Tag Archives: Maps

Save Your Place with Grab!

Post Syndicated from Grab Tech original https://engineering.grab.com/save-your-place-with-grab

Do you find it tedious to type and search for your destination or have a hard time remembering that address of the friend you are going to meet? It can be really confusing when it comes to keeping track of so many addresses that you frequent on a regular basis. To solve this pain point, Grab rolled out a new feature called Saved Places in January’19 across SouthEast Asia.

With Saved Places, you can save an address and also add a label like “Home”, “Work”, “Gym”, etc which makes finding and selecting an address for booking a ride or ordering your favourite food a breeze!

Never forget your addresses again!

To use the feature, fire up your Grab app, head to the “Saved Places” section on the app navigation bar and start adding all your favourite destinations such as your home, your office, your favourite mall or the airport and you are done with the hassle of typing them again.

Save your place with Grab!

 

Hola! your saved addresses are just a click away to order a ride or your favourite meal.

Inspiration behind the work

We at Grab continuously engage with our customers to understand how we can outserve them better. Difficulty in choosing the correct address was one of the key feedback shared by our customers. Our drivers shared funny stories about places that have similar names but outrightly different locations e.g. Sime Road is in Bukit Timah but Simei Road is in Simei almost 20 km away, Nicoll Highway is in Kallang but Nicoll Drive is in Changi almost 20 km away. In this case, even though the users use the address frequently, there remains scope for misselection.

Data-Driven Decisions

Our vast repository of data and insights has helped us identify and solve some challenging problems. Our analysis of millions of transport bookings and food orders revealed that customers usually visit five to seven unique locations and order food at one or two addresses.

One intriguing yet intuitive insight that came out was a set pattern in user’s booking behaviour during weekdays. A set of passengers mostly commute between two addresses, probably going to the office in the morning and coming back home in the evening. These identifiable clusters of pick-up and drop-off locations during peak hours signified our hypothesis of users using a small set of locations for their Grab bookings. The pictures below show such clusters in Singapore and Jakarta where passengers generally commute to and fro in morning and in evening respectively.

Save your place with Grab!

 

This insight also motivated us to test out the concept of user created labels which allows the users to mark their saved places with their own labels like “Home”, “Changi Airport”, “Sis’s House” etc. Initial experiment results were extremely encouraging and we got significantly higher usage and repeat rates from users.

A group of cross functional teams – Analytics, Product, Design, Engineering etc came together, worked backwards from the customer, brainstormed multiple ideas, and finalised a product approach. We then went on to conduct in depth user research and usability testing to ensure that the final product met user expectations and was easy to understand and use.

And users love it!

Since the launch, we have seen significant user adoption for the feature. More than 14 Million users have saved close to 45 Million saved places. That’s ~3 places per user!

Customers from Singapore and Myanmar tend to save around 3 addresses each whereas customers from Indonesia, Malaysia, Philippines, Thailand, Vietnam and Cambodia save 2 addresses each. A customer from Indonesia has saved a whopping 1,191 addresses!

Users across South East Asia have adopted the feature and as of today, a significant portion of our bookings are made using a saved place for either pickup or drop off. If you were curious, here are the most frequently used labels for saving addresses in Singapore (left) and Indonesia (right):

Save your place with Grab!

 

Apart from saving home and office addresses our customers are also saving their child’s school address and places of worship. Some of them are also saving their favourite shopping destinations.

Another observation, as someone may have guessed, is regarding cluster of home addresses. Home addresses in Singapore are evenly scattered across the island (map on upper left) but the same are concentrated in specific pockets of the city in Jakarta (map on lower left). However office addresses are concentrated in specific areas in both cities – CBD and Changi area in Singapore (map on upper right) and along central Jakarta in Jakarta (map on lower right).

Save your place with Grab!

 

This is only the beginning

We’re constantly striving to improve the user experience with Grab and make it as seamless as possible. We have only taken the first steps with Saved Places and the path forward involves deeper understanding of user behaviour with the help of saved places data to create a more personalised experience. This is just the beginning and we’re planning to launch some very innovative features in the coming months.

No More Forgetting to Input ERP Charges – Hello Automated ERP!

Post Syndicated from Grab Tech original https://engineering.grab.com/automated-erp-charges

ERP, standing for Electronic Road Pricing, is a system used to manage road congestion in Singapore. Drivers are charged when they pass through ERP gantries during peak hours. ERP rates vary for different roads and time periods based on the traffic conditions at the time. This encourages people to change their mode of transport, travel route or time of travel during peak hours. ERP is seen as an effective measure in addressing traffic conditions and ensuring drivers continue to have a smooth journey.

Did you know that Singapore has a total of 79 active ERP gantries? Did you also know that every ERP gantry changes its fare 10 times a day on average? For example, total ERP charges for a journey from Ang Mo Kio to Marina will cost $10 if you leave at 8:50am, but $4 if you leave at 9:00am on a working day!

