APIs, programming languages, and cryptography extensions. CloudHSM is an integral part of AWS and can be accessed from the AWS Management Console, AWS Command Line Interface (CLI), and through API calls. Read my post to learn more and to see how to set up a CloudHSM cluster.

Managed Rules to Secure S3 Buckets – We added two new rules to AWS Config that will help you to secure your S3 buckets. The s3-bucket-public-write-prohibited rule identifies buckets that have public write access and the s3-bucket-public-read-prohibited rule identifies buckets that have global read access. As I noted in my post, you can run these rules in response to configuration changes or on a schedule. The rules make use of some leading-edge constraint solving techniques, as part of a larger effort to use automated formal reasoning about AWS.

CloudTrail for All Customers – Tara’s post revealed that AWS CloudTrail is now available and enabled by default for all AWS customers. As a bonus, Tara reviewed the principal benefits of CloudTrail and showed you how to review your event history and to deep-dive on a single event. She also showed you how to create a second trail, for use with CloudWatch CloudWatch Events.

Encryption of Data at Rest for EFS – When you create a new file system, you now have the option to select a key that will be used to encrypt the contents of the files on the file system. The encryption is done using an industry-standard AES-256 algorithm. My post shows you how to select a key and to verify that it is being used.

Watch the Keynote
My colleagues Adrian Cockcroft and Matt Wood talked about these services and others on the stage, and also invited some AWS customers to share their stories. Here’s the video:

Jeff;

 

AWS CloudHSM Update – Cost Effective Hardware Key Management at Cloud Scale for Sensitive & Regulated Workloads

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-cloudhsm-update-cost-effective-hardware-key-management/

Our customers run an incredible variety of mission-critical workloads on AWS, many of which process and store sensitive data. As detailed in our Overview of Security Processes document, AWS customers have access to an ever-growing set of options for encrypting and protecting this data. For example, Amazon Relational Database Service (RDS) supports encryption of data at rest and in transit, with options tailored for each supported database engine (MySQL, SQL Server, Oracle, MariaDB, PostgreSQL, and Aurora).

Many customers use AWS Key Management Service (KMS) to centralize their key management, with others taking advantage of the hardware-based key management, encryption, and decryption provided by AWS CloudHSM to meet stringent security and compliance requirements for their most sensitive data and regulated workloads (you can read my post, AWS CloudHSM – Secure Key Storage and Cryptographic Operations, to learn more about Hardware Security Modules, also known as HSMs).

Major CloudHSM Update
Today, building on what we have learned from our first-generation product, we are making a major update to CloudHSM, with a set of improvements designed to make the benefits of hardware-based key management available to a much wider audience while reducing the need for specialized operating expertise. Here’s a summary of the improvements:

Pay As You Go – CloudHSM is now offered under a pay-as-you-go model that is simpler and more cost-effective, with no up-front fees.

Fully Managed – CloudHSM is now a scalable managed service; provisioning, patching, high availability, and backups are all built-in and taken care of for you. Scheduled backups extract an encrypted image of your HSM from the hardware (using keys that only the HSM hardware itself knows) that can be restored only to identical HSM hardware owned by AWS. For durability, those backups are stored in Amazon Simple Storage Service (S3), and for an additional layer of security, encrypted again with server-side S3 encryption using an AWS KMS master key.

Open & Compatible  – CloudHSM is open and standards-compliant, with support for multiple APIs, programming languages, and cryptography extensions such as PKCS #11, Java Cryptography Extension (JCE), and Microsoft CryptoNG (CNG). The open nature of CloudHSM gives you more control and simplifies the process of moving keys (in encrypted form) from one CloudHSM to another, and also allows migration to and from other commercially available HSMs.

More Secure – CloudHSM Classic (the original model) supports the generation and use of keys that comply with FIPS 140-2 Level 2. We’re stepping that up a notch today with support for FIPS 140-2 Level 3, with security mechanisms that are designed to detect and respond to physical attempts to access or modify the HSM. Your keys are protected with exclusive, single-tenant access to tamper-resistant HSMs that appear within your Virtual Private Clouds (VPCs). CloudHSM supports quorum authentication for critical administrative and key management functions. This feature allows you to define a list of N possible identities that can access the functions, and then require at least M of them to authorize the action. It also supports multi-factor authentication using tokens that you provide.

AWS-Native – The updated CloudHSM is an integral part of AWS and plays well with other tools and services. You can create and manage a cluster of HSMs using the AWS Management Console, AWS Command Line Interface (CLI), or API calls.

Diving In
You can create CloudHSM clusters that contain 1 to 32 HSMs, each in a separate Availability Zone in a particular AWS Region. Spreading HSMs across AZs gives you high availability (including built-in load balancing); adding more HSMs gives you additional throughput. The HSMs within a cluster are kept in sync: performing a task or operation on one HSM in a cluster automatically updates the others. Each HSM in a cluster has its own Elastic Network Interface (ENI).

All interaction with an HSM takes place via the AWS CloudHSM client. It runs on an EC2 instance and uses certificate-based mutual authentication to create secure (TLS) connections to the HSMs.

At the hardware level, each HSM includes hardware-enforced isolation of crypto operations and key storage. Each customer HSM runs on dedicated processor cores.

Setting Up a Cluster
Let’s set up a cluster using the CloudHSM Console:

I click on Create cluster to get started, select my desired VPC and the subnets within it (I can also create a new VPC and/or subnets if needed):

Then I review my settings and click on Create:

After a few minutes, my cluster exists, but is uninitialized:

Initialization simply means retrieving a certificate signing request (the Cluster CSR):

And then creating a private key and using it to sign the request (these commands were copied from the Initialize Cluster docs and I have omitted the output. Note that ID identifies the cluster):

$ openssl genrsa -out CustomerRoot.key 2048
$ openssl req -new -x509 -days 365 -key CustomerRoot.key -out CustomerRoot.crt
$ openssl x509 -req -days 365 -in ID_ClusterCsr.csr   \
                              -CA CustomerRoot.crt    \
                              -CAkey CustomerRoot.key \
                              -CAcreateserial         \
                              -out ID_CustomerHsmCertificate.crt

The next step is to apply the signed certificate to the cluster using the console or the CLI. After this has been done, the cluster can be activated by changing the password for the HSM’s administrative user, otherwise known as the Crypto Officer (CO).

Once the cluster has been created, initialized and activated, it can be used to protect data. Applications can use the APIs in AWS CloudHSM SDKs to manage keys, encrypt & decrypt objects, and more. The SDKs provide access to the CloudHSM client (running on the same instance as the application). The client, in turn, connects to the cluster across an encrypted connection.

Available Today
The new HSM is available today in the US East (Northern Virginia), US West (Oregon), US East (Ohio), and EU (Ireland) Regions, with more in the works. Pricing starts at $1.45 per HSM per hour.

Jeff;

Friday Squid Blogging: Squid Eyeballs

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/08/friday_squid_bl_588.html

Details on how a squid’s eye corrects for underwater distortion:

Spherical lenses, like the squids’, usually can’t focus the incoming light to one point as it passes through the curved surface, which causes an unclear image. The only way to correct this is by bending each ray of light differently as it falls on each location of the lens’s surface. S-crystallin, the main protein in squid lenses, evolved the ability to do this by behaving as patchy colloids­ — small molecules that have spots of molecular glue that they use to stick together in clusters.

Research paper.

As usual, you can also use this squid post to talk about the security stories in the news that I haven’t covered.

Read my blog posting guidelines here.

Turbocharge your Apache Hive queries on Amazon EMR using LLAP

Post Syndicated from Jigar Mistry original https://aws.amazon.com/blogs/big-data/turbocharge-your-apache-hive-queries-on-amazon-emr-using-llap/

Apache Hive is one of the most popular tools for analyzing large datasets stored in a Hadoop cluster using SQL. Data analysts and scientists use Hive to query, summarize, explore, and analyze big data.

With the introduction of Hive LLAP (Low Latency Analytical Processing), the notion of Hive being just a batch processing tool has changed. LLAP uses long-lived daemons with intelligent in-memory caching to circumvent batch-oriented latency and provide sub-second query response times.

This post provides an overview of Hive LLAP, including its architecture and common use cases for boosting query performance. You will learn how to install and configure Hive LLAP on an Amazon EMR cluster and run queries on LLAP daemons.

What is Hive LLAP?

Hive LLAP was introduced in Apache Hive 2.0, which provides very fast processing of queries. It uses persistent daemons that are deployed on a Hadoop YARN cluster using Apache Slider. These daemons are long-running and provide functionality such as I/O with DataNode, in-memory caching, query processing, and fine-grained access control. And since the daemons are always running in the cluster, it saves substantial overhead of launching new YARN containers for every new Hive session, thereby avoiding long startup times.

When Hive is configured in hybrid execution mode, small and short queries execute directly on LLAP daemons. Heavy lifting (like large shuffles in the reduce stage) is performed in YARN containers that belong to the application. Resources (CPU, memory, etc.) are obtained in a traditional fashion using YARN. After the resources are obtained, the execution engine can decide which resources are to be allocated to LLAP, or it can launch Apache Tez processors in separate YARN containers. You can also configure Hive to run all the processing workloads on LLAP daemons for querying small datasets at lightning fast speeds.

LLAP daemons are launched under YARN management to ensure that the nodes don’t get overloaded with the compute resources of these daemons. You can use scheduling queues to make sure that there is enough compute capacity for other YARN applications to run.

Why use Hive LLAP?

With many options available in the market (Presto, Spark SQL, etc.) for doing interactive SQL  over data that is stored in Amazon S3 and HDFS, there are several reasons why using Hive and LLAP might be a good choice:

  • For those who are heavily invested in the Hive ecosystem and have external BI tools that connect to Hive over JDBC/ODBC connections, LLAP plugs in to their existing architecture without a steep learning curve.
  • It’s compatible with existing Hive SQL and other Hive tools, like HiveServer2, and JDBC drivers for Hive.
  • It has native support for security features with authentication and authorization (SQL standards-based authorization) using HiveServer2.
  • LLAP daemons are aware about of the columns and records that are being processed which enables you to enforce fine-grained access control.
  • It can use Hive’s vectorization capabilities to speed up queries, and Hive has better support for Parquet file format when vectorization is enabled.
  • It can take advantage of a number of Hive optimizations like merging multiple small files for query results, automatically determining the number of reducers for joins and groupbys, etc.
  • It’s optional and modular so it can be turned on or off depending on the compute and resource requirements of the cluster. This lets you to run other YARN applications concurrently without reserving a cluster specifically for LLAP.

How do you install Hive LLAP in Amazon EMR?

To install and configure LLAP on an EMR cluster, use the following bootstrap action (BA):

s3://aws-bigdata-blog/artifacts/Turbocharge_Apache_Hive_on_EMR/configure-Hive-LLAP.sh

This BA downloads and installs Apache Slider on the cluster and configures LLAP so that it works with EMR Hive. For LLAP to work, the EMR cluster must have Hive, Tez, and Apache Zookeeper installed.

You can pass the following arguments to the BA.

Argument Definition Default value
--instances Number of instances of LLAP daemon Number of core/task nodes of the cluster
--cache Cache size per instance 20% of physical memory of the node
--executors Number of executors per instance Number of CPU cores of the node
--iothreads Number of IO threads per instance Number of CPU cores of the node
--size Container size per instance 50% of physical memory of the node
--xmx Working memory size 50% of container size
--log-level Log levels for the LLAP instance INFO

LLAP example

This section describes how you can try the faster Hive queries with LLAP using the TPC-DS testbench for Hive on Amazon EMR.

Use the following AWS command line interface (AWS CLI) command to launch a 1+3 nodes m4.xlarge EMR 5.6.0 cluster with the bootstrap action to install LLAP:

aws emr create-cluster --release-label emr-5.6.0 \
--applications Name=Hadoop Name=Hive Name=Hue Name=ZooKeeper Name=Tez \
--bootstrap-actions '[{"Path":"s3://aws-bigdata-blog/artifacts/Turbocharge_Apache_Hive_on_EMR/configure-Hive-LLAP.sh","Name":"Custom action"}]' \ 
--ec2-attributes '{"KeyName":"<YOUR-KEY-PAIR>","InstanceProfile":"EMR_EC2_DefaultRole","SubnetId":"subnet-xxxxxxxx","EmrManagedSlaveSecurityGroup":"sg-xxxxxxxx","EmrManagedMasterSecurityGroup":"sg-xxxxxxxx"}' 
--service-role EMR_DefaultRole \
--enable-debugging \
--log-uri 's3n://<YOUR-BUCKET/' --name 'test-hive-llap' \
--instance-groups '[{"InstanceCount":1,"EbsConfiguration":{"EbsBlockDeviceConfigs":[{"VolumeSpecification":{"SizeInGB":32,"VolumeType":"gp2"},"VolumesPerInstance":1}],"EbsOptimized":true},"InstanceGroupType":"MASTER","InstanceType":"m4.xlarge","Name":"Master - 1"},{"InstanceCount":3,"EbsConfiguration":{"EbsBlockDeviceConfigs":[{"VolumeSpecification":{"SizeInGB":32,"VolumeType":"gp2"},"VolumesPerInstance":1}],"EbsOptimized":true},"InstanceGroupType":"CORE","InstanceType":"m4.xlarge","Name":"Core - 2"}]' 
--region us-east-1

After the cluster is launched, log in to the master node using SSH, and do the following:

  1. Open the hive-tpcds folder:
    cd /home/hadoop/hive-tpcds/
  2. Start Hive CLI using the testbench configuration, create the required tables, and run the sample query:

    hive –i testbench.settings
    hive> source create_tables.sql;
    hive> source query55.sql;

    This sample query runs on a 40 GB dataset that is stored on Amazon S3. The dataset is generated using the data generation tool in the TPC-DS testbench for Hive.It results in output like the following:
  3. This screenshot shows that the query finished in about 47 seconds for LLAP mode. Now, to compare this to the execution time without LLAP, you can run the same workload using only Tez containers:
    hive> set hive.llap.execution.mode=none;
    hive> source query55.sql;


    This query finished in about 80 seconds.

The difference in query execution time is almost 1.7 times when using just YARN containers in contrast to running the query on LLAP daemons. And with every rerun of the query, you notice that the execution time substantially decreases by the virtue of in-memory caching by LLAP daemons.

Conclusion

In this post, I introduced Hive LLAP as a way to boost Hive query performance. I discussed its architecture and described several use cases for the component. I showed how you can install and configure Hive LLAP on an Amazon EMR cluster and how you can run queries on LLAP daemons.

If you have questions about using Hive LLAP on Amazon EMR or would like to share your use cases, please leave a comment below.


Additional Reading

Learn how to to automatically partition Hive external tables with AWS.


About the Author

Jigar Mistry is a Hadoop Systems Engineer with Amazon Web Services. He works with customers to provide them architectural guidance and technical support for processing large datasets in the cloud using open-source applications. In his spare time, he enjoys going for camping and exploring different restaurants in the Seattle area.

 

 

 

 

Deploying an NGINX Reverse Proxy Sidecar Container on Amazon ECS

Post Syndicated from Nathan Peck original https://aws.amazon.com/blogs/compute/nginx-reverse-proxy-sidecar-container-on-amazon-ecs/

Reverse proxies are a powerful software architecture primitive for fetching resources from a server on behalf of a client. They serve a number of purposes, from protecting servers from unwanted traffic to offloading some of the heavy lifting of HTTP traffic processing.

This post explains the benefits of a reverse proxy, and explains how to use NGINX and Amazon EC2 Container Service (Amazon ECS) to easily implement and deploy a reverse proxy for your containerized application.

Components

NGINX is a high performance HTTP server that has achieved significant adoption because of its asynchronous event driven architecture. It can serve thousands of concurrent requests with a low memory footprint. This efficiency also makes it ideal as a reverse proxy.

Amazon ECS is a highly scalable, high performance container management service that supports Docker containers. It allows you to run applications easily on a managed cluster of Amazon EC2 instances. Amazon ECS helps you get your application components running on instances according to a specified configuration. It also helps scale out these components across an entire fleet of instances.

Sidecar containers are a common software pattern that has been embraced by engineering organizations. It’s a way to keep server side architecture easier to understand by building with smaller, modular containers that each serve a simple purpose. Just like an application can be powered by multiple microservices, each microservice can also be powered by multiple containers that work together. A sidecar container is simply a way to move part of the core responsibility of a service out into a containerized module that is deployed alongside a core application container.

The following diagram shows how an NGINX reverse proxy sidecar container operates alongside an application server container:

In this architecture, Amazon ECS has deployed two copies of an application stack that is made up of an NGINX reverse proxy side container and an application container. Web traffic from the public goes to an Application Load Balancer, which then distributes the traffic to one of the NGINX reverse proxy sidecars. The NGINX reverse proxy then forwards the request to the application server and returns its response to the client via the load balancer.

Reverse proxy for security

Security is one reason for using a reverse proxy in front of an application container. Any web server that serves resources to the public can expect to receive lots of unwanted traffic every day. Some of this traffic is relatively benign scans by researchers and tools, such as Shodan or nmap:

[18/May/2017:15:10:10 +0000] "GET /YesThisIsAReallyLongRequestURLbutWeAreDoingItOnPurposeWeAreScanningForResearchPurposePleaseHaveALookAtTheUserAgentTHXYesThisIsAReallyLongRequestURLbutWeAreDoingItOnPurposeWeAreScanningForResearchPurposePleaseHaveALookAtTheUserAgentTHXYesThisIsAReallyLongRequestURLbutWeAreDoingItOnPurposeWeAreScanningForResearchPurposePleaseHaveALookAtTheUserAgentTHXYesThisIsAReallyLongRequestURLbutWeAreDoingItOnPurposeWeAreScanningForResearchPurposePleaseHaveALookAtTheUserAgentTHXYesThisIsAReallyLongRequestURLbutWeAreDoingItOnPurposeWeAreScanningForResearchPurposePleaseHaveALookAtTheUserAgentTHXYesThisIsAReallyLongRequestURLbutWeAreDoingItOnPurposeWeAreScanningForResearchPurposePleaseHaveALookAtTheUserAgentTHXYesThisIsAReallyLongRequestURLbutWeAreDoingItOnPurposeWeAreScanningForResearchPurposePleaseHaveALookAtTheUserAgentTHXYesThisIsAReallyLongRequestURLbutWeAreDoingItOnPurposeWeAreScanningForResearchPurposePleaseHaveALookAtTheUserAgentTHXYesThisIsAReallyLongRequestURLbutWeAreDoingItOnPurposeWeAreScann HTTP/1.1" 404 1389 - Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/46.0.2490.86 Safari/537.36
[18/May/2017:18:19:51 +0000] "GET /clientaccesspolicy.xml HTTP/1.1" 404 322 - Cloud mapping experiment. Contact [email protected]

But other traffic is much more malicious. For example, here is what a web server sees while being scanned by the hacking tool ZmEu, which scans web servers trying to find PHPMyAdmin installations to exploit:

[18/May/2017:16:27:39 +0000] "GET /mysqladmin/scripts/setup.php HTTP/1.1" 404 391 - ZmEu
[18/May/2017:16:27:39 +0000] "GET /web/phpMyAdmin/scripts/setup.php HTTP/1.1" 404 394 - ZmEu
[18/May/2017:16:27:39 +0000] "GET /xampp/phpmyadmin/scripts/setup.php HTTP/1.1" 404 396 - ZmEu
[18/May/2017:16:27:40 +0000] "GET /apache-default/phpmyadmin/scripts/setup.php HTTP/1.1" 404 405 - ZmEu
[18/May/2017:16:27:40 +0000] "GET /phpMyAdmin-2.10.0.0/scripts/setup.php HTTP/1.1" 404 397 - ZmEu
[18/May/2017:16:27:40 +0000] "GET /mysql/scripts/setup.php HTTP/1.1" 404 386 - ZmEu
[18/May/2017:16:27:41 +0000] "GET /admin/scripts/setup.php HTTP/1.1" 404 386 - ZmEu
[18/May/2017:16:27:41 +0000] "GET /forum/phpmyadmin/scripts/setup.php HTTP/1.1" 404 396 - ZmEu
[18/May/2017:16:27:41 +0000] "GET /typo3/phpmyadmin/scripts/setup.php HTTP/1.1" 404 396 - ZmEu
[18/May/2017:16:27:42 +0000] "GET /phpMyAdmin-2.10.0.1/scripts/setup.php HTTP/1.1" 404 399 - ZmEu
[18/May/2017:16:27:44 +0000] "GET /administrator/components/com_joommyadmin/phpmyadmin/scripts/setup.php HTTP/1.1" 404 418 - ZmEu
[18/May/2017:18:34:45 +0000] "GET /phpmyadmin/scripts/setup.php HTTP/1.1" 404 390 - ZmEu
[18/May/2017:16:27:45 +0000] "GET /w00tw00t.at.blackhats.romanian.anti-sec:) HTTP/1.1" 404 401 - ZmEu

In addition, servers can also end up receiving unwanted web traffic that is intended for another server. In a cloud environment, an application may end up reusing an IP address that was formerly connected to another service. It’s common for misconfigured or misbehaving DNS servers to send traffic intended for a different host to an IP address now connected to your server.

It’s the responsibility of anyone running a web server to handle and reject potentially malicious traffic or unwanted traffic. Ideally, the web server can reject this traffic as early as possible, before it actually reaches the core application code. A reverse proxy is one way to provide this layer of protection for an application server. It can be configured to reject these requests before they reach the application server.

Reverse proxy for performance

Another advantage of using a reverse proxy such as NGINX is that it can be configured to offload some heavy lifting from your application container. For example, every HTTP server should support gzip. Whenever a client requests gzip encoding, the server compresses the response before sending it back to the client. This compression saves network bandwidth, which also improves speed for clients who now don’t have to wait as long for a response to fully download.

NGINX can be configured to accept a plaintext response from your application container and gzip encode it before sending it down to the client. This allows your application container to focus 100% of its CPU allotment on running business logic, while NGINX handles the encoding with its efficient gzip implementation.

An application may have security concerns that require SSL termination at the instance level instead of at the load balancer. NGINX can also be configured to terminate SSL before proxying the request to a local application container. Again, this also removes some CPU load from the application container, allowing it to focus on running business logic. It also gives you a cleaner way to patch any SSL vulnerabilities or update SSL certificates by updating the NGINX container without needing to change the application container.

NGINX configuration

Configuring NGINX for both traffic filtering and gzip encoding is shown below:

http {
  # NGINX will handle gzip compression of responses from the app server
  gzip on;
  gzip_proxied any;
  gzip_types text/plain application/json;
  gzip_min_length 1000;
 
  server {
    listen 80;
 
    # NGINX will reject anything not matching /api
    location /api {
      # Reject requests with unsupported HTTP method
      if ($request_method !~ ^(GET|POST|HEAD|OPTIONS|PUT|DELETE)$) {
        return 405;
      }
 
      # Only requests matching the whitelist expectations will
      # get sent to the application server
      proxy_pass http://app:3000;
      proxy_http_version 1.1;
      proxy_set_header Upgrade $http_upgrade;
      proxy_set_header Connection 'upgrade';
      proxy_set_header Host $host;
      proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
      proxy_cache_bypass $http_upgrade;
    }
  }
}

The above configuration only accepts traffic that matches the expression /api and has a recognized HTTP method. If the traffic matches, it is forwarded to a local application container accessible at the local hostname app. If the client requested gzip encoding, the plaintext response from that application container is gzip-encoded.

Amazon ECS configuration

Configuring ECS to run this NGINX container as a sidecar is also simple. ECS uses a core primitive called the task definition. Each task definition can include one or more containers, which can be linked to each other:

 {
  "containerDefinitions": [
     {
       "name": "nginx",
       "image": "<NGINX reverse proxy image URL here>",
       "memory": "256",
       "cpu": "256",
       "essential": true,
       "portMappings": [
         {
           "containerPort": "80",
           "protocol": "tcp"
         }
       ],
       "links": [
         "app"
       ]
     },
     {
       "name": "app",
       "image": "<app image URL here>",
       "memory": "256",
       "cpu": "256",
       "essential": true
     }
   ],
   "networkMode": "bridge",
   "family": "application-stack"
}

This task definition causes ECS to start both an NGINX container and an application container on the same instance. Then, the NGINX container is linked to the application container. This allows the NGINX container to send traffic to the application container using the hostname app.

The NGINX container has a port mapping that exposes port 80 on a publically accessible port but the application container does not. This means that the application container is not directly addressable. The only way to send it traffic is to send traffic to the NGINX container, which filters that traffic down. It only forwards to the application container if the traffic passes the whitelisted rules.

Conclusion

Running a sidecar container such as NGINX can bring significant benefits by making it easier to provide protection for application containers. Sidecar containers also improve performance by freeing your application container from various CPU intensive tasks. Amazon ECS makes it easy to run sidecar containers, and automate their deployment across your cluster.