Imagine how troublesome it would have been for Grab’s driver-partners who, on top of having to drive and check navigation, would also have had to remember each and every gantry they passed, calculating their total fare and then manually entering the charges to the total ride cost at the end of the ride.

In fact, based on our driver-partners’ feedback, missing out on ERP charges was listed as one of their top-most pain points. Not only did the drivers find the entire process troublesome, this also led to earnings loss as they would have had to bear the cost of the  ERP fares.

We’re glad to share that, as of 15th March 2019, we’ve successfully resolved this pain point for our driver-partners by introducing automated ERP fare calculation!

So, how did we achieve automating the ERP fare calculation for our drivers-partners? How did we manage to reduce the number of trips where drivers would forget to enter ERP fare to almost zero? Read on!

How we approached the Problem

The question we wanted to solve was – how do we create an impactful feature to make sure that driver -partners have one less thing to handle when they drive?

We started by looking at the problem at hand. ERP fares in Singapore are very dynamic; it changes on the basis of day and time.

Caption: Example of ERP fare changes on a normal weekday in Singapore
Caption: Example of ERP fare changes on a normal weekday in Singapore

 

We wanted to create a system which can identify the dynamic ERP fares at any given time and location, while simultaneously identifying when a driver-partner has passed through any of these gantries.

However, that wasn’t enough. We wanted this feature to be scalable to every country where Grab is in – like Indonesia, Thailand, Malaysia, Philippines, Vietnam. We started studying the ERP (or tolls – as it is known locally) system in other countries. We realized that every country has its own style of calculating toll. While in Singapore ERP charges for cars and taxis are the same, Malaysia applies different charges for cars and taxis. Similarly, Vietnam has different tolls for 4-seaters and 7-seaters. Indonesia and Thailand have couple gantries where you pay only at one of the gantries.Suppose A and B are couple gantries, if you passed through A, you won’t need to pay at B and vice versa. This is where our Ops team came to the rescue!

Boots on the Ground!

Collecting all the ERP or toll data for every country is no small feat, recalls Robinson Kudali, program manager for the project. “We had around 15 people travelling across the region for 2-3 weeks, working on collecting data from every possible source in every country.”

Getting the right geographical coordinates for every gantry is very important. We track driver GPS pings frequently, identify the nearest road to that GPS ping and check the presence of a gantry using its coordinates. The entire process requires you to be very accurate; incorrect gantry location can easily lead to us miscalculating the fare.

Bayu Yanuaragi, our regional mapops lead, explains – “To do this, the first step was to identify all toll gates for all expressways & highways in the country. The team used various mapping software to locate and plot all entry & exit gates using map sources, open data and more importantly government data as references. Each gate was manually plotted using satellite imagery and aligned with our road layers in order to extract the coordinates with a unique gantry ID.”

Location precision is vital in creating the dataset as it dictates whether a toll gate will be detected by the Grab app or not. Next step was to identify the toll charge from one gate to another. Accuracy of toll charge per segment directly reflects on the fare that the passenger pays after the trip.

Caption: ERP gantries visualisation on our map - The purple bars are the gantries that we drew on our map
Caption: ERP gantries visualisation on our map – The purple bars are the gantries that we drew on our map

 

Once the data compilation is done, team would then conduct fieldwork to verify its integrity. If data gaps are identified, modifications would be made accordingly.

Upon submission of the output, stack engineers would perform higher level quality check of the content in staging.

Lastly, we worked with a local team of driver-partners who volunteered to make sure the new system is fully operational and the prices are correct. Inconsistencies observed were reported by these driver-partners, and then corrected in our system.

Closing the loop

Creating a strong dataset did help us in predicting correct fares, but we needed something which allows us to handle the dynamic behavior of the changing toll status too. For example, Singapore government revises ERP fare every quarter, while there could also be ad-hoc changes like activating or deactivating of gantries on an on-going basis.

Garvee Garg, Product Manager for this feature explains: “Creating a system that solves the current problem isn’t sufficient. Your product should be robust enough to handle all future edge case scenarios too. Hence we thought of building a feedback mechanism with drivers.”

In case our ERP fare estimate isn’t correct or there are changes in ERPs on-ground, our driver-partners can provide feedback to us. These feedback directly flow to Customer Experience teamwho does the initial investigation, and from there to our Ops team. A dedicated person from Ops team checks the validity of the feedback, and recommends updates. It only takes 1 day on average to update the data from when we receive the feedback from the driver-partner.

However, validating the driver feedback was a time consuming process. We needed a tool which can ease the life of Ops team by helping them in de-bugging each and every case.

Hence the ERP Workflow tool came into the picture.

99% of the time, feedback from our driver-partners are about error cases. When feedback comes in, this tool would allow the Ops team to check the entire ride history of the driver and map driver’s ride trajectory with all the underlying ERP gantries at that particular point of time. The Ops team  would then be able to identify if ERP fare calculated by our system or as said by driver is right or wrong.

This is only the beginning

By creating a system that can automatically calculate and key in ERP fares for each trip, Grab is proud to say that our driver-partners can now drive with less hassle and focus more on the road which will bring the ride experience and safety for both the driver and the passengers to a new level!