To see the full code for this NGINX sidecar reference, or to try it out yourself, you can check out the open source NGINX reverse proxy reference architecture on GitHub.

– Nathan
 @nathankpeck

HiveMQ 3.2.6 released

Post Syndicated from The HiveMQ Team original http://www.hivemq.com/blog/hivemq-3-2-6-released/

The HiveMQ team is pleased to announce the availability of HiveMQ 3.2.6. This is a maintenance release for the 3.2 series and brings the following improvements:

  • Fixed an issue that caused IOExceptions to be wrongfully logged when a client disconnected.
  • Fixed an issue that could cause cluster nodes to not be operational
  • Fixed an issue that could cause a HiveMQ single node to fail start up, when persistent data existed
  • Improved performance when nodes (re)join a cluster

You can download the new HiveMQ version here.

We strongly recommend to upgrade if you are an HiveMQ 3.2.x user.

Have a great day,
The HiveMQ Team

Run Common Data Science Packages on Anaconda and Oozie with Amazon EMR

Post Syndicated from John Ohle original https://aws.amazon.com/blogs/big-data/run-common-data-science-packages-on-anaconda-and-oozie-with-amazon-emr/

In the world of data science, users must often sacrifice cluster set-up time to allow for complex usability scenarios. Amazon EMR allows data scientists to spin up complex cluster configurations easily, and to be up and running with complex queries in a matter of minutes.

Data scientists often use scheduling applications such as Oozie to run jobs overnight. However, Oozie can be difficult to configure when you are trying to use popular Python packages (such as “pandas,” “numpy,” and “statsmodels”), which are not included by default.

One such popular platform that contains these types of packages (and more) is Anaconda. This post focuses on setting up an Anaconda platform on EMR, with an intent to use its packages with Oozie. I describe how to run jobs using a popular open source scheduler like Oozie.

Walkthrough

For this post, you walk through the following tasks:

  • Create an EMR cluster.
  • Download Anaconda on your master node.
  • Configure Oozie.
  • Test the steps.

Create an EMR cluster

Spin up an Amazon EMR cluster using the console or the AWS CLI. Use the latest release, and include Apache Hadoop, Apache Spark, Apache Hive, and Oozie.

To create a three-node cluster in the us-east-1 region, issue an AWS CLI command such as the following. This command must be typed as one line, as shown below. It is shown here separated for readability purposes only.

aws emr create-cluster \ 
--release-label emr-5.7.0 \ 
 --name '<YOUR-CLUSTER-NAME>' \
 --applications Name=Hadoop Name=Oozie Name=Spark Name=Hive \ 
 --ec2-attributes '{"KeyName":"<YOUR-KEY-PAIR>","SubnetId":"<YOUR-SUBNET-ID>","EmrManagedSlaveSecurityGroup":"<YOUR-EMR-SLAVE-SECURITY-GROUP>","EmrManagedMasterSecurityGroup":"<YOUR-EMR-MASTER-SECURITY-GROUP>"}' \ 
 --use-default-roles \ 
 --instance-groups '[{"InstanceCount":1,"InstanceGroupType":"MASTER","InstanceType":"<YOUR-INSTANCE-TYPE>","Name":"Master - 1"},{"InstanceCount":<YOUR-CORE-INSTANCE-COUNT>,"InstanceGroupType":"CORE","InstanceType":"<YOUR-INSTANCE-TYPE>","Name":"Core - 2"}]'

One-line version for reference:

aws emr create-cluster --release-label emr-5.7.0 --name '<YOUR-CLUSTER-NAME>' --applications Name=Hadoop Name=Oozie Name=Spark Name=Hive --ec2-attributes '{"KeyName":"<YOUR-KEY-PAIR>","SubnetId":"<YOUR-SUBNET-ID>","EmrManagedSlaveSecurityGroup":"<YOUR-EMR-SLAVE-SECURITY-GROUP>","EmrManagedMasterSecurityGroup":"<YOUR-EMR-MASTER-SECURITY-GROUP>"}' --use-default-roles --instance-groups '[{"InstanceCount":1,"InstanceGroupType":"MASTER","InstanceType":"<YOUR-INSTANCE-TYPE>","Name":"Master - 1"},{"InstanceCount":<YOUR-CORE-INSTANCE-COUNT>,"InstanceGroupType":"CORE","InstanceType":"<YOUR-INSTANCE-TYPE>","Name":"Core - 2"}]'

Download Anaconda

SSH into your EMR master node instance and download the official Anaconda installer:

wget https://repo.continuum.io/archive/Anaconda2-4.4.0-Linux-x86_64.sh

At the time of publication, Anaconda 4.4 is the most current version available. For the download link location for the latest Python 2.7 version (Python 3.6 may encounter issues), see https://www.continuum.io/downloads.  Open the context (right-click) menu for the Python 2.7 download link, choose Copy Link Location, and use this value in the previous wget command.

This post used the Anaconda 4.4 installation. If you have a later version, it is shown in the downloaded filename:  “anaconda2-<version number>-Linux-x86_64.sh”.

Run this downloaded script and follow the on-screen installer prompts.

chmod u+x Anaconda2-4.4.0-Linux-x86_64.sh
./Anaconda2-4.4.0-Linux-x86_64.sh

For an installation directory, select somewhere with enough space on your cluster, such as “/mnt/anaconda/”.

The process should take approximately 1–2 minutes to install. When prompted if you “wish the installer to prepend the Anaconda2 install location”, select the default option of [no].

After you are done, export the PATH to include this new Anaconda installation:

export PATH=/mnt/anaconda/bin:$PATH

Zip up the Anaconda installation:

cd /mnt/anaconda/
zip -r anaconda.zip .

The zip process may take 4–5 minutes to complete.

(Optional) Upload this anaconda.zip file to your S3 bucket for easier inclusion into future EMR clusters. This removes the need to repeat the previous steps for future EMR clusters.

Configure Oozie

Next, you configure Oozie to use Pyspark and the Anaconda platform.

Get the location of your Oozie sharelibupdate folder. Issue the following command and take note of the “sharelibDirNew” value:

oozie admin -sharelibupdate

For this post, this value is “hdfs://ip-192-168-4-200.us-east-1.compute.internal:8020/user/oozie/share/lib/lib_20170616133136”.

Pass in the required Pyspark files into Oozies sharelibupdate location. The following files are required for Oozie to be able to run Pyspark commands:

  • pyspark.zip
  • py4j-0.10.4-src.zip

These are located on the EMR master instance in the location “/usr/lib/spark/python/lib/”, and must be put into the Oozie sharelib spark directory. This location is the value of the sharelibDirNew parameter value (shown above) with “/spark/” appended, that is, “hdfs://ip-192-168-4-200.us-east-1.compute.internal:8020/user/oozie/share/lib/lib_20170616133136/spark/”.

To do this, issue the following commands:

hdfs dfs -put /usr/lib/spark/python/lib/py4j-0.10.4-src.zip hdfs://ip-192-168-4-200.us-east-1.compute.internal:8020/user/oozie/share/lib/lib_20170616133136/spark/
hdfs dfs -put /usr/lib/spark/python/lib/pyspark.zip hdfs://ip-192-168-4-200.us-east-1.compute.internal:8020/user/oozie/share/lib/lib_20170616133136/spark/

After you’re done, Oozie can use Pyspark in its processes.

Pass the anaconda.zip file into HDFS as follows:

hdfs dfs -put /mnt/anaconda/anaconda.zip /tmp/myLocation/anaconda.zip

(Optional) Verify that it was transferred successfully with the following command:

hdfs dfs -ls /tmp/myLocation/

On your master node, execute the following command:

export PYSPARK_PYTHON=/mnt/anaconda/bin/python

Set the PYSPARK_PYTHON environment variable on the executor nodes. Put the following configurations in your “spark-opts” values in your Oozie workflow.xml file:

–conf spark.executorEnv.PYSPARK_PYTHON=./anaconda_remote/bin/python
–conf spark.yarn.appMasterEnv.PYSPARK_PYTHON=./anaconda_remote/bin/python

This is referenced from the Oozie job in the following line in your workflow.xml file, also included as part of your “spark-opts”:

--archives hdfs:///tmp/myLocation/anaconda.zip#anaconda_remote

Your Oozie workflow.xml file should now look something like the following:

<workflow-app name="spark-wf" xmlns="uri:oozie:workflow:0.5">
<start to="start_spark" />
<action name="start_spark">
    <spark xmlns="uri:oozie:spark-action:0.1">
        <job-tracker>${jobTracker}</job-tracker>
        <name-node>${nameNode}</name-node>
        <prepare>
            <delete path="/tmp/test/spark_oozie_test_out3"/>
        </prepare>
        <master>yarn-cluster</master>
        <mode>cluster</mode>
        <name>SparkJob</name>
        <class>clear</class>
        <jar>hdfs:///user/oozie/apps/myPysparkProgram.py</jar>
        <spark-opts>--queue default
            --conf spark.ui.view.acls=*
            --executor-memory 2G --num-executors 2 --executor-cores 2 --driver-memory 3g
            --conf spark.executorEnv.PYSPARK_PYTHON=./anaconda_remote/bin/python
            --conf spark.yarn.appMasterEnv.PYSPARK_PYTHON=./anaconda_remote/bin/python
            --archives hdfs:///tmp/myLocation/anaconda.zip#anaconda_remote
        </spark-opts>
    </spark>
    <ok to="end"/>
    <error to="kill"/>
</action>
        <kill name="kill">
                <message>Action failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
        </kill>
        <end name="end"/>
</workflow-app>

Test steps

To test this out, you can use the following job.properties and myPysparkProgram.py file, along with the following steps:

job.properties

masterNode ip-xxx-xxx-xxx-xxx.us-east-1.compute.internal
nameNode hdfs://${masterNode}:8020
jobTracker ${masterNode}:8032
master yarn
mode cluster
queueName default
oozie.libpath ${nameNode}/user/oozie/share/lib
oozie.use.system.libpath true
oozie.wf.application.path ${nameNode}/user/oozie/apps/

Note: You can get your master node IP address (denoted as “ip-xxx-xxx-xxx-xxx” here) from the value for the sharelibDirNew parameter noted earlier.

myPysparkProgram.py

from pyspark import SparkContext, SparkConf
import numpy
import sys

conf = SparkConf().setAppName('myPysparkProgram')
sc = SparkContext(conf=conf)

rdd = sc.textFile("/user/hadoop/input.txt")

x = numpy.sum([3,4,5]) #total = 12

rdd = rdd.map(lambda line: line + str(x))
rdd.saveAsTextFile("/user/hadoop/output")

Put the “myPysparkProgram.py” into the location mentioned between the “<jar>xxxxx</jar>” tags in your workflow.xml. In this example, the location is “hdfs:///user/oozie/apps/”. Use the following command to move the “myPysparkProgram.py” file to the correct location:

hdfs dfs -put myPysparkProgram.py /user/oozie/apps/

Put the above workflow.xml file into the “/user/oozie/apps/” location in hdfs:

hdfs dfs –put workflow.xml /user/oozie/apps/

Note: The job.properties file is run locally from the EMR master node.

Create a sample input.txt file with some data in it. For example:

input.txt

This is a sentence.
So is this. 
This is also a sentence.

Put this file into hdfs:

hdfs dfs -put input.txt /user/hadoop/

Execute the job in Oozie with the following command. This creates an Oozie job ID.

oozie job -config job.properties -run

You can check the Oozie job state with the command:

oozie job -info <Oozie job ID>

  1. When the job is successfully finished, the results are located at:
/user/hadoop/output/part-00000
/user/hadoop/output/part-00001

  1. Run the following commands to view the output:
hdfs dfs -cat /user/hadoop/output/part-00000
hdfs dfs -cat /user/hadoop/output/part-00001

The output will be:

This is a sentence. 12
So is this 12
This is also a sentence 12

Summary

The myPysparkProgram.py has successfully imported the numpy library from the Anaconda platform and has produced some output with it. If you tried to run this using standard Python, you’d encounter the following error:

Now when your Python job runs in Oozie, any imported packages that are implicitly imported by your Pyspark script are imported into your job within Oozie directly from the Anaconda platform. Simple!

If you have questions or suggestions, please leave a comment below.


Additional Reading

Learn how to use Apache Oozie workflows to automate Apache Spark jobs on Amazon EMR.

 


About the Author

John Ohle is an AWS BigData Cloud Support Engineer II for the BigData team in Dublin. He works to provide advice and solutions to our customers on their Big Data projects and workflows on AWS. In his spare time, he likes to play music, learn, develop tools and write documentation to further help others – both colleagues and customers alike.

 

 

 

Amazon Redshift Spectrum Extends Data Warehousing Out to Exabytes—No Loading Required

Post Syndicated from Maor Kleider original https://aws.amazon.com/blogs/big-data/amazon-redshift-spectrum-extends-data-warehousing-out-to-exabytes-no-loading-required/

When we first looked into the possibility of building a cloud-based data warehouse many years ago, we were struck by the fact that our customers were storing ever-increasing amounts of data, and yet only a small fraction of that data ever made it into a data warehouse or Hadoop system for analysis. We saw that this wasn’t just a cloud-specific anomaly. It was also true in the broader industry, where the growth rate of the enterprise storage market segment greatly surpassed that of the data warehousing market segment.

We dubbed this the “dark data” problem. Our customers knew that there was untapped value in the data they collected; why else would they spend money to store it? But the systems available to them to analyze this data were simply too slow, complex, and expensive for them to use on all but a select subset of this data. They were storing it with optimistic hope that, someday, someone would find a solution.

Amazon Redshift became one of the fastest-growing AWS services because it helped solve the dark data problem. It was at least an order of magnitude less expensive and faster than most alternatives available. And Amazon Redshift was fully managed from the start—you didn’t have to worry about capacity, provisioning, patching, monitoring, backups, and a host of other DBA headaches. Many customers, including Vevo, Yelp, Redfin, and Edmunds, migrated to Amazon Redshift to improve query performance, reduce DBA overhead, and lower the cost of analytics.

And our customers’ data continues to grow at a very fast rate. Across the board, gigabytes to petabytes, the average Amazon Redshift customer doubles the data analyzed every year. That’s why we implement features that help customers handle their growing data, for example to double the query throughput or improve the compression ratios from 3x to 4x. That gives our customers some time before they have to consider throwing away data or removing it from their analytic environments. However, there is an increasing number of AWS customers who each generate a petabyte of data every day—that’s an exabyte in only three years. There wasn’t a solution for customers like that. If your data is doubling every year, it’s not long before you have to find new, disruptive approaches that transform the cost, performance, and simplicity curves for managing data.

Let’s look at the options available today. You can use Hadoop-based technologies like Apache Hive with Amazon EMR. This is actually a pretty great solution because it makes it easy and cost-effective to operate directly on data in Amazon S3 without ingestion or transformation. You can spin up clusters as you wish when you need, and size them right for that specific job you’re running. These systems are great at high scale-out processing like scans, filters, and aggregates. On the other hand, they’re not that good at complex query processing. For example, join processing requires data to be shuffled across nodes—for a large amount of data and large numbers of nodes that gets very slow. And joins are intrinsic to any meaningful analytics problem.

You can also use a columnar MPP data warehouse like Amazon Redshift. These systems make it simple to run complex analytic queries with orders of magnitude faster performance for joins and aggregations performed over large datasets. Amazon Redshift, in particular, leverages high-performance local disks, sophisticated query execution. and join-optimized data formats. Because it is just standard SQL, you can keep using your existing ETL and BI tools. But you do have to load data, and you have to provision clusters against the storage and CPU requirements you need.

Both solutions have powerful attributes, but they force you to choose which attributes you want. We see this as a “tyranny of OR.” You can have the throughput of local disks OR the scale of Amazon S3. You can have sophisticated query optimization OR high-scale data processing. You can have fast join performance with optimized formats OR a range of data processing engines that work against common data formats. But you shouldn’t have to choose. At this scale, you really can’t afford to choose. You need “all of the above.”

Redshift Spectrum

We built Redshift Spectrum to end this “tyranny of OR.” With Redshift Spectrum, Amazon Redshift customers can easily query their data in Amazon S3. Like Amazon EMR, you get the benefits of open data formats and inexpensive storage, and you can scale out to thousands of nodes to pull data, filter, project, aggregate, group, and sort. Like Amazon Athena, Redshift Spectrum is serverless and there’s nothing to provision or manage. You just pay for the resources you consume for the duration of your Redshift Spectrum query. Like Amazon Redshift itself, you get the benefits of a sophisticated query optimizer, fast access to data on local disks, and standard SQL. And like nothing else, Redshift Spectrum can execute highly sophisticated queries against an exabyte of data or more—in just minutes.

Redshift Spectrum is a built-in feature of Amazon Redshift, and your existing queries and BI tools will continue to work seamlessly. Under the covers, we manage a fleet of thousands of Redshift Spectrum nodes spread across multiple Availability Zones. These are transparently scaled and allocated to your queries based on the data that you need to process, with no provisioning or commitments. Redshift Spectrum is also highly concurrent—you can access your Amazon S3 data from any number of Amazon Redshift clusters.

The life of a Redshift Spectrum query

It all starts when Redshift Spectrum queries are submitted to the leader node of your Amazon Redshift cluster. The leader node optimizes, compiles, and pushes the query execution to the compute nodes in your Amazon Redshift cluster. Next, the compute nodes obtain the information describing the external tables from your data catalog, dynamically pruning nonrelevant partitions based on the filters and joins in your queries. The compute nodes also examine the data available locally and push down predicates to efficiently scan only the relevant objects in Amazon S3.

The Amazon Redshift compute nodes then generate multiple requests depending on the number of objects that need to be processed, and submit them concurrently to Redshift Spectrum, which pools thousands of Amazon EC2 instances per AWS Region. The Redshift Spectrum worker nodes scan, filter, and aggregate your data from Amazon S3, streaming required data for processing back to your Amazon Redshift cluster. Then, the final join and merge operations are performed locally in your cluster and the results are returned to your client.

Redshift Spectrum’s architecture offers several advantages. First, it elastically scales compute resources separately from the storage layer in Amazon S3. Second, it offers significantly higher concurrency because you can run multiple Amazon Redshift clusters and query the same data in Amazon S3. Third, Redshift Spectrum leverages the Amazon Redshift query optimizer to generate efficient query plans, even for complex queries with multi-table joins and window functions. Fourth, it operates directly on your source data in its native format (Parquet, RCFile, CSV, TSV, Sequence, Avro, RegexSerDe and more to come soon). This means that no data loading or transformation is needed. This also eliminates data duplication and associated costs. Fifth, operating on open data formats gives you the flexibility to leverage other AWS services and execution engines across your various teams to collaborate on the same data in Amazon S3. You get all of this, and because Redshift Spectrum is a feature of Amazon Redshift, you get the same level of end-to-end security, compliance, and certifications as with Amazon Redshift.

Designed for performance and cost-effectiveness

With Amazon Redshift Spectrum, you pay only for the queries you run against the data that you actually scan. We encourage you to leverage file partitioning, columnar data formats, and data compression to significantly minimize the amount of data scanned in Amazon S3. This is important for data warehousing because it dramatically improves query performance and reduces cost. Partitioning your data in Amazon S3 by date, time, or any other custom keys enables Redshift Spectrum to dynamically prune nonrelevant partitions to minimize the amount of data processed. If you store data in a columnar format, such as Parquet, Redshift Spectrum scans only the columns needed by your query, rather than processing entire rows. Similarly, if you compress your data using one of Redshift Spectrum’s supported compression algorithms, less data is scanned.

Amazon Redshift and Redshift Spectrum give you the best of both worlds. If you need to run frequent queries on the same data, you can normalize it, store it in Amazon Redshift, and get all of the benefits of a fully featured data warehouse for storing and querying structured data at a flat rate. At the same time, you can keep your additional data in multiple open file formats in Amazon S3, whether it is historical data or the most recent data, and extend your Amazon Redshift queries across your Amazon S3 data lake.

And that is how Amazon Redshift Spectrum scales data warehousing to exabytes—with no loading required. Redshift Spectrum ends the “tyranny of OR,” enabling you to store your data where you want, in the format you want, and have it available for fast processing using standard SQL when you need it, now and in the future.


Additional Reading

10 Best Practices for Amazon Redshift Spectrum
Amazon QuickSight Adds Support for Amazon Redshift Spectrum
Amazon Redshift Spectrum – Exabyte-Scale In-Place Queries of S3 Data

 


 

About the Author

Maor Kleider is a Senior Product Manager for Amazon Redshift, a fast, simple and cost-effective data warehouse. Maor is passionate about collaborating with customers and partners, learning about their unique big data use cases and making their experience even better. In his spare time, Maor enjoys traveling and exploring new restaurants with his family.

 

 

 

timeShift(GrafanaBuzz, 1w) Issue 5

Post Syndicated from Blogs on Grafana Labs Blog original https://grafana.com/blog/2017/07/21/timeshiftgrafanabuzz-1w-issue-5/

We cover a lot of ground in this week’s timeShift. From diving into building your own plugin, finding the right dashboard, configuration options in the alerting feature, to monitoring your local weather, there’s something for everyone. Are you writing an article about Grafana, or have you come across an article you found interesting? Please get in touch, we’ll add it to our roundup.


From the Blogosphere

  • Going open-source in monitoring, part III: 10 most useful Grafana dashboards to monitor Kubernetes and services: We have hundreds of pre-made dashboards ready for you to install into your on-prem or hosted Grafana, but not every one will fit your specific monitoring needs. In part three of the series, Sergey discusses is experiences with finding useful dashboards and shows off ten of the best dashboards you can install for monitoring Kubernetes clusters and the services deployed on them.

  • Using AWS Lambda and API gateway for server-less Grafana adapters: Sometimes you’ll want to visualize metrics from a data source that may not yet be supported in Grafana natively. With the plugin functionality introduced in Grafana 3.0, anyone can create their own data sources. Using the SimpleJson data source, Jonas describes how he used AWS Lambda and AWS API gateway to write data source adapters for Grafana.

  • How to Use Grafana to Monitor JMeter Non-GUI Results – Part 2: A few issues ago we listed an article for using Grafana to monitor JMeter Non-GUI results, which required a number of non-trivial steps to complete. This article shows of an easier way to accomplish this that doesn’t require any additional configuration of InfluxDB.

  • Programming your Personal Weather Chart: It’s always great to see Grafana used outside of the typical dev-ops usecase. This article runs you through the steps to create your own weather chart and show off your local weather stats in Grafana. BONUS: Rob shows off a magic mirror he created, which can display this data.

  • vSphere Performance data – Part 6 – The Dashboard(s): This 6-part series goes into a ton of detail and walks you through the various methods of retrieving vSphere performance data, storing the data in a TSDB, and creating dashboards for the metrics. Part 6 deals specifically with Grafana, but I highly recommend reading all of the articles, as it chronicles the journey of metrics exploration, storage, and visualization from someone who had no prior experience with time series data.

  • Alerting in Grafana: Alerting in Grafana is a fairly new feature and one that we’re continuing to iterate on. We’re soon adding additional data source support, new notification channels, clustering, silencing rules, and more. This article steps you through all the configuration options to get you to your first alert.


Plugins and Dashboards

It can seem like work slows during July and August, but we’re still seeing a lot of activity in the community. This week we have a new graph panel to show off that gives you some unique looking dashboards, and an update to the Zabbix data source, which adds some really great features. You can install both of the plugins now on your on-prem Grafana via our cli, or with one-click on GrafanaCloud.

NEW PLUGIN

Bubble Chart Panel This super-cool looking panel groups your tag values into clusters of circles. The size of the circle represents the aggregated value of the time series data. There are also multiple color schemes to make those bubbles POP (pun intended)! Currently it works against OpenTSDB and Bosun, so give it a try!

Install Now

UPDATED PLUGIN

Zabbix Alex has been hard at work, making improvements on the Zabbix App for Grafana. This update adds annotations, template variables, alerting and more. Thanks Alex! If you’d like to try out the app, head over to http://play.grafana-zabbix.org/dashboard/db/zabbix-db-mysql?orgId=2

Install 3.5.1 Now


This week’s MVC (Most Valuable Contributor)

Open source software can’t thrive without the contributions from the community. Each week we’ll recognize a Grafana contributor and thank them for all of their PRs, bug reports and feedback.

mk-dhia (Dhia)
Thank you so much for your improvements to the Elasticsearch data source!


Tweet of the Week

We scour Twitter each week to find an interesting/beautiful dashboard and show it off! #monitoringLove

This week’s tweet comes from @geek_dave

Great looking dashboard Dave! And thank you for adding new features and keeping it updated. It’s creators like you who make the dashboard repository so awesome!