The Automated ERP feature is currently live in Singapore and we are now testing it with our driver-partners in Indonesia and Thailand. Next up, we plan to pilot in the Philippines and Malaysia and soon to every country where Grab is in – so stay tuned for even more innovative ideas to enhance your experience on our super app!

To know more about what Grab has been doing to improve the convenience and experience for both our driver-partners and passengers, check out other stories on this blog!

Guiding you Door-to-Door via our Super App!

Post Syndicated from Grab Tech original https://engineering.grab.com/poi-entrances-venues-door-to-door

Remember landing at an airport or going to your favourite mall and the hassle of finding the pickup spot when you booked a cab? When there are about a million entrances, it can get particularly annoying trying to find the right pickup location!

Rolling out across South East Asia  is a brand new booking experience from Grab, designed  to make it easier for you to make a booking at large venues like airports, shopping centers, and tourist destinations! With the new booking flow, it will not only be easier to select one of the pre-designated Grab pickup points, you can also find text and image directions to help you navigate your way through the venue for a smoother rendezvous with your driver!

Inspiration behind the work

Finding your pick-up point closest to you, let alone predicting it, is incredibly challenging, especially when you are inside huge buildings or in crowded areas. Neeraj Mishra, Product Owner for Places at Grab explains: “We rely on GPS-data to understand user’s location which can be tricky when you are indoors or surrounded by skyscrapers. Since the satellite signal has to go through layers of concrete and steel, it becomes weak which adds to the inaccuracy. Furthermore, ensuring that passengers and drivers have the same pick-up point in mind can be tricky, especially with venues that have multiple entrances. ”  

Marina One POI

Grab’s data analysis revealed that “rendezvous distance” (walking distance between the selected pick-up point and where the car is waiting) is more than twice the Grab average when the booking is made from large venues such as airports.

To solve this issue, Grab launched “Entrances” (the green dots on the map) last year, which lists the various pick-up points available at a particular building, and shows them on the map, allowing users to easily choose the one closest to them, and ensuring their drivers know exactly where they want to be picked up from. Since then, Grab has created more than 120,000 such entrances, and we are delighted to inform you that average of rendezvous distances across all  countries have been steadily going down!

Decreasing rendezvous distance across region

One problem remained

But there was still one common pain-point to be solved. Just because a passenger has selected the pick-up point closest to them, doesn’t mean it’s easy for them to find it. This is particularly challenging at very large venues like airports and shopping centres, and especially difficult if the passenger is unfamiliar with the venue, for example – a tourist landing at Jakarta Airport for the very first time. To deliver an even smoother booking and pick-up experience, Grab has rolled out a new feature called Venues – the first in the region – that will give passengers in-app photo and text directions to the pick-up point closest to them.

Let’s break it down! How does it work?

Whether you are a local or a foreigner on holiday or business trip, fret not if you are not too familiar with the place that you are in!

Let’s imagine that you are now at Singapore Changi Airport: your new booking experience will look something like this!

Step 1: Fire the Grab app and click on Transport. You will see a welcome screen showing you where you are!

Welcome to Changi Airport

Step 2: On booking screen, you will see a new pickup menu with a list of available pickup points. Confirm the pickup point you want and make the booking!

Booking screen at Changi Airport

Step 3: Once you’ve been allocated a driver, tap on the bubble to get directions to your pick-up point!

Driver allocated at Changi Airport

Step 4: Follow the landmarks and walking instructions and you’ve arrived at your pick-up point!

Directions to pick-up point at Changi Airport

Curious about how we got this done?

Data-Driven Decisions

Based on a thorough data analysis of historical bookings, Grab identified key venues across our markets in Southeast Asia. Then we dispatched our Operations team to the ground, to identify all pick up points and perform detailed on-ground survey of the venue.

Operations Team’s Leg Work

Nagur Hassan, Operations Manager at Grab, explains the process: “For the venue survey process, we send a team equipped with the tools required to capture the details, like cameras, wifi and bluetooth scanners etc. Once inside the venue, the team identifies strategic landmarks and clear direction signs that are related to drop-off and pick-up points. Team also captures turn-by-turn walking directions to make it easier for Grab users to navigate – For instance, walk towards Starbucks and take a left near H&M store. All the photos and documentations taken on the sites are then brought back to the office for further processing.”

Quality Assurance

Once the data is collected, our in-house team checks the quality of the images and data. We also mask people’s faces and number plates of the vehicles to hide any identity-related information. As of today, we have collected 3400+ images for 1900+ pick up points belonging to 600 key venues! This effort took more than 3000 man-hours in total! And we aim to cover more than 10,000 such venues across the region in the next few months.

This is only the beginning

We’re constantly striving to improve the location accuracy of our passengers by using advanced Machine Learning and constant feedback mechanism. We understand GPS may not always be the most accurate determination of your current location, especially in crowded areas and skyscraper districts. This is just the beginning and we’re planning to launch some very innovative features in the coming months! So stay tuned for more!