Upcoming Events

We love when people talk about Grafana at meetups and conferences.

Monday, July 24, 2017 – 7:30pm | Google Campus Warsaw


Ząbkowska 27/31, Warsaw, Poland

Iot & HOME AUTOMATION #3 openHAB, InfluxDB, Grafana:
If you are interested in topics of the internet of things and home automation, this might be a good occasion to meet people similar to you. If you are into it, we will also show you how we can all work together on our common projects.

RSVP


Tell us how we’re Doing.

We’d love your feedback on what kind of content you like, length, format, etc – so please keep the comments coming! You can submit a comment on this article below, or post something at our community forum. Help us make this better.

Follow us on Twitter, like us on Facebook, and join the Grafana Labs community.

Running an elastic HiveMQ cluster with auto discovery on AWS

Post Syndicated from The HiveMQ Team original http://www.hivemq.com/blog/running-hivemq-cluster-aws-auto-discovery

hivemq-aws

HiveMQ is a cloud-first MQTT broker with elastic clustering capabilities and a resilient software design which is a perfect fit for common cloud infrastructures. This blogpost discussed what benefits a MQTT broker cluster offers. Today’s post aims to be more practical and talk about how to set up a HiveMQ on one of the most popular cloud computing platform: Amazon Webservices.

Running HiveMQ on cloud infrastructure

Running a HiveMQ cluster on cloud infrastructure like AWS not only offers the advantage the possibility of elastically scaling the infrastructure, it also assures that state of the art security standards are in place on the infrastructure side. These platforms are typically highly available and new virtual machines can be spawned in a snap if they are needed. HiveMQ’s unique ability to add (and remove) cluster nodes at runtime without any manual reconfiguration of the cluster allow to scale linearly on IaaS providers. New cluster nodes can be started (manually or automatically) and the cluster sizes adapts automatically. For more detailed information about HiveMQ clustering and how to achieve true high availability and linear scalability with HiveMQ, we recommend reading the HiveMQ Clustering Paper.

As Amazon Webservice is amongst the best known and most used cloud platforms, we want to illustrate the setup of a HiveMQ cluster on AWS in this post. Note that similar concepts as displayed in this step by step guide for Running an elastic HiveMQ cluster on AWS apply to other cloud platforms such as Microsoft Azure or Google Cloud Platform.

Setup and Configuration

Amazon Webservices prohibits the use of UDP multicast, which is the default HiveMQ cluster discovery mode. The use of Amazon Simple Storage Service (S3) buckets for auto-discovery is a perfect alternative if the brokers are running on AWS EC2 instances anyway. HiveMQ has a free off-the-shelf plugin available for AWS S3 Cluster Discovery.

The following provides a step-by-step guide how to setup the brokers on AWS EC2 with automatic cluster member discovery via S3.

Setup Security Group

The first step is creating a security group that allows inbound traffic to the listeners we are going to configure for MQTT communication. It is also vital to have SSH access on the instances. After you created the security group you need to edit the group and add an additional rule for internal communication between the cluster nodes (meaning the source is the security group itself) on all TCP ports.

To create and edit security groups go to the EC2 console – NETWORK & SECURITY – Security Groups

Inbound traffic

Inbound traffic

Outbound traffic

Outbound traffic

The next step is to create an s3-bucket in the s3 console. Make sure to choose a region, close to the region you want to run your HiveMQ instances on.

Option A: Create IAM role and assign to EC2 instance

Our recommendation is to configure your EC2 instances in a way, allowing them to have access to the s3 bucket. This way you don’t need to create a specific user and don’t need to use the user’s credentials in the

s3discovery.properties

file.

Create IAM Role

Create IAM Role

EC2 Instance Role Type

EC2 Instance Role Type

Select S3 Full Access

Select S3 Full Access

Assign new Role to Instance

Assign new Role to Instance

Option B: Create user and assign IAM policy

The next step is creating a user in the IAM console.

Choose name and set programmatic access

Choose name and set programmatic access

Assign s3 full access role

Assign s3 full access role

Review and create

Review and create

Download credentials

Download credentials

It is important you store these credentials, as they will be needed later for configuring the S3 Cluster Discovery Plugin.

Start EC2 instances with HiveMQ

The next step is spawning 2 or more EC-2 instances with HiveMQ. Follow the steps in the HiveMQ User Guide.

Install s3 discovery plugin

The final step is downloading, installing and configuring the S3 Cluster Discovery Plugin.
After you downloaded the plugin you need to configure the s3 access in the

s3discovery.properties

file according to which s3 access option you chose.

Option A:

# AWS Credentials                                          #
############################################################

#
# Use environment variables to specify your AWS credentials
# the following variables need to be set:
# AWS_ACCESS_KEY_ID
# AWS_SECRET_ACCESS_KEY
#
#credentials-type:environment_variables

#
# Use Java system properties to specify your AWS credentials
# the following variables need to be set:
# aws.accessKeyId
# aws.secretKey
#
#credentials-type:java_system_properties

#
# Uses the credentials file wich ############################################################
# can be created by calling 'aws configure' (AWS CLI)
# usually this file is located at ~/.aws/credentials (platform dependent)
# The location of the file can be configured by setting the environment variable
# AWS_CREDENTIAL_PROFILE_FILE to the location of your file
#
#credentials-type:user_credentials_file

#
# Uses the IAM Profile assigned to the EC2 instance running HiveMQ to access S3
# Notice: This only works if HiveMQ is running on an EC2 instance !
#
credentials-type:instance_profile_credentials

#
# Tries to access S3 via the default mechanisms in the following order
# 1) Environment variables
# 2) Java system properties
# 3) User credentials file
# 4) IAM profiles assigned to EC2 instance
#
#credentials-type:default

#
# Uses the credentials specified in this file.
# The variables you must provide are:
# credentials-access-key-id
# credentials-secret-access-key
#
#credentials-type:access_key
#credentials-access-key-id:
#credentials-secret-access-key:

#
# Uses the credentials specified in this file to authenticate with a temporary session
# The variables you must provide are:
# credentials-access-key-id
# credentials-secret-access-key
# credentials-session-token
#
#credentials-type:temporary_session
#credentials-access-key-id:{access_key_id}
#credentials-secret-access-key:{secret_access_key}
#credentials-session-token:{session_token}


############################################################
# S3 Bucket                                                #
############################################################

#
# Region for the S3 bucket used by hivemq
# see http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region for a list of regions for S3
# example: us-west-2
#
s3-bucket-region:<your region here>

#
# Name of the bucket used by HiveMQ
#
s3-bucket-name:<your s3 bucket name here>

#
# Prefix for the filename of every node's file (optional)
#
file-prefix:hivemq/cluster/nodes/

#
# Expiration timeout (in minutes).
# Files with a timestamp older than (timestamp + expiration) will be automatically deleted
# Set to 0 if you do not want the plugin to handle expiration.
#
file-expiration:360

#
# Interval (in minutes) in which the own information in S3 is updated.
# Set to 0 if you do not want the plugin to update its own information.
# If you disable this you also might want to disable expiration.
#
update-interval:180

Option B:

# AWS Credentials                                          #
############################################################

#
# Use environment variables to specify your AWS credentials
# the following variables need to be set:
# AWS_ACCESS_KEY_ID
# AWS_SECRET_ACCESS_KEY
#
#credentials-type:environment_variables

#
# Use Java system properties to specify your AWS credentials
# the following variables need to be set:
# aws.accessKeyId
# aws.secretKey
#
#credentials-type:java_system_properties

#
# Uses the credentials file wich ############################################################
# can be created by calling 'aws configure' (AWS CLI)
# usually this file is located at ~/.aws/credentials (platform dependent)
# The location of the file can be configured by setting the environment variable
# AWS_CREDENTIAL_PROFILE_FILE to the location of your file
#
#credentials-type:user_credentials_file

#
# Uses the IAM Profile assigned to the EC2 instance running HiveMQ to access S3
# Notice: This only works if HiveMQ is running on an EC2 instance !
#
#credentials-type:instance_profile_credentials

#
# Tries to access S3 via the default mechanisms in the following order
# 1) Environment variables
# 2) Java system properties
# 3) User credentials file
# 4) IAM profiles assigned to EC2 instance
#
#credentials-type:default

#
# Uses the credentials specified in this file.
# The variables you must provide are:
# credentials-access-key-id
# credentials-secret-access-key
#
credentials-type:access_key
credentials-access-key-id:<your access key id here>
credentials-secret-access-key:<your secret access key here>

#
# Uses the credentials specified in this file to authenticate with a temporary session
# The variables you must provide are:
# credentials-access-key-id
# credentials-secret-access-key
# credentials-session-token
#
#credentials-type:temporary_session
#credentials-access-key-id:{access_key_id}
#credentials-secret-access-key:{secret_access_key}
#credentials-session-token:{session_token}


############################################################
# S3 Bucket                                                #
############################################################

#
# Region for the S3 bucket used by hivemq
# see http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region for a list of regions for S3
# example: us-west-2
#
s3-bucket-region:<your region here>

#
# Name of the bucket used by HiveMQ
#
s3-bucket-name:<your s3 bucket name here>

#
# Prefix for the filename of every node's file (optional)
#
file-prefix:hivemq/cluster/nodes/

#
# Expiration timeout (in minutes).
# Files with a timestamp older than (timestamp + expiration) will be automatically deleted
# Set to 0 if you do not want the plugin to handle expiration.
#
file-expiration:360

#
# Interval (in minutes) in which the own information in S3 is updated.
# Set to 0 if you do not want the plugin to update its own information.
# If you disable this you also might want to disable expiration.
#
update-interval:180

This file has to be identical on all your cluster nodes.

That’s it. Starting HiveMQ on multiple EC2 instances will now result in them forming a cluster, taking advantage of the S3 bucket for discovery.
You know that your setup was successful when HiveMQ logs something similar to this.

Cluster size = 2, members : [0QMpE, jw8wu].

Enjoy an elastic MQTT broker cluster

We are now able to take advantage of rapid elasticity. Scaling the HiveMQ cluster up or down by adding or removing EC2 instances without the need of administrative intervention is now possible.

For production environments it’s recommended to use automatic provisioning of the EC2 instances (e.g. by using Chef, Puppet, Ansible or similar tools) so you don’t need to configure each EC2 instance manually. Of course HiveMQ can also be used with Docker, which can also ease the provisioning of HiveMQ nodes.

Analyze OpenFDA Data in R with Amazon S3 and Amazon Athena

Post Syndicated from Ryan Hood original https://aws.amazon.com/blogs/big-data/analyze-openfda-data-in-r-with-amazon-s3-and-amazon-athena/

One of the great benefits of Amazon S3 is the ability to host, share, or consume public data sets. This provides transparency into data to which an external data scientist or developer might not normally have access. By exposing the data to the public, you can glean many insights that would have been difficult with a data silo.

The openFDA project creates easy access to the high value, high priority, and public access data of the Food and Drug Administration (FDA). The data has been formatted and documented in consumer-friendly standards. Critical data related to drugs, devices, and food has been harmonized and can easily be called by application developers and researchers via API calls. OpenFDA has published two whitepapers that drill into the technical underpinnings of the API infrastructure as well as how to properly analyze the data in R. In addition, FDA makes openFDA data available on S3 in raw format.

In this post, I show how to use S3, Amazon EMR, and Amazon Athena to analyze the drug adverse events dataset. A drug adverse event is an undesirable experience associated with the use of a drug, including serious drug side effects, product use errors, product quality programs, and therapeutic failures.

Data considerations

Keep in mind that this data does have limitations. In addition, in the United States, these adverse events are submitted to the FDA voluntarily from consumers so there may not be reports for all events that occurred. There is no certainty that the reported event was actually due to the product. The FDA does not require that a causal relationship between a product and event be proven, and reports do not always contain the detail necessary to evaluate an event. Because of this, there is no way to identify the true number of events. The important takeaway to all this is that the information contained in this data has not been verified to produce cause and effect relationships. Despite this disclaimer, many interesting insights and value can be derived from the data to accelerate drug safety research.

Data analysis using SQL

For application developers who want to perform targeted searching and lookups, the API endpoints provided by the openFDA project are “ready to go” for software integration using a standard API powered by Elasticsearch, NodeJS, and Docker. However, for data analysis purposes, it is often easier to work with the data using SQL and statistical packages that expect a SQL table structure. For large-scale analysis, APIs often have query limits, such as 5000 records per query. This can cause extra work for data scientists who want to analyze the full dataset instead of small subsets of data.

To address the concern of requiring all the data in a single dataset, the openFDA project released the full 100 GB of harmonized data files that back the openFDA project onto S3. Athena is an interactive query service that makes it easy to analyze data in S3 using standard SQL. It’s a quick and easy way to answer your questions about adverse events and aspirin that does not require you to spin up databases or servers.

While you could point tools directly at the openFDA S3 files, you can find greatly improved performance and use of the data by following some of the preparation steps later in this post.

Architecture

This post explains how to use the following architecture to take the raw data provided by openFDA, leverage several AWS services, and derive meaning from the underlying data.

Steps:

  1. Load the openFDA /drug/event dataset into Spark and convert it to gzip to allow for streaming.
  2. Transform the data in Spark and save the results as a Parquet file in S3.
  3. Query the S3 Parquet file with Athena.
  4. Perform visualization and analysis of the data in R and Python on Amazon EC2.

Optimizing public data sets: A primer on data preparation

Those who want to jump right into preparing the files for Athena may want to skip ahead to the next section.

Transforming, or pre-processing, files is a common task for using many public data sets. Before you jump into the specific steps for transforming the openFDA data files into a format optimized for Athena, I thought it would be worthwhile to provide a quick exploration on the problem.

Making a dataset in S3 efficiently accessible with minimal transformation for the end user has two key elements:

  1. Partitioning the data into objects that contain a complete part of the data (such as data created within a specific month).
  2. Using file formats that make it easy for applications to locate subsets of data (for example, gzip, Parquet, ORC, etc.).

With these two key elements in mind, you can now apply transformations to the openFDA adverse event data to prepare it for Athena. You might find the data techniques employed in this post to be applicable to many of the questions you might want to ask of the public data sets stored in Amazon S3.

Before you get started, I encourage those who are interested in doing deeper healthcare analysis on AWS to make sure that you first read the AWS HIPAA Compliance whitepaper. This covers the information necessary for processing and storing patient health information (PHI).

Also, the adverse event analysis shown for aspirin is strictly for demonstration purposes and should not be used for any real decision or taken as anything other than a demonstration of AWS capabilities. However, there have been robust case studies published that have explored a causal relationship between aspirin and adverse reactions using OpenFDA data. If you are seeking research on aspirin or its risks, visit organizations such as the Centers for Disease Control and Prevention (CDC) or the Institute of Medicine (IOM).

Preparing data for Athena

For this walkthrough, you will start with the FDA adverse events dataset, which is stored as JSON files within zip archives on S3. You then convert it to Parquet for analysis. Why do you need to convert it? The original data download is stored in objects that are partitioned by quarter.

Here is a small sample of what you find in the adverse events (/drugs/event) section of the openFDA website.

If you were looking for events that happened in a specific quarter, this is not a bad solution. For most other scenarios, such as looking across the full history of aspirin events, it requires you to access a lot of data that you won’t need. The zip file format is not ideal for using data in place because zip readers must have random access to the file, which means the data can’t be streamed. Additionally, the zip files contain large JSON objects.

To read the data in these JSON files, a streaming JSON decoder must be used or a computer with a significant amount of RAM must decode the JSON. Opening up these files for public consumption is a great start. However, you still prepare the data with a few lines of Spark code so that the JSON can be streamed.

Step 1:  Convert the file types

Using Apache Spark on EMR, you can extract all of the zip files and pull out the events from the JSON files. To do this, use the Scala code below to deflate the zip file and create a text file. In addition, compress the JSON files with gzip to improve Spark’s performance and reduce your overall storage footprint. The Scala code can be run in either the Spark Shell or in an Apache Zeppelin notebook on your EMR cluster.

If you are unfamiliar with either Apache Zeppelin or the Spark Shell, the following posts serve as great references:

 

import scala.io.Source
import java.util.zip.ZipInputStream
import org.apache.spark.input.PortableDataStream
import org.apache.hadoop.io.compress.GzipCodec

// Input Directory
val inputFile = "s3://download.open.fda.gov/drug/event/2015q4/*.json.zip";

// Output Directory
val outputDir = "s3://{YOUR OUTPUT BUCKET HERE}/output/2015q4/";

// Extract zip files from 
val zipFiles = sc.binaryFiles(inputFile);

// Process zip file to extract the json as text file and save it
// in the output directory 
val rdd = zipFiles.flatMap((file: (String, PortableDataStream)) => {
    val zipStream = new ZipInputStream(file.2.open)
    val entry = zipStream.getNextEntry
    val iter = Source.fromInputStream(zipStream).getLines
    iter
}).map(.replaceAll("\s+","")).saveAsTextFile(outputDir, classOf[GzipCodec])

Step 2:  Transform JSON into Parquet

With just a few more lines of Scala code, you can use Spark’s abstractions to convert the JSON into a Spark DataFrame and then export the data back to S3 in Parquet format.

Spark requires the JSON to be in JSON Lines format to be parsed correctly into a DataFrame.

// Output Parquet directory
val outputDir = "s3://{YOUR OUTPUT BUCKET NAME}/output/drugevents"
// Input json file
val inputJson = "s3://{YOUR OUTPUT BUCKET NAME}/output/2015q4/*”
// Load dataframe from json file multiline 
val df = spark.read.json(sc.wholeTextFiles(inputJson).values)
// Extract results from dataframe
val results = df.select("results")
// Save it to Parquet
results.write.parquet(outputDir)

Step 3:  Create an Athena table

With the data cleanly prepared and stored in S3 using the Parquet format, you can now place an Athena table on top of it to get a better understanding of the underlying data.

Because the openFDA data structure incorporates several layers of nesting, it can be a complex process to try to manually derive the underlying schema in a Hive-compatible format. To shorten this process, you can load the top row of the DataFrame from the previous step into a Hive table within Zeppelin and then extract the “create  table” statement from SparkSQL.

results.createOrReplaceTempView("data")

val top1 = spark.sql("select * from data tablesample(1 rows)")

top1.write.format("parquet").mode("overwrite").saveAsTable("drugevents")

val show_cmd = spark.sql("show create table drugevents”).show(1, false)

This returns a “create table” statement that you can almost paste directly into the Athena console. Make some small modifications (adding the word “external” and replacing “using with “stored as”), and then execute the code in the Athena query editor. The table is created.

For the openFDA data, the DDL returns all string fields, as the date format used in your dataset does not conform to the yyy-mm-dd hh:mm:ss[.f…] format required by Hive. For your analysis, the string format works appropriately but it would be possible to extend this code to use a Presto function to convert the strings into time stamps.

CREATE EXTERNAL TABLE  drugevents (
   companynumb  string, 
   safetyreportid  string, 
   safetyreportversion  string, 
   receiptdate  string, 
   patientagegroup  string, 
   patientdeathdate  string, 
   patientsex  string, 
   patientweight  string, 
   serious  string, 
   seriousnesscongenitalanomali  string, 
   seriousnessdeath  string, 
   seriousnessdisabling  string, 
   seriousnesshospitalization  string, 
   seriousnesslifethreatening  string, 
   seriousnessother  string, 
   actiondrug  string, 
   activesubstancename  string, 
   drugadditional  string, 
   drugadministrationroute  string, 
   drugcharacterization  string, 
   drugindication  string, 
   drugauthorizationnumb  string, 
   medicinalproduct  string, 
   drugdosageform  string, 
   drugdosagetext  string, 
   reactionoutcome  string, 
   reactionmeddrapt  string, 
   reactionmeddraversionpt  string)
STORED AS parquet
LOCATION
  's3://{YOUR TARGET BUCKET}/output/drugevents'

With the Athena table in place, you can start to explore the data by running ad hoc queries within Athena or doing more advanced statistical analysis in R.

Using SQL and R to analyze adverse events

Using the openFDA data with Athena makes it very easy to translate your questions into SQL code and perform quick analysis on the data. After you have prepared the data for Athena, you can begin to explore the relationship between aspirin and adverse drug events, as an example. One of the most common metrics to measure adverse drug events is the Proportional Reporting Ratio (PRR). It is defined as:

PRR = (m/n)/( (M-m)/(N-n) )
Where
m = #reports with drug and event
n = #reports with drug
M = #reports with event in database
N = #reports in database

Gastrointestinal haemorrhage has the highest PRR of any reaction to aspirin when viewed in aggregate. One question you may want to ask is how the PRR has trended on a yearly basis for gastrointestinal haemorrhage since 2005.

Using the following query in Athena, you can see the PRR trend of “GASTROINTESTINAL HAEMORRHAGE” reactions with “ASPIRIN” since 2005:

with drug_and_event as 
(select rpad(receiptdate, 4, 'NA') as receipt_year
    , reactionmeddrapt
    , count(distinct (concat(safetyreportid,receiptdate,reactionmeddrapt))) as reports_with_drug_and_event 
from fda.drugevents
where rpad(receiptdate,4,'NA') 
     between '2005' and '2015' 
     and medicinalproduct = 'ASPIRIN'
     and reactionmeddrapt= 'GASTROINTESTINAL HAEMORRHAGE'
group by reactionmeddrapt, rpad(receiptdate, 4, 'NA') 
), reports_with_drug as 
(
select rpad(receiptdate, 4, 'NA') as receipt_year
    , count(distinct (concat(safetyreportid,receiptdate,reactionmeddrapt))) as reports_with_drug 
 from fda.drugevents 
 where rpad(receiptdate,4,'NA') 
     between '2005' and '2015' 
     and medicinalproduct = 'ASPIRIN'
group by rpad(receiptdate, 4, 'NA') 
), reports_with_event as 
(
   select rpad(receiptdate, 4, 'NA') as receipt_year
    , count(distinct (concat(safetyreportid,receiptdate,reactionmeddrapt))) as reports_with_event 
   from fda.drugevents
   where rpad(receiptdate,4,'NA') 
     between '2005' and '2015' 
     and reactionmeddrapt= 'GASTROINTESTINAL HAEMORRHAGE'
   group by rpad(receiptdate, 4, 'NA')
), total_reports as 
(
   select rpad(receiptdate, 4, 'NA') as receipt_year
    , count(distinct (concat(safetyreportid,receiptdate,reactionmeddrapt))) as total_reports 
   from fda.drugevents
   where rpad(receiptdate,4,'NA') 
     between '2005' and '2015' 
   group by rpad(receiptdate, 4, 'NA')
)
select  drug_and_event.receipt_year, 
(1.0 * drug_and_event.reports_with_drug_and_event/reports_with_drug.reports_with_drug)/ (1.0 * (reports_with_event.reports_with_event- drug_and_event.reports_with_drug_and_event)/(total_reports.total_reports-reports_with_drug.reports_with_drug)) as prr
, drug_and_event.reports_with_drug_and_event
, reports_with_drug.reports_with_drug
, reports_with_event.reports_with_event
, total_reports.total_reports
from drug_and_event
    inner join reports_with_drug on  drug_and_event.receipt_year = reports_with_drug.receipt_year   
    inner join reports_with_event on  drug_and_event.receipt_year = reports_with_event.receipt_year
    inner join total_reports on  drug_and_event.receipt_year = total_reports.receipt_year
order by  drug_and_event.receipt_year


One nice feature of Athena is that you can quickly connect to it via R or any other tool that can use a JDBC driver to visualize the data and understand it more clearly.

With this quick R script that can be run in R Studio either locally or on an EC2 instance, you can create a visualization of the PRR and Reporting Odds Ratio (RoR) for “GASTROINTESTINAL HAEMORRHAGE” reactions from “ASPIRIN” since 2005 to better understand these trends.

# connect to ATHENA
conn <- dbConnect(drv, '<Your JDBC URL>',s3_staging_dir="<Your S3 Location>",user=Sys.getenv(c("USER_NAME"),password=Sys.getenv(c("USER_PASSWORD"))

# Declare Adverse Event
adverseEvent <- "'GASTROINTESTINAL HAEMORRHAGE'"

# Build SQL Blocks
sqlFirst <- "SELECT rpad(receiptdate, 4, 'NA') as receipt_year, count(DISTINCT safetyreportid) as event_count FROM fda.drugsflat WHERE rpad(receiptdate,4,'NA') between '2005' and '2015'"
sqlEnd <- "GROUP BY rpad(receiptdate, 4, 'NA') ORDER BY receipt_year"

# Extract Aspirin with adverse event counts
sql <- paste(sqlFirst,"AND medicinalproduct ='ASPIRIN' AND reactionmeddrapt=",adverseEvent, sqlEnd,sep=" ")
aspirinAdverseCount = dbGetQuery(conn,sql)

# Extract Aspirin counts
sql <- paste(sqlFirst,"AND medicinalproduct ='ASPIRIN'", sqlEnd,sep=" ")
aspirinCount = dbGetQuery(conn,sql)

# Extract adverse event counts
sql <- paste(sqlFirst,"AND reactionmeddrapt=",adverseEvent, sqlEnd,sep=" ")
adverseCount = dbGetQuery(conn,sql)

# All Drug Adverse event Counts
sql <- paste(sqlFirst, sqlEnd,sep=" ")
allDrugCount = dbGetQuery(conn,sql)

# Select correct rows
selAll =  allDrugCount$receipt_year == aspirinAdverseCount$receipt_year
selAspirin = aspirinCount$receipt_year == aspirinAdverseCount$receipt_year
selAdverse = adverseCount$receipt_year == aspirinAdverseCount$receipt_year

# Calculate Numbers
m <- c(aspirinAdverseCount$event_count)
n <- c(aspirinCount[selAspirin,2])
M <- c(adverseCount[selAdverse,2])
N <- c(allDrugCount[selAll,2])

# Calculate proptional reporting ratio
PRR = (m/n)/((M-m)/(N-n))

# Calculate reporting Odds Ratio
d = n-m
D = N-M
ROR = (m/d)/(M/D)

# Plot the PRR and ROR
g_range <- range(0, PRR,ROR)
g_range[2] <- g_range[2] + 3
yearLen = length(aspirinAdverseCount$receipt_year)
axis(1,1:yearLen,lab=ax)
plot(PRR, type="o", col="blue", ylim=g_range,axes=FALSE, ann=FALSE)
axis(1,1:yearLen,lab=ax)
axis(2, las=1, at=1*0:g_range[2])
box()
lines(ROR, type="o", pch=22, lty=2, col="red")

As you can see, the PRR and RoR have both remained fairly steady over this time range. With the R Script above, all you need to do is change the adverseEvent variable from GASTROINTESTINAL HAEMORRHAGE to another type of reaction to analyze and compare those trends.

Summary

In this walkthrough:

  • You used a Scala script on EMR to convert the openFDA zip files to gzip.
  • You then transformed the JSON blobs into flattened Parquet files using Spark on EMR.
  • You created an Athena DDL so that you could query these Parquet files residing in S3.
  • Finally, you pointed the R package at the Athena table to analyze the data without pulling it into a database or creating your own servers.

If you have questions or suggestions, please comment below.


Next Steps

Take your skills to the next level. Learn how to optimize Amazon S3 for an architecture commonly used to enable genomic data analysis. Also, be sure to read more about running R on Amazon Athena.

 

 

 

 

 


About the Authors

Ryan Hood is a Data Engineer for AWS. He works on big data projects leveraging the newest AWS offerings. In his spare time, he enjoys watching the Cubs win the World Series and attempting to Sous-vide anything he can find in his refrigerator.

 

 

Vikram Anand is a Data Engineer for AWS. He works on big data projects leveraging the newest AWS offerings. In his spare time, he enjoys playing soccer and watching the NFL & European Soccer leagues.

 

 

Dave Rocamora is a Solutions Architect at Amazon Web Services on the Open Data team. Dave is based in Seattle and when he is not opening data, he enjoys biking and drinking coffee outside.

 

 

 

 

Power Management and Energy-awareness Microconference Accepted into LPC

Post Syndicated from ris original https://lwn.net/Articles/727560/rss

The Power Management and Energy-awareness microconference has been
accepted for this year’s Linux Plumber’s Conference, which runs September
13-15 in Los Angeles, CA. “The agenda this year will focus on a
range of topics including CPUfreq
core improvements and schedutil governor extensions, how to best use
scheduler signals to balance energy consumption and performance and
user space interfaces to control capacity and utilization estimates.
We’ll also discuss selective throttling in thermally constrained
systems, runtime PM for ACPI, CPU cluster idling and the possibility to
implement resume from hibernation in a bootloader.

Deploying Java Microservices on Amazon EC2 Container Service

Post Syndicated from Nathan Taber original https://aws.amazon.com/blogs/compute/deploying-java-microservices-on-amazon-ec2-container-service/

This post and accompanying code graciously contributed by:

Huy Huynh
Sr. Solutions Architect
Magnus Bjorkman
Solutions Architect

Java is a popular language used by many enterprises today. To simplify and accelerate Java application development, many companies are moving from a monolithic to microservices architecture. For some, it has become a strategic imperative. Containerization technology, such as Docker, lets enterprises build scalable, robust microservice architectures without major code rewrites.

In this post, I cover how to containerize a monolithic Java application to run on Docker. Then, I show how to deploy it on AWS using Amazon EC2 Container Service (Amazon ECS), a high-performance container management service. Finally, I show how to break the monolith into multiple services, all running in containers on Amazon ECS.

Application Architecture

For this example, I use the Spring Pet Clinic, a monolithic Java application for managing a veterinary practice. It is a simple REST API, which allows the client to manage and view Owners, Pets, Vets, and Visits.

It is a simple three-tier architecture:

  • Client
    You simulate this by using curl commands.
  • Web/app server
    This is the Java and Spring-based application that you run using the embedded Tomcat. As part of this post, you run this within Docker containers.
  • Database server
    This is the relational database for your application that stores information about owners, pets, vets, and visits. For this post, use MySQL RDS.

I decided to not put the database inside a container as containers were designed for applications and are transient in nature. The choice was made even easier because you have a fully managed database service available with Amazon RDS.

RDS manages the work involved in setting up a relational database, from provisioning the infrastructure capacity that you request to installing the database software. After your database is up and running, RDS automates common administrative tasks, such as performing backups and patching the software that powers your database. With optional Multi-AZ deployments, Amazon RDS also manages synchronous data replication across Availability Zones with automatic failover.

Walkthrough

You can find the code for the example covered in this post at amazon-ecs-java-microservices on GitHub.

Prerequisites

You need the following to walk through this solution:

  • An AWS account
  • An access key and secret key for a user in the account
  • The AWS CLI installed

Also, install the latest versions of the following:

  • Java
  • Maven
  • Python
  • Docker

Step 1: Move the existing Java Spring application to a container deployed using Amazon ECS

First, move the existing monolith application to a container and deploy it using Amazon ECS. This is a great first step before breaking the monolith apart because you still get some benefits before breaking apart the monolith:

  • An improved pipeline. The container also allows an engineering organization to create a standard pipeline for the application lifecycle.
  • No mutations to machines.

You can find the monolith example at 1_ECS_Java_Spring_PetClinic.

Container deployment overview

The following diagram is an overview of what the setup looks like for Amazon ECS and related services:

This setup consists of the following resources:

  • The client application that makes a request to the load balancer.
  • The load balancer that distributes requests across all available ports and instances registered in the application’s target group using round-robin.
  • The target group that is updated by Amazon ECS to always have an up-to-date list of all the service containers in the cluster. This includes the port on which they are accessible.
  • One Amazon ECS cluster that hosts the container for the application.
  • A VPC network to host the Amazon ECS cluster and associated security groups.

Each container has a single application process that is bound to port 8080 within its namespace. In reality, all the containers are exposed on a different, randomly assigned port on the host.

The architecture is containerized but still monolithic because each container has all the same features of the rest of the containers

The following is also part of the solution but not depicted in the above diagram:

  • One Amazon EC2 Container Registry (Amazon ECR) repository for the application.
  • A service/task definition that spins up containers on the instances of the Amazon ECS cluster.
  • A MySQL RDS instance that hosts the applications schema. The information about the MySQL RDS instance is sent in through environment variables to the containers, so that the application can connect to the MySQL RDS instance.

I have automated setup with the 1_ECS_Java_Spring_PetClinic/ecs-cluster.cf AWS CloudFormation template and a Python script.

The Python script calls the CloudFormation template for the initial setup of the VPC, Amazon ECS cluster, and RDS instance. It then extracts the outputs from the template and uses those for API calls to create Amazon ECR repositories, tasks, services, Application Load Balancer, and target groups.

Environment variables and Spring properties binding

As part of the Python script, you pass in a number of environment variables to the container as part of the task/container definition:

'environment': [
{
'name': 'SPRING_PROFILES_ACTIVE',
'value': 'mysql'
},
{
'name': 'SPRING_DATASOURCE_URL',
'value': my_sql_options['dns_name']
},
{
'name': 'SPRING_DATASOURCE_USERNAME',
'value': my_sql_options['username']
},
{
'name': 'SPRING_DATASOURCE_PASSWORD',
'value': my_sql_options['password']
}
],

The preceding environment variables work in concert with the Spring property system. The value in the variable SPRING_PROFILES_ACTIVE, makes Spring use the MySQL version of the application property file. The other environment files override the following properties in that file:

  • spring.datasource.url
  • spring.datasource.username
  • spring.datasource.password

Optionally, you can also encrypt sensitive values by using Amazon EC2 Systems Manager Parameter Store. Instead of handing in the password, you pass in a reference to the parameter and fetch the value as part of the container startup. For more information, see Managing Secrets for Amazon ECS Applications Using Parameter Store and IAM Roles for Tasks.

Spotify Docker Maven plugin

Use the Spotify Docker Maven plugin to create the image and push it directly to Amazon ECR. This allows you to do this as part of the regular Maven build. It also integrates the image generation as part of the overall build process. Use an explicit Dockerfile as input to the plugin.

FROM frolvlad/alpine-oraclejdk8:slim
VOLUME /tmp
ADD spring-petclinic-rest-1.7.jar app.jar
RUN sh -c 'touch /app.jar'
ENV JAVA_OPTS=""
ENTRYPOINT [ "sh", "-c", "java $JAVA_OPTS -Djava.security.egd=file:/dev/./urandom -jar /app.jar" ]

The Python script discussed earlier uses the AWS CLI to authenticate you with AWS. The script places the token in the appropriate location so that the plugin can work directly against the Amazon ECR repository.

Test setup

You can test the setup by running the Python script:
python setup.py -m setup -r <your region>

After the script has successfully run, you can test by querying an endpoint:
curl <your endpoint from output above>/owner

You can clean this up before going to the next section:
python setup.py -m cleanup -r <your region>

Step 2: Converting the monolith into microservices running on Amazon ECS

The second step is to convert the monolith into microservices. For a real application, you would likely not do this as one step, but re-architect an application piece by piece. You would continue to run your monolith but it would keep getting smaller for each piece that you are breaking apart.

By migrating microservices, you would get four benefits associated with microservices:

  • Isolation of crashes
    If one microservice in your application is crashing, then only that part of your application goes down. The rest of your application continues to work properly.
  • Isolation of security
    When microservice best practices are followed, the result is that if an attacker compromises one service, they only gain access to the resources of that service. They can’t horizontally access other resources from other services without breaking into those services as well.
  • Independent scaling
    When features are broken out into microservices, then the amount of infrastructure and number of instances of each microservice class can be scaled up and down independently.
  • Development velocity
    In a monolith, adding a new feature can potentially impact every other feature that the monolith contains. On the other hand, a proper microservice architecture has new code for a new feature going into a new service. You can be confident that any code you write won’t impact the existing code at all, unless you explicitly write a connection between two microservices.

Find the monolith example at 2_ECS_Java_Spring_PetClinic_Microservices.
You break apart the Spring Pet Clinic application by creating a microservice for each REST API operation, as well as creating one for the system services.

Java code changes

Comparing the project structure between the monolith and the microservices version, you can see that each service is now its own separate build.
First, the monolith version:

You can clearly see how each API operation is its own subpackage under the org.springframework.samples.petclinic package, all part of the same monolithic application.
This changes as you break it apart in the microservices version:

Now, each API operation is its own separate build, which you can build independently and deploy. You have also duplicated some code across the different microservices, such as the classes under the model subpackage. This is intentional as you don’t want to introduce artificial dependencies among the microservices and allow these to evolve differently for each microservice.

Also, make the dependencies among the API operations more loosely coupled. In the monolithic version, the components are tightly coupled and use object-based invocation.

Here is an example of this from the OwnerController operation, where the class is directly calling PetRepository to get information about pets. PetRepository is the Repository class (Spring data access layer) to the Pet table in the RDS instance for the Pet API:

@RestController
class OwnerController {

    @Inject
    private PetRepository pets;
    @Inject
    private OwnerRepository owners;
    private static final Logger logger = LoggerFactory.getLogger(OwnerController.class);

    @RequestMapping(value = "/owner/{ownerId}/getVisits", method = RequestMethod.GET)
    public ResponseEntity<List<Visit>> getOwnerVisits(@PathVariable int ownerId){
        List<Pet> petList = this.owners.findById(ownerId).getPets();
        List<Visit> visitList = new ArrayList<Visit>();
        petList.forEach(pet -> visitList.addAll(pet.getVisits()));
        return new ResponseEntity<List<Visit>>(visitList, HttpStatus.OK);
    }
}

In the microservice version, call the Pet API operation and not PetRepository directly. Decouple the components by using interprocess communication; in this case, the Rest API. This provides for fault tolerance and disposability.

@RestController
class OwnerController {

    @Value("#{environment['SERVICE_ENDPOINT'] ?: 'localhost:8080'}")
    private String serviceEndpoint;

    @Inject
    private OwnerRepository owners;
    private static final Logger logger = LoggerFactory.getLogger(OwnerController.class);

    @RequestMapping(value = "/owner/{ownerId}/getVisits", method = RequestMethod.GET)
    public ResponseEntity<List<Visit>> getOwnerVisits(@PathVariable int ownerId){
        List<Pet> petList = this.owners.findById(ownerId).getPets();
        List<Visit> visitList = new ArrayList<Visit>();
        petList.forEach(pet -> {
            logger.info(getPetVisits(pet.getId()).toString());
            visitList.addAll(getPetVisits(pet.getId()));
        });
        return new ResponseEntity<List<Visit>>(visitList, HttpStatus.OK);
    }

    private List<Visit> getPetVisits(int petId){
        List<Visit> visitList = new ArrayList<Visit>();
        RestTemplate restTemplate = new RestTemplate();
        Pet pet = restTemplate.getForObject("http://"+serviceEndpoint+"/pet/"+petId, Pet.class);
        logger.info(pet.getVisits().toString());
        return pet.getVisits();
    }
}

You now have an additional method that calls the API. You are also handing in the service endpoint that should be called, so that you can easily inject dynamic endpoints based on the current deployment.

Container deployment overview

Here is an overview of what the setup looks like for Amazon ECS and the related services:

This setup consists of the following resources:

  • The client application that makes a request to the load balancer.
  • The Application Load Balancer that inspects the client request. Based on routing rules, it directs the request to an instance and port from the target group that matches the rule.
  • The Application Load Balancer that has a target group for each microservice. The target groups are used by the corresponding services to register available container instances. Each target group has a path, so when you call the path for a particular microservice, it is mapped to the correct target group. This allows you to use one Application Load Balancer to serve all the different microservices, accessed by the path. For example, https:///owner/* would be mapped and directed to the Owner microservice.
  • One Amazon ECS cluster that hosts the containers for each microservice of the application.
  • A VPC network to host the Amazon ECS cluster and associated security groups.

Because you are running multiple containers on the same instances, use dynamic port mapping to avoid port clashing. By using dynamic port mapping, the container is allocated an anonymous port on the host to which the container port (8080) is mapped. The anonymous port is registered with the Application Load Balancer and target group so that traffic is routed correctly.

The following is also part of the solution but not depicted in the above diagram:

  • One Amazon ECR repository for each microservice.
  • A service/task definition per microservice that spins up containers on the instances of the Amazon ECS cluster.
  • A MySQL RDS instance that hosts the applications schema. The information about the MySQL RDS instance is sent in through environment variables to the containers. That way, the application can connect to the MySQL RDS instance.

I have again automated setup with the 2_ECS_Java_Spring_PetClinic_Microservices/ecs-cluster.cf CloudFormation template and a Python script.

The CloudFormation template remains the same as in the previous section. In the Python script, you are now building five different Java applications, one for each microservice (also includes a system application). There is a separate Maven POM file for each one. The resulting Docker image gets pushed to its own Amazon ECR repository, and is deployed separately using its own service/task definition. This is critical to get the benefits described earlier for microservices.

Here is an example of the POM file for the Owner microservice:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <groupId>org.springframework.samples</groupId>
    <artifactId>spring-petclinic-rest</artifactId>
    <version>1.7</version>
    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>1.5.2.RELEASE</version>
    </parent>
    <properties>
        <!-- Generic properties -->
        <java.version>1.8</java.version>
        <docker.registry.host>${env.docker_registry_host}</docker.registry.host>
    </properties>
    <dependencies>
        <dependency>
            <groupId>javax.inject</groupId>
            <artifactId>javax.inject</artifactId>
            <version>1</version>
        </dependency>
        <!-- Spring and Spring Boot dependencies -->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-actuator</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-rest</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-cache</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-jpa</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>
        <!-- Databases - Uses HSQL by default -->
        <dependency>
            <groupId>org.hsqldb</groupId>
            <artifactId>hsqldb</artifactId>
            <scope>runtime</scope>
        </dependency>
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <scope>runtime</scope>
        </dependency>
        <!-- caching -->
        <dependency>
            <groupId>javax.cache</groupId>
            <artifactId>cache-api</artifactId>
        </dependency>
        <dependency>
            <groupId>org.ehcache</groupId>
            <artifactId>ehcache</artifactId>
        </dependency>
        <!-- end of webjars -->
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-devtools</artifactId>
            <scope>runtime</scope>
        </dependency>
    </dependencies>
    <build>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
            </plugin>
            <plugin>
                <groupId>com.spotify</groupId>
                <artifactId>docker-maven-plugin</artifactId>
                <version>0.4.13</version>
                <configuration>
                    <imageName>${env.docker_registry_host}/${project.artifactId}</imageName>
                    <dockerDirectory>src/main/docker</dockerDirectory>
                    <useConfigFile>true</useConfigFile>
                    <registryUrl>${env.docker_registry_host}</registryUrl>
                    <!--dockerHost>https://${docker.registry.host}</dockerHost-->
                    <resources>
                        <resource>
                            <targetPath>/</targetPath>
                            <directory>${project.build.directory}</directory>
                            <include>${project.build.finalName}.jar</include>
                        </resource>
                    </resources>
                    <forceTags>false</forceTags>
                    <imageTags>
                        <imageTag>${project.version}</imageTag>
                    </imageTags>
                </configuration>
            </plugin>
        </plugins>
    </build>
</project>

Test setup

You can test this by running the Python script:

python setup.py -m setup -r <your region>

After the script has successfully run, you can test by querying an endpoint:

curl <your endpoint from output above>/owner

Conclusion

Migrating a monolithic application to a containerized set of microservices can seem like a daunting task. Following the steps outlined in this post, you can begin to containerize monolithic Java apps, taking advantage of the container runtime environment, and beginning the process of re-architecting into microservices. On the whole, containerized microservices are faster to develop, easier to iterate on, and more cost effective to maintain and secure.

This post focused on the first steps of microservice migration. You can learn more about optimizing and scaling your microservices with components such as service discovery, blue/green deployment, circuit breakers, and configuration servers at http://aws.amazon.com/containers.

If you have questions or suggestions, please comment below.

Amazon EC2 Systems Manager Patch Manager now supports Linux

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/amazon-ec2-systems-manager-patch-manager-now-supports-linux/

Hot on the heels of some other great Amazon EC2 Systems Manager (SSM) updates is another vital enhancement: the ability to use Patch Manager on Linux instances!

We launched Patch Manager with SSM at re:Invent in 2016 and Linux support was a commonly requested feature. Starting today we can support patch manager in:

  • Amazon Linux 2014.03 and later (2015.03 and later for 64-bit)
  • Ubuntu Server 16.04 LTS, 14.04 LTS, and 12.04 LTS
  • RHEL 6.5 and later (7.x and later for 64-Bit)

When I think about patching a big group of heterogenous systems I get a little anxious. Years ago, I administered my school’s computer lab. This involved a modest group of machines running a small number of VMs with an immodest number of distinct Linux distros. When there was a critical security patch it was a lot of work to remember the constraints of each system. I remember having to switch back and forth between arcane invocations of various package managers – pinning and unpinning packages: sudo yum update -y, rpm -Uvh ..., apt-get, or even emerge (one of our professors loved Gentoo).

Even now, when I use configuration management systems like Chef or Puppet I still have to specify the package manager and remember a portion of the invocation – and I don’t always want to roll out a patch without some manual approval process. Based on these experiences I decided it was time for me to update my skillset and learn to use Patch Manager.

Patch Manager is a fully-managed service (provided at no additional cost) that helps you simplify your operating system patching process, including defining the patches you want to approve for deployment, the method of patch deployment, the timing for patch roll-outs, and determining patch compliance status across your entire fleet of instances. It’s extremely configurable with some sensible defaults and helps you easily deal with patching hetergenous clusters.

Since I’m not running that school computer lab anymore my fleet is a bit smaller these days:

a list of instances with amusing names

As you can see above I only have a few instances in this region but if you look at the launch times they range from 2014 to a few minutes ago. I’d be willing to bet I’ve missed a patch or two somewhere (luckily most of these have strict security groups). To get started I installed the SSM agent on all of my machines by following the documentation here. I also made sure I had the appropriate role and IAM profile attached to the instances to talk to SSM – I just used this managed policy: AmazonEC2RoleforSSM.

Now I need to define a Patch Baseline. We’ll make security updates critical and all other updates informational and subject to my approval.

 

Next, I can run the AWS-RunPatchBaseline SSM Run Command in “Scan” mode to generate my patch baseline data.

Then, we can go to the Patch Compliance page in the EC2 console and check out how I’m doing.

Yikes, looks like I need some security updates! Now, I can use Maintenance Windows, Run Command, or State Manager in SSM to actually manage this patching process. One thing to note, when patching is completed, your machine reboots – so managing that roll out with Maintenance Windows or State Manager is a best practice. If I had a larger set of instances I could group them by creating a tag named “Patch Group”.

For now, I’ll just use the same AWS-RunPatchBaseline Run Command command from above with the “Install” operation to update these machines.

As always, the CLIs and APIs have been updated to support these new options. The documentation is here. I hope you’re all able to spend less time patching and more time coding!

Randall

OctaPi: cluster computing and cryptography

Post Syndicated from Laura Sach original https://www.raspberrypi.org/blog/octapi/

When I was a teacher, a question I was constantly asked by curious students was, “Can you teach us how to hack?” Turning this idea on its head, and teaching the techniques behind some of our most important national cyber security measures, is an excellent way of motivating students to do good. This is why the Raspberry Pi Foundation and GCHQ have been working together to bring you exciting new resources!

More computing power with the OctaPi

You may have read about GCHQ’s OctaPi computer in Issue 58 of the MagPi. The OctaPi is a cluster computer joining together the power of eight Raspberry Pis (i.e. 32 cores) in a distributed computer system to execute computations much faster than a single Pi could perform them.

OctaPi cluster

Can you feel the power?

We have created a brand-new tutorial on how to build your own OctaPi at home. Don’t have eight Raspberry Pis lying around? Build a TetraPi (4) or a HexaPi (6) instead! You could even build the OctaPi with Pi Zero Ws if you wish. You will be able to run any programs you like on your new cluster computer, as it has all the software of a regular Pi, but is more powerful.

OctaPi at the Cheltenham Science Festival

Understanding cryptography

You probably use public key cryptography online every day without even realising it, but now you can use your OctaPi to understand exactly how it keeps your data safe. Our new OctaPi: public key cryptography resource walks you through the invention of this type of encryption (spoiler: Diffie and Hellman weren’t the first to invent it!). In it, you’ll also learn how a public key is created, whether a brute force attack using the OctaPi could be used to find out a public key, and you will be able to try breaking an encryption example yourself.

These resources are some our most advanced educational materials yet, and fit in with the “Maker” level of the Raspberry Pi Foundation Digital Making Curriculum. The projects are ideal for older students, perhaps those looking to study Computer Science at university. And there’s more to come: we have two other OctaPi resources in the pipeline to make use of the OctaPi’s full capabilities, so watch this space!

The post OctaPi: cluster computing and cryptography appeared first on Raspberry Pi.

InfluxDB: first impressions

Post Syndicated from Blogs on Grafana Labs Blog original https://grafana.com/blog/2015/01/07/influxdb-first-impressions/

As we begin to develop the raintank platform, we’ve started to play with numerous solutions for time series databases including MongoDB, OpenTSDB, Graphite, and even MySQL.
The more generic database solutions, MongoDB and MySQL, were quickly ruled out as viable options. Though they are both great tools, they are not suited to the narrow use case of large scale time-series data, which is of particular interest to us.
OpenTSDB showed a lot of promise, but we found the complexity of keeping a Hadoop cluster running not worth the rewards